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ABSTRACT

Uncertainty estimation is an important task that can be essential for high-risk ap-
plications of machine learning. This problem is especially challenging for node-
level prediction in graph-structured data, as the samples (nodes) are interdepen-
dent. However, there is no established benchmark that allows for the evaluation
of node-level uncertainty estimation methods in a unified setup, covering diverse
and meaningful distribution shifts. In this paper, we address this problem and pro-
pose such a benchmark, together with a technique for the controllable generation
of data splits with various types of distribution shifts. Importantly, we describe
the shifts that are specific to the graph-structured data. Our benchmark consists of
several graph datasets equipped with various distribution shifts on which we eval-
uate the robustness of models and their uncertainty estimation performance. To il-
lustrate the benchmark, we decompose the current state-of-the-art Dirichlet-based
framework and perform an ablation study on its components. In our experiments
on the proposed benchmark, we show that when faced with complex yet realistic
distribution shifts, most models fail to maintain high classification performance
and consistency of uncertainty estimates with prediction errors. However, ensem-
bling techniques help to partially overcome significant drops in performance and
achieve better results than distinct models.

1 INTRODUCTION

Uncertainty estimation is an important and challenging task with many applications in financial sys-
tems, medical diagnostics, autonomous driving, etc. It aims at quantifying the confidence of machine
learning models and can be used to design more reliable decision-making systems. In particular, it
enables one to solve such problems as misclassification detection, where the model has to assign
higher uncertainty to the potential prediction errors, or out-of-distribution (OOD) detection, when
the model is required to yield higher uncertainty for the samples from an unknown distribution.
Depending on the source of uncertainty, it can be divided into data uncertainty, which describes
the inherent noise in data due to the labeling mistakes or class overlap, and knowledge uncertainty,
which accounts for insufficient amount of information for accurate predictions when the distribution
of test data is different from the training one (Gal, 2016; Malinin, 2019).

The problem of uncertainty estimation for graph-structured data has recently started to gain atten-
tion. It is especially complex at the node level as one has to deal with interdependent samples that
may come from different distributions, so their predictions can change significantly depending on the
neighborhood. This problem has already been addressed in several studies, and the proposed meth-
ods are commonly based on the Dirichlet distribution and introduce various extensions to the Dirich-
let framework (Sensoy et al., 2018; Malinin & Gales, 2018; Malinin, 2019; Charpentier et al., 2020),
such as graph-based kernel Dirichlet estimation (Zhao et al., 2020) or graph propagation of Dirichlet
parameters (Stadler et al., 2021).

However, the field of robustness and uncertainty estimation for node-level graph problems suffers
from the absence of benchmarks with diverse and meaningful distribution shifts. Usually, the evalu-
ation is limited to somewhat unrealistic distribution shifts, such as noisy node features (Stadler et al.,
2021) or left-out classes (Zhao et al., 2020; Stadler et al., 2021). Importantly, Gui et al. (2022) try
to overcome this issue and systematically construct a graph OOD benchmark, in which they explic-
itly make distinctions between covariate and concept shifts. However, the authors either consider
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synthetic datasets or ignore the graph structure when creating distribution shifts. The problem with
the mentioned approaches is that, in real applications, distribution shifts can be much more complex
and diverse, and may depend on the global graph structure (for a more detailed discussion, refer
to Appendix C). Thus, the existing benchmarks can be insufficient to reliably and comprehensively
evaluate uncertainty estimation methods for graph-structured data. Therefore, the current status quo
about the best uncertainty estimation methods for node classification remains unclear and requires
further investigation.

In this work, we propose a new benchmark for evaluating robustness and uncertainty estimation in
transductive node classification tasks. The main feature of our benchmark is a general approach to
constructing the data splits with distribution shifts: it can be applied to any graph dataset, allows for
generating shifts of different nature, and one can easily vary the sizes of splits. For demonstration
purpose, we apply our method to 7 common node classification datasets and describe 3 particular
strategies to induce distribution shifts. Using the proposed benchmark, we evaluate the robustness
of various models and their ability to detect errors and OOD inputs. Thus, we show that the recently
proposed Graph Posterior Network (Stadler et al., 2021) is consistently the best method for detecting
the OOD inputs. However, the best results for the other tasks are achieved using Natural Posterior
Networks (Charpentier et al., 2021). We also confirm that ensembling often allows one to improve
the model performance — ensembles of GPNs achieve the best performance for OOD detection,
while ensembles of NatPNs have the best predictive performance and error detection.

2 PROBLEM STATEMENT

We consider the problem of transductive node classification in an attributed graph G = (A,X,Y)
with an adjacency matrix A ∈ {0, 1}n×n, a node feature matrix X ∈ Rn×d and categorical targets
vector Y ∈ {1, . . . , C}n. We split the set of nodes V into several non-intersecting subsets depending
on whether they are used for training, validation, or testing and if they belong to in-distribution (ID)
or out-of-distribution (OOD) subset. Let Ytrain denote the labels of train nodes Vtrain. Given a graph
Gtrain = (A,X,Ytrain), we aim at predicting the labels Ytest of test nodes Vtest and estimating the
uncertainty measure ui ∈ R associated with these predictions. The obtained uncertainty estimates
are used to solve the misclassification detection and OOD detection problems.

3 PROPOSED BENCHMARK

This section describes our benchmark for evaluating uncertainty estimates and robustness to distri-
bution shifts for node-level graph problems. The most important ingredient of our benchmark is a
unified approach for the controllable generation of diverse distribution shifts that can be applied to
any graph dataset. Our benchmark includes a collection of common node classification datasets,
several data split strategies, a set of problems for evaluating robustness and uncertainty estimation
performance, and the associated metrics. We describe these components below.

3.1 GRAPH DATASETS

While our approach can potentially be applied to any node classification or node regression dataset,
for our experiments, we pick the following 7 datasets commonly used in the literature: 3 citation
networks, including CoraML, CiteSeer (McCallum et al., 2000; Giles et al., 1998; Getoor, 2005;
Sen et al., 2008) and PubMed (Namata et al., 2012), 2 co-authorship graphs — CoauthorPhysics
and CoauthorCS (Shchur et al., 2018), and 2 co-purchase datasets — AmazonPhoto and Amazon-
Computers (McAuley et al., 2015; Shchur et al., 2018).

3.2 DATA SPLITS

The most important ingredient of our benchmark is a general generating data splits in a graph G to
yield non-trivial yet reasonable distribution shifts. For this purpose, we make a distinction between
the ID parts that are described by p(Yin|X,A) and shifted (OOD) parts where the targets may come
from a significantly different distribution p(Yout|X,A).

We define the following ID parts:
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• Train contains the nodes Vtrain that are used for the regular training of models and repre-
sent the only observations that take part in gradient computation;

• Valid-In enables us to monitor the best model during the training stage by computing
the validation loss for the nodes Vvalid-in and choose the best checkpoint;

• Test-In is used for testing on the remaining in-distribution nodes Vtest-in and represents
the most simple setup that requires the model to reproduce in-distribution dependencies.
Both Valid-In and Test-In parts are assumed to come from the exact same distribu-
tion as Train.

At the same time, we introduce the following OOD parts:

• Valid-Out contains the validation nodes Vvalid-out that also can be used for monitoring
but tends to be a more difficult part of graph with potentially different dependencies;

• Test-Out represents the most shifted part Vtest-out and can be used for evaluating robust-
ness of models to distribution shifts.

To construct a particular data split, we choose some characteristic σi and compute it for every node
i ∈ V , as described in Section 3.3. This characteristic reflects some node property that may depend
on features or graph structure. After that, we sort all nodes in ascending order of σi. Some fraction
of nodes with the smallest values of σi is considered to be ID, while the remaining ones become
OOD and are split into Valid-Out and Test-Out based on their values of σi. Importantly, this
general split strategy is very flexible — it allows one to vary the size of the training part and to
analyze the effect of this size on the robustness and the quality of uncertainty estimates. The type of
distribution shift depends on the choice of σi and can also be easily varied.

In our experiments, we split the dataset in the following proportions. The half of the nodes with the
smallest values of σi are assumed to be ID and are split into Train, Valid-In, and Test-In
uniformly at random in proportion 30%/10%/10%. The second half contains the remaining OOD
nodes split into Valid-Out and Test-Out in the ascending order of σi in proportion 10%/40%.
As a result, the Test-Out part has the most significant distribution shift.

3.3 DISTRIBUTION SHIFTS

To define our data splits, it is necessary to choose some node characteristic σi as a split factor. We
aim to consider diverse characteristics which cover a variety of distribution shifts that may occur in
practice. In a standard non-graph ML setup, shifts typically happen only in feature space (or, more
generally, the joint distribution of features and targets may become shifted). In graph learning tasks,
there can be shifts specifically related to the graph structure: the training part can be biased towards
more popular nodes or may consist of nodes from a particular region in the graph. Thus, we consider
the following representative data split strategies.

Random This is a standard approach to constructing the data splits, where the nodes are selected
uniformly at random, i.e., we can take σi to be a random position in a sorted list. This type of shift
is not realistic for practical applications but can be helpful for the analysis: it shows how well the
model generalizes given that the distribution does not change. The random splitting strategy also
allows for evaluating the robustness of models when the size of the training dataset varies.

Feature This approach represents a family of possible feature-based shifts that do not take into
account the graph structure explicitly. There are multiple ways to construct such shifts, e.g., a split
can be based on values of one particular feature (Gui et al., 2022). However, to follow our general
setup described above, we base a split on a continuous characteristic that can be computed for any
dataset. Namely, we project the original features xi ∈ Rd into R2 via a random linear transform W,
where all entries wij are independent and come from N (0, 1). After that, σi is set to the distance
between the node i ∈ V and the centroid of the projected data, so the most central nodes in terms of
features are said to be ID, while OOD parts are close to periphery. This setup naturally corresponds
to the situation when the training dataset consists of the most typical elements, while some outliers
may be encountered at the inference stage. Thus, this type of shift tests the robustness of models to
non-standard feature combinations.
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We visualize all the split strategies applied to the AmazonPhoto dataset in Figure 1. The figures for
the remaining datasets can be found in Appendix A. Here, one can see that the feature-based split
does not introduce a notable structural shift, i.e., the nodes are distributed across all regions of the
graph. This fact is additionally confirmed by our analysis in Appendix B: it is clear that there is
no significant difference in the degree distribution and pairwise node distances between the ID and
OOD parts. Our empirical observations confirm that the feature-based shifts are the easiest to handle
by the considered methods.

(a) Feature (b) PageRank (c) Personalized PageRank

Figure 1: Visualization of data splits for AmazonPhoto dataset: ID is blue, OOD is red.

