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Abstract001

As large language models (LLMs) often gener-002
ate plausible but incorrect content, error detec-003
tion has become increasingly critical to ensure004
truthfulness. However, existing detection meth-005
ods often overlook a critical problem we term006
as self-consistent error, where LLMs repeatly007
generate the same incorrect response across008
multiple stochastic samples. This work for-009
mally defines self-consistent errors and eval-010
uates mainstream detection methods on them.011
Our investigation reveals two key findings: (1)012
Unlike inconsistent errors, whose frequency di-013
minishes significantly as LLM scale increases,014
the frequency of self-consistent errors remains015
stable or even increases. (2) All four types016
of detection methshods significantly struggle017
to detect self-consistent errors. These find-018
ings reveal critical limitations in current de-019
tection methods and underscore the need for020
improved methods. Motivated by the obser-021
vation that self-consistent errors often differ022
across LLMs, we propose a simple but effec-023
tive cross-model probe method that fuses hid-024
den state evidence from an external verifier025
LLM. Our method significantly enhances per-026
formance on self-consistent errors across three027
LLM families1.028

1 Introduction029

As large language models (LLMs) are increasingly030

deployed in high-stakes applications (Chen et al.,031

2024), their tendency to generate plausible yet032

incorrect content raises critical safety concerns.033

Therefore, error detection has become essential for034

ensuring the trustworthiness of LLMs (Manakul035

et al., 2023; Lin et al., 2024; Farquhar et al., 2024).036

Numerous error detection methods rely on measur-037

ing consistency across multiple samples (Manakul038

et al., 2023; Lin et al., 2024; Kuhn et al., 2023;039

Chen et al.; Xue et al., 2025) under the assumption040

that consistent outputs are more likely to be correct.041

1Code and datasets will be released after review
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Figure 1: Frequency of self-consistent and inconsis-
tent errors across different model scales on SciQ. In-
consistent errors decrease with model size while self-
consistent errors remain stable or even slightly increase.

However, this assumption fails to account for a 042

crucial phenomenon we define as “self-consistent 043

error”, where LLMs consistently generate seman- 044

tically equivalent errors across multiple stochas- 045

tic samples for the same question, in contrast to 046

“inconsistent error” which vary between samples. 047

To demonstrate the importance of self-consistent 048

errors, we analyze their frequency across the SciQ 049

and TriviaQA datasets using nine model scales 050

from the Qwen and Llama series. Figure 1 shows 051

that the frequency of self-consistent errors remains 052

stable or even increase with model scale, while 053

inconsistent errors decrease significantly. This di- 054

vergence highlights that self-consistent errors re- 055

main resistant to scaling, posing a persistent and 056

long-term challenge. Therefore, detecting self- 057

consistent errors becomes a critical research goal. 058

This paper systematically evaluates four types 059

of mainstream error detectors on self-consistent 060

errors, including probability methods (Duan et al., 061

2024), prompt-based (Kadavath et al., 2022; Tian 062

et al.; Xiong et al.), supervised probe-based (Azaria 063

and Mitchell, 2023; Beigi et al., 2024; Zhu et al., 064

2024), and consistency-based methods. We find 065

that all methods suffer substantial performance 066

drops on self-consistent errors, in contrast to 067

their strong performance on inconsistent errors. 068

Consistency-based detectors degrade the most, 069

even falling below random guessing (AUROC 070
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≤ 0.5). Notably, even the strongest supervised071

