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ABSTRACT

The diverse nature of protein prediction tasks has traditionally necessitated special-
ized models, hindering the development of broadly applicable and computationally
efficient Protein Language Models (PLMs). In this work, we introduce Prot2Token,
a unified framework that overcomes these challenges by converting a wide spectrum
of protein-related predictions—from sequence-level properties and residue-specific
attributes to complex inter-protein interactions—into a standardized next-token
prediction format. At its core, Prot2Token employs an autoregressive decoder,
conditioned on embeddings from pre-trained protein encoders and guided by learn-
able task tokens, to perform diverse predictions. This architecture uniquely
facilitates multi-task learning, enabling general-purpose decoders to generalize
across five distinct categories. We present extensive experimental validation across
a variety of benchmarks, demonstrating Prot2Token’s predictive power in different
types of protein-prediction tasks. In 3D structure prediction, Prot2Token delivers
substantial speedups (up to ∼1000× faster than AlphaFold2 with MSA on the
same hardware) while, across other numerous tasks, matching or surpassing spe-
cialized methods. Beyond that, we introduce an auxiliary self-supervised decoder
pre-training approach to improve spatially sensitive task performance. Prot2Token
thus offers a step towards standardizing biological prediction into a generative
interface, promising to accelerate biological discovery and the development of
novel therapeutics.

1 INTRODUCTION

Proteins are the fundamental building blocks of life, playing a critical role in maintaining human
health. However, understanding the complex language of proteins—encoded in their sequences and
structures—remains a significant challenge for researchers (Shim et al., 2019). This complexity
limits our ability to interpret, predict, and design proteins for various biomedical and therapeutic
applications.

Prot2Token
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Figure 1: High-level architecture of Prot2Token highlighting multi-task capability in protein-level,
residue-level, and protein-protein level tasks.

Protein function prediction is particularly challenging due to the vast diversity of protein sequences,
structural variations, and the limited availability of labeled data. Unlike natural languages, protein
sequences do not follow explicit syntactic rules understandable by humans, making it difficult for
models to learn meaningful representations without extensive biological knowledge (Ofer et al.,
2021). Protein language models (PLMs) offer a transformative solution by learning meaningful
representations of protein sequences, enabling researchers to decode and translate protein data into a
more interpretable format (An & Weng, 2022; Ferruz & Höcker, 2022). By leveraging PLMs, we can
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bridge the gap between raw protein information and human understanding, advancing research in
drug discovery, disease mechanisms, and synthetic biology.

While PLMs have significantly advanced protein-prediction tasks, current models require task-specific
specialization after pre-training (Hu et al., 2023; Roche et al., 2024). This reliance on separate
modules for distinct tasks leads to inefficient computational resource use and limited scalability.
Most PLMs undergo post-training alignment with specialized predictor architectures for individual
tasks, requiring independent training and fine-tuning—a time-consuming and resource-intensive
approach (Weissenow & Rost, 2025). A unified tokenization protocol capable of standardizing diverse
protein-prediction tasks would overcome this limitation, streamlining protein function prediction and
enhancing its accessibility for real-world applications.

To the best of our knowledge, despite the emergence of foundation models for proteins, no comprehen-
sive strategy exists to systematically map these heterogeneous outputs into a shared generative space.
Instead, researchers often modify existing foundation models to suit particular applications (Schmirler
et al., 2024), such as predicting 3D protein structures from sequences using customized techniques
(Jumper et al., 2021; Lin et al., 2022). One key limitation is that most existing models are based on
BERT-style architectures (Unsal et al., 2022), while effective for providing meaningful representation,
lack the flexibility needed for diverse and controllable prediction capabilities. In natural language
processing (NLP), the transition from BERT-style models to autoregressive GPT-style models has
enabled more dynamic and human-understandable instructions (prompts) to control the generation
process and therefore, handling a diverse set of predictions within the NLP domain (Ouyang et al.,
2022; Achiam et al., 2023). A similar paradigm shift is necessary in protein research, moving beyond
static encoders toward more advanced generative AI approaches that provide more comprehensive
predictive capabilities.

Although autoregressive transformer models have been explored for the language of protein—such as
ProGen2 (Nijkamp et al., 2023), RITA (Hesslow et al., 2022), and Ankh (Elnaggar et al., 2023)—they
struggle with controllability and task, especially for protein-prediction tasks. Unlike language
models in NLP, which effectively leverage prompting mechanisms for controllable and interpretable
predictions, autoregressive PLMs currently lack robust methods to guide their outputs toward human-
interpretable formats. This gap hinders their practical applicability and, in contrast to NLP, has
compelled researchers to continue relying heavily on encoder-style PLMs, often building specialized
architectures around these encoders for specific protein prediction tasks.

To address these limitations, this work takes a significant step toward unifying protein prediction
by establishing a universal tokenization protocol that categorizes diverse tasks into five sets. We
introduce a universal protocol for tokenizing different protein-prediction tasks, enabling a general
autoregressive transformer predictor to leverage existing BERT-style PLMs (Figure 1). This gen-
erative approach, guided by a unified next-token prediction loss, demonstrates generality across
multiple protein-prediction task categories, including protein-level, residue-level, and protein-protein
interaction-level tasks. We illustrate its versatility through extensive evaluation on five categories of
tasks: Classification, Regression, Binding Site, Sequence-to-Sequence, and Other. Specific examples
evaluated include kinase phosphorylation site prediction, protein-ligand binding site prediction, pro-
tein 3D structure prediction, and protein mutation stability assessment. Furthermore, our framework
inherently supports multi-task learning, and we provide initial analyses demonstrating synergistic
performance improvements when related tasks are trained jointly.

For certain specialized tasks, such as predicting binding sites, we show that initializing the decoder
through self-supervised pre-training significantly boosts performance. Specifically, for protein-ligand
binding site prediction, we further analyzed the learned token representations, revealing meaningful
relationships among ligand tokens that enabled us to enhance predictions for underrepresented ligands.
We believe that our approach represents an essential step toward harnessing and upgrading large
language models (LLMs) for robust and flexible protein prediction tasks.

1.1 RELATED WORK

Many specialized or foundation models now exist for proteins (Wang et al., 2025b), yet none provides
a single, prompt-controllable interface capable of both generation and a diverse set of prediction tasks.
We therefore group prior works into generative protein design, predictive representation learning, and
unified models.
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Generative protein design. Autoregressive language models dominate de novo sequence genera-
tion. ProGen first demonstrated controllable generation using functional tags (Madani et al., 2020).
Subsequent scaling—ProtGPT2 1.2b (Ferruz et al., 2022), RITA 1.2b (Hesslow et al., 2022), and
ProGen2 6.4b (Nijkamp et al., 2023)—improved perplexity and experimental success yet still require
task-specific fine-tuning or filtering to steer functions. Most recently, ProGen3 extends this trend by
scaling it up significantly, but reports limited controllability for fine-grained generation (Bhatnagar
et al., 2025).

Predictive representation learning. A parallel thread focuses on bidirectional encoders that power
task-specific heads. Large masked-language models such as ESM2-15b yield embeddings for a
spectrum of downstream tasks (Lin et al., 2022) and even drive end-to-end folding with ESMFold
(Lin et al., 2022)—yet the folding module is specialized for 3-D structure prediction. Likewise,
AlphaFold2 (AF2) couples EvoFormer encoders to a bespoke structure decoder (Varadi et al., 2022).
Such “wrapper” architectures excel at their dedicated outputs but do not form a general predictor. We
find only one cross-task autoregressive alternative: PTMGPT2 (Shrestha et al., 2024), which adapts
GPT-2 with prompt-based fine-tuning to predict 19 classes of post-translational modifications (PTMs)
in a single model—still restricted to the PTMs domain.

Unified models. Recently, models have emerged that aim to link protein design and prediction
within a single system. HelixProtX unifies sequence, structure, and free text in one multimodal
autoregressive transformer, capable of translating between any two of those modalities and predicting
atom-level 3-D structure directly from sequence (Chen et al., 2024). ProLLaMA (Lv et al., 2024)
adapts LLaMA-2 through protein-specific instruction tuning so that one model, guided by natural-
language prompts, can perform controllable sequence generation together with property-prediction
tasks such as stability, fluorescence, binding affinity, and remote-homology classification (Lv et al.,
2024). InstructProtein aligns protein sequences with human language via knowledge-graph–guided
instruction tuning, allowing the model either to describe a protein’s function in free text or to generate
a plausible sequence that satisfies a textual specification (Wang et al., 2023). Although these systems
demonstrate encouraging modality transfer, they still depend on prompt engineering for fine-grained
control and have yet to be benchmarked across the full suite of standard prediction tasks addressed in
this work.

2 METHOD

2.1 PROT2TOKEN ARCHITECTURE

The Prot2Token framework is designed to unify diverse protein-related prediction tasks using a shared
architecture based on encoder-decoder transformers. The core idea is to integrate an autoregressive
decoder language model with existing encoder-style protein and optional chemical language models
via cross-attention layers, thereby converting prediction tasks into a unified next-token prediction
problem.

The architecture employs a pre-trained bidirectional transformer (ESM2) as the protein encoder.
For tasks involving chemical information (e.g., ligand binding), an optional chemical encoder
(BARTSmiles) (Chilingaryan et al., 2022) is used to process SMILES representations. These encoders
transform their respective input sequences into contextual embeddings:

henc = fenc(x)

where henc ∈ RN×denc is the encoder output, N is the sequence length, and denc is the encoder’s
hidden dimension.

We use distinct embedding tables for each encoder (protein and, if applicable, chemical) and the
decoder to reflect their differing tokenization schemes and functional roles in the architecture.

To enhance the position-awareness of the sequence embeddings, we introduce a learnable positional
embedding layer gpos(·), producing augmented representations:

haug = henc + gpos(p)

where p ∈ RN×denc is the learnable positional embedding.

To align the encoder output with the decoder’s hidden dimension ddec, we apply a linear projection:
hproj = haugWproj where Wproj ∈ Rdenc×ddec

3
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This projected representation hproj ∈ RN×ddec is fed into the decoder via cross-attention.

The decoder is a causal (autoregressive) transformer composed of standard transformer components
such as multi-head self-attention, feed-forward layers, and GeLU activations. FlashAttention-2 is in-
corporated to improve training speed and memory efficiency. For specific architectural configurations
used in this work, refer to Table 10.
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Figure 2: Detailed Architecture of Prot2Token Highlighting Multi-Task Capability. This diagram
shows the Prot2Token components: a bidirectional Protein encoder and an optional Chemical Encoder,
a Fusion block part, and an autoregressive Decoder guided by Task Token Embeddings for various
prediction tasks (examples listed). This illustrates the framework’s potential for simultaneous multi-
task learning; however, practical training of this work only focused on combinations of fewer tasks
due to computational costs, demonstrating the principle.