PageRank This strategy represents a possible bias towards popularity. It is natural to expect the
training set to consist of more popular items. For instance, in the web search, the importance of
pages in the internet graph can be measured via PageRank (Page et al., 1999). For this application,
the labeling of pages should start with important ones, since they are visited more often. Similar
situations may happen for social networks, where it is natural to start labeling with the most influen-
tial users, or citation networks, where the most cited pages should be labeled first. However, when
applying the model, it is essential to make accurate predictions on less popular elements. Motivated
by that, we introduce a PageRank-based split. In particular, we compute the PageRank (PR) values
for every node i ∈ V and define the measure σi as the negative PR score, which means that the
nodes with smaller values of PR (i.e., less important ones) come to the OOD subsets.

As can be seen in Figure 1, the PageRank-based split separates the most important nodes that belong
to the cores of large clusters and the structural periphery, which consists of less important nodes in
terms of PageRank. Our analysis in Appendix B confirms this observation: the degree distribution
changes significantly across the ID and OOD subsets, tending to higher values for the ID nodes.
The distance between such nodes also appears to be smaller on average. Our experiments prove that
such a structural distribution shift creates a more severe challenge for the considered methods.

Personalized PageRank This strategy is focused on a potential bias towards locality, which may
happen when labeling is performed by exploring the graph starting from some node. For instance,
this may occur in a web search where a crawler has to explore the web graph following the links.
Similarly, information about the users of a social network can usually be obtained via an API, and
new users are discovered following the friends of known users. To model such a situation, we use the
concept of Personalized PageRank (PPR) (Page et al., 1999). It represents the stationary distribution
of a random walk that always restarts from some fixed node (see, e.g., (Klicpera et al., 2018) for
more details). The associated distribution shift naturally combines popularity and locality: PPR
is related to node importance since the stationary distribution concentrates more on higher-degree
nodes. On the other hand, the locality is also preserved since restarts always happen in a fixed node.
For our splits, we select the node j ∈ V with the highest PR score as a restarting node and compute
the PPR score for every node i ∈ V . After that, we define the measure σi as negative PPR. The
nodes with high PPR, which belong to the ID part, are expected to be close to the restarting node,
while far away nodes go to the OOD subset.

Figure 1 shows that locality is indeed preserved, as the ID part consists of one compact region around
the most important node chosen as the restarting one. Thus, the ID subset includes periphery nodes
as well as some nodes that were previously marked as the most important in the PR-based split but
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are now less important for the restarting node. The remaining nodes come to the OOD part. Our
analysis in Appendix B also provides strong evidence for the mentioned behavior: the PPR-based
split strongly affects the distribution of pairwise distances within the ID/OOD parts as the locality
bias of the ID part makes the OOD nodes even more distant from each other. The shift of the degree
distribution is also notable but not as severe as for the PR-based split since here we consider only
the popularity conditioned on some fixed node. Finally, our empirical results in Section 5 confirm
that the PPR-based split is the most challenging one for graph neural networks.

3.4 METRICS

To evaluate the classification performance, we exploit standard Accuracy and compute these met-
rics on Test-In and Test-Out parts. To analyze the aggregated performance, we also report
Accuracy and AUROC on the mixture of Test-In and Test-Out.

To evaluate the quality of uncertainty estimates, we consider two problems: error (misclassification)
detection and OOD detection. To assess how well a model can detect misclassified samples, we use
the concept of Prediction Rejection Curve (PRC) (Malinin et al., 2021; 2022). PRC traces the error
rate as we replace model predictions with ground-truth labels in the order of decreasing uncertainty.
If uncertainty is high for incorrectly classified samples, then the error rate is expected to drop quickly
as we replace such predictions with ground true labels.

Thus, the Area Under Prediction Rejection Curve (AUPRC) evaluates the joint classification and un-
certainty estimation performance, requiring the model not only to provide high prediction accuracy
but also to signalize about possible errors through higher uncertainty scores. In our experiments, we
compute AUPRCmodel on the merged test subset of nodes Vtest using total uncertainty (TU), as the
errors may occur due to the inherent noise in data or because of predicting on OOD samples.

A measure called Prediction Rejection Ratio (PRR) is also based on the Prediction Rejection Curve
but evaluates only the ability of a model to detect misclassified samples. For this purpose, AUPRC
is normalized as follows. Let PRCmodel be the predicted uncertainty estimates, PRCrandom be random
uncertainty estimates, and PRCoracle be estimates that perfectly sort samples according to the predic-
tion errors (i.e., all misclassified samples have higher oracle uncertainty). Then, the PRR metric is
defined as follows:

PRR =
AUPRCrandom − AUPRCmodel

AUPRCrandom − AUPRCoracle

The best value of this measure is 1 (for the perfect uncertainty estimates), while random uncertainty
estimates give PRR = 0. Note that each model has its own oracle with the associated estimates that
perfectly match its prediction errors. So the AUPRCoracle values of different models are independent
and computed only based on the corresponding model predictions.

We also evaluate the ability of models to detect OOD samples. For this, we consider the mixture of
Test-In and Test-Out. A good model is expected to have higher knowledge uncertainty (KU)
(Gal, 2016; Malinin, 2019) values for the observations from Test-Out compared to Test-In.
Here, we use the standard AUROC for the binary classification with positive events corresponding
to the observations coming from the OOD subset.

4 METHODS

We consider several methods for estimating uncertainty in graph-related problems. Specifically, we
cover message-passing neural networks, ensemble approaches Lakshminarayanan et al. (2017), and
Dirichlet-based methods that are currently considered to be state-of-the-art for OOD detection that
is called GPN (Stadler et al., 2021). For Dirichlet-based approaches, we conduct an ablation study
to evaluate which design choices contribute most to performance.
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4.1 STANDARD METHODS

In this class of methods, the constructed model fθ predicts the parameters µi = fθ(xi)
1 of the cat-

egorical distribution Pθ(yi|xi) = P(yi|µi) in the standard classification task, while the uncertainty
estimates are obtained based on the entropy of this distribution.

A simple baseline that serves us as a lower bound for our further experiments with more advanced
methods is MLP, which represents a graph-agnostic MLP model and takes into account only the
features of the current observation. Further, GNN is a simple GNN model based on a two-layer
SAGE convolution (Hamilton et al., 2017), which combines the information from both the central
node and its neighborhood. As a training objective, these methods use the standard Cross-Entropy
loss between the one-hot-encoded target yi and the predicted categorical vector µi. For these meth-
ods, we can only define uncertainty as the entropy ui = H

[
P(yi|µi)

]
of the predictive categorical

distribution.

4.2 DIRICHLET-BASED METHODS

The core idea behind the Dirichlet-based uncertainty estimation methods is to model the point-
wise Dirichlet distribution pθ(µi|xi) = p(µi|βpost

i ) by predicting its parameters βfeat
i = fθ(xi) and

updating the uniform prior distribution with parameters βprior through their sum βpost
i = βfeat

i +βprior
i .

Using this Dirichlet distribution, one can obtain the target categorical one as follows:

Pθ(yi|xi) = Ep(µi|βpost
i )P(yi|µi).

It implies that Pθ(yi|xi) has parameters βpost
i /Si, where Si =

∑
k β

post
ik is called evidence or preci-

sion. In other words, the parameters of the categorical distribution can be obtained from the Dirichlet
ones by normalization. Importantly, the Dirichlet-based methods allow us to distinguish between to-
tal and knowledge uncertainty as follows:

utotal
i = H

[
Pθ(yi|xi)

]
= H

[
Ep(µi|βpost

i )P(yi|µi)
]
, uknow

i = −Si.

For this class of methods, the training objective is Expected Cross-Entropy with an optional regular-
isation term that is equal to the entropy of the predicted Dirichlet distribution p(µi|βpost

i ):

Li = Ep(µi|βpost
i )

[
− log P(yi|µi)

]
− λH

[
p(µi|βpost

i )
]
. (1)

This loss function can be computed in closed form (Malinin & Gales, 2018; Charpentier et al., 2020).

As the most straightforward method in this class, we consider a modification of GNN that is referred
to as EN (Evidential Network) (Sensoy et al., 2018) — while exploiting the same architecture, it is
trained to predict the Dirichlet parameters via Loss (1).

There are also more advanced methods based on the Dirichlet distribution which induce the behavior
of the underlying model by estimating the density function in the latent space using Normalizing
Flows (Kingma et al., 2016; Huang et al., 2018). These methods can be united within the recently
proposed framework Posterior Networks (Charpentier et al., 2020; 2021). It was applied to the node-
level problems in (Stadler et al., 2021). In this paper, we provide a detailed study of this framework
and consider different variations depending on how the density estimation is performed and how the
graph information is used. The description of these components can be found in Appendix E.

4.3 ENSEMBLES

In our study, we also consider ensembling techniques that proved to increase the predictive per-
formance of models and provide instruments for estimating uncertainty. Among the methods that
predict the parameters µi of categorical distributions P(yi|µi), there is a widely used approach for
uncertainty estimation introduced by Lakshminarayanan et al. (2017). It can be formulated as an

1For GNNs, we formally have µi = fθ(A,X, i) but we write fθ(xi) for simplicity of notation and consis-
tency with non-graph methods.
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empirical distribution of model parameters q(θ|Gtrain) that can be obtained after training several
instances of the model with different random seeds for initialization:

Pθ(yi|xi) = Eq(θ|Gtrain)P(yi|µi).

Given this, we can split the total uncertainty into data and knowledge uncertainty through the fol-
lowing expression (Malinin & Gales, 2018):

utotal
i = H

[
Pθ(yi|xi)

]
= H

[
Eq(θ|Gtrain)P(yi|µi)

]
,

udata
i = Eq(θ|Gtrain)H

[
P(yi|µi)

]
, uknow

i = utotal
i − udata

i .

We apply this approach to GNN models and denote the obtained ensemble as EnsGNN. As for the
Dirichlet-based approaches, we follow Charpentier et al. (2021) and define an ensemble of models
that predict the parameters of posterior Dirichlet distribution as the mean over the parameters in
ensemble. Here, uncertainty is estimated in the same way as for a single Dirichlet-based model.

5 EXPERIMENTS AND ABLATION

Setup As discussed in Section 3.4, we provide the comparison of methods in 4 different problems
using their associated metrics. In particular, we report the standard Accuracy for general classifica-
tion performance, PRR@TU for consistency of total uncertainty estimates utotal

i with the prediction
errors, AUPRC@TU for the joint classification and confidence performance, and AUROC@KU for
the OOD detection using knowledge uncertainty estimates uknow

i . The details of our experimental
setup can be found in Appendix G.

Our code and benchmark are publicly available at https://anonymous.4open.science/
r/revisiting-uncertainty-estimation-F4B6, together with a framework for evalu-
ating a variety of baseline models, Dirichlet-based methods, and ensembling techniques.