probe that accesses the model’s hidden states show072

significant performance drops, suggesting that the073

hidden states of an LLM alone cannot provide suf-074

ficient signal for detecting self-consistent error.075

To improve detecting self-consistent errors, we076

propose a novel cross-model probe based on an ob-077

servation: self-consistent errors tend to be model-078

specific and rarely overlap across different LLMs.079

Inspired by this, we feed the original model’s re-080

sponse into an external verifier, extract its hidden081

states, and train a dedicated probe on them. This082

verifier-based probe are then integrated with the083

original probe to produce a unified detection score.084

This cross-model perspective compensates for the085

blind spots of the original model, enabling more re-086

liable detection. Experiments across three LLM087

families and two datasets demonstrate that our088

method achieves substantial improvements in de-089

tecting self-consistent errors, offering a promising090

direction for future detection methods.091

2 Self-Consistent Errors in LLMs092

2.1 Task Definition093

Error detection (Orgad et al., 2025; Farquhar094

et al., 2024), also called hallucination detection,095

seeks to decide whether an LLM’s answer is fac-096

tually correct. We use “error detection” due to097

the ambiguity of “hallucination” across domains098

(Wang Chaojun, 2020). Starting from a QA dataset099

Q = {(qi, ai)}Ni=1, where qi is a question and ai100

its reference answer, we obtain the model’s greedy101

response rgi = M(qi; θ, T = 0), with language102

model M (parameters θ) and temperature T . Cur-103

rent work primarily targets greedy responses as104

they reflect the model’s best choice and facilitate105

reproducibility. We label each prediction by com-106

paring it with ai, yielding zi ∈ {0, 1} according107

to the procedure in Section 3.1. This produces the108

error detection datasets DM = {(qi, rgi , zi)}Ni=1.109

At test time, the detector observes only (qi, r
g
i ) and110

predict the error score si = f(qi, r
g
i ).111

2.2 Definition of Self-Consistent Error112

We categorize errors as self-consistent if the model113

repeatedly generates semantically equivalent incor-114

rect responses across multiple stochastic samples115

for a given question, and as inconsistent otherwise.116

Definition 1 (Self-Consistent Error). For a ques-117

tion qi, we draw k stochastic samples118

rsi,j = M(qi; θ, T > 0, j), j = 1, . . . , k.119

If all samples are semantically equivalent to the 120

greedy response, 121

rsi,1 ≡ rsi,2 ≡ · · · ≡ rsi,k ≡ rgi , 122

and the greedy answer is judged incorrect (zi = 0), 123

then rgi is a self-consistent error for model M. The 124

relation ≡ denotes semantic equivalence. 125

To operationalize Definition 1 and categorize 126

errors in D = {(qi, rgi , zi)}Mi=1, we proceed as fol- 127

lows. For every incorrect instance (zi = 0), we 128

generate k = 15 stochastic samples rsi,1, . . . , r
s
i,15 129

in addition to the greedy answer rgi . Sampling is 130

performed with temperature T=0.5, top_p=1 and 131

top_k=−1, which is the commonly adopted set- 132

tings in prior work (Kuhn et al., 2023). Next, 133

we test pairwise semantic equivalence within 134

{rgi , rsi,1, . . . , rsi,15} with the NLI-based criterion 135

of Kuhn et al. (2023), treating two responses as 136

equivalent if they mutually entail each other. An 137

error rgi is labeled self-consistent when all stochas- 138

tic samples and greedy response are semantically 139

equivalent; otherwise, rgi is labeled inconsistent. 140

2.3 Why Self-Consistent Errors Matter? 141

We investigate the prevalence of self-consistent 142

errors across different model scales, includ- 143

ing Qwen (Qwen2.5-3/7/14/32/72B-Instruct) and 144

Llama (Llama3.2-1B/3B, 3.1-8/70B-Instruct)2. We 145

use TriviaQA (TQA for short) (Joshi et al., 2017) 146

and SciQ (Welbl et al., 2017) datasets, which rep- 147

resent trivia and scientific knowledge domains, re- 148

spectively. Figure 1 shows how the frequency of er- 149

rors changes with model scale on SciQ, with TQA 150

shown in Appendix 2. Unlike inconsistent errors, 151

which markedly decrease as models scale up, the 152

number of self-consistent errors remains relatively 153

stable, or even slightly increases. This suggests 154

that self-consistent errors, being more resistant to 155

model scaling, will likely remain a persistent chal- 156

lenge, potentially becoming more concerning as 157

LLMs continue to scale. Therefore, analyzing and 158

improving the capability to detect this class of er- 159

rors becomes increasingly crucial. 160

Besides their prevalence, self-consistent errors 161

are potentially more challenging to detect. The 162

methods leveraging sample consistency implicitly 163

equate consistency with correctness, thereby in- 164

herently failing to detect these self-consistent er- 165

rors. The effectiveness of other methods on them 166

2As this work focuses on text-only models, we exclude
vision LLMs (Llama3.2-11B/90B).
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Method
Llama3.1-8b Qwen2.5-7b