To support multiple tasks within a unified training process, we introduce task token. These
tokens, placed at the beginning of each output sequence, serve as prompts that guide the decoder’s
behavior for each specific task. The task token sequence t = (T1, T2, . . . , Tm) is embedded via a
learnable embedding function:

etask = gtask(t) ∈ Rm×ddec

The decoder receives the embedded task tokens and attends to both them and the projected encoder
outputs:

y = fdec(hproj, etask)
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During inference, the decoder is autoregressive: it receives a special beginning-of-sequence (<BOS>)
token followed by the task token, and generates each output token sequentially.

The decoder factorizes the probability of the output sequence x = (x1, x2, . . . , xT ) as:

p(x) =

T∏
t=1

pθ(xt | x1, . . . , xt−1)

The training objective is to minimize the negative log-likelihood:

L(θ) = −
T∑

t=1

log pθ(xt | x1, . . . , xt−1)

To better manage the role of prompt tokens, we assign token-specific weights wt ∈ [0,∞) to control
their contribution to the loss. Specifically, we set w1 = 0 to exclude the prompt (task token)
from the loss, while allowing other tokens t ≥ 2 to be weighted differently:

L(θ) = −
T∑

t=1

wt log pθ(xt | x1, . . . , xt−1)

This flexible weighting helps tune the model’s attention to different parts of the label sequence.

Refer to Figure 2 for an overview of the Prot2Token architecture and Figure 4 for a closer look at how
task tokens interact with the decoder. Architectural variants and configuration details are summarized
in Table 10. By representing diverse outputs as token sequences, this design allows Prot2Token to
unify a broad spectrum of protein prediction tasks under a single decoder, facilitating both joint and
independent training regimes.

2.2 TOKENIZATION

The Prot2Token framework utilizes distinct tokenization strategies for its input encoders and the
output decoder. Input sequences, such as protein amino acid sequences or chemical SMILES strings,
are processed by the native tokenizers of their respective pre-trained encoders (e.g., ESM2 for proteins,
BARTSmiles (Chilingaryan et al., 2022) for chemicals). The core innovation resides in the unified
tokenization strategy for the output labels predicted by the autoregressive decoder. This strategy is
pivotal as it converts a wide array of biological prediction targets into standardized sequences of
discrete tokens, enabling the decoder to handle diverse tasks via a consistent next-token prediction
mechanism. All tokenized output sequences commence with a <BOS> token and conclude with an
<EOS> token, clearly demarcating sequence boundaries.

As depicted in Figure 3, this approach transforms heterogeneous labels into a uniform sequential
format, facilitating a task-agnostic decoding process. Specifically, for classification tasks, labels
are mapped to unique discrete tokens, with multi-label tasks typically concatenating these tokens
(often alphabetically). Regression tasks represent continuous numerical values through a granular
digit-by-digit encoding of their character components (e.g., sign, digits, decimal point). Sequence-to-
sequence tasks generate an output token for each residue in the input protein, maintaining a direct
correspondence. Binding site prediction involves tokenizing the sorted 1-based indices of residues
participating in interactions. Other complex output types, such as for PTMs, are also converted into
specific token sequences, for instance, by listing potential and confirmed modification sites separated
by a special <SEP> token. This universal tokenization protocol is fundamental to Prot2Token’s
ability to unify a broad spectrum of protein prediction tasks within a single decoding architecture.
Refer to Appendix A.2 for a comprehensive explanation of each specific tokenization method.

2.3 DATASETS

This work leverages a diverse set of tasks drawn from several established benchmarks and repositories,
including PEER (Xu et al., 2022), ProteinShake (Kucera et al., 2023), CATH (Wang et al., 2025a),
AlphaFoldDB (Varadi et al., 2022), and other curated sources such as ProteinGym (Notin et al., 2023).
These datasets encompass a wide range of protein-related prediction tasks, including regression,
classification, binding site, and sequence-to-sequence predictions. Details for each task, including
preprocessing steps, are provided in Appendix A.3. All tasks in these datasets are tokenized according
to the unified protocol described in Section 2.2.
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Figure 3: Prot2Token converts heterogeneous labels into uniform sequences: examples illustrate the
five tokenization categories—(i) sequence-to-sequence, (ii) classification (multi-class/ multi-label),
(iii) regression, (iv) binding-site indexing, and (v) other composite outputs such as PTM—highlighting
the framework’s task-agnostic decoding format.

3 EXPERIMENTS

We evaluated Prot2Token in multiple tasks on different datasets, including the protein-level, residue-
level, and protein-protein level. For a subset of these tasks, we incorporated a self-supervised
pre-training stage for the autoregressive decoder as an initial step. In all experiments, the protein
encoder in Prot2Token was initialized using the pre-trained ESM2-650m model. For the decoder
part, we used an autoregressive language model with different configurations based on the size of
the ESM encoder and hyperparameters of the autoregressive decoder (Appendix A.1). We only
considered BARTSmiles as the chemical encoder for the protein-ligand affinity task and disabled it for
the other tasks. We optimized the number of unfrozen ESM-2 encoder layers for each task to align
model capacity with task complexity and data availability; specific hyperparameters for each task are
detailed in Appendix A.4.

Optimization was carried out with the AdamW optimizer (Loshchilov, 2017), applying a weight decay
of 0.1 and using beta-1 and beta-2 values of 0.9 and 0.98, respectively, while setting epsilon to 1e-7.
The learning rate followed a cosine annealing schedule with an initial warm-up phase (Loshchilov &
Hutter, 2016), starting at 1e-6 and gradually increasing to 5e-5 over the first 256 steps unless stated
otherwise. The training was performed using the PyTorch 2 framework (Ansel et al., 2024) on a
single computational node equipped with four Nvidia A100 GPUs (80GB each).

3.1 CLASSIFICATION

This category includes multi-class, multi-label and hierarchical classification tasks such as Deeploc
2.0 and ER. The results are shown in Tables 1 and 2. In Deeploc 2 dataset, we significantly improved
the performance compared to the original method, and also, the ER task result showed that the
performance was boosted 7.5 percent by using multi-task learning. We could not calculate the
Fmax metric for the EC and GO tasks, so we only considered the accuracy and F1 scores to evaluate
performance. Consequently, direct comparisons with other methods were not possible. Supplementary
results with additional details are in Appendix A.4.1.

3.2 REGRESSION

This category encompasses four tasks: protein stability prediction, fluorescence intensity prediction,
protein-ligand binding affinity estimation, and protein mutation stability assessment. The first two
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tasks utilize a single protein sequence as input. In contrast, the protein-ligand affinity task takes both
a protein sequence and a molecular SMILES string as input, while the mutation stability task uses a
pair of protein sequences representing wild-type and mutant variants.

Table 1: Localization prediction using Deeploc-2
dataset. The results are based on the independent
test set.

Method Macro-F1 Encoder

Baseline 0.449 ESM2-650m
Deeploc-2 (Thumuluri et al., 2022) 0.46 ProtT5

Prot2Token-B 0.5364 ESM2-650m

Table 2: Comparing methods on ER dataset.
PLA and ST stand for protein-ligand affinity and
stability, respectively. †: chemical encoder is
attached.

Method Aux-Tasks Accuracy Encoder

Baseline - 83.81 ESM2-650m
CoupleNet (Hu et al., 2023) - 89.0 ProtT5

Prot2Token-B - 79.29 ESM2-650m
Prot2Token-B† Deeploc+PLA+ST 86.83 ESM2-650m

The results for these tasks are presented in Tables 3, 4, 6, and 7. Additional experimental details can be
found in Appendix A.4.2. Across all regression tasks, Prot2Token consistently outperformed baseline
methods from the PEER benchmark. Notably, in the fluorescence prediction task, multi-task learning
led to a performance gain of up to 5.6% (Table 7). For mutation stability prediction, Prot2Token
achieved a substantial improvement of over 51.5% compared to the best-performing baseline model
as shown in Table 4.

3.3 BINDING SITE

We evaluated Prot2Token on two binding site prediction tasks: protein-ligand and protein-protein. For
protein-ligand binding sites, each ligand type is represented by a dedicated task token in the decoder,
which enables the model to capture ligand-specific interactions directly from protein sequences and
learnable task tokens.

Table 3: Comparing protein-ligand affinity pre-
diction methods on the test set. †: chemical
encoder is attached.

Method RMSE Encoder

PEER (Xu et al., 2022) (fine-tuned) 1.559 ESM1-1b
PEER (Xu et al., 2022) (fine-tuned) 1.562 ProtBert

Prot2Token-B† 1.3887 ESM2-650m

Table 4: Comparison of mutation effect predic-
tion models on the ProteinGym benchmark with
original supervised 5-fold cross-validation in-
dices. Additional baselines are included from the
original ProteinGym paper (Notin et al., 2023). †
denotes a linear layer fine-tuned on the last four
encoder blocks.

Method Spearman

ESM-1v 0.542
MSAT 0.568

Tranception 0.571
ProteinNPT 0.613

Baseline (ESM-2†) 0.8812 ± 0.003

Prot2Token-C 0.9294 ± 0.0018

Table 5: F1 scores for the top 10 ligands across different training configurations on the test sets, with
varying numbers of auxiliary ligands. The table summarizes the impact of jointly training with 10,
20, 30, and 41 ligands on binding site prediction. † indicates that self-supervised tasks were excluded
during supervised training.

Ligand 10 ligands † 10 ligands 20 ligands 30 ligands 41 ligands
Average 0.1883 0.6076 0.5942 0.6181 0.6132
Weighted Average 0.1849 0.6297 0.6277 0.6368 0.6353

We introduced a separate self-supervised pre-training stage for the decoder weights to enhance model
initialization to improve predictive performance of binding site prediction-type tasks before training
such tasks. This strategy significantly improves the model’s ability across tasks require a wide range
of binding site indices. A detailed rationale and methodology for this self-supervised pre-training are
provided in Appendix A.4.3. We reported high-level performance results of protein-ligand binding
site prediction in Table 5, demonstrating that Prot2Token achieves competitive predictive accuracy
across various ligand types with the help of self-supervised pre-training (see detailed results of this
task and protein-protein binding site in Appendix A.4.4).
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Table 6: Comparing Prot2Token with other meth-
ods on stability prediction.

Method Spearman Encoder

Baseline 0.7527 ESM2-650m
PEER(Xu et al., 2022) (fine-tuned) 0.75 ESM1-1b
PEER(Xu et al., 2022) (fine-tuned) 0.771 ProtBert

Prot2Token-B 0.7947 ESM2-650m

Table 7: Comparing fluorescence prediction
methods w/ and w/o multi-task learning. PLA
and ST stand for protein-ligand affinity and sta-
bility, respectively. We considered the fine-tuned
methods of PEER as the comparison. †: chemi-
cal encoder is attached.

Method Aux-tasks Spearman Encoder

Baseline - 0.676 ESM2-650m
PEER (Xu et al., 2022) - 0.679 ESM1-1b
PEER (Xu et al., 2022) - 0.679 ProtBert

Prot2Token-B - 0.7389 ESM2-650m
Prot2Token-B† PLA 0.7766 ESM2-650m
Prot2Token-B† PLA+ST 0.78 ESM2-650m

Furthermore, to understand the representation learned by the task tokens, we explored their embed-
dings and identified relationships that correlate closely with biochemical properties (Appendix A.5).
These findings, visualized in Appendix, Figure 17, indicate that task tokens not only serve as input
identifiers but also encode biologically relevant information. Leveraging these insights, we further
utilized the learned relationships to boost predictive accuracy for underrepresented ligands, achieving
significant performance gains as summarized in Table 34. More details in Appendix A.5.5.