We run each method 5 times with different random seeds and report the mean and standard deviation.
To compare a pair of methods and analyze whether one is noticeably better than the other, we report
win/tie/loss counts aggregated over the datasets and, in some cases, over different distribution
shifts. We say that a method wins on a particular dataset if it is better than its competitor and the
difference is larger than the sum of their standard deviations. If the difference is smaller, there is a
tie. Note that we do not compute the standard deviation for the ensembles since they combine all 5
models. To compare different methods, we aggregate their results over all the datasets as follows.
First, for each dataset, metric, and distribution shift, we rank all the methods according to their
performance (the smaller, the better). Then, we average the obtained ranks over all the datasets.

Results and insights In this section, we address several research questions. First, we analyze the
complexity and diversity of the proposed data split strategies. Then, we demonstrate the performance
of the considered methods on our benchmark. After that, we investigate the Dirichlet-based methods
to figure out which of them is superior for each task. In conclusion, we find out whether the best-
performing models can further be improved via ensembling.

Q1: How complex and diverse are the proposed data splits?

To answer this question, we analyze the predictive performance of the models on Test-In (ID)
and Test-Out (OOD) parts. Table 1 shows this comparison for GNN, and similar results for GPN,
EnsGNN, and MLP can be found in Tables 6–8 in Appendix. We can see that feature-based splits
are the easiest for GNN: the difference between ID and OOD parts is sufficiently small, and the
performance on the latter can be even better for some datasets. The PageRank splits are noticeably
more complicated, but the most difficult split strategy is based on Personalized PageRank — the
performance drop is dramatic on some datasets. This can be explained by the locality of the ID part
(see Figure 1): the clear separation of ID from OOD in terms of the graph structure makes graph-
based learning significantly more complicated.

Q2: How do existing methods perform in our setup, and what is the current status quo?

To answer this question, we compare the following models: GNN as the classic graph processing
method, EnsGNN as the standard and universal approach allowing for getting uncertainty estimates,

7

https://anonymous.4open.science/r/revisiting-uncertainty-estimation-F4B6
https://anonymous.4open.science/r/revisiting-uncertainty-estimation-F4B6


Under review as a conference paper at ICLR 2023

Table 1: Accuracy of GNN on ID vs OOD test subsets. Diff.% is the difference between the accuracy
scores on the OOD and ID parts divided by the accuracy score on the ID part.

Feature PageRank PPR
ID OOD Diff, % ID OOD Diff, % ID OOD Diff, %

AmazonComputers 84.88 84.86 −0.02 87.86 82.36 −6.27 86.40 58.77 −31.97

AmazonPhoto 94.90 92.23 −2.82 97.07 88.94 −8.38 92.68 43.89 −52.64

CoauthorCS 92.44 93.74 +1.41 94.81 91.33 −3.66 92.67 91.63 −1.12

CoauthorPhysics 96.57 96.06 −0.54 97.52 94.44 −3.15 97.72 93.68 −4.14

CoraML 83.68 86.96 +3.92 89.90 82.89 −7.80 86.76 75.51 −12.96

CiteSeer 70.87 71.50 +0.88 74.47 71.42 −4.10 74.11 59.25 −20.06

PubMed 87.58 86.01 −1.79 88.69 83.39 −5.98 85.88 84.53 −1.57

Table 2: Average ranks of standard uncertainty estimation methods over graph datasets.

Accuracy PRR@TU AUPRC@TU AUROC@KU

Random GNN 2.3 1.7 2.3 n/a
GPN 2.6 3.0 2.6 n/a
EnsGNN 1.1 1.3 1.1 n/a

Feature GNN 2.3 1.6 2.1 2.3
GPN 2.6 2.9 2.7 1.0
EnsGNN 1.1 1.6 1.1 2.7

PageRank GNN 2.3 1.9 2.1 2.7
GPN 2.4 2.7 2.7 1.0
EnsGNN 1.3 1.4 1.1 2.3

PPR GNN 2.4 2.3 2.6 2.9
GPN 2.1 1.7 2.0 1.0
EnsGNN 1.4 2.0 1.4 2.1

and GPN which is known to be state-of-the-art for the OOD detection (Stadler et al., 2021). Table 2
compares these methods over all datasets. One can see that, according to AUROC@KU, the best
OOD detection performance is achieved by GPN for all types of shifts, which is consistent with
previously reported results (Stadler et al., 2021). Unsurprisingly, EnsGNN shows the best predictive
performance, as measured by Accuracy. Moreover, it has the most consistent uncertainty estimates
in context of PRR@TU and provides the best joint performance via AUPRC@TU. In summary,
ensembles are the best for all tasks but OOD detection, where the superior method is GPN.

Q3: Which Dirichlet-based methods are the best for each prediction task?

Here, we provide a detailed analysis of the Dirichlet-based framework. The simplest method is EN,
which represents a standard GNN trained with the Loss (1). Further, we consider the methods using
Normalizing Flows, and compare Standard vs Natural density estimation and Graph Encoding vs
Graph Propagation. Based on Table 3, one can make the following conclusions. First, GPN is still
the best method for OOD detection. Second, NatPN is the best according to all other tasks. Third,
EN is a strong baseline that shows competitive results in Accuracy, PRR@TU, and AUCPRC@TU,
often staying close to NatPN. To show whether the difference is statistically significant, we report
the win/tie/loss counts for some pairs of models. See Table 4 for the aggregated results and
Tables 9, 11–14 in Appendix for more details.

Q4: Do ensembles consistently improve the performance of complex models?

Ensemble are known to consistently improve the model performance in various tasks, so we aim to
confirm that this result holds in the transductive node classification. For this purpose, we compare the
ensembles of the two most promising methods GPN and NatPN. The aggregated results are shown
in Table 5 (also, see Tables 10–14 in Appendix for more details). One can see that ensembling via
EnsGPN consistently improves GPN for OOD detection, but the difference is mostly insignificant.
In contrast, EnsNatPN is noticeably better than NatPN, and this gain is especially significant for
Accuracy and the joint performance measured by AUPRC.
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Table 3: Average ranks of Dirichlet-based methods over datasets, including EN, PN, NatPN, GPN
and NatGPN, which are obtained for every considered split strategy and prediction task.

Accuracy PRR@TU AUPRC@TU AUROC@KU

Random EN 2.0 1.7 2.0 n/a
PN 3.7 3.7 3.4 n/a
NatPN 1.9 1.4 1.9 n/a
GPN 3.0 4.0 3.3 n/a
NatGPN 4.4 4.1 4.4 n/a

Feature EN 2.3 1.6 2.0 3.3
PN 3.6 3.4 3.6 3.9
NatPN 1.9 1.7 1.7 4.6
GPN 2.9 4.4 3.3 1.4
NatGPN 4.4 3.9 4.4 1.9

PageRank EN 2.1 2.0 2.1 4.4
PN 3.9 3.4 3.6 3.1
NatPN 1.7 1.9 1.7 4.4
GPN 2.7 3.7 3.3 1.1
NatGPN 4.6 4.0 4.3 1.9

PPR EN 3.0 3.0 2.9 3.3
PN 3.7 3.9 3.9 3.4
NatPN 2.0 1.7 1.9 5.0
GPN 2.1 2.4 2.1 1.0
NatGPN 4.1 4.0 4.3 2.3

Table 4: Win/tie/loss counts for some pairs of Dirichlet-based methods across all the consid-
ered graph datasets and split strategies (except Random).

Accuracy PRR@TU AUPRC@TU AUROC@KU

NatPN vs EN 3/18/0 6/14/1 8/12/1 3/3/15
GPN vs NatGPN 14/5/2 8/11/2 15/2/4 12/8/1
NatPN vs GPN 12/2/7 14/5/2 13/3/5 0/0/21

Table 5: Win/tie/loss counts for ensembles vs the corresponding single models across all the
considered graph datasets and split strategies (except Random).

Accuracy PRR@TU AUPRC@TU AUROC@KU

EnsGPN vs GPN 9/11/1 6/14/1 14/7/0 4/17/0
EnsNatPN vs NatPN 14/7/0 6/15/0 15/6/0 5/9/7

To summarize our findings, we refer to Table 15 for the comparison of all the methods in terms of
ranks and to Tables 11–14 for the detailed comparison of their win/tie/loss counts. One can
conclude that GPN is the best single-pass method for OOD detection, while NatPN is the best one
for all other tasks. Moreover, the performance of the latter can be further improved by ensembling,
so EnsNatPN achieves the best results in terms of Accuracy, PRR, and AUPRC.

6 CONCLUSION

In this work, we propose a new benchmark for evaluating robustness and uncertainty estimation in
transductive node classification tasks. For this, we design a universal approach to creating data splits
with distribution shifts: it can be applied to any graph dataset and allows for generating shifts of
various nature. Using our benchmark, we show that the recently proposed Graph Posterior Network
(Stadler et al., 2021) is consistently the best method for detecting the OOD inputs, while the best
results for the other tasks are achieved using Natural Posterior Networks (Charpentier et al., 2021).
Our experiments also confirm that ensembling allows one to improve the model performance. Thus,
we believe that our benchmark will be useful for future studies of node-level uncertainty estimation.
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A VISUALIZATION OF DISTRIBUTION SHIFTS

In Figures 2–8, we provide the visualization of different split strategies for all the datasets. Some
graphs have multiple connected components — in that case, we keep only the largest one.

(a) Feature
(b) PageRank

(c) Personalized PageRank

Figure 2: Visualization of data splits for CoraML dataset: ID is blue, OOD is red.

(a) Feature (b) PageRank (c) Personalized PageRank

Figure 3: Visualization of data splits for CiteSeer dataset: ID is blue, OOD is red.

(a) Feature (b) PageRank (c) Personalized PageRank

Figure 4: Visualization of data splits for PubMed dataset: ID is blue, OOD is red.

12



Under review as a conference paper at ICLR 2023

(a) Feature (b) PageRank (c) Personalized PageRank

Figure 5: Visualization of data splits for AmazonComputers dataset: ID is blue, OOD is red.

(a) Feature (b) PageRank (c) Personalized PageRank

Figure 6: Visualization of data splits for AmazonPhoto dataset: ID is blue, OOD is red.

(a) Feature (b) PageRank (c) Personalized PageRank

Figure 7: Visualization of data splits for CoauthorCS dataset: ID is blue, OOD is red.

(a) Feature (b) PageRank (c) Personalized PageRank

Figure 8: Visualization of data splits for CoauthorPhysics dataset: ID is blue, OOD is red.
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B PROPERTIES OF DISTRIBUTION SHIFTS

This section provides a detailed analysis and comparison of the proposed distribution shifts. For this
purpose, we consider three representative real-world datasets AmazonComputers, CoauthorCS,
and CoraML, and discuss how different distribution shifts affect the basic properties of data: class
balance, degree distribution, and graph distances between nodes within ID and OOD subsets.
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Figure 9: Visualization of class balance for AmazonComputers dataset.
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Figure 10: Visualization of class balance for CoauthorCS dataset.
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Figure 11: Visualization of class balance for CoraML dataset.