SciQ-CE SciQ-IE ∆ ↓ TQA-CE TQA-IE ∆ ↓ SciQ-CE SciQ-IE ∆ ↓ TQA-CE TQA-IE ∆ ↓

Probability 0.6325 0.8192 0.1867 0.6243 0.8455 0.2212 0.4571 0.6594 0.2023 0.5360 0.7148 0.1788
P(True) 0.6251 0.7625 0.1374 0.6836 0.8018 0.1182 0.6158 0.7589 0.1431 0.7478 0.8373 0.0895
SE 0.4608 0.8820 0.4212 0.5216 0.9226 0.4010 0.4782 0.8247 0.3465 0.4453 0.9119 0.4666
Probe (OOD) 0.7287 0.908 0.1793 0.7396 0.8989 0.1593 0.7487 0.8605 0.1118 0.7734 0.8911 0.1177
+ cross-model 0.8289 0.9385 0.1096 0.8024 0.9263 0.1239 0.8211 0.8893 0.0682 0.8691 0.9457 0.0766

Probe (ID) 0.7917 0.9249 0.1332 0.7922 0.9272 0.1350 0.8250 0.8891 0.0641 0.8626 0.9467 0.0841
+ cross-model 0.8659 0.9408 0.0749 0.8470 0.9477 0.1007 0.8399 0.9078 0.0679 0.9088 0.9696 0.0608

Method
Qwen2.5-14b Mistral-12b

SciQ-CE SciQ-IE ∆ ↓ TQA-CE TQA-IE ∆ ↓ SciQ-CE SciQ-IE ∆ ↓ TQA-CE TQA-IE ∆ ↓

Probability 0.5480 0.7517 0.2037 0.4926 0.6477 0.1551 0.5858 0.7354 0.1496 0.6283 0.8605 0.2322
P(True) 0.5287 0.6744 0.1457 0.7052 0.8515 0.1463 0.6595 0.7625 0.1030 0.7502 0.8545 0.1043
SE 0.5427 0.8764 0.3337 0.4425 0.9074 0.4649 0.3633 0.8210 0.4677 0.4494 0.9093 0.4599
Probe (OOD) 0.7425 0.9025 0.1600 0.7871 0.9174 0.1303 0.7767 0.8553 0.0786 0.6927 0.8577 0.1650
+ cross-model 0.7927 0.9263 0.1336 0.8754 0.9115 0.0361 0.8458 0.9276 0.0818 0.7872 0.9069 0.1197

Probe (ID) 0.7473 0.8582 0.1109 0.8512 0.9570 0.1058 0.7726 0.8652 0.0926 0.8163 0.9063 0.0900
+ cross-model 0.8118 0.8931 0.0813 0.9332 0.9776 0.0444 0.8548 0.9253 0.0705 0.8497 0.9359 0.0862

Table 1: AUROC performance of error detection methods. ∆ is the performance gap between CE and IE subsets.