3.4 SEQUENCE-TO-SEQUENCE

In this part, we evaluated Prot2Token on residue-wise sequences by formulating it as a sequence
labeling task, where the model generates a discrete token for each residue in the input protein
sequence. The main focus of this section is on the challenging task of sequence-to-3D structure
prediction. Here, Prot2Token is trained to generate discrete 3D structure tokens from amino acid
sequences using a vector quantized variational autoencoder (VQ-VAE) based representation for
protein backbone coordinates. The results are summarized in Table 8, which reports TM-score and
runtime for representative structure prediction methods. Notably, Prot2Token-D demonstrates a
dramatic speed advantage, producing structure predictions for a typical 384-residue protein in 1–2
seconds on a single A100 GPU—approximately three orders of magnitude faster than AF2 with
multiple sequence alignment (MSA) input, which typically requires 18–25 minutes for inference.
This substantial speed-up makes Prot2Token particularly well-suited for large-scale or real-time
structure generation scenarios. Representative examples of successful and unsuccessful 3D structure
predictions are illustrated in Figure 13 and Figure 14, respectively. Interestingly, although the
validation perplexity continues to decrease (Figure 15), structure accuracy plateaus at ∼0.55 TM-
score on CAMEO 2024; this aligns with the ∼0.60 TM-score reconstruction ceiling of the VQ-VAE
tokenizer, indicating a tokenizer-imposed bottleneck rather than a lack of decoder convergence.
Results for secondary structure appear in Appendix; Table 27.
Table 8: 3D structure prediction on continuous automated model evaluation (CAMEO 2024) (Jan
2024 to Jan 2025) (Haas et al., 2018). Inference time of all methods is reported on identical A100
hardware for a representative 384-residue protein sequence. † Due to computational cost, TM-score
for AF2 methods is reported from the ESM2 publication, using the CAMEO benchmark from April
2022 and June 2022.

Method TM-score A100 Wall-clock (384-aa) Speed-up

Prot2Token-D 0.54 1–2 s ≈1000×
ESMFold (ESM2-3B) (ESM Team, 2024) 0.79 14.2 s 77×
AF2 (w/o MSA) (Varadi et al., 2022)† 0.41 20–30 s 54×
AF2 (w/ MSA) (Varadi et al., 2022)† 0.88 18–25 min 1×

3.5 OTHER TYPES

Building on the model’s ability to predict binding sites (Section 3.3), we extended our approach to
include protein-kinase phosphorylation site prediction, a task with significant real-world applications.
For this, we selected protein-kinase sequence pairs along with their corresponding phosphorylation
sites and jointly trained them alongside 20 self-supervised tasks. The fine-tuning phase started
from the latest checkpoint obtained during the self-supervised pre-training stage. In this task, the
self-supervised tasks were reduced to a total of 20,000 samples. Substrate sequences longer than
1,280 amino acids were excluded during training and evaluation. Additionally, the total sequence
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length, combining substrate and kinase sequences, was capped at 2,048 tokens, with kinase sequences
truncated as necessary to fit within this limit. The batch size was set to process 98,304 tokens per
iteration. We enabled fine-tuning of the last eight blocks of the protein encoder.

Table 9, compares our results with two phosphorylation prediction tools, GPS 6.0 (Chen et al., 2023)
and KinasePhos3 (Ma et al., 2023). Predictions with scores above 0.7 were classified as true positives.
For GPS 6.0, we generated results by selecting each kinase group individually on its platform. Since
the training split of GPS 6.0 is not publicly available, there is a risk of data contamination between
our validation set and GPS 6.0’s training data. This could result in artificially high-performance
estimates for GPS 6.0, potentially reflecting memorization rather than true generalization.

Table 9: Comparative F1 results of our method against leading tools (KinasePhos3 and GPS 6.0)
across the validation, GPS test, and rare groups test sets.

Method Validation Set (F1) GPS Test Set (F1) Rare Groups Test Set (F1)

KinasePhos3 (Ma et al., 2023) 0.0747 0.0421 0.3178
GPS 6.0 (Chen et al., 2023) 0.3076 0.2398 0.4000
Prot2Token-C 0.4966 0.4059 0.4242

4 DISCUSSION

This work introduces Prot2Token, a unified tokenization framework that reimagines protein prediction
tasks as a next token prediction. By developing a versatile tokenization strategy, we demonstrate that
a single autoregressive decoder can effectively map the latent representations of pre-trained PLMs to
a diverse array of biological outputs—ranging from residue-level annotations and scalar properties
to complex 3D structural coordinates. This approach has the potential to represent a paradigm shift
from utilizing specialized, task-specific heads to employing a general-purpose sequence generation
mechanism, thereby enabling multi-task learning across completely different protein tasks that seemed
impossible before.

4.1 KEY INSIGHTS AND EMPIRICAL OBSERVATIONS

Throughout the development and evaluation of Prot2Token, we observed several distinct behaviors that
highlight both the capabilities and the idiosyncrasies of modeling proteins via next-token prediction.

Unified Tokenization. A central outcome of this study is the validation of our universal tokenization
protocol. Our primary objective was not to train a single, monolithic model covering all possible
downstream tasks but rather to demonstrate the feasibility of mapping the vast landscape of protein
prediction problems into a cohesive generative framework. As illustrated in Figure 3, we established
that virtually all protein tasks can be categorized into five structural categories: Classification,
Regression, Binding Site, Sequence-to-Sequence, and Other (complex composite) tasks. By selecting
and evaluating at least one representative candidate from each category, we confirmed that this
unified next-token prediction format yields robust performance comparable to, and often exceeding,
specialized or baseline models. This provides a scalable blueprint for bringing diverse biological
tasks into the generative interface without requiring bespoke architectures for each domain.

Hierarchical Regression. A distinct advantage emerged from our single-digit tokenization strategy
for regression tasks, which benefited most significantly from the unified framework. Unlike standard
predictors that output a continuous value in a single "shot," our autoregressive approach effectively
performs a coarse-to-fine prediction. By generating values digit-by-digit, the model first establishes
the order of magnitude before iteratively refining the precision. This multi-step process allows for
dynamic internal adjustments as the prediction becomes more granular. Consequently, Prot2Token
outperformed the strong ESM + linear probe baseline—utilizing the same encoder—in nearly all
regression benchmarks. As evidenced by Tables 3, 4, 6, 7, and Appendix Tables 21, 22, our method
significantly surpasses the best baseline in all tasks except protein thermostability prediction (Table
23), validating that discretizing continuous spaces into hierarchical token sequences is a highly
effective modeling strategy.

Multi-Task Learning. While investigating the full spectrum of cross-task learning (including negative
transfer) was constrained by the computational cost of balancing highly diverse data distributions, we
utilized protein-ligand binding site prediction as a controlled environment to study these dynamics.
By treating the prediction of binding sites for 41 distinct ligands as separate tasks (each defined by a
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unique prompt) we observed that aggregating tasks yielded clear synergistic benefits, particularly
for data-scarce targets. Crucially, our deep investigation into the learned task token embeddings
(Appendix A.5) revealed that the model encoded physicochemical correlations, grouping ligands
by properties such as molecular weight and charge without explicit supervision. This semantic
structure in the task space facilitated knowledge transfer, allowing the model to leverage latent
patterns from over-represented ligands to significantly boost prediction accuracy for chemically
similar, underrepresented ligands (Table 34). Beyond the ligand domain, we similarly observed
beneficial correlations when aggregating distinct prediction types to form auxiliary tasks for a specific
target, as demonstrated by the performance gains reported in Tables 2 and 7.

Simplification and Efficiency. A defining capability of Prot2Token is its ability to bring disparate
and structurally complex tasks, such as kinase-specific phosphorylation (requiring multi-sequence
context) and 3D structure prediction (requiring geometric reasoning), into the same simplified
architectural flow. This unification renders traditionally complex prediction pipelines computationally
straightforward. In the case of 3D structure prediction, this simplicity translates to an inference
speedup of approximately ∼1000× compared to AlphaFold2 (Table 8). This efficiency arises because
every amino acid contributes to only one fixed computational step in the decoder’s generation process,
avoiding the expensive bi-directional recycling iterations of specialized models. Notably, when
compared against the single-sequence (no-MSA) version of AlphaFold2, Prot2Token surpasses
the baseline in both prediction quality and inference speed, demonstrating that general-purpose
autoregressive decoders are a viable, high-throughput alternative for structure modeling.

4.2 LIMITATIONS

The quality and distribution of labels vary significantly across protein prediction tasks. While some
datasets are uniform, others suffer from extreme imbalance; for instance, the Fold classification dataset
contains classes with single samples (Appendix A.4.1), and binding site indices follow a severe long-
tail distribution (Figure 9 and Figure 10). Our analysis suggests this sensitivity is a data limitation
rather than an architectural flaw, as Prot2Token excels when data is abundant. We mitigated some of
these irregularities via engineering interventions—such as token weighting and self-supervised pre-
training—rather than fundamental architectural changes. This heterogeneity necessitated validating
the tokenization protocol across task categories rather than pursuing a monolithic “all-task” training
run. However, we anticipate this issue will diminish in real-world applications where datasets are
typically magnitudes larger than academic benchmarks, thereby reducing the prevalence of extreme
data label sparsity.

Furthermore, performance is intrinsically bounded by the foundational models used. Biases in the
protein encoder (e.g., ESM2) propagate to predictions, for instance, the accuracy plateau in 3D
structure prediction (TM-score ≈ 0.55) reflects the reconstruction ceiling of the VQ-VAE tokenizer.
Consequently, closing these gaps requires integrating higher-fidelity components rather than altering
the predictor architecture.

4.3 FUTURE DIRECTIONS

Looking ahead, several research avenues promise to extend the capabilities of this framework. A
primary technical objective is the development of high-fidelity, discrete tokenizers for 3D structures
that can surpass the current reconstruction bottlenecks, potentially allowing the speed of Prot2Token
to be paired with high-accuracy folding. Additionally, moving beyond deterministic greedy decoding
to explore stochastic sampling strategies could unlock a richer landscape of probabilistic outputs,
which is particularly valuable for modeling conformational diversity in structure prediction.

Perhaps the most compelling direction is the inversion of the current paradigm: extending Prot2Token
from prediction to generation. The unified architecture naturally supports both workflows where the
model could not only predict properties from sequence but also generate novel sequences conditioned
on desired property tokens. This would allow for the seamless integration of prediction and design
within a single cohesive model, potentially accelerating the in silico development of novel therapeutics
and biomaterials.
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A APPENDIX

A.1 ARCHITECTURE

The predictor decoder in Prot2Token is an autoregressive transformer that utilizes two information
streams: (i) the fused encoder context, derived from protein (and optionally, chemical) embeddings
processed and merged by the fusion block, and (ii) a sequence of decoder input tokens (Figure 4).
The fusion block employs a straightforward architecture where, for instance, protein encoder outputs
are first augmented with a learnable positional encoding and subsequently passed through a linear
projection layer before being utilized by the decoder.