Class balance Class balance directly affects the amount of evidence acquired by the graph pro-
cessing model and used for estimating uncertainty and making predictions. It is especially important
for evaluating Dirichlet-based models which exploit Normalising Flows, as their density estimates
can become irrelevant due to a significant change in class balance.

In Figures 9–11, one can see that neither feature-based nor PageRank-based split makes a notable
difference in the class balance between the ID and OOD subsets. At the same time, the PPR-based
split leads to significant changes for some classes. This shows that the split strategies based on the
structural locality in a graph can be very challenging as they also affect such crucial statistics as class
balance. Interestingly, the PageRank-based split does not lead to significant shifts of class balance
(for the datasets under consideration), i.e., the more important and less important nodes have, on
average, the same probability of belonging to a particular class.

Degree distribution The node degree distribution is one of the basic structural characteristics of a
graph that describes the local importance of nodes. Degrees are especially important for such graph

14



Under review as a conference paper at ICLR 2023

100 101 102 103

degree

100

101

102

co
un

t

dataset: AmazonComputer, split: Feature

ID
OOD

(a) Feature

100 101 102 103

degree

100

101

102

co
un

t

dataset: AmazonComputer, split: PageRank

ID
OOD

(b) PageRank

100 101 102 103

degree

100

101

102

co
un

t

dataset: AmazonComputer, split: PPR

ID
OOD

(c) Personalized PageRank

Figure 12: Visualization of degree distribution for AmazonComputers dataset.
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Figure 13: Visualization of degree distribution for CoauthorCS dataset.
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Figure 14: Visualization of degree distribution for CoraML dataset.

processing methods as GNNs, since they describe how many channels around the considered node
are used for message passing and aggregation.

In Figures 12–14, one can see that the most significant change in the degree distribution appears
when the ID and OOD subsets are separated based on PageRank: the ID part contains more high-
degree nodes. This is expected since PageRank is a graph characteristic measuring node importance
(a.k.a. centrality), and node degree is the simplest centrality measure known to be correlated with
PageRank. For PPR-based splits, the difference in degree distribution is smaller but still significant
since PPR selects nodes by their relative importance for a particular node, so some high-degree nodes
can be less important in terms of PPR. Finally, for features-based splits, the degree distribution also
changes, but the shift level is much less significant.

Distribution of pairwise distances The distance between two nodes in a graph is defined as the
length of the shortest path between them. Here, we compute such distances between the nodes in the
ID or OOD subset within the original graph, i.e., we consider the whole graph when searching for
the shortest path. The distribution of distances shows how easily messages can be passed between
the nodes. Therefore, we expect that larger pairwise distances create more complicated tasks.

In Figures 15–17, one can observe that the PPR-based split leads to the most significant changes in
distances, making the OOD nodes nearly twice as far from each other as the ID ones. At the same
time, the PageRank-based split does not lead to such a difference, revealing almost the same distri-
butions on ID and OOD subsets. This means that the popularity bias in a graph does not prevent one
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Figure 15: Visualization of pairwise distance distribution for AmazonComputers dataset.
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Figure 16: Visualization of pairwise distance distribution for CoauthorCS dataset.
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Figure 17: Visualization of pairwise distance distribution for CoraML dataset.

from covering the less popular periphery nodes since the most popular nodes may be widespread.
Finally, the feature-based split preserves the distances within the subsets.

C COMPARISON WITH GOOD BENCHMARK FROM GUI ET AL. (2022)

Our work complements and extends the GOOD benchmark recently proposed by Gui et al. (2022).
However, there are several important differences that we discuss in this section.

One of the main properties of the GOOD benchmark is its theoretical distinction between two types
of distribution shifts, which are represented through a graphical model. In particular, the authors
consider covariate shifts, in which the distribution of features changes while the conditional distri-
bution of targets given features remains the same, and concept shifts, where the opposite situation
occurs, i.e., the conditional target distribution changes, while the feature distribution is the same.
Although this distinction might be very helpful for understanding the properties of particular GNN
models, such exclusively covariate or concept shifts rarely happen in practice where both types of
shifts are present at the same time.

To create pure covariate or concept shifts, Gui et al. (2022) introduce different subsets of variables
that either fully determine the target, create confounding associations with the target, or are com-
pletely independent of the target. This has to be properly handled and makes it non-trivial to create
distribution shifts on new datasets with this approach. Indeed, the distribution shifts in the GOOD
benchmark can be properly implemented only for synthetic graph datasets or via appending syn-
thetic features that either describe various domains as completely independent variables or create
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Figure 18: Visualization of class balance for GOOD-Twitch dataset.
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Figure 19: Visualization of class balance for GOOD-Cora dataset.
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Figure 20: Visualization of class balance for GOOD-WebKB dataset.

the necessary concepts by inducing some spurious correlation with the target. Moreover, the au-
thors claim that, in the case of real-world datasets, one has to perform screening over the available
node features to create the required setup of domain or concept shift. This fact implies numerous
restrictions on how the data splits can be prepared.

In contrast, our method does not make a distinction between covariate and concept shifts and thus
can be universally applied to any dataset and does not require any dataset modifications. Importantly,
the type of distribution shift and the sizes of all split parts are easily controllable. This flexibility is
the main advantage of our approach.

Finally, Gui et al. (2022) confirm the importance of using both node features and graph structure.
Still, their node-level distribution shifts are usually based on node features such as the number of
words or the year of publication in a citation network, the language of users in a social network, or
the name of organizations in a webpage network. As for the graph properties, only node degrees are
used in some citation networks. In contrast, we propose to use the graph structure directly and cre-
ate significant distribution shifts using a very simple technique that requires computing some node
property in the graph that should be chosen depending on a specific problem. For instance, one may
use PageRank to create distribution shifts by the structural popularity of instances or Personalized
PageRank to take into account the locality and distinguish between the core and periphery nodes.

Further in this section, we compare our benchmark with GOOD in terms of distribution shift statis-
tics discussed in Appendix B.
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Figure 21: Visualization of degree distribution for GOOD-Twitch dataset.
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Figure 22: Visualization of degree distribution for GOOD-Cora dataset.
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Figure 23: Visualization of degree distribution for GOOD-WebKB dataset.

Class balance In our benchmark, the PPR-based shift significantly changes the class balance be-
tween ID and OOD subsets, while, for feature-based and PageRank-based shifts, the class balance
does not change significantly. In GOOD, the level of distribution shift depends on the dataset and
the type of shift. For instance, Figures 19 and 20 show a significant change for both types of shifts.

Degree distribution Comparing to our distribution shifts, the GOOD data splits have much less
impact on the degree distribution: this graph property changes dramatically only when the covariate
shift is constructed using the degree domain, as in the case of GOOD-Cora dataset (see Figure 22).

Graph distance distribution In contrast to our benchmark, the GOOD approach does not lead
to a significant change in pairwise distance distribution between ID and OOD parts: the distance
distribution hardly changes for concept shifts, and only covariate shifts make the difference between
ID and OOD subsets somehow notable. This proves the necessity of considering the graph structure
for inducing challenging distribution shifts.
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Figure 24: Visualization of pairwise distance distribution for GOOD-Twitch dataset.
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Figure 25: Visualization of pairwise distance distribution for GOOD-Cora dataset.
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Figure 26: Visualization of pairwise distance distribution for GOOD-WebKB dataset.

D ADDITIONAL RESULTS

In this section, we provide additional experimental results.

• Tables 6–8 are similar to Table 1 in the main text. They show how difficult our splits are for
different models. These results are consistent: the feature-based split is the easiest for all
the methods, while the PPR-based one is the hardest. Interestingly, it holds for the graph-
agnostic MLP, which means that this graph-based shift also implies a noticeable shift in
the feature space;

• Table 9 is a detalization of Table 4, where we consider different distribution shifts sepa-
rately and add a random partition. Similarly, Table 10 detalizes Table 5;

• Tables 11–14 aggregates win/tie/loss counts for all pairs of methods;
• Table 15 compares all the methods in terms of their ranks averaged over the datasets;
• Tables 16–22 provide the results for all the methods on all the datasets. Note that all other

aggregated results can be deduced from these tables.
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Table 6: Accuracy of MLP on ID vs OOD test subsets for every split strategy.

Feature PageRank PPR
ID OOD Diff, % ID OOD Diff, % ID OOD Diff, %

AmazonComputers 75.80 77.69 +2.50 81.09 75.49 −6.91 81.18 50.23 −38.13

AmazonPhoto 89.44 84.42 −5.61 92.84 83.50 −10.06 89.67 39.69 −55.74

CoauthorCS 92.02 92.52 +0.54 93.97 92.95 −1.09 92.39 89.98 −2.61

CoauthorPhysics 95.36 95.58 +0.23 96.72 93.98 −2.84 96.55 87.25 −9.63

CoraML 75.18 70.78 −5.85 75.18 68.88 −8.38 72.04 52.50 −27.12

CiteSeer 65.35 64.54 −1.24 68.35 65.36 −4.37 68.17 52.37 −23.18

PubMed 85.29 84.50 −0.93 86.15 85.10 −1.21 84.43 84.04 −0.46

Table 7: Accuracy of GPN on ID vs OOD test subsets for every split strategy.

Feature PageRank PPR
ID OOD Diff, % ID OOD Diff, % ID OOD Diff, %

AmazonComputers 88.05 89.19 +1.30 89.83 83.58 −6.95 88.63 65.84 −25.71

AmazonPhoto 92.89 91.32 −1.69 94.77 87.48 −7.69 89.78 65.25 −27.32

CoauthorCS 89.02 91.06 +2.29 92.14 87.99 −4.51 89.80 87.93 −2.08

CoauthorPhysics 95.45 95.03 −0.44 96.31 92.68 −3.77 95.93 88.90 −7.32

CoraML 84.01 84.72 +0.85 86.96 83.11 −4.43 84.48 75.81 −10.26

CiteSeer 67.63 68.10 +0.70 72.25 70.49 −2.44 74.95 51.60 −31.16

PubMed 88.95 86.38 −2.89 88.45 85.46 −3.37 86.12 86.03 −0.10

Table 8: Accuracy of EnsGNN on ID vs OOD test subsets for every split strategy.

Feature PageRank PPR
ID OOD Diff, % ID OOD Diff, % ID OOD Diff, %

AmazonComputers 86.63 85.91 −0.83 88.08 83.53 −5.17 86.63 59.97 −30.77

AmazonPhoto 95.16 92.68 −2.61 97.65 89.77 −8.07 92.68 45.03 −51.41

CoauthorCS 92.58 94.00 +1.53 94.65 91.40 −3.44 92.80 91.86 −1.01

CoauthorPhysics 96.52 96.07 −0.47 97.56 94.49 −3.15 97.74 93.79 −4.04

CoraML 84.62 87.48 +3.38 90.30 83.31 −7.75 87.63 77.05 −12.07

CiteSeer 72.07 72.50 +0.60 74.77 71.90 −3.84 74.77 61.91 −17.21

PubMed 88.64 86.78 −2.10 89.20 84.06 −5.76 86.66 85.61 −1.22

Table 9: Win/tie/loss counts for some pairs of Dirichlet-based methods across all the consid-
ered graph datasets.