may also be limited. For instance, probability-167

based methods assume that the errors have lower168

sequence probabilities, which may not hold for self-169

consistent errors, as such consistent responses intu-170

itively exhibit higher probabilities. Therefore, we171

begin by systematically evaluating the performance172

of existing methods on self-consistent errors.173

3 How Well Do We Detect Self-Consistent174

Errors?175

This section evaluates the performance of current176

error detection methods on self-consistent errors.177

3.1 Experiment Setup178

To ensure a fair comparison between two types of179

errors for supervised probe methods, we controlled180

the distribution of the dataset. We created special-181

ized subsets for the two types of errors: (i) CE182

subset, containing only self-consistent errors as183

negative (incorrect) examples, and (ii) IE subset,184

containing only inconsistent errors as negative ex-185

amples. Both subsets contain an identical number186

of negative examples and are paired with the same187

number of positive examples for training. This188

setup controls for the influence of training data vol-189

ume on supervised probe. The performance gap190

∆ between these two subsets reveals the different191

detection difficulty between two types of errors.192

Evaluation Metric. Following prior works193

(Kuhn et al., 2023; Xiong et al.; Duan et al., 2024),194

we evaluate error detection using the area under the195

receiver operator characteristic curve (AUROC).196

We produce the correctness label zi by employing197

an LLM to evaluate whether the response is se-198

mantically equivalent to the ground truth answer, 199

following (Tian et al.; Wei et al., 2024). Details are 200

provided in Appendix A.5. 201

Baseline & LLMs. We evaluate four types 202

of mainstream error detection methods on com- 203

monly used LLMs: Qwen2.5-7b/14b (Yang et al., 204

2024), Llama3.1-8b, and Mistral-12b. Training- 205

free baselines include: (1) Probability uses ag- 206

gregated token probabilities (Orgad et al., 2025; 207

Mahaut et al., 2024; Malinin and Gales, 2021). (2) 208

P(True) prompts LLM to self-critique correctness 209

and uses the probability of “True” as the confidence 210

score (Kadavath et al., 2022). (3) SE (Kuhn et al., 211

2023; Farquhar et al., 2024) samples multiple re- 212

sponses and calculates the entropy of their semantic 213

clusters. Supervised baselines include: (4) Probe 214

which trains a simple feedforward neural network 215

to detect error based on the hidden states of LLMs 216

(Azaria and Mitchell, 2023). We use the hidden 217

states of the last token at the layer with the best 218

validation performance. We distinguish Probe (ID) 219

(trained and evaluated on the same dataset) from 220

Probe (OOD) (trained on one dataset, evaluated 221

on another). For instance, Probe-OOD might be 222

trained on the SciQ-CE before being evaluated on 223

TQA-CE. OOD evaluation is critical to ensure the 224

probe captures truthfulness features, rather than 225

overfitting to a single dataset (Orgad et al., 2025). 226

Further details are in Appendix A.3. 227

3.2 Failures in Self-Consistent Errors 228

As shown in Table 1, existing methods perform 229

well on inconsistent errors (AUROC up to about 230

90%). However, all methods suffer a substantial 231
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performance degradation on consistent errors. SE232

which performs best among training-free methods233

on IE subsets, exhibits the most dramatic decline234

on CE subsets, performing at or below random235

guessing. This challenges the assumption that self-236

consistency implies correctness, revealing critical237

limitations in consistency-based detection meth-238

ods. Although supervised methods generally out-239

perform training-free approaches on CE subsets,240

they still show significant performance degrada-241

tion compared to IE subsets. This indicates that242

self-consistent errors are more challenging to dis-243

tinguish from correct responses even at the hid-244

den state level. Furthermore, Probe (OOD) shows245

larger performance gaps (∆) compared to Probe246

(ID), suggesting that self-consistent errors are par-247

ticularly difficult to detect when generalizing across248

different knowledge domains TQA and SciQ.249

4 Cross-Model Probe250

The poor performance of the evaluated methods on251

self-consistent errors suggests that features from252

the response-generating LLM alone may be insuf-253

ficient for detecting such errors. Fortunately, we254

observe that self-consistent errors are often model-255

specific and rarely overlap across different LLMs.256

For instance, among questions where Qwen2.5-257

14B produces self-consistent errors, only 9.6% of258

them lead Llama3.1-70B to consistently make the259

same errors. This observation motivates the use of260

an external verifier to supplement the detection of261

self-consistent errors.262

Given the high efficiency (Su et al., 2024) and
strong performance of supervised probes, we build
upon this approach. Standard probe methods train
a classifier to detect errors using internal states of
M which generate the response rgi :

sMi = ProbeM(hM
i ), hM

i = ϕ
(l,t)
M

(
qi, r

g
i

)
where ϕ

(l,t)
M extracts internal states from layer l

and token position t of model M. We introduce a
cross-model probe that leverages an external veri-
fier LLM V to embed the responses generated by
M and trains a separate ProbeV :

sVi = ProbeV(h
V
i ), hV

i = ϕ
(l,t)
V

(
qi, r

g
i

)
The final error score combines both probes

through an integration parameter λ:

scorei = (1− λ) · sMi + λ · sVi

Verifier Different
Series Scale λ

AUROC

Res only Ver only Fused

Qwen2.5-3b ✗ smaller 0.25 0.8250 0.8129 0.8357
Llama3.2-3b ✓ smaller 0.50 0.8250 0.8125 0.8453
Llama3.1-70b ✓ larger 0.85 0.8250 0.8740 0.8794
Qwen2.5-72b ✗ larger 1.00 0.8250 0.8689 0.8689

Table 2: Effect of using different verifier LLMs against
responses generated by qwen2.5-7b on the SciQ-CE.