In the standard setting (Figure 4A), the decoder input begins with a special <BOS> token followed
directly by the tokenized label sequence (e.g., the digits of a regression target). Each position attends
only to previous tokens via causal masking, while simultaneously receiving global context through
cross-attention to the fused encoder features. The training objective is the negative log-likelihood of
the full label sequence, so loss is accumulated over every decoder position.

For multi-task training, we prepend a task token Ti that specifies which prediction head the
decoder should emulate (Figure 4B). This token is drawn from its own learnable embedding table
and is passed through the same decoder stack as the label tokens, enabling the model to condition its
hidden states on task identity. During optimization, we apply the token-weighted loss described in
Section 2.2: the task token position is assigned weight w1 = 0, effectively masking it from gradient
updates, whereas the remaining positions use token-specific weights wt, allowing each token to be
penalized differently during training. This scheme enables the prompt to steer the generation process
without being penalized for reconstruction errors.
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Figure 4: Task-token prompting and loss masking in the Prot2Token decoder. (A) Standard decoding
starts with a <BOS> token and predicts label tokens, computing loss over all positions. (B) Prompted
decoding inserts a task token (T1) before labels; this token is zero-weighted in the loss, guiding the
model without affecting training error.

Together, these mechanisms allow a single decoder to (i) handle heterogeneous output formats, (ii)
switch tasks via lightweight prompt tokens, and (iii) share parameters across tasks without duplicating
specialized heads.

Different configuration of Prot2Token is shown in Table 10.
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Table 10: Prot2Token model configurations.

Name Encoder Decoder
Embedding dimension Feedforward dimension heads Layers

Prot2Token-A ESM2-35m 480 960 8 4
Prot2Token-B ESM2-650m 640 1280 8 8
Prot2Token-C ESM2-650m 640 2560 16 16
Prot2Token-D ESM2-650m 1280 5120 16 16

During inference, the decoder generates tokens autoregressively, starting from the initial input (<BOS>
or Task token) and predicting one token at a time. While various decoding strategies exist for
autoregressive transformers—such as top-k sampling, nucleus (top-p) sampling, and temperature-
controlled sampling—we focus exclusively on greedy decoding in this work, where at each step the
most probable token is selected. Exploring the effects of stochastic sampling methods on prediction
performance is left for future investigation.

A.2 TOKENIZATION

The Prot2Token framework employs distinct tokenization approaches for its input encoders and
the output decoder. Input sequences, such as protein amino acid sequences or chemical SMILES
representations, are processed using the built-in tokenizers associated with their respective pre-trained
encoders. For instance, the protein encoder typically utilizes the character-level tokenizer from
models like ESM2 (which includes 33 unique tokens, encompassing standard amino acids and special
characters). Similarly, if a chemical encoder is used (e.g., for protein-ligand tasks), it would employ
its specific tokenizer, such as the unigram tokenizer from BARTSmiles (Chilingaryan et al., 2022)(with
1025 unique tokens, including special characters).

The core innovation of Prot2Token lies in its unified tokenization strategy developed for the output
labels predicted by the autoregressive decoder. This strategy is crucial as it converts diverse biological
prediction targets into sequences of discrete tokens. This conversion enables the decoder to handle
a wide array of tasks through a consistent next-token prediction mechanism. All tokenized output
sequences are standardized to begin with a <BOS> token and end with an <EOS> (end-of-sequence)
token. These special tokens clearly define the boundaries of the output sequence for the decoder.

The specific methods for tokenizing different types of labels are categorized by the nature of the
prediction task (Figure 3):

A.2.1 CLASSIFICATION

Classification tasks involve assigning one or more categorical labels to a protein or a pair of proteins.
This category includes multi-class, multi-label, and hierarchical classification.

Multi-class classification. In multi-class each input (single protein sequence or multiple sequences
like a protein pair) is assigned exactly one label from a predefined set of mutually exclusive classes,
and each possible class label is mapped to a unique, discrete token. Examples include predicting
protein fold class, subcellular localization, or enzyme reaction (ER) categorization. For tasks
involving interactions, such as predicting if two proteins interact (a binary classification based on
a protein pair input), the output is also a single token (e.g., Interacted). In general, the target
output sequence for the decoder is a single token representing the correct class.

Multi-label classification. Multi-label is employed when a single protein (or input entity) can
be associated with multiple labels simultaneously from non-mutually exclusive classes. This is
common in tasks such as predicting gene ontology (GO) terms (e.g., GO:0005737 for cytoplasm,
GO:0005829 for cytosol) or certain subcellular localization tasks (e.g., DeepLoc 2.0 (Thumuluri
et al., 2022)) where a protein might reside in multiple compartments. Each relevant label is converted
into its unique token, and these tokens are concatenated into a single target sequence, typically sorted
alphabetically to ensure consistency (e.g., GO:0005737, GO:0005829).

Hierarchical classification. In tasks such as enzyme commission (EC) and ER predictions, proteins
are categorized hierarchically. For EC, each enzyme is assigned a series of numbers representing its
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specific catalytic activity. If the goal is to do hierarchical classification, it necessitates a specialized
tokenization approach. As an example, the EC classification system is divided into four levels:
the first level indicates the main enzyme class, the second level specifies the subclass, the third
level defines the sub-subclass, and the fourth level denotes the serial number of the enzyme in its
sub-subclass. We tokenize each EC number associated with an enzyme into a hierarchical sequence
of tokens. For example, an enzyme with EC numbers 1.1.1.1 and 2.2.2.2 is tokenized as
{ec_1, 1, 1, 1, ec_2, 2, 2, 2}, with each part of the EC number being represented as
an individual token. This approach allows the model to capture the hierarchical nature of enzyme
classifications effectively, ensuring that the different levels of EC labels are properly represented and
learned. In addition to this hierarchical tokenization, we could employ a second approach where each
complete EC number is treated as a unique and distinct code similar to GO datasets. For example,
an enzyme with EC numbers 1.1.1.1 and 3.4.24.4 could be tokenized as {ec_1.1.1.1,
ec_3.4.24.4}, with each token acting as a representative for an entire EC number. This method is
also applicable to the ER dataset. This alternative tokenization could yield different results depending
on the task. In our early experiments, we found that converting ER labels into a hierarchical format
reduced performance compared to using a multi-label classification format, while the opposite was
true for the EC task. However, we did not investigate this thoroughly in our work.

A.2.2 REGRESSION

Regression tokenization is employed for tasks requiring the prediction of continuous numerical
values, represented as either floating-point or integer numbers, derived from single protein sequences,
multiple sequences, or protein-ligand pairs. Illustrative examples include the prediction of protein
stability (∆Tm), fluorescence intensity (single sequence input), protein-protein structure similarity
scores (multi-sequence input), and protein-ligand affinity (protein sequence and ligand SMILES string
as input). Two primary strategies exist for tokenizing such numerical labels. The first, binning,
involves discretizing the range of continuous values into a predefined number of fixed-size bins.
For instance, if target scores range from 0.0 to 10.0, this range could be divided into 1.0-sized bins,
yielding 11 distinct token categories. However, this method can suffer from limitations, particularly
when data is unevenly distributed, as some bins may contain very few or no samples, leading to
imbalanced data representation and potential biases during model training. To circumvent these
issues, Prot2Token adopts a second approach: a digit-by-digit encoding strategy. In this method, each
numerical value is transformed into a sequence of its constituent characters, including the sign, digits,
and decimal point. This technique offers a more granular and inherently balanced representation
of numerical values, promoting a more uniform distribution of data for the model. For example, a
property value of -0.65 is tokenized into the sequence {minus, 0, ., 6, 5}. Similarly, a
value of 123.45 would become {1, 2, 3, ., 4, 5}. During the training phase, a consistent
numerical precision, typically four decimal places, is maintained for all regression labels prior to
tokenization. Furthermore, if target values undergo normalization (e.g., to the [0, 1] range), the
token sequences predicted by the decoder are first reconverted to numerical form and subsequently
de-normalized to their original scale for evaluation.

We investigated the impact of token ordering on regression performance by reversing the target
sequence to a right-to-left format (least significant digit first). We observed a measurable degradation
in performance compared to the standard left-to-right approach. We attribute this to the loss of the
coarse-to-fine inductive bias inherent in left-to-right generation, where the model first predicts the
most significant digits (establishing magnitude) before refining the value with lower-order precision;
reversing this order forces the model to predict fine-grained details without an established context for
the overall scalar value, leading to overfitting and reduced accuracy.

A.2.3 SEQUENCE-TO-SEQUENCE

This tokenization is applied when the output is a sequence of labels corresponding residue-by-residue
to the input protein sequence, meaning the output token sequence length mirrors the input protein
length. Examples include Secondary Structure (SS) prediction, where each amino acid is classified
into states like α-helix (H), β-strand (E), or coil (C), forming a target sequence like {H, H, C,
...}. Another application is 3D structure prediction using structural alphabets. For instance, the
encoder part of a pre-trained VQVAE) model (Gaujac et al., 2024) converts 3D coordinates into a
sequence of discrete 3D_number tokens (e.g., 4096), where each amino acid corresponds to one
3D_i token encoding 3D structural information.
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A.2.4 BINDING SITE

Binding site prediction involves identifying specific residue indices involved in molecular interactions,
such as with ligands, ions, or other proteins. For protein-ligand or protein-ion binding tasks, the
binding residues are represented directly by their sorted 1-based indices; for example, if residues
at positions 2, 3, 5, and 9 are involved in binding, the target sequence is simply {2, 3, 5, 9}.
Self-supervised learning tasks proposed in this work also utilizes index-based tokenization. For
example, to predict the positions of all Serine (S) residues in a sequence MSGLSNYT (Serines at
positions 2 and 5), the target sequence would be {2, 5}. Twenty such tasks can be created, one for
each standard amino acid, helping the decoder learn sequence-position relationships.

A.2.5 OTHER TYPES

This category includes tasks like PTMs prediction and tasks that combine different output types.

PTMs. This involves identifying potential modification sites and the actual modified sites. For a
single protein sequence input, the target sequence typically lists the 1-based indices of all potential
PTM sites (e.g., S, T, Y for phosphorylation), followed by a special separator token (<SEP>),
and then the 1-based indices of experimentally confirmed positive sites, all sorted numerically. For
example, for a sequence ASSKYKAMTV, phosphorylation prediction might yield {2, 3, 5, 9,
<SEP>, 3, 9}. In multi-sequence PTM tasks, such as substrate-kinase phosphorylation prediction,
the input consists of both substrate and kinase sequences. The output tokenization still focuses on the
substrate, listing potential and confirmed phosphorylation sites on the substrate sequence based on
the interaction context provided by the kinase.