Accuracy PRR@TU AUPRC@TU AUROC@KU

NatPN vs EN Random 0/7/0 1/6/0 2/4/1 n/a
Feature 1/6/0 2/5/0 2/4/1 1/1/5
PageRank 1/6/0 1/6/0 3/4/0 2/1/4
PPR 1/6/0 3/3/1 3/4/0 0/1/6

GPN vs NatGPN Random 4/2/1 1/5/1 4/2/1 n/a
Feature 5/1/1 1/6/0 5/0/2 2/5/0
PageRank 5/2/0 3/3/1 5/1/1 5/1/1
PPR 4/2/1 4/2/1 5/1/1 5/2/0

NatPN vs GPN Random 5/0/2 6/1/0 5/1/1 n/a
Feature 4/1/2 7/0/0 5/1/1 0/0/7
PageRank 5/0/2 5/1/1 5/1/1 0/0/7
PPR 3/1/3 2/4/1 3/1/3 0/0/7
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Table 10: Win/tie/loss counts for ensembles vs the corresponding single models across all the
considered graph datasets.

Accuracy PRR@TU AUPRC@TU AUROC@KU

EnsGPN vs GPN Random 6/1/0 1/4/2 6/1/0 n/a
Feature 2/4/1 3/4/0 6/1/0 0/7/0
PageRank 4/3/0 1/5/1 4/3/0 4/3/0
PPR 3/4/0 2/5/0 4/3/0 0/7/0

EnsNatPN vs NatPN Random 3/4/0 2/5/0 4/3/0 n/a
Feature 3/4/0 2/5/0 5/2/0 1/3/3
PageRank 5/2/0 3/4/0 6/1/0 3/2/2
PPR 6/1/0 1/6/0 4/3/0 1/4/2

Table 11: Pairwise win/tie/loss counts for Accuracy across all graph datasets and split strate-
gies (except Random).

MLP GNN EN PN NatPN GPN NatGPN EnsGNN EnsNatPN EnsGPN
MLP 0/21/0 2/0/19 2/1/18 10/2/9 2/1/18 5/1/15 6/6/9 2/0/19 2/0/19 5/0/16

GNN 19/0/2 0/21/0 1/20/0 17/1/3 0/18/3 12/2/7 16/5/0 0/6/15 1/5/15 13/0/8

EN 18/1/2 0/20/1 0/21/0 16/1/4 0/18/3 12/3/6 14/7/0 0/7/14 0/6/15 12/1/8

PN 9/2/10 3/1/17 4/1/16 0/21/0 3/2/16 0/8/13 10/5/6 3/1/17 3/1/17 1/3/17

NatPN 18/1/2 3/18/0 3/18/0 16/2/3 0/21/0 12/2/7 17/4/0 3/6/12 0/7/14 12/2/7

GPN 15/1/5 7/2/12 6/3/12 13/8/0 7/2/12 0/21/0 14/5/2 6/1/14 6/1/14 1/11/9

NatGPN 9/6/6 0/5/16 0/7/14 6/5/10 0/4/17 2/5/14 0/21/0 0/1/20 0/1/20 4/2/15

EnsGNN 19/0/2 15/6/0 14/7/0 17/1/3 12/6/3 14/1/6 20/1/0 0/21/0 9/0/12 14/0/7

EnsNatPN 19/0/2 15/5/1 15/6/0 17/1/3 14/7/0 14/1/6 20/1/0 9/0/12 0/21/0 14/0/7

EnsGPN 16/0/5 8/0/13 8/1/12 17/3/1 7/2/12 9/11/1 15/2/4 7/0/14 7/0/14 0/21/0

Table 12: Pairwise win/tie/loss counts for PRR@TU across all graph datasets and split strate-
gies (except Random).

MLP GNN EN PN NatPN GPN NatGPN EnsGNN EnsNatPN EnsGPN
MLP 0/21/0 0/2/19 0/2/19 2/8/11 1/2/18 3/5/13 3/9/9 1/0/20 1/0/20 6/0/15

GNN 19/2/0 0/21/0 0/21/0 7/11/3 0/15/6 10/8/3 13/7/1 1/17/3 0/12/9 14/1/6

EN 19/2/0 0/21/0 0/21/0 8/10/3 1/14/6 10/7/4 14/6/1 7/8/6 3/8/10 12/4/5

PN 11/8/2 3/11/7 3/10/8 0/21/0 0/11/10 8/6/7 7/10/4 3/8/10 0/9/12 8/5/8

NatPN 18/2/1 6/15/0 6/14/1 10/11/0 0/21/0 14/5/2 14/6/1 8/7/6 0/15/6 15/3/3

GPN 13/5/3 3/8/10 4/7/10 7/6/8 2/5/14 0/21/0 8/11/2 5/3/13 2/4/15 1/14/6

NatGPN 9/9/3 1/7/13 1/6/14 4/10/7 1/6/14 2/11/8 0/21/0 1/4/16 1/4/16 5/5/11

EnsGNN 20/0/1 3/17/1 6/8/7 10/8/3 6/7/8 13/3/5 16/4/1 0/21/0 9/0/12 14/0/7

EnsNatPN 20/0/1 9/12/0 10/8/3 12/9/0 6/15/0 15/4/2 16/4/1 12/0/9 0/21/0 16/0/5

EnsGPN 15/0/6 6/1/14 5/4/12 8/5/8 3/3/15 6/14/1 11/5/5 7/0/14 5/0/16 0/21/0

Table 13: Pairwise win/tie/loss counts for AUPRC@TU across all graph datasets and split
strategies (except Random).

MLP GNN EN PN NatPN GPN NatGPN EnsGNN EnsNatPN EnsGPN
MLP 0/21/0 0/1/20 0/2/19 7/4/10 1/0/20 3/2/16 6/6/9 0/0/21 0/0/21 3/0/18

GNN 20/1/0 0/21/0 1/20/0 17/3/1 0/15/6 13/3/5 16/5/0 0/6/15 0/4/17 13/1/7

EN 19/2/0 0/20/1 0/21/0 16/1/4 1/12/8 13/3/5 18/3/0 0/4/17 0/2/19 13/0/8

PN 10/4/7 1/3/17 4/1/16 0/21/0 2/2/17 3/6/12 10/5/6 1/3/17 1/3/17 2/6/13

NatPN 20/0/1 6/15/0 8/12/1 17/2/2 0/21/0 13/3/5 17/4/0 6/2/13 0/6/15 13/2/6

GPN 16/2/3 5/3/13 5/3/13 12/6/3 5/3/13 0/21/0 15/2/4 4/2/15 5/0/16 0/7/14

NatGPN 9/6/6 0/5/16 0/3/18 6/5/10 0/4/17 4/2/15 0/21/0 0/2/19 0/1/20 5/0/16

EnsGNN 21/0/0 15/6/0 17/4/0 17/3/1 13/2/6 15/2/4 19/2/0 0/21/0 12/0/9 15/0/6

EnsNatPN 21/0/0 17/4/0 19/2/0 17/3/1 15/6/0 16/0/5 20/1/0 9/0/12 0/21/0 16/0/5

EnsGPN 18/0/3 7/1/13 8/0/13 13/6/2 6/2/13 14/7/0 16/0/5 6/0/15 5/0/16 0/21/0
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Table 14: Pairwise win/tie/loss counts for AUROC@KU across all graph datasets and split
strategies (except Random).

MLP GNN EN PN NatPN GPN NatGPN EnsGNN EnsNatPN EnsGPN
MLP 0/21/0 10/3/8 10/3/8 8/3/10 15/1/5 3/1/17 4/0/17 10/1/10 14/1/6 3/0/18

GNN 8/3/10 0/21/0 1/18/2 6/6/9 15/3/3 0/3/18 1/3/17 5/4/12 15/0/6 0/1/20

EN 8/3/10 2/18/1 0/21/0 5/7/9 15/3/3 0/3/18 1/6/14 7/4/10 15/1/5 0/1/20

PN 10/3/8 9/6/6 9/7/5 0/21/0 17/3/1 0/1/20 1/3/17 10/3/8 17/1/3 0/0/21

NatPN 5/1/15 3/3/15 3/3/15 1/3/17 0/21/0 0/0/21 0/3/18 4/1/16 7/9/5 0/0/21

GPN 17/1/3 18/3/0 18/3/0 20/1/0 21/0/0 0/21/0 12/8/1 20/1/0 21/0/0 0/17/4

NatGPN 17/0/4 17/3/1 14/6/1 17/3/1 18/3/0 1/8/12 0/21/0 17/2/2 19/1/1 3/6/12

EnsGNN 10/1/10 12/4/5 10/4/7 8/3/10 16/1/4 0/1/20 2/2/17 0/21/0 15/0/6 0/0/21

EnsNatPN 6/1/14 6/0/15 5/1/15 3/1/17 5/9/7 0/0/21 1/1/19 6/0/15 0/21/0 0/0/21

EnsGPN 18/0/3 20/1/0 20/1/0 21/0/0 21/0/0 4/17/0 12/6/3 21/0/0 21/0/0 0/21/0

Table 15: Average ranks of the considered methods across all datasets.

Accuracy PRR@TU AUPRC@TU AUROC@KU

Random MLP 8.4 8.7 8.9 n/a
GNN 4.4 4.0 4.6 n/a
EN 4.6 3.6 4.9 n/a
PN 7.4 6.7 6.9 n/a
NatPN 4.6 3.0 4.4 n/a
GPN 6.6 7.7 6.9 n/a
NatGPN 8.7 8.1 8.7 n/a
EnsGNN 1.7 3.1 2.3 n/a
EnsNatPN 3.0 2.3 1.9 n/a
EnsGPN 5.6 7.7 5.7 n/a

Feature MLP 8.7 8.3 9.1 4.9
GNN 4.0 4.3 4.4 5.7
EN 5.4 2.6 4.7 6.3
PN 7.4 6.4 7.0 7.1
NatPN 4.7 3.3 4.4 8.0
GPN 6.3 8.4 6.9 2.4
NatGPN 8.4 7.3 8.4 3.4
EnsGNN 1.7 4.3 2.0 6.9
EnsNatPN 3.0 2.7 2.1 8.1
EnsGPN 5.3 7.4 5.9 2.1

PageRank MLP 6.9 9.0 7.9 6.4
GNN 5.0 4.3 4.7 7.9
EN 5.3 3.3 5.0 7.9
PN 8.0 6.6 7.3 4.7
NatPN 4.3 3.4 4.3 7.7
GPN 6.0 7.0 7.0 1.9
NatGPN 9.0 7.6 8.6 2.7
EnsGNN 2.9 3.1 2.1 6.9
EnsNatPN 2.6 3.6 2.0 7.6
EnsGPN 5.1 7.1 6.1 1.4

PPR MLP 8.6 9.0 9.0 6.9
GNN 5.1 5.3 5.6 6.1
EN 6.4 5.6 6.1 5.6
PN 7.4 7.3 7.6 6.4
NatPN 4.9 3.7 4.3 9.0
GPN 5.0 5.0 4.9 1.6
NatGPN 8.4 7.6 8.4 3.7
EnsGNN 3.0 4.9 3.1 5.0
EnsNatPN 2.4 3.1 2.6 9.3
EnsGPN 3.7 3.6 3.4 1.4
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Table 16: Experiment results on AmazonComputers dataset.