In our implementation, we select Qwen2.5-14B 263

as the verifier for all other models except itself, for 264

which we use Llama3.1-70b. λ is selected from 265

{0, 0.05, 0.1, . . . , 1.0} by choosing the value that 266

yields the best validation performance. As shown 267

in Table 1, cross-model probe demonstrates signif- 268

icant performance improvements on CE subsets, 269

regardless of in-domain or out-of-domain settings. 270

We conduct an analysis of verifier selection 271

across different model scale and series, detailed in 272

Appendix A.4. As shown in Table 2, all tested veri- 273

fiers, including the 3B-scale models, consistently 274

achieve substantial performance gains, validating 275

the effectiveness of our approach. Besides, our 276

empirical results suggest that using a larger veri- 277

fier from a different series could achieve the most 278

substantial improvement. 279

5 Related work 280

Zhang et al. (2023); Chen et al. also mention the 281

limitation of consistency-based methods regarding 282

self-consistent errors. Beyond these studies, we 283

demonstrate the importance of self-consistent er- 284

rors by analyzing their frequency, systematically 285

quantify performance degradation across four main- 286

stream detection methods (not only consistency- 287

based), and propose a simple yet effective improve- 288

ment. Appendix A.2 provides a more detailed dis- 289

cussion of related works. 290

6 Conclusion 291

This work investigates self-consistent errors where 292

the LLM repeats the same incorrect response across 293

multiple stochastic samples. Our analysis shows 294

that the frequency of self-consistent errors per- 295

sist or even increase with increasing model scale, 296

highlighting the importance of detecting them in 297

ever-larger LLMs. Then, we evaluate four rep- 298

resentative error detection methods and find all 299

of them expose clear limitations in self-consistent 300

errors. Finally, we introduce a simple but effec- 301

tive cross-model probe to improve detection perfor- 302

mance on self-consistent errors. 303
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7 Limitations304

The underlying causes of consistent errors still re-305

quire deeper investigation. These systematic fail-306

ures may stem from prevalent misconceptions in307

training data, or biases introduced during the super-308

vised training phase. Future works may construct309

controlled experiments to investigate the causes.310

8 Ethics Statement311

Data All data used in this study are publicly avail-312

able and do not pose any privacy concerns.313

AI Writing Assistance In our study, we only em-314

ployed ChatGPT to polish our textual expressions315

rather than to generate new ideas or suggestions.316
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A Appendix 504

A.1 The Number of Consistent and 505

Inconsistent Errors 506

Figure 2 shows the number of consistent and incon- 507

sistent errors for different LLMs. 508

A.2 Related Work 509

Error Detection. Large language models (LLMs) 510

often generate responses that appear plausible but 511

contain factual inaccuracies. This challenge under- 512

scores the critical importance of accurately detect- 513

ing errors in LLM-generated content for establish- 514

ing trustworthiness. While this task is also referred 515

to as “hallucination detection” (Chen et al.; Far- 516

quhar et al., 2024; Du et al., 2024), we adopt the 517
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Figure 2: The number of self-consistent and inconsistent errors across different scales of LLMs.