Combination. Tasks like TargetP 2.0 (Armenteros et al., 2019) combine classification and regression.
For instance, a label might be represented as {sp, 96}, where sp is a localization class token
(Signal Peptide) and 96 is a binding site representing the cleavage site position. This is tokenized by
concatenating these two types.

A.3 DATASET

To assess Prot2Token across a representative spectrum of protein–biology problems, we assembled
datasets from several public repositories and task-specific benchmarks. The statistics of each task are
shown in Table 11.

Table 11: Dataset Statistics Overview. This table presents the details of the datasets utilized in this
study. †: Randomly 300k of samples are used for the training in each fold.

Dataset Train Validation Test Task Type

Enzyme commission (Omelchenko et al., 2010) 15,550 1,720 1,919 Classification
Gene ontology (Consortium, 2008) 29,898 3,322 3,415 Classification

Fold classification - Fold (Hou et al., 2018) 12,312 736 718 Classification
Enzyme reaction (Webb et al., 1992) 29,215 2,562 5,651 Classification

Human PPI (Xu et al., 2022) 35,669 315 237 Classification
DeepLoc 2.0 (Thumuluri et al., 2022) 22,841 5,462 1,717 Classification

Kinase group classification (Chen et al., 2023) 5,382 969 - Classification
Mutation stability (Notin et al., 2023) ≈1.92 million† ≈480,000 (5-fold) - Regression

Structure similarity(Kucera et al., 2023) 300,700 4,560 4,851 Regression
Protein-ligand affinity (Xu et al., 2022) 16,436 937 285 Regression

Protein-protein binding affinity (Liu et al., 2024) 765 180 270 Regression
Stability (Xu et al., 2022) 53,571 2,512 12,851 Regression

Fluorescence (Xu et al., 2022) 21,446 5,362 27,271 Regression
Thermostability (Chen & Gong, 2022) 131,260 14,584 36,461 Regression

Protein-protein binding site (Bushuiev et al.) 759,282 2,918 5,499 Binding site
Protein-ligand binding site (Bushuiev et al.) 16,796 2,644 5,153 Binding site

Structure prediction (Varadi et al., 2022) 10,876,251 5,000 5,000 Sequence to sequence
Secondary structure (Xu et al., 2022) 8,678 2,170 513 Sequence to sequence
Target-P 2.0 (Armenteros et al., 2019) 10,400 2,605 - Other (classification, regression)

PTMs Table 12 Table 12 Table 12 Other (PTM)
Kinase phosphorylation (Chen et al., 2023) 5,382 969 146 Other (PTM)

A.3.1 PEER BENCHMARK

The PEER benchmark (Xu et al., 2022) provides a unified evaluation suite for protein sequence
understanding, integrating datasets for protein function, subcellular localisation, secondary structure,
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protein–protein interaction (PPI), and protein–ligand affinity prediction. Each task is delivered
with homology-aware train/validation/test splits and pre-defined evaluation metrics, enabling direct
comparison between conventional feature-engineering pipelines, sequence-embedding models, and
large-scale protein language models. From PEER we adopt five datasets that align with our experimen-
tal focus: (i) human PPI pairs for binary interaction prediction, (ii) secondary-structure assignments
for residue-level sequence-to-sequence labelling, (iii) fluorescence intensities for single-sequence
regression, (iv) stability (∆Tm) measurements for mutation-effect regression, and (v) protein–ligand
affinity (PLA) scores for sequence–SMILES binding prediction.

A.3.2 DEEPLOC 2

For subcellular localization we adopted the DeepLoc 2.0 dataset (Thumuluri et al., 2022), which
assigns up to ten compartment labels per eukaryotic protein: Cytoplasm, Nucleus, Extracellular, Cell
membrane, Mitochondrion, Plastid, Endoplasmic reticulum, Lysosome/Vacuole, Golgi apparatus, and
Peroxisome. DeepLoc 2.0 provides a five-fold homology partition with a maximum 30 % pairwise
sequence identity between folds. In our experiments the first four folds are merged for training, while
the fifth fold serves as the validation set. Evaluation is performed on the independent Human Protein
Atlas (HPA) test set released with DeepLoc 2.0, which contains experimentally verified localizations
for six compartments (Cytoplasm, Nucleus, Cell membrane, Mitochondrion, Endoplasmic reticulum,
and Golgi apparatus). Final performance is reported on this HPA test set.

A.3.3 PTMS

In this section, we describe the process of collecting PTM data. While numerous databases and
publications provide PTM data, most only offer sequence fragments, typically 21 amino acids long,
with the PTM located at the center position. The largest database with PTM annotations is UniProt
(Consortium, 2019), which contains over 200 million protein sequences and provides annotations
for more than 200 PTM types and their respective positions for some sequences. We downloaded
full-length protein sequences and PTM annotations from UniProt, focusing on annotations in the
Modified Residue, Lipidation, Glycosylation, and Cross-link sections and performed an advanced
search in these sections using a wildcard (*) to retrieve all values. This resulted in 106,195 protein
sequences from the Reviewed (Swiss-Prot) (Boeckmann et al., 2003) dataset and 4,173,205 sequences
from the Unreviewed (TrEMBL) dataset. To ensure data quality, we exclusively used the protein
sequences from the Reviewed (Swiss-Prot) dataset.

We downloaded the 106,195 protein sequences as JSON files for further processing, only sequences
with lengths of 1,022 amino acids or fewer were retained. Next, CD-HIT (Li & Godzik, 2006) was
applied to cluster the sequences based on a similarity threshold of 40% (c=0.4), grouping sequences
with similarity above 40% into the same cluster. Subsequently, we split the data into training and
testing sets in a 4:1 ratio, ensuring that sequences within the same cluster were assigned to the same
dataset. Given the distribution of PTM types, we focused on six types for this study: Phosphorylation
(S), Methylation (R), N-glycosylation (N), O-glycosylation (T), Acetylation (K), and Ubiquitylation
(K).

Table 12 shows the statistics of the PTM datasets.

Table 12: Statistics of PTM datasets.
PTM type Annotation in Uniprot Amino acid Number of sequences Number of positions

Ubiquitylation Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin) K 2,370 5,029
Phosphorylation Phosphoserine S 34,260 121,398

Acetylation N6-acetyllysine K 9,115 23,615
Methylation Omega-N-methylarginine R 1,813 3,279

N-linked Glycosylation N-linked (GlcNAc...) asparagine N 30,310 11,576
O-linked Glycosylation O-linked (GalNAc...) threonine T 568 2,723

Succinylation N6-succinyllysine K 2,392 7,446

A.3.4 KINASE-SPECIFIC PHOSPHORYLATION SITES

The dataset was gathered from GPS 6.0 (Chen et al., 2023) and contains 24,160 phosphorylation
sites. We mapped IDs from the UniProt database (Consortium, 2019) and obtained 13,374 sequences
with kinase information. To retrieve kinase sequences, we used Kinase.com and the UniProt database.
To reduce sequence similarity, we applied CD-HIT (Li & Godzik, 2006) with a 70% similarity
threshold to group similar protein substrate sequences. We kept representatives from each cluster and
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selected positive substrate-kinase pairs using two criteria: (1) cross-cluster selection, where pairs
from different clusters were kept to increase diversity, and (2) within-cluster selection, where only
one unique kinase pair per cluster was retained to avoid repetition. The final dataset includes kinase
sequences, kinase information (group/family/kinase), substrate UniProt IDs, substrate sequences, and
phosphorylation sites. It contains 386 kinase types across 12 groups.

The dataset was randomly split into training (5,382 unique substrates) and validation (969 unique
substrates) sets. To ensure rigorous evaluation, we defined three distinct test sets, carefully designed
to prevent any data contamination between the test, training, and validation sets:

Rare-Group Test Set. This set includes 14 samples from two rare kinase groups, ‘RGC’
and ‘PKL’, which have a limited number of available samples. These groups were completely
excluded from the training set to assess the model’s ability to generalize to underrepresented kinase
groups. This dataset is specifically used for evaluating on phosphorylation site prediction.

GPS-Test Set. To have a direct comparison with existing methods such as GPS 6.0, we
adopted the test set used in the GPS study. This dataset contains 146 samples of substrate-kinase
pairs, including phosphorylation site and kinase group annotations. All samples belong to the

‘CMGC’ kinase group. Table 13 presents the number of samples in each set, while Table 14 details
the distribution of samples across kinase groups in each dataset.

Table 13: Dataset statistics, including the number of samples, phosphorylation sites (p-sites), and kinase groups
for the training, validation, GPS test, and rare group test sets, along with overall dataset totals.

Dataset Number of samples Number of p-sites Number of groups
All samples 6,511 13,374 12
Training set 5,382 10,621 10
Validation set 969 2,455 9
GPS-test 146 278 1
Rare-Group 14 25 2

Table 14: Distribution of samples across kinase groups for the training, validation, GPS test, and rare group test
sets.

Group Training set Validation set GPS-test Rare-Group
AGC 1,446 231 - -
Atypical 270 58 - -
CAMK 653 96 - -
CK1 100 27 - -
CMGC 1,466 264 146 -
Other 491 99 - -
STE 211 34 - -
TK 677 149 - -
TKL 68 11 - -
RGC - - - 2
PKL - - - 12

A.3.5 PROTEIN MUTATION STABILITY

In this study, we used the supervised Deep Mutational Scanning (DMS) cross-validation subset of the
ProteinGym (Notin et al., 2023) benchmark, a large-scale and standardized resource for evaluating
protein fitness prediction models. The supervised DMS dataset comprises over 250 high-throughput
assays, covering more than 2.4 million amino acid substitutions across 217 proteins, and approxi-
mately 300,000 indel mutations across 66 proteins. Each assay provides experimentally measured
phenotypic effects for a wide range of mutations, reflecting properties such as thermostability, binding
affinity, aggregation, and viral replication. We followed the five-fold cross-validation indices defined
by ProteinGym, conducting five independent training runs, each on a 300,000-sample subset of the
full dataset due to computational constraints. ProteinGym categorizes benchmarks by mutation type
(substitutions vs. indels) and ground-truth source (DMS assays vs. clinical annotations); in this work,
we utilized only substitution dataset within the supervised regime.
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A.3.6 PROTEIN MELTING TEMPERATURE

We leveraged the HotProtein (Chen & Gong, 2022) sequence-only benchmark to predict protein
melting temperatures from primary sequence alone. HotProtein comprises 182,000 amino acid
sequences of 230 organisms, each labeled with the optimal growth temperature of its source organism
(-20°C to 120°C) as a lower bound proxy of the true melting temperature of the protein. For evaluation,
the ProCeSa (Zhou et al., 2025) paper defined 10-fold cross-validation splits on various subsets of the
dataset, such as HP-S2C2 (binary: hot vs. cold), HP-S2C5 (five-class), and HP-S (full dataset). In
our study, we used only the first fold of the provided splits, further dividing the training portion into
training and validation sets.