Accuracy PRR@TU AUPRC@TU AUROC@KU

Random MLP 78.44± 0.57 58.44± 1.88 88.32± 0.27 n/a
GNN 86.33± 0.56 63.26± 1.49 93.80± 0.27 n/a
EN 83.73± 1.20 67.42± 3.81 92.93± 0.28 n/a
PN 88.18± 0.23 65.19± 2.06 94.98± 0.22 n/a
NatPN 85.75± 1.45 65.22± 3.38 93.73± 0.45 n/a
GPN 87.70± 0.14 59.35± 0.25 94.10± 0.08 n/a
NatGPN 82.83± 1.31 56.45± 2.69 90.85± 0.88 n/a
EnsGNN 86.67± n/a 64.22± n/a 94.09± n/a n/a
EnsNatPN 86.67± n/a 64.52± n/a 94.12± n/a n/a
EnsGPN 87.99± n/a 58.91± n/a 94.22± n/a n/a

Feature MLP 77.31± 0.41 63.17± 1.23 88.39± 0.17 44.38± 0.26
GNN 84.87± 1.08 68.37± 3.64 93.66± 0.23 47.45± 0.52
EN 82.83± 0.76 72.01± 2.81 93.07± 0.33 47.38± 0.40
PN 88.39± 0.50 64.29± 2.33 94.98± 0.44 51.53± 0.33
NatPN 85.34± 1.26 65.52± 4.06 93.56± 0.20 51.19± 0.96
GPN 88.97± 0.21 56.81± 1.16 94.54± 0.12 53.33± 0.31
NatGPN 81.87± 1.34 63.70± 6.12 91.35± 0.58 53.46± 0.57
EnsGNN 86.05± n/a 67.15± n/a 94.11± n/a 48.36± n/a
EnsNatPN 86.29± n/a 64.76± n/a 93.95± n/a 51.92± n/a
EnsGPN 89.34± n/a 56.23± n/a 94.70± n/a 53.46± n/a

PageRank MLP 76.61± 0.42 55.61± 1.97 86.58± 0.27 59.34± 0.34
GNN 83.46± 0.62 66.38± 0.91 92.62± 0.35 56.53± 0.68
EN 81.72± 1.14 68.72± 2.71 91.99± 0.43 56.32± 1.33
PN 84.70± 0.69 65.96± 0.97 93.25± 0.37 65.04± 1.96
NatPN 83.03± 1.28 66.84± 2.34 92.45± 0.41 48.01± 2.04
GPN 84.83± 0.22 59.26± 1.69 92.46± 0.23 90.58± 0.49
NatGPN 78.44± 1.16 57.22± 3.61 88.10± 1.33 87.31± 2.33
EnsGNN 84.44± n/a 65.98± n/a 93.11± n/a 61.00± n/a
EnsNatPN 84.44± n/a 65.73± n/a 93.08± n/a 44.68± n/a
EnsGPN 85.05± n/a 58.39± n/a 92.48± n/a 91.59± n/a

PPR MLP 56.42± 3.97 54.18± 3.29 69.68± 3.26 79.23± 0.76
GNN 64.30± 0.93 70.18± 3.24 80.41± 1.02 79.69± 1.07
EN 63.44± 0.84 66.23± 3.19 78.79± 1.23 81.23± 0.83
PN 68.11± 1.14 61.39± 4.21 81.44± 0.86 69.79± 2.28
NatPN 64.10± 1.26 69.25± 2.63 80.03± 1.21 53.22± 6.98
GPN 70.40± 0.31 73.80± 1.84 85.78± 0.30 93.20± 0.63
NatGPN 58.25± 4.36 51.29± 8.28 70.60± 5.99 85.60± 3.98
EnsGNN 65.30± n/a 71.37± n/a 81.48± n/a 79.78± n/a
EnsNatPN 65.30± n/a 69.48± n/a 81.05± n/a 51.25± n/a
EnsGPN 70.77± n/a 74.65± n/a 86.21± n/a 93.38± n/a
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Table 17: Experiment results on AmazonPhoto dataset.

Accuracy PRR@TU AUPRC@TU AUROC@KU

Random MLP 89.49± 0.25 73.44± 0.65 96.40± 0.06 n/a
GNN 94.34± 0.24 83.81± 1.38 98.82± 0.10 n/a
EN 94.25± 0.19 83.18± 1.53 98.76± 0.10 n/a
PN 93.01± 0.27 81.37± 1.28 98.30± 0.08 n/a
NatPN 94.04± 0.15 83.96± 1.53 98.75± 0.05 n/a
GPN 92.67± 0.13 67.44± 1.36 97.25± 0.08 n/a
NatGPN 89.09± 4.56 73.52± 3.20 96.10± 2.29 n/a
EnsGNN 94.61± n/a 85.78± n/a 98.99± n/a n/a
EnsNatPN 94.51± n/a 84.87± n/a 98.91± n/a n/a
EnsGPN 92.92± n/a 67.50± n/a 97.36± n/a n/a

Feature MLP 85.43± 0.55 72.02± 1.41 94.40± 0.14 57.38± 0.27
GNN 92.76± 0.63 80.34± 1.63 98.16± 0.14 59.36± 0.39
EN 91.60± 0.57 82.66± 1.75 97.96± 0.22 58.41± 2.29
PN 91.63± 0.45 77.16± 2.06 97.55± 0.21 57.29± 1.10
NatPN 92.15± 0.33 80.57± 1.29 97.98± 0.16 49.08± 1.57
GPN 91.63± 0.37 74.08± 0.85 97.31± 0.09 61.70± 0.49
NatGPN 87.83± 1.31 77.90± 3.96 96.12± 0.91 59.80± 0.32
EnsGNN 93.18± n/a 81.62± n/a 98.37± n/a 60.81± n/a
EnsNatPN 92.44± n/a 81.86± n/a 98.16± n/a 46.46± n/a
EnsGPN 91.76± n/a 75.26± n/a 97.45± n/a 61.75± n/a

PageRank MLP 85.36± 0.10 66.95± 0.59 93.73± 0.10 62.74± 0.25
GNN 90.57± 0.24 75.05± 0.75 96.98± 0.13 63.09± 0.77
EN 90.33± 0.37 75.18± 1.10 96.90± 0.13 62.20± 0.95
PN 88.26± 0.21 73.56± 1.40 95.88± 0.20 66.92± 1.18
NatPN 90.04± 0.38 75.31± 1.00 96.79± 0.22 47.23± 2.53
GPN 88.94± 0.64 67.40± 0.86 95.57± 0.26 90.45± 1.76
NatGPN 80.45± 6.19 70.93± 1.25 91.40± 3.66 82.22± 4.95
EnsGNN 91.35± n/a 74.81± n/a 97.26± n/a 65.54± n/a
EnsNatPN 90.75± n/a 74.69± n/a 97.02± n/a 42.47± n/a
EnsGPN 89.75± n/a 66.27± n/a 95.85± n/a 92.39± n/a

PPR MLP 49.68± 0.80 45.47± 3.75 61.05± 0.60 78.29± 1.27
GNN 53.65± 2.91 54.98± 10.32 67.28± 3.57 86.94± 1.93
EN 52.89± 3.08 47.70± 6.44 64.74± 3.15 88.03± 1.88
PN 60.22± 2.81 50.42± 11.67 72.29± 3.33 82.47± 2.45
NatPN 53.15± 1.93 62.85± 4.67 68.78± 1.24 49.36± 11.49
GPN 70.16± 0.36 33.12± 16.84 77.10± 3.51 91.90± 3.24
NatGPN 48.62± 2.94 77.97± 6.97 68.04± 2.65 91.17± 1.60
EnsGNN 54.56± n/a 58.28± n/a 69.01± n/a 89.05± n/a
EnsNatPN 55.24± n/a 62.02± n/a 70.58± n/a 43.71± n/a
EnsGPN 70.30± n/a 34.13± n/a 77.43± n/a 92.21± n/a
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Table 18: Experiment results on CoauthorCS dataset.

Accuracy PRR@TU AUPRC@TU AUROC@KU

Random MLP 93.28± 0.11 64.47± 1.27 97.32± 0.05 n/a
GNN 93.41± 0.08 73.37± 1.09 97.93± 0.05 n/a
EN 93.33± 0.12 74.24± 0.84 97.95± 0.05 n/a
PN 90.29± 0.78 75.42± 0.98 96.90± 0.29 n/a
NatPN 93.42± 0.08 77.37± 0.34 98.18± 0.04 n/a
GPN 90.51± 0.15 65.11± 0.84 96.10± 0.10 n/a
NatGPN 88.91± 0.28 63.57± 1.44 95.18± 0.24 n/a
EnsGNN 93.61± n/a 73.36± n/a 98.00± n/a n/a
EnsNatPN 93.50± n/a 77.84± n/a 98.23± n/a n/a
EnsGPN 90.89± n/a 64.94± n/a 96.27± n/a n/a

Feature MLP 92.42± 0.20 62.88± 1.39 96.83± 0.08 64.00± 0.40
GNN 93.48± 0.11 71.83± 0.70 97.86± 0.04 50.67± 0.82
EN 93.44± 0.07 72.68± 0.63 97.90± 0.02 51.47± 0.95
PN 89.72± 0.52 76.57± 1.28 96.78± 0.24 50.25± 0.68
NatPN 93.60± 0.09 75.68± 0.31 98.13± 0.03 44.86± 1.22
GPN 90.65± 0.18 66.68± 0.39 96.30± 0.08 60.59± 0.48
NatGPN 88.07± 0.43 67.63± 2.67 95.18± 0.20 61.80± 0.87
EnsGNN 93.72± n/a 71.61± n/a 97.93± n/a 49.91± n/a
EnsNatPN 93.64± n/a 76.41± n/a 98.19± n/a 43.61± n/a
EnsGPN 91.00± n/a 67.16± n/a 96.50± n/a 60.47± n/a