term “error detection” to avoid ambiguity, as “hallu-518

cination” carries domain-specific meanings across519

different fields (Huang et al., 2025; Wang Chaojun,520

2020; Zhang et al., 2019).521

Training-Free Error Detection. A prominent522

approach to error detection involves estimating the523

uncertainty inherent in the model itself. Methods in524

this category include analyzing response probabili-525

ties (Malinin and Gales, 2021; Duan et al., 2024)526

and eliciting verbalized confidence scores directly527

from the model (Tian et al.; Lin et al., 2022; Xiong528

et al.). Among these methods, consistency-based529

uncertainty (Manakul et al., 2023; Kuhn et al.,530

2023; Lin et al., 2024; Xiong et al.; Chen et al.;531

Zhang et al., 2023; Chen et al.) has received consid-532

erable attention. Building on the assumption that533

consistent responses are more likely to be factu-534

ally correct (Wang et al., 2023), consistency-based535

methods sample multiple responses and compute536

semantic consistency among them to detect hallu-537

cinations.538

Supervised Probe. In contrast to the above539

methods, probe-based approaches employ super-540

vised learning to identify truthfulness features em-541

bedded within LLMs’ internal states. Several pre-542

vious works (Marks and Tegmark, 2024; Azaria543

and Mitchell, 2023; Burns et al., 2023; Li et al.,544

2023; Chen et al.) have claimed that there existed545

truthfulness features in the internal states of LLMs.546

Based on the assumption, numerous studies have547

tried to detect hallucination using the features from548

LLMs’ own internal states (Kadavath et al., 2022;549

Azaria and Mitchell, 2023; Beigi et al., 2024; Zhu550

et al., 2024). These works trained a probe, a sim-551

ple classifier, to predict whether the response of552

LLMs is correct based on the internal states. As553

the probe is often a simple multi-layer perceptron,554

these methods need very low computation cost555

both during inference time and training process556

(Su et al., 2024). Moreover, recent comparative 557

studies (Mahaut et al., 2024) have demonstrated 558

their superior performance over other consistency- 559

based, probability-based and verbalized methods. 560

Self-Consistent Error. Prior consistency-based 561

error detectors (Farquhar et al., 2024; Zhang et al., 562

2023; Chen et al.) also acknowledged the limi- 563

tations of consistency-based methods in handling 564

self-consistent errors. However, they neither quan- 565

tify the extent of performance degradation nor sys- 566

tematically examine the prevalence of such errors. 567

Moreover, their analysis is limited to consistency- 568

based paradigms, leaving open the question of 569

whether other types of detectors are similarly af- 570

fected. In contrast, our work provides a compre- 571

hensive evaluation across four mainstream cate- 572

gories of error detection methods and reveals that 573

self-consistent errors pose a universal challenge, 574

leading to significant performance drops across all 575

methods, not just those relying on sample consis- 576

tency. 577

Cross-Model Checking. Zhang et al. (2023); 578

Ding et al. (2024) and concurrent work (Xue et al., 579

2025) propose to detect errors by sampling multi- 580

ple responses from both the target model and an 581

external model, followed by measuring their agree- 582

ment. However, these approaches require 10–20 ad- 583

ditional generations per query across both models, 584

making them impractical for real-time usage. In 585

contrast, our Cross-Model Probe offers a novel and 586

efficient alternative that requires only a single for- 587

ward pass through a verifier model. Furthermore, 588

our empirical analysis provides practical insights 589

for verifier selection. All tested verifiers, including 590

the lightweight 3B models, consistently yield per- 591

formance gains, demonstrating the robustness of 592

our approach. Nonetheless, larger models from a 593

different series than the response generator tend to 594

perform best. 595
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A.3 Baseline Method Implementation Details596