A.3.7 3D STRUCTURE PREDICTION

For training our model on sequence-to-structure prediction, we constructed a large-scale dataset from
UniRef50 (Consortium, 2019) , a redundancy-reduced cluster of protein sequences derived from
UniProt. This provided approximately 67 million unique sequences. We mapped these sequences to
their predicted structures using the UniProt AF2 Structural Database (Varadi et al., 2022), yielding 40
million PDB files. To ensure high structural confidence, we filtered out structures with mean pLDDT
scores below 0.85, resulting in about 11 million high-confidence entries. From this filtered pool,
we randomly selected 5,000 PDBs each for validation and test sets, ensuring all selected structures
had average pLDDT scores above 0.90. The remaining structures were used for training. All 3D
structures were converted into discrete token sequences using a pre-trained VQ-VAE model (Gaujac
et al., 2024), enabling their use as target labels for autoregressive sequence-to-structure modeling.

The continuous automated model evaluation (CAMEO) (Haas et al., 2018) platform offers continuous,
automated benchmarking of protein structure prediction methods by evaluating their performance on
newly released target sequences each week, providing a real-time complement to the biennial CASP
experiment. In this study, we used CAMEO targets released between January 2024 and January 2025,
comprising 668 protein sequences. After filtering for sequences between 50 and 512 amino acids in
length, the final dataset contained 576 sequences.

A.3.8 PROTEIN-PROTEIN AFFINITY

We used data from PPB-Affinity (Liu et al., 2024), the largest publicly available dataset for protein-
protein binding (PPB) affinity. PPB-Affinity provides key information, including crystal structures of
protein-protein complexes, PPB affinity values, receptor protein chains, and ligand protein chains.
Since PPB-Affinity does not include protein sequences, we retrieved them from the RCSB Protein
Data Bank (PDB) (Berman et al., 2000) based on the protein names provided in PPB-Affinity. To
construct a relevant dataset for our model, we applied the following filtering steps:

1. Chain Filtering – We removed samples containing more than two chains, retaining only
those with a single receptor chain and a single ligand chain.

2. Mutation Removal – Samples containing mutated sequences were excluded.

3. Affinity Label Processing – For identical protein complexes with multiple PPB affinity
values, we averaged the KD (M) values to obtain a single affinity label.

4. Data Splitting – The final dataset was split into training (50%), validation (20%), and
testing (30%) sets, resulting in 765, 180, and 270 samples, respectively.

The (KDKD) values, representing dissociation constants, were preprocessed to ensure numerical
stability and improve model performance. First, a log10 transformation was applied to address
the wide dynamic range and skewed distribution of KD values, using the formula: KDlog =
log10(KD + ϵ), where ϵ = 10−16 prevents undefined values for extremely small inputs. The log-
transformed values were then normalized to a range between 0 and 1 using Min-Max scaling based
on the training dataset’s minimum and maximum KDloglog values. Importantly, during model metric
calculation and evaluation, both the log-transformation and normalization effects were reversed,
ensuring that the calculated metrics accurately reflect the original KD scale. This preprocessing
pipeline provided a consistent and interpretable representation of KD values for both model training
and evaluation.
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A.3.9 GENE ONTOLOGY

The GO knowledge-base provides curated associations between protein sequences and hierarchically
organized terms spanning three sub-ontologies: Molecular Function, Biological Process and Cellular
Component (Consortium, 2008). We downloaded the most recent GOA-UniProt annotation file,
removed electronically inferred codes (IEA) and retained only leaf-level terms, yielding a multi-label
dataset in which each protein can carry dozens of GO terms. Following the convention in (Consortium,
2008), proteins were clustered at 30 % global sequence identity with MMseqs2; clusters were then
split 80 / 10 / 10 into training, validation and test partitions to avoid homologous leakage. Labels
are tokenised as individual GO identifiers in alphabetical order, in accordance with the scheme in
Section 2.2.

A.3.10 ENZYME REACTION

The ER corpus collates detailed reaction schemata and catalytic-site annotations for enzymes, origi-
nally introduced by Webb (Webb et al., 1992). We used the reaction–protein mappings distributed
via EzCatDB (Nagano, 2005), which capture bond-level changes and catalytic residue motifs. Each
protein may participate in multiple reactions, making ER a multi-label classification task. Sequences
were clustered at 40 % identity and split into 70 % training, 15 % validation and 15 % test sets.
Reaction identifiers were tokenised as discrete labels; hierarchical relations (substrate → product) are
ignored in this work.

A.3.11 ENZYME COMMISSION

The EC hierarchy assigns a four-level numerical code to every known enzymatic function
(Omelchenko et al., 2010). We retrieved the full set of Swiss-Prot entries with experimentally
verified EC numbers from the UniProt “enzyme.dat” archive (Omelchenko et al., 2010). Proteins
were redundancy-reduced at 40 % identity and stratified into train/val/test splits by superfamily.
Tokenisation follows the hierarchical scheme in Section 2.2: each digit of the EC code is emitted
as an independent token (e.g. 1,1,1,1). This framing yields a four-step sequence-to-sequence
prediction task.

A.3.12 FOLD CLASSIFICATION

For remote-homology evaluation we use the dataset released with DeepSF (Hou et al., 2018), which
maps protein sequences onto 1,195 folds derived from CATH (Wang et al., 2025a) and SCOP. The
authors provide non-redundant splits with a maximum 40 % sequence identity between training
(12,312 proteins), validation (736 proteins) and test (718 proteins) sets(Hou et al., 2018). Each fold
ID is tokenised as a single class token, rendering the task a large-scale multi-class classification
benchmark.

A.3.13 TARGETP 2.0 LOCALIZATION

TargetP 2.0 offers a homology-partitioned dataset for predicting N- or C-terminal targeting peptides
and corresponding subcellular localizations (Armenteros et al., 2019). We downloaded the FASTA
sequences and label CSVs from the official service repository. After filtering fragments and sequences
shorter than 50 residues, the data comprise ten localization classes (Chloroplast, Mitochondrion,
Secretory pathway, etc.), with an external HPA test set for human proteins(Armenteros et al., 2019).
We adhere to the original nested cross-validation splits for training and use the HPA subset exclusively
for final evaluation, casting the task as multi-class prediction with one token per localization label.

A.3.14 PROTEIN-LIGAND BINDING SITE

BioLip2 (Zhang et al., 2024) is one of the most comprehensive databases for ligand-protein interac-
tions, primarily derived from the PDB database. Each entry in BioLip2 includes detailed annotations
on ligand-binding residues, ligand-binding affinities, catalytic site residues, EC numbers and GO
terms. The database is also cross-linked with external resources, including RCSB PDB, UniProt,
and PubMed. To obtain protein sequences, we used receptor sequences clustered at a 90% identity
cutoff. For annotations, we retrieved data for each ligand-protein interaction site. To increase the
complexity of binding site prediction and enhance model robustness, we further clustered the data at
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a 40% identity cutoff. This additional clustering step helps prevent data leakage between training,
evaluation, and testing datasets. We first removed DNA and RNA sequences and excluded any
sequences with fewer than 50 residues. Next, we generated FASTA files containing residues and
annotations for all 5,717 ligands. We then applied a threshold cutoff, selecting ligands that bind
with over 100 sequences, resulting in 41 ligands. We aimed to balance selecting the most significant
ligands based on a literature review while ensuring a sufficient number of samples for training and
testing the model. We used CD-HIT to cluster the data with a 40% identity cutoff before splitting the
data into training, evaluation, and testing datasets. Because of the limited number of samples and
to ensure sufficient data for testing, we used two splitting ratios: 70%, 10%, and 20% for training,
evaluation, and testing, respectively, for the first 30 ligands in Table 15, and also, 50%, 20%, and
30% for training, evaluation, and testing, respectively, for the remaining ligands.
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Figure 5: Tokenisation workflow for protein–protein binding sites. A distance cut-off is applied to a
residue–residue distance matrix derived from the PDB complex to flag contacting residues. Rows
with at least one contact are collapsed into a sorted list of residue indices, which becomes the target
token sequence.

A.3.15 PROTEIN-PROTEIN BINDING SITE

To construct a dataset for protein binding site prediction, we used the PPIRef (Bushuiev et al.)
pair dataset, which specifies interacting protein chain pairs based on a contact threshold. To ensure
high-quality and complete data, we retrieved all corresponding PDB entries from the PDB databas and
extracted the relevant chains based on PPIRef annotations. For each protein complex, we extracted
the amino acid sequences and computed residue-level binding sites by analyzing spatial proximity.
Specifically, we calculated the centroid of each residue by averaging the atomic coordinates (excluding
hydrogens), then computed a pairwise distance matrix between all centroids from the two chains.
Residues were labeled as binding site residues if any cross-chain centroid distance fell below a 6Å
threshold (Figure 5). To augment the dataset, we alternated which chain was considered the "target"
and which was the "binder" in each complex. The resulting dataset includes the fields: PDB ID,
Target Chain, Binder Chain, Target Sequence, Binder Sequence, Target Binding Sites, and Binder
Binding Sites. For training and evaluation, we performed a randomized split grouped by PDB IDs,
ensuring that each PDB complex appears in only one of the train, validation, or test sets to avoid data
leakage.

A.3.16 PROTEIN-PROTEIN STRUCTURE SIMILARITY

ProteinShake (Kucera et al., 2023) is a Python toolkit developed to streamline dataset construction and
benchmarking in protein structure-based deep learning. It supports both custom and pre-processed
datasets sourced from the PDB database and AFDB, and associates each dataset with well-defined
prediction tasks and evaluation metrics. The framework includes standardized data splits based on
sequence and structural similarity, enabling rigorous and reproducible comparisons across models
and modalities (e.g., graphs, voxel grids, and point clouds). In this work, we adopt the protein-
protein structure similarity dataset provided by ProteinShake and follow their Structure Split protocol,
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applying a 70% similarity threshold to partition the data for evaluation. Notably, we use only the
protein sequence information as input and do not leverage 3D structural features.