PageRank MLP 93.15± 0.25 60.50± 1.14 97.01± 0.08 68.00± 0.38
GNN 92.03± 0.12 70.03± 0.58 97.17± 0.06 52.17± 0.29
EN 92.01± 0.15 70.48± 0.83 97.19± 0.05 52.92± 0.50
PN 88.46± 0.66 74.08± 1.62 96.02± 0.29 60.17± 0.88
NatPN 92.12± 0.05 74.94± 0.37 97.56± 0.03 48.79± 1.89
GPN 88.82± 0.40 67.52± 0.64 95.53± 0.18 82.05± 2.57
NatGPN 86.51± 0.37 61.35± 1.43 93.67± 0.30 79.99± 1.09
EnsGNN 92.05± n/a 70.57± n/a 97.21± n/a 51.54± n/a
EnsNatPN 92.22± n/a 75.38± n/a 97.63± n/a 48.16± n/a
EnsGPN 89.12± n/a 68.56± n/a 95.77± n/a 80.38± n/a

PPR MLP 90.46± 0.35 61.93± 1.70 95.81± 0.10 73.96± 1.06
GNN 91.84± 0.13 67.13± 0.82 96.87± 0.08 66.72± 1.59
EN 91.77± 0.09 67.66± 0.81 96.88± 0.08 67.42± 2.19
PN 85.21± 0.79 73.32± 1.56 94.44± 0.56 66.03± 2.59
NatPN 92.29± 0.08 74.19± 0.79 97.57± 0.08 42.36± 2.24
GPN 88.31± 0.38 71.15± 0.29 95.65± 0.18 88.38± 0.78
NatGPN 85.07± 0.48 63.26± 2.25 93.10± 0.39 80.75± 1.98
EnsGNN 92.05± n/a 66.82± n/a 96.94± n/a 71.42± n/a
EnsNatPN 92.41± n/a 74.70± n/a 97.65± n/a 40.08± n/a
EnsGPN 88.74± n/a 72.05± n/a 95.94± n/a 88.81± n/a
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Table 19: Experiment results on CoauthorPhysics dataset.

Accuracy PRR@TU AUPRC@TU AUROC@KU

Random MLP 95.53± 0.03 75.21± 0.34 98.74± 0.02 n/a
GNN 96.32± 0.06 81.17± 0.47 99.20± 0.01 n/a
EN 96.35± 0.04 81.01± 0.92 99.20± 0.03 n/a
PN 95.28± 0.26 80.14± 1.01 98.88± 0.10 n/a
NatPN 96.31± 0.05 82.37± 0.61 99.24± 0.02 n/a
GPN 95.32± 0.08 79.13± 0.44 98.85± 0.03 n/a
NatGPN 94.37± 0.32 79.53± 1.17 98.59± 0.16 n/a
EnsGNN 96.33± n/a 81.47± n/a 99.21± n/a n/a
EnsNatPN 96.30± n/a 82.77± n/a 99.25± n/a n/a
EnsGPN 95.45± n/a 79.41± n/a 98.90± n/a n/a

Feature MLP 95.54± 0.03 75.55± 0.27 98.76± 0.02 52.04± 0.08
GNN 96.16± 0.05 81.91± 0.73 99.18± 0.03 51.82± 0.25
EN 96.13± 0.05 82.17± 1.06 99.19± 0.04 51.73± 0.46
PN 95.31± 0.16 80.88± 1.07 98.93± 0.08 51.48± 0.57
NatPN 96.09± 0.06 84.92± 0.27 99.28± 0.02 48.32± 0.54
GPN 95.12± 0.07 82.13± 0.57 98.93± 0.02 54.36± 0.22
NatGPN 93.92± 0.36 80.34± 0.79 98.50± 0.15 54.30± 0.31
EnsGNN 96.16± n/a 82.27± n/a 99.20± n/a 51.11± n/a
EnsNatPN 96.10± n/a 85.17± n/a 99.29± n/a 47.89± n/a
EnsGPN 95.15± n/a 82.75± n/a 98.97± n/a 54.50± n/a

PageRank MLP 94.53± 0.09 72.39± 0.40 98.27± 0.03 73.99± 0.28
GNN 95.06± 0.07 76.52± 0.27 98.65± 0.02 60.23± 0.20
EN 95.07± 0.05 76.70± 0.82 98.66± 0.03 61.02± 1.03
PN 93.43± 0.39 76.39± 1.30 98.12± 0.16 65.12± 1.62
NatPN 95.08± 0.06 78.15± 0.69 98.73± 0.03 47.06± 3.39
GPN 93.41± 0.08 75.97± 0.33 98.09± 0.04 78.31± 0.88
NatGPN 91.68± 0.58 72.12± 1.44 97.17± 0.35 82.95± 3.02
EnsGNN 95.11± n/a 76.61± n/a 98.67± n/a 58.45± n/a
EnsNatPN 95.11± n/a 78.39± n/a 98.75± n/a 45.49± n/a
EnsGPN 93.56± n/a 76.09± n/a 98.14± n/a 78.72± n/a

PPR MLP 89.11± 0.24 45.53± 2.19 93.53± 0.29 91.39± 0.19
GNN 94.49± 0.15 57.61± 2.31 97.49± 0.13 90.71± 0.12
EN 94.26± 0.34 54.63± 2.40 97.22± 0.21 90.69± 0.34
PN 88.58± 1.89 59.44± 4.95 94.60± 0.92 81.37± 4.48
NatPN 94.53± 0.10 68.02± 0.75 98.05± 0.07 34.41± 6.64
GPN 90.31± 0.71 67.05± 0.76 96.17± 0.37 91.95± 1.21
NatGPN 88.29± 1.37 49.35± 2.15 93.39± 0.90 86.99± 1.45
EnsGNN 94.58± n/a 57.81± n/a 97.54± n/a 90.42± n/a
EnsNatPN 94.67± n/a 67.86± n/a 98.09± n/a 27.08± n/a
EnsGPN 90.63± n/a 68.17± n/a 96.42± n/a 92.58± n/a
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Table 20: Experiment results on CoraML dataset.

Accuracy PRR@TU AUPRC@TU AUROC@KU

Random MLP 72.08± 0.65 57.70± 1.27 83.69± 0.41 n/a
GNN 86.95± 0.33 70.63± 1.64 94.97± 0.12 n/a
EN 87.01± 0.33 70.14± 2.07 94.94± 0.13 n/a
PN 78.81± 0.79 62.59± 3.10 89.26± 0.71 n/a
NatPN 87.08± 0.66 70.83± 2.21 95.06± 0.12 n/a
GPN 85.42± 0.17 65.41± 0.94 93.57± 0.08 n/a
NatGPN 86.28± 0.18 63.90± 1.44 93.84± 0.17 n/a
EnsGNN 87.31± n/a 71.37± n/a 95.22± n/a n/a
EnsNatPN 87.44± n/a 71.43± n/a 95.29± n/a n/a
EnsGPN 85.64± n/a 64.25± n/a 93.54± n/a n/a

Feature MLP 71.66± 1.08 54.74± 1.24 82.78± 0.60 62.42± 0.49
GNN 86.31± 0.44 66.29± 2.42 94.15± 0.11 52.56± 0.55
EN 86.25± 0.33 66.77± 1.59 94.17± 0.10 52.70± 0.38
PN 77.61± 1.77 62.83± 3.97 88.52± 1.21 49.55± 0.67
NatPN 86.09± 0.32 67.00± 2.20 94.12± 0.24 43.51± 1.20
GPN 84.58± 0.22 61.94± 1.00 92.66± 0.17 54.97± 0.88
NatGPN 85.16± 0.40 63.19± 1.60 93.14± 0.24 55.16± 0.80
EnsGNN 86.91± n/a 66.17± n/a 94.44± n/a 50.77± n/a
EnsNatPN 86.57± n/a 66.70± n/a 94.33± n/a 40.67± n/a
EnsGPN 84.30± n/a 62.47± n/a 92.57± n/a 54.24± n/a

PageRank MLP 70.14± 0.66 56.09± 1.64 81.89± 0.23 56.16± 0.61
GNN 84.29± 0.14 66.28± 1.00 93.07± 0.09 53.23± 0.65
EN 84.57± 0.36 65.17± 1.12 93.07± 0.07 53.27± 0.59
PN 74.96± 1.50 56.41± 3.92 85.53± 1.57 59.91± 1.52
NatPN 84.82± 0.30 64.28± 1.05 93.10± 0.10 59.95± 2.45
GPN 83.87± 0.28 65.16± 1.11 92.69± 0.24 82.48± 2.87
NatGPN 83.74± 0.28 66.33± 1.04 92.77± 0.22 74.32± 1.97
EnsGNN 84.70± n/a 67.09± n/a 93.40± n/a 54.17± n/a
EnsNatPN 84.97± n/a 65.42± n/a 93.32± n/a 65.41± n/a
EnsGPN 83.77± n/a 64.28± n/a 92.51± n/a 81.42± n/a

PPR MLP 56.41± 0.41 37.24± 0.92 65.56± 0.47 63.84± 0.53
GNN 77.76± 0.60 58.02± 3.22 87.79± 0.50 69.36± 0.82
EN 77.33± 0.72 59.21± 2.36 87.71± 0.35 68.21± 0.94
PN 59.39± 2.60 51.36± 6.21 71.73± 3.51 72.71± 4.29
NatPN 78.40± 0.74 60.01± 1.57 88.56± 0.34 58.37± 4.00
GPN 77.54± 1.46 59.74± 1.79 87.93± 1.04 92.77± 0.77
NatGPN 77.49± 1.37 56.85± 3.25 87.39± 1.24 84.86± 1.65
EnsGNN 79.16± n/a 56.34± n/a 88.45± n/a 73.52± n/a
EnsNatPN 79.23± n/a 59.96± n/a 89.09± n/a 63.61± n/a
EnsGPN 78.62± n/a 60.95± n/a 88.87± n/a 92.32± n/a
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Table 21: Experiment results on CiteSeer dataset.