Here we provide detailed implementation details597

for the baseline error detection methods evaluated598

in Section 3.1.599

(i) Probability: Several studies have employed600

the aggregated token probabilities to detect errors601

(Orgad et al., 2025; Mahaut et al., 2024; Malinin602

and Gales, 2021). Following prior work (Orgad603

et al., 2025), we average the log-probabilities of all604

generated tokens in a response. This average log-605

probability serves as the error detection indicator,606

where lower values suggest a higher likelihood of607

error.608

(ii) P(True): This method follows the prompt-609

ing strategy introduced by Kadavath et al. (2022),610

where the LLM is directly queried to assess the611

correctness of its own output. Specifically, we con-612

struct the following prompt:613

Question: {question}614

Possible answer: {response}615

Is the possible answer: A. True616

B. False617

The possible answer is:618

The model’s confidence is then quantified as the619

probability it assigns to the token sequence cor-620

responding to “A”. A higher probability indicates621

greater model confidence in the correctness of its622

response.623

(iii) SE (Semantic Entropy): As proposed by624

Kuhn et al. (2023) and further explored by Far-625

quhar et al. (2024), semantic entropy estimates un-626

certainty over the meaning conveyed by a response,627

rather than just the token sequence. Higher seman-628

tic entropy suggests greater uncertainty about the629

response’s meaning and thus a higher likelihood of630

error. Following the implementation details recom-631

mended by Kuhn et al. (2023), we set the sampling632

parameters as follows: temperature 0.5, number of633

samples 10, top_p = 1.0, and top_k = -1.634

(iv) Probe: Following Azaria and Mitchell635

(2023), we implement a probe using a three-layer636

feedforward neural network (FFN) with ReLU acti-637

vations and hidden dimensions set to (256, 128, 64).638

The model is trained with cross-entropy loss. To639

select the most informative hidden layer, we train640

a separate probe on the output of each layer and641

choose the one that achieves the highest AUROC642

on the validation set. To mitigate overfitting, the643

probe is trained for a fixed number of epochs, and644

we select the checkpoint with the best validation645

performance for final evaluation.646

A.4 Details about Cross-Model Probe 647

How to Select Verifier. We study the impact of dif- 648

ferent verifiers on cross-model probe performance, 649

focusing on two factors: (1) whether the verifier 650

is from the same model series as the response 651

model, and (2) model scale. Using Qwen2.5-7B as 652

the response model, we evaluate several verifiers: 653

Qwen2.5-3B and LLaMA3.2-3B (smaller models); 654

LLaMA3.1-70B and Qwen2.5-72B (larger mod- 655

els). 656

Table 2 shows that (1) for models of the same 657

scale, using a verifier from a different series yields 658

better results. (2) within the same series, larger 659

verifiers perform better. Notably, all tested veri- 660

fiers (even 3B models) significantly improve per- 661

formance over the standard probe, validating the 662

effectiveness of our approach. 663

A.5 Evaluation Metric 664

Following prior works (Kuhn et al., 2023; Xiong 665

et al.; Duan et al., 2024), we evaluate error de- 666

tection using the area under the receiver operator 667

characteristic curve (AUROC), which reflects mod- 668

els’ ability to distinguish incorrect and correct re- 669

sponses. We produce the correctness label zi by em- 670

ploying an LLM to evaluate whether the response is 671

semantically equivalent to the ground truth answer, 672

following (Tian et al.; Wei et al., 2024). To en- 673

sure reproducibility, we employ the powerful open- 674

source model, Llama-3.1-70b. Inspired by (Wei 675

et al., 2024), we use the prompt in Appendix A.6 676

to check the correctness of the generated response. 677

This prompt categorizes responses into correct, in- 678

correct, and refusal. In our experiments, we filter 679

out the refusal responses, as our focus is on effec- 680

tively distinguishing between correct and incorrect 681

responses. A manual review finds that only 1 out 682

of 300 samples disagrees with human annotation, 683

demonstrating the reliability of the correctness la- 684

bel. 685

A.6 Prompt 686
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Evaluation Prompt

Your job is to look at a question , some gold targets , and a predicted answer, and then assign a grade of
either ["CORRECT", "INCORRECT", "NOT_ATTEMPTED"].

First , I will give examples of each grade , and then you will grade a new example.

The following are examples of CORRECT predicted answers.

Question: What are the names of Barack Obama's children?
Gold target : ["Malia Obama and Sasha Obama", "malia and sasha"]
Predicted answer 1: sasha and malia obama
Predicted answer 2: most people would say Malia and Sasha, but I ' m not sure and would have to double check
Predicted answer 3: Barack Obama has two daughters . Their names are Malia Ann and Natasha Marian, but they

are commonly referred to as Malia Obama and Sasha Obama. Malia was born on July 4, 1998, and Sasha was
born on June 10, 2001.

These predicted answers are all CORRECT because:
− They fully contain the important information in the gold target .
− They do not contain any information that contradicts the gold target .
− Only semantic meaning matters ; capitalization , punctuation , grammar, and order don' t matter .
− Hedging and guessing are permissible , provided that the gold target is fully included and the response

contains no incorrect information or contradictions .

The following are examples of INCORRECT predicted answers.

Question: What are the names of Barack Obama's children?
Gold target : ["Malia and Sasha"]
Predicted answer 1: Malia.
Predicted answer 2: Malia, Sasha, and Susan.
Predicted answer 3: Barack Obama does not have any children .
Predicted answer 4: I think it ' s either Malia and Sasha. Or it could be Malia and Jackie . Or it could be Joey

and Malia.
Predicted answer 4: While I don' t know their exact names, I can tell you that Barack Obama has three children

.
Predicted answer 5: It ' s possible you may mean Betsy and Olivia . However, you should clarify further details

with updated references if necessary . Is that the correct answer?
Predicted answer 6: It may be the case that Obama's child is named James. However, it ' s recommended to

confirm the most accurate and updated information since this could change over time. This model may not
always reflect the most current information .