Table 15: Dataset statistics of all ligands.
Ligand No Chemical Formula Name BioLip Fasta Name Num Sequences Binding Sites

1 Zn2+ Zinc Ion ZN.fasta 4665 23310
2 CA2+ Calcium Ion CA.fasta 3043 22161
3 CLA Chlorophyll A CLA.fasta 342 17690
4 FAD Flavin-Adenine Dinucleotide FAD.fasta 825 16583
5 HEM Heme HEM.fasta 845 13118
6 NAD Nicotinamide Adenine Dinucleotide NAD.fasta 658 10615
7 ADP Adenosine Diphosphate ADP.fasta 941 9899
8 MG2+ Magnesium Ion MG.fasta 2951 9494
9 NAP Nicotinamide Adenine Dinucleotide Phosphate NAP.fasta 462 8108

10 ATP Adenosine Triphosphate ATP.fasta 680 7635
11 HEC Heme C HEC.fasta 264 7296
12 SF4 Iron/Sulfur Cluster SF4.fasta 509 5834
13 FMN Flavin Mononucleotide FMN.fasta 437 5789
14 SAH S-Adenosyl-L-Homocysteine SAH.fasta 392 4675
15 NDP Nucleotide Diphosphate NDP.fasta 243 4301
16 ANP Adenylyl-imidodiphosphate ANP.fasta 354 3861
17 GDP Guanosine Diphosphate GDP.fasta 339 3792
18 GLC Glucose GLC.fasta 454 3674
19 PLP Pyridoxal-5’-Phosphate PLP.fasta 377 3608
20 MN2+ Manganese Ion MN.fasta 789 3315
21 COA Coenzyme A COA.fasta 259 2870
22 SAM S-Adenosylmethionine SAM.fasta 214 2540
23 AMP Adenosine Monophosphate AMP.fasta 275 2430
24 BGC Beta-D-Glucose BGC.fasta 331 2375
25 FE3+ Ferric Ion FE.fasta 532 2268
26 MAN Mannose MAN.fasta 446 2047
27 FES Iron-Sulfur Cluster FES.fasta 272 1986
28 PO3−

4 Phosphate Ion PO4.fasta 378 1908
29 GTP Guanosine Triphosphate GTP.fasta 150 1724
30 UDP Uridine Diphosphate UDP.fasta 154 1601
31 CU2+ Copper Ion CU.fasta 331 1530
32 GSH Glutathione GSH.fasta 200 1516
33 AGS Agmatine Sulfate AGS.fasta 136 1512
34 ACO Aconitase ACO.fasta 108 1482
35 GAL Galactose GAL.fasta 233 1188
36 SO2−

4 Sulfate Ion SO4.fasta 218 1177
37 CLR Cholesterol CLR.fasta 176 1112
38 Y01 Cholesterol Hemisuccinate Y01.fasta 106 991
39 BMA Beta-Mannose BMA.fasta 158 696
40 FE2+ Ferrous Ion FE2.fasta 186 675
41 CO2+ Cobalt Ion CO.fasta 160 660

A.4 EXPERIMENTS

A.4.1 CLASSIFICATION

For the Fold classification task, we maintained the ESM model weights as fixed and only unlocked
its last six layers to be fine-tuned and connected to the decoder. Many classes in this dataset have
a low number of samples, e.g., one sample for a high number of classes. That is why we saw
unstable training when we did single-task training on Prot2Token. However, when we combined Fold
classification with auxiliary tasks like ER, the training became stable (Table 29).

Table 16: Fold classification training in single-task and multi-task training on Fold-fold test set.

Method Aux-Tasks Accuracy

Baseline (ESM2-650m) - 32.87
Prot2Token-B - N/A
Prot2Token-B ER 31.47

Regarding the Human PPI task, we maintained the ESM model weights as fixed and only unlocked
the last four layers of it to be fine-tuned and connected to the decoder. Note that to give the encoder
two sequences at one feed for PPI, we concatenated two sequences using the <EOS> token. We
observed that adding more tasks helped boost the performance of Human PPI (Table 16). However,
Prot2Token tended to overfit on this task, indicating that the improvement from adding auxiliary
tasks may be due to the regularization effect of multi-task learning. We used early stopping to avoid
overfitting.
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Table 17: Human PPI performance on PEER test set.

Method Aux-Tasks Accuracy Encoder

PEER (Xu et al., 2022) (fine-tuned) - 78.17 ESM1-1b
Prot2Token-B - 71.3 ESM2-650m
Prot2Token-B Deeploc 78.48 ESM2-650m
Prot2Token-B Deeploc+ER+Fold 80.17 ESM2-650m

For the GO and EC tasks, we encountered a limitation in calculating the Fmax metric, which is
commonly used for performance evaluation in these tasks. Instead, we used accuracy and F1 score to
assess our model’s performance. Consequently, we were unable to directly compare our results with
those of other methods that report their performance in terms of Fmax. This discrepancy highlights
a significant challenge in benchmarking our approach against existing methods. The GO tasks are
further divided into three categories: biological process (BP), molecular function (MF), and cellular
component (CC). We jointly trained all four tasks (the three GO tasks and the EC task) together in
a multi-task learning manner. Detailed performance metrics for these tasks are presented in Table
17. We maintained the ESM model weights as fixed and only unlocked the last four layers of it to be
fine-tuned and connected it to the decoder and a linear classifier for Prot2Token. Note that labels in
these tasks are highly imbalanced.

Table 18: Comparing GO and EC tasks with the baseline on accuracy and F1 score metrics. The
baseline is a linear evaluation of ESM. All methods are based on ESM2-650m.

Method Task Accuracy F1 Score

Baseline EC 99.79 0.5383
Baseline GO-BP N/A 0.0043
Baseline GO-MF N/A 0.1028
Baseline GO-CC N/A 0.1327

Prot2Token-B EC 99.85 0.6796
Prot2Token-B GO-BP 95.88 0.0103
Prot2Token-B GO-MF 97.20 0.0116
Prot2Token-B GO-CC 95.35 0.0089

Next, we aimed to predict kinase groups based on substrate sequences. Specifically, we investigated
how much information about the related kinase groups the model can infer solely from substrate
sequences. To achieve this, we considered our processed training and validation datasets (refer to
Appendix A.3), assigning multi-label classification labels by removing Unknown, RGC, PKL, and
UNK samples from the training set and merging the remaining nine kinase groups associated with
each substrate. The model takes a substrate sequence as input and predicts the corresponding kinase
groups in alphabetical order. We allow Prot2Token to fine-tune the weights of the last 6 blocks of the
protein encoder (ESM2-650m). After convergence, the decoder achieves the per-group F1 scores listed
in Table 19. Despite receiving no kinase information at inference time, Prot2Token recovers group
memberships with a macro-averaged F1 of 0.54, confirming that substrate context alone encodes
considerable family-specific signal.

Table 19: Per-group F1 scores for substrate-only kinase group classification via Prot2Token-C.
Group AGC Atypical CMGC CAMK CK1 Other STE TK TKL

F1 0.555 0.493 0.634 0.420 0.539 0.605 0.357 0.674 0.500
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Figure 6: UMAP visualization of unique kinase sequences on the original and fine-tuned checkpoints
of ESM2-650m.

Figure 7: t-SNE visualization of unique kinase sequences on the original and fine-tuned checkpoints
of ESM2-650m.

Table 20: Unsupervised clustering metrics for kinase embeddings. Larger values denote better
separability.

Metric Original Fine-tuned
Silhouette (cosine) −0.039 0.091
Calinski–Harabasz 7.00 24.10

To further interpret the kinase group classification results, we analyzed the sequence embeddings of
all unique kinase sequences present in the GPS 6.0 dataset before and after fine-tuning the protein
encoder part of Prot2Token-C on the kinase group classification labels. Sequences from the RGC,
PKL, and Unknown groups were excluded. Each remaining kinase sequence was passed through the
pre-trained ESM2-650m model with a maximum input length of 2048. Token-wise embeddings were
extracted, then trimmed to remove the <BOS> and <EOS> tokens, and average pooling was applied to
yield a fixed-length 1280-dimensional representation per sequence, aligned with the model’s hidden
size.

We performed dimensionality reduction using t-SNE and UMAP to visualize these embeddings in
two dimensions based on their known group assignments. Visualizations revealed that the original
pretrained model exhibited weak separation among groups. However, when we repeated the same
process using the fine-tuned ESM2 checkpoint (updated only via substrate-based kinase group
classification), the resulting projections displayed improved clustering by group. These qualitative
trends were confirmed with unsupervised clustering metrics, including the silhouette score and
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the Calinski-Harabasz index. As shown in Figures 6 and 7 and Table 20, the fine-tuned encoder
demonstrates clearer group structure despite never directly observing kinase sequences during
training—suggesting that supervised signals from substrates alone can reorganize the encoder’s
representation space in a biologically meaningful way.

A.4.2 REGRESSION

In the regression experiments, we fixed the majority of the ESM encoder parameters, unfreezing
only the last six layers for joint fine-tuning with the decoder. For comparison, baseline models
attach a single linear regression head to a frozen encoder. Because Spearman correlation is invariant
to monotonic transformations, we found that min–max scaling the labels to [0, 1] with four digits
precision after floating point markedly improved convergence and performance: the decoder learns
the structure of numerical outputs more rapidly when they occupy a consistent range. For the RMSE
report, we scaled the numbers back to their original range.

To evaluate sequence-based prediction of structural similarity, we tokenized the ProteinShake
structure-similarity dataset (Structure Split) and concatenated each pair of sequences with an <EOS>
separator. Only the last four encoder blocks were trainable, and batches contained 128 sequence pairs.
Results are summarised in Table 18.

Table 21: Protein–protein structure similarity on the ProteinShake test set (Structure Split). All
ProteinShake baselines rely on 3-D structural input; † denotes a linear layer fine-tuned on the last
four encoder blocks.

Method Spearman ρ

Baseline (ESM-2†) 0.4653
ProteinShake (Graph) (Kucera et al., 2024) 0.5180
ProteinShake (Point) (Kucera et al., 2024) 0.5640
ProteinShake (Voxel) (Kucera et al., 2024) 0.5730

Prot2Token-C 0.5267

Regarding the protein-protein affinity task, the labels were normalized to [0, 1]. We used the same
hyperparameters of structure-similarity task, with a freshly initialized decoder. Performance, reported
as RMSE (lower is better), appears in Table 21.

Table 22: Protein–protein binding affinity prediction on PPB-Affinity. The baseline is based on
ESM-2 650m encoder.

Method RMSE (↓)

baseline (Liu et al., 2024) 2.1040
Prot2Token-C 1.6632

For the HotProtein HP-S regression split we applied the same min–max label normalisation as in the
other regression tasks. Results are reported in Table 22, improving upon the HotProtein by roughly
2.5–3.0 pp in both correlation metrics.

Table 23: Performance of predicting thermostability on HotProtein (HP-S test split, fold 1). † denotes
a linear layer fine-tuned on the last four encoder blocks.

Method Spearman Pearson

TAPE (Rao et al., 2019) 0.504 0.453
ESM-1B 0.807 0.809
HotProtein (Chen & Gong, 2022) 0.823 0.827
Prot2Token-C 0.8437 0.8439
Baseline (ESM-2†) 0.8644 0.8699

A.4.3 SELF-SUPERVISED PRE-TRAINING OF DECODER

In our preliminary experiments with the phosphorylation PTMs and protein-ligand binding site tasks,
we initially focused on directly predicting positive sites using the Prot2Token framework. However,
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we observed suboptimal performance despite experimenting with different label formatting methods.
Upon further analysis, we hypothesized that this issue arose primarily from the lack of inductive
biases inherent to specialized models, which were missing in the Prot2Token model’s decoder due to
its random initialization.
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Figure 8: Illustration of self-supervised pre-training tasks designed for the decoder. For each amino
acid (e.g., S, T, P, M, L), the model is trained to predict the positions of its occurrences within
a given protein sequence. Highlighted residues are the targets, and the output is a list of their
corresponding indices. This enables the decoder to learn position-aware amino acid representations
in a label-free manner.