Accuracy PRR@TU AUPRC@TU AUROC@KU

Random MLP 66.57± 0.33 53.58± 0.56 78.50± 0.27 n/a
GNN 72.39± 0.44 56.19± 1.65 83.62± 0.16 n/a
EN 72.34± 0.53 56.17± 1.67 83.58± 0.20 n/a
PN 64.44± 0.86 48.78± 1.91 75.61± 0.86 n/a
NatPN 72.52± 0.49 55.19± 1.83 83.52± 0.41 n/a
GPN 69.94± 0.42 50.41± 1.42 80.54± 0.22 n/a
NatGPN 70.88± 0.58 50.44± 0.64 81.29± 0.56 n/a
EnsGNN 73.50± n/a 55.15± n/a 84.24± n/a n/a
EnsNatPN 73.20± n/a 53.89± n/a 83.77± n/a n/a
EnsGPN 70.43± n/a 49.69± n/a 80.78± n/a n/a

Feature MLP 64.70± 0.36 50.93± 1.11 76.33± 0.17 55.84± 0.19
GNN 71.37± 0.23 49.62± 1.14 81.51± 0.26 51.09± 0.91
EN 71.26± 0.39 49.82± 1.60 81.46± 0.29 50.96± 1.27
PN 62.21± 0.49 48.65± 2.11 73.65± 0.48 50.70± 0.24
NatPN 71.50± 0.56 49.10± 0.67 81.51± 0.35 47.09± 1.81
GPN 68.00± 0.46 42.05± 1.82 77.15± 0.17 51.76± 0.37
NatGPN 69.15± 0.32 44.22± 1.07 78.58± 0.16 50.30± 1.40
EnsGNN 72.42± n/a 47.84± n/a 81.97± n/a 50.18± n/a
EnsNatPN 72.12± n/a 48.70± n/a 81.91± n/a 45.65± n/a
EnsGPN 68.27± n/a 42.19± n/a 77.41± n/a 51.62± n/a

PageRank MLP 65.96± 0.34 46.36± 0.54 76.37± 0.22 54.33± 0.23
GNN 72.03± 0.31 51.64± 1.39 82.44± 0.19 50.82± 0.43
EN 71.79± 0.23 52.28± 1.41 82.38± 0.16 50.73± 0.78
PN 62.51± 0.98 46.12± 2.34 73.32± 0.65 56.33± 1.41
NatPN 72.62± 0.10 50.76± 1.02 82.71± 0.17 54.78± 1.55
GPN 70.84± 0.46 41.23± 2.81 79.36± 0.26 74.78± 1.42
NatGPN 71.65± 0.39 42.54± 1.84 80.29± 0.34 59.46± 3.89
EnsGNN 72.48± n/a 52.17± n/a 82.88± n/a 52.31± n/a
EnsNatPN 72.90± n/a 51.35± n/a 83.04± n/a 57.63± n/a
EnsGPN 70.91± n/a 42.07± n/a 79.59± n/a 77.27± n/a

PPR MLP 55.53± 0.28 39.66± 1.44 65.32± 0.23 69.37± 0.39
GNN 62.22± 0.60 44.67± 2.44 72.72± 0.68 81.83± 0.54
EN 62.18± 0.91 44.78± 1.08 72.70± 0.89 80.35± 0.77
PN 46.30± 2.63 33.99± 8.13 54.74± 4.41 80.83± 1.27
NatPN 63.09± 0.58 41.88± 1.41 72.84± 0.37 47.42± 6.69
GPN 56.27± 1.23 40.11± 3.87 66.14± 0.75 93.34± 4.34
NatGPN 64.00± 1.40 36.33± 0.48 72.37± 1.17 88.78± 4.75
EnsGNN 64.48± n/a 43.41± n/a 74.42± n/a 85.18± n/a
EnsNatPN 64.54± n/a 42.71± n/a 74.32± n/a 44.31± n/a
EnsGPN 59.38± n/a 37.66± n/a 68.46± n/a 92.86± n/a
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Table 22: Experiment results on PubMed dataset.

Accuracy PRR@TU AUPRC@TU AUROC@KU

Random MLP 85.59± 0.20 58.82± 0.43 92.85± 0.06 n/a
GNN 86.74± 0.22 64.45± 0.74 94.15± 0.12 n/a
EN 86.90± 0.28 64.78± 0.77 94.27± 0.12 n/a
PN 85.89± 0.38 57.80± 1.45 92.89± 0.17 n/a
NatPN 86.58± 0.31 63.84± 0.84 94.00± 0.11 n/a
GPN 87.34± 0.23 63.46± 0.41 94.36± 0.11 n/a
NatGPN 85.08± 0.81 60.22± 1.96 92.71± 0.72 n/a
EnsGNN 87.43± n/a 66.12± n/a 94.70± n/a n/a
EnsNatPN 87.15± n/a 65.21± n/a 94.45± n/a n/a
EnsGPN 87.39± n/a 64.30± n/a 94.48± n/a n/a

Feature MLP 84.66± 0.14 60.50± 0.34 92.52± 0.04 48.63± 0.09
GNN 86.32± 0.17 65.27± 0.39 94.03± 0.06 50.50± 0.24
EN 86.36± 0.30 65.81± 1.03 94.11± 0.06 50.27± 0.31
PN 85.46± 0.19 58.47± 1.87 92.73± 0.24 49.03± 0.84
NatPN 86.15± 0.17 64.99± 0.40 93.91± 0.06 50.73± 0.28
GPN 86.89± 0.29 62.46± 0.73 94.00± 0.14 52.47± 0.37
NatGPN 84.76± 1.06 60.53± 1.60 92.56± 0.84 50.83± 0.28
EnsGNN 87.15± n/a 66.24± n/a 94.57± n/a 50.33± n/a
EnsNatPN 86.67± n/a 66.59± n/a 94.36± n/a 51.47± n/a
EnsGPN 87.17± n/a 62.69± n/a 94.18± n/a 52.77± n/a

PageRank MLP 85.31± 0.11 58.78± 0.43 92.68± 0.05 51.32± 0.09
GNN 84.45± 0.20 60.85± 0.86 92.44± 0.19 55.99± 0.39
EN 84.77± 0.33 60.97± 0.57 92.64± 0.21 56.80± 0.38
PN 83.12± 0.25 52.37± 1.29 90.47± 0.23 66.37± 3.42
NatPN 84.29± 0.38 61.00± 0.40 92.37± 0.20 56.87± 1.97
GPN 86.06± 0.18 63.96± 0.42 93.73± 0.12 82.67± 0.59
NatGPN 82.66± 0.79 59.50± 2.85 91.17± 0.91 74.55± 1.56
EnsGNN 85.09± n/a 63.43± n/a 93.14± n/a 60.77± n/a
EnsNatPN 84.88± n/a 62.66± n/a 92.92± n/a 61.38± n/a
EnsGPN 86.41± n/a 64.25± n/a 93.95± n/a 83.77± n/a

PPR MLP 84.12± 0.05 53.29± 0.34 91.24± 0.05 56.44± 0.24
GNN 84.80± 0.20 60.82± 0.70 92.64± 0.10 58.41± 1.03
EN 85.04± 0.31 61.21± 0.65 92.83± 0.16 66.78± 2.97
PN 83.31± 0.40 48.27± 1.77 90.02± 0.47 72.08± 1.95
NatPN 84.50± 0.43 60.66± 1.06 92.44± 0.24 61.40± 4.36
GPN 86.05± 0.14 62.12± 1.35 93.50± 0.13 74.88± 1.93
NatGPN 82.85± 1.88 57.71± 2.81 91.01± 1.60 68.86± 0.67
EnsGNN 85.82± n/a 62.38± n/a 93.41± n/a 62.02± n/a
EnsNatPN 85.18± n/a 62.19± n/a 93.03± n/a 64.73± n/a
EnsGPN 86.18± n/a 62.76± n/a 93.65± n/a 74.62± n/a
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E COMPONENTS OF DIRICHLET-BASED FRAMEWORK

E.1 STANDARD OR NATURAL DENSITY ESTIMATION

One property that we vary in these methods is the number of Normalizing Flows and how we use
their density estimates. In particular, we consider a Standard approach (Charpentier et al., 2020),
where distinct Normalizing Flows pψ(zi|k) are used per each class k to predict the corresponding
Dirichlet parameter βfeat

ik based on the representation zi = fϕ(xi):

βfeat
ik = n · pψ(zi, k) = n · pψ(zi|k) · P(k) = nk · pψ(zi|k),

where the probability P(k) of class k is approximated by the ratio of train observations from class k,
n is usually equal to the dataset size (but can, in general, be a hyper-parameter), and nk := n · P(k).
Another approach is the Natural version of Posterior Network that is proposed by Charpentier et al.
(2021). It exploits a single Normalizing Flow pψ(zi) to predict the evidence Si, while the normal-
ized Dirichlet parameters µi are obtained using one-layer linear transformation gω(zi). The final
predictions are obtained as follows:

Si = n · pψ(zi), µi = gω(zi) =⇒ βfeat
ik = Si · µik

E.2 GRAPH ENCODING OR GRAPH PROPAGATION

Another aspect that we analyze is how the graph structure can be combined with Posterior Networks.
Here, we consider two approaches — use the graph for the encoding to obtain zi or use graph
propagation to smooth the predicted parameters as the post-processing step.

In the case of graph encoding, we use a two-layer SAGE convolution to produce the representations
zi and then estimate the density as usual via Normalizing Flows. Thus, the graph structure is used
for the pre-processing step.

The second approach is adopted by Stadler et al. (2021). In this case, the initial representations zi are
obtained using a graph-agnostic two-layer MLP, while graph propagation is applied to smooth the
Dirichlet parameters βfeat

i . Graph propagation is performed in several steps via some transformation
π : Rn×C → Rn×C as follows:

Bt+1 = (1− α)π(Bt) + αB,

where B0 = B ∈ Rn×C is formed by the parameters βfeat
ik and α is a hyperparameter that controls the

smoothing effect of the propagation step. Similarly to Stadler et al. (2021), we use a Personalized
Propagation scheme (Klicpera et al., 2018), which takes into account the mutual importance of
nodes and is defined as π(B) = D−1/2AD−1/2B.

We refer to the method with graph propagation as GPN (Graph Posterior Network) and with Graph
Encoding as PN (Posterior Network). Further, if the Natural version of the Posterior Network is
used instead of the Standard one, we denote the models NatGPN and NatPN, respectively.

F DATASET DETAILS

Table 23: Description of the considered graph datasets for node classification task.

Dataset

#Nodes #Edges #Classes #Features

AmazonComputers 13,381 259,159 10 767
AmazonPhoto 7,484 126,530 8 745
CoauthorCS 18,333 163,788 15 6,805

CoauthorPhysics 34,493 495,924 5 8,415
CoraML 2,995 16,316 7 2,879
CiteSeer 3,327 4,732 6 3,703
PubMed 19,717 44,338 3 8,415
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G EXPERIMENTAL SETUP

We evaluate all the methods discussed in Section 4 using the benchmark proposed in Section 3.
Some of the considered methods require a specific training procedure consisting of several stages.
Methods without Normalizing Flows, including MLP, GNN, EnsGNN, and EN, have only one
training stage when the corresponding models train in the standard end-to-end mode. Methods with
Normalizing Flows have at least three phases of training — warm-up of exclusively Flow neural
layers, end-to-end training of the entire model, and finetuning the same Flow layers. In this regard,
we follow the setup of Stadler et al. (2021). Further details can be found in Appendix G.

In our experiments, one training stage (i.e., warm-up, main training stage, or finetuning) takes 200
epochs, while the best loss value on the Valid-In part serves as a criterion for saving the model
checkpoint. We exploit the standard Adam optimizer (Kingma & Ba, 2014) with a learning rate of
0.001 for Normalizing Flows and 0.0003 for other neural modules. For all the considered models,
we utilize weight decay of 0.00001 and set λ = 0.001 in Expected Cross-Entropy.

As for model configurations, we set the hidden size of linear layers to 64, the number of layers in
Normalizing Flows to 8 and the latent space dimension to 16. Also, Graph Propagation is performed
in 5 steps with α = 0.2.
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