These predicted answers are all INCORRECT because:
− A factual statement in the answer contradicts the gold target . Incorrect statements that have some

hedging (e .g ., " it is possible that ", "although i ' m not sure , i think ") are also considered
incorrect .

The following are examples of NOT_ATTEMPTED predicted answers.

Question: What are the names of Barack Obama's children?
Gold target : ["Malia and Sasha"]
Predicted answer 1: I don' t know.
Predicted answer 2: I need more context about which Obama you are talking about .
Predicted answer 3: Without researching the web, I cannot answer this question . However, I can tell you that

Barack Obama has two children .
Predicted answer 4: Barack Obama has two children . I know that one of them is Malia, but I ' m not sure about

the other one.

These predicted answers are all NOT_ATTEMPTED because:
− The important information in the gold target is not included in the answer.
− No statements in the answer contradict the gold target .

Also note the following things :
− For grading questions where the gold target is a number, the predicted answer needs to be correct to the

last significant figure in the gold answer. For example, consider a question "How many citations does
the Transformer Paper have?" with gold target "120k".
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− Predicted answers "120k", "124k", and 115k" are all CORRECT.
− Predicted answers "100k" and "113k" are INCORRECT.
− Predicted answers "around 100k" and "more than 50k" are considered NOT_ATTEMPTED because they

neither confirm nor contradict the gold target .
− The gold target may contain more information than the question . In such cases , the predicted answer only

needs to contain the information that is in the question .
− For example, consider the question "What episode did Derek and Meredith get legally married in Grey's

Anatomy?" with gold target "Season 7, Episode 20: White Wedding". Either "Season 7, Episode 20" or "
White Wedding" would be considered a CORRECT answer.

− Do not punish predicted answers if they omit information that would be clearly inferred from the question .
− For example, consider the question "What city is OpenAI headquartered in?" and the gold target "San

Francisco , California ". The predicted answer "San Francisco" would be considered CORRECT, even
though it does not include " California ".

− Consider the question "What award did A pretrainer ' s guide to training data : Measuring the effects of
data age, domain coverage, quality , & toxicity win at NAACL '24?", the gold target is "Outstanding
Paper Award". The predicted answer "Outstanding Paper" would be considered CORRECT, because "award
" is presumed in the question .

− For the question "What is the height of Jason Wei in meters ?", the gold target is "1.73 m". The
predicted answer "1.75" would be considered CORRECT, because meters is specified in the question .

− For the question "What is the name of Barack Obama's wife?", the gold target is "Michelle Obama". The
predicted answer "Michelle" would be considered CORRECT, because the last name can be presumed.

− Do not punish for typos in people ' s name if it ' s clearly the same name.
− For example, if the gold target is "Hyung Won Chung", you can consider the following predicted answers

as correct : "Hyoong Won Choong", "Hyungwon Chung", or "Hyun Won Chung".

Here is a new example. Simply reply with either CORRECT, INCORRECT, NOT_ATTEMPTED. Don't apologize or
correct yourself if there was a mistake; we are just trying to grade the answer.

Question: {question}
Gold target : { target }
Predicted answer: {predicted_answer}

Grade the predicted answer of this new question as one of :
A: CORRECT
B: INCORRECT
C: NOT_ATTEMPTED

Just return the letters "A", "B", or "C", with no text around it .

688

10


	Introduction
	Self-Consistent Errors in LLMs
	Task Definition
	Definition of Self-Consistent Error
	Why Self-Consistent Errors Matter?

	How Well Do We Detect Self-Consistent Errors?
	Experiment Setup
	Failures in Self-Consistent Errors

	Cross-Model Probe
	Related work
	Conclusion
	Limitations
	Ethics Statement
	Appendix
	The Number of Consistent and Inconsistent Errors
	Related Work
	Baseline Method Implementation Details
	Details about Cross-Model Probe
	Evaluation Metric
	Prompt