Specialized baseline approaches commonly restrict the prediction space by focusing on specific
amino acids known to undergo modifications, such as serine (S), threonine (T), and tyrosine (Y) in
phosphorylation tasks. These approaches implicitly encode biases about label structures into their
predictive mechanisms. Conversely, Prot2Token, being an autoregressive model with a randomly
initialized decoder, initially lacked these intrinsic biases, severely impacting its predictive accuracy,
especially in tasks with extensive label vocabularies.

To address this challenge, we introduced a self-supervised pre-training strategy to effectively embed
inductive biases into the decoder before fine-tuning it on the main supervised tasks. The key idea
behind this self-supervised approach is straightforward yet effective: the decoder is trained to
recognize amino acid positions within sequences (Figure 8). For instance, given an amino acid
sequence such as MSGLSNYT, the model learns to output positional indices 2, 5 corresponding to the
amino acid S. We constructed twenty such self-supervised tasks, each dedicated to recognizing the
positions of a different amino acid type. Importantly, generating these self-supervised samples does
not require human annotation, making it a cost-effective method to improve model initialization and
predictive performance.

Our empirical results, presented in Table 23, demonstrate a clear positive correlation between
the volume of self-supervised auxiliary samples and model performance improvements on the
phosphorylation task. Notably, incorporating a broader range of amino acids, such as K, N, and
R, alongside the typical phosphorylation targets (S, T, Y), significantly boosted model accuracy,
highlighting the utility of teaching these biases to the decoder.

Table 24: Phosphorylation site prediction. "Aux" denotes self-supervised auxiliary tasks. All results
are based on Prot2Token-B model.

Data Accuracy F1

Phosphorylation 55.69 0.0198
Phosphorylation + STY-Aux (150k) 74.57 0.0592
Phosphorylation + STY-Aux (250k) 91.49 0.1799

Phosphorylation + STYKNR-Aux (250k) 94.14 0.3052

Furthermore, Figures 9 and 10 illustrate the frequency distribution of labels in phosphorylation
and protein-ligand binding site tasks, respectively. These figures clearly show the imbalanced and
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sparse nature of labels, underscoring why explicit inductive biases provided through self-supervised
pre-training are crucial for effective model training.

We pre-trained the decoder once using 20 self-supervised tasks—each targeting the positional
prediction of one amino acid type—to serve as a general-purpose initialization for all downstream
tasks involving binding site prediction. This avoids the computational cost of re-adding auxiliary self-
supervised tasks per downstream task, while still equipping the decoder with biologically meaningful
priors.
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Figure 9: Distribution of phosphorylation-site indices in the training set (n = 11,449 sites across
5,694 peptides). Only residues at positions ≤ 2048 are shown; 176 rarer sites at higher indices were
excluded. Each bar corresponds to a single residue position (bin width = 1).
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Figure 10: Distribution of protein–ligand binding-site indices aggregated across all 41 ligand classes
in the training set. Bars represent individual residue positions (bin width=1). Sites located
beyond residue 2048 (< 2 % of all annotated positions) were excluded for clarity.

A critical consideration in applying this self-supervised learning strategy is maintaining a frozen
encoder during the pre-training phase. Allowing updates to the encoder parameters at this stage
can inadvertently introduce shortcut learning effects, causing the model to collapse and diminishing
its predictive capabilities on downstream tasks. Consequently, freezing the encoder ensures that
the decoder robustly learns meaningful positional and structural biases, significantly enhancing its
predictive performance on binding site types of tasks.

We randomly sampled 4 million protein sequences from the UniRef50 database (Suzek et al., 2015)
for training and 4k for validation data. From them, we artificially created 80 million and 20k self-
supervised samples, subsequently, by crafting each amino-acid-type/protein as one sample. Again,
we sampled 1 million and 1k samples from them, respectively, to build the training and validation
sets.

We used input sequence length of 2048, a weight decay of 0.01, and batch size of 192 samples,
equivalent to 73,728 tokens. Also, we set the warmup steps to 512. We only froze the encoder weights
and made other parameters trainable. After training for 16 epochs, the model showed perplexity of
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2.31 on the validation set. This indicates that it almost perfectly converted the embeddings from
the encoder back to their original protein sequences by learning to find the locations of each type of
amino acid.

A.4.4 BINDING SITE

Based on the order of ligands presented in Table 24, we grouped the ligands into distinguishable sets
of 10, 20, 30, and all 41 ligands. Each ligand in a set was treated as a separate task defined by a task
token figure 11, and trained together in one training session.

We selected a discrete task-token representation for ligands, rather than a continuous chemical encoder
input (e.g., via SMILES), based on three key considerations. First, empirical evaluations demonstrated
that our token-based approach yielded superior performance compared to architectures utilizing
current pre-trained chemical encoders, suggesting limitations in the efficacy of chemical encoders
for binding residue prediction. Second, this discrete formulation facilitates deep interpretability; by
isolating ligand representations, we were able to analyze the learned embedding space to confirm
that the model captures meaningful physicochemical relationships between ligands (A.5). Finally, a
fixed vocabulary remains highly practical for many applications, such as ion binding, where the target
space is naturally bounded, allowing our framework to robustly support a wider range of simultaneous
targets (41 types) than many existing specialized predictors.

We selected each of those sets and jointly trained them alongside 20 self-supervised tasks using the
latest checkpoint from the self-supervised pre-training phase. For this fine-tuning phase, the self-
supervised tasks were reduced to a total number of 20k samples. Also, we removed protein samples
with lengths greater than 1280 and set batch size to 98,304 tokens. During all training processes, only
the last eight blocks of the encoder (ESM2-650m) were fine-tuned, while all non-encoder parameters
of the supermodel were fully fine-tuned.

M D E I S L N Zn2+

M S K L T O P NAD

M L N O Y T V SF4

M S V Q L E F GHS

2 7

3

5 6 7

1 4 6 7

Prot2Token

Figure 11: Jointly training protein–ligand binding-site across 41 types of ligands by representing
ligands with task tokens.

It is worth noting that while we could have excluded the self-supervised tasks entirely from the
fine-tuning stage, retaining a portion of these samples resulted in a measurable improvement in the
model’s performance on the supervised protein-ligand tasks.

Direct comparison of our method with other available methods was not straightforward due to several
technical issues and potential overlap between their training data and our test sets; however, results of
the comparison are provided in Table 25.

For fine-tuning on the protein-ligand datasets, the model was trained on a combined training set of
selected ligands. During training, validation was performed for each ligand individually, and the
best checkpoint for each ligand was saved based on its validation set performance. At the end of
training, these best checkpoints were evaluated on their respective test sets. Figure 12 shows the
average validation F1 score across epochs, with the highest average performance observed at epoch
30. However, this checkpoint showed slightly lower average test performance compared to using
individual best checkpoints for each ligand.

The results for all ligands are presented in Table 25. To compute the metric for the autoregressive
model’s output, each amino acid in a protein was treated as an individual positive or negative sample.
Predicted binding residues from the decoder were considered positive samples, while all other amino
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acids were treated as negative (zero) samples. The metrics were then calculated based on this
classification.

To provide a comparison of our model’s performance with other available methods, we present the
results in Table 26. However, the comparison process faced several challenges: some web servers
were not operational during testing, while others only allowed predictions on individual samples,
making bulk evaluation difficult and very slow to response. We attempted to evaluate IonCom (Hu
et al., 2016), and MIB2 (Lu et al., 2022) server tools, but encountered several issues: MIB2 had
extremely slow response times, and IonCom imposed strict sample limitations for evaluation.

Table 25: F1 scores of all ligands across different training configurations, with varying numbers of
auxiliary ligands on the test sets. The table summarizes the impact of jointly training with 10, 20, 30,
and 41 ligands on binding site prediction. * indicates that pre-trained decoder weights were not used,
and † indicates that self-supervised tasks were excluded during supervised training.

Ligands 10 tasks †* 10 tasks* 10 tasks 20 tasks 30 tasks 41 tasks
ZN2+ 0.0678 0.0657 0.7434 0.7498 0.7594 0.7575
CO2+ 0.1022 0.0888 0.6566 0.6493 0.6472 0.6474
CLA 0.2749 0.2519 0.477 0.3763 0.4936 0.4762
FAD 0.1744 0.1476 0.6882 0.6565 0.6473 0.6537
HEM 0.243 0.232 0.6554 0.6698 0.6871 0.6796
NAD 0.1662 0.1248 0.6862 0.6851 0.6862 0.6952
ADP 0.1105 0.1053 0.6057 0.5779 0.5897 0.5834
MG2+ 0.482 0.0326 0.4466 0.4603 0.4522 0.4575
NAP 0.1559 0.1417 0.6629 0.6813 0.6861 0.6746
ATP 0.1059 0.0927 0.4538 0.4355 0.5317 0.505
Average (top 10) 0.1883 0.1283 0.6076 0.5942 0.6181 0.6130
HEC - - - 0.6438 0.6511 0.6537
SF4 - - - 0.6508 0.584 0.5685
FMN - - - 0.6921 0.6983 0.6945
SAH - - - 0.6385 0.6473 0.6503
NDP - - - 0.7122 0.7085 0.6979
ANP - - - 0.6153 0.6214 0.6217
GDP - - - 0.5948 0.6335 0.6465
GLC - - - 0.2091 0.2237 0.2214
PLP - - - 0.777 0.778 0.762
MN2+ - - - 0.7278 0.7245 0.7376
Average (top 20) - - - 0.6102 0.6172 0.6130
COA - - - - 0.3978 0.4011
SAM - - - - 0.6355 0.6252
AMP - - - - 0.4316 0.4432
BGC - - - - 0.2165 0.1932
FE3+ - - - - 0.6756 0.6606
MAN - - - - 0.1407 0.1216
FES - - - - 0.7162 0.7018
PO3−

4 - - - - 0.2288 0.2278
GTP - - - - 0.5332 0.5461
UDP - - - - 0.5522 0.5391
Average (top 30) - - - - 0.566 0.5615
CU2+ - - - - - 0.5607
GSH - - - - - 0.6924
AGS - - - - - 0.5301
ACO - - - - - 0.5026
GAL - - - - - 0.2762
SO2−

4 - - - - - 0.1386
CLR - - - - - 0.0373
Y01 - - - - - 0.0419
BMA - - - - - 0.2273
FE2+ - - - - - 0.6033
CO2+ - - - - - 0.517
Average (all) - - - - - 0.5115

Additionally, a potential overlap between the training data of these methods and our crafted test sets
further made a fair evaluation complicated. This was particularly evident for LMetalSite (Yuan et al.,
2022a), where their reported performance on their own test sets was significantly lower compared to
their results on our test sets, indicating a sign of data leaking in this comparison.
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Figure 12: Average of F1 values for all 41 ligands during the training based on the validation sets.
The performance peaked at epoch 30.

Finally, preliminary experiments were conducted on Protein-Protein Binding Site Prediction using
the PPIRef dataset (Bushuiev et al.). The task involved predicting the binding interface residues on
a target protein given the sequences of both the target and binder proteins (concatenated as input).
Binding residues were defined as those on the target protein within 6Å of the binder. Initial results
using the simplified index tokenization yielded an F1 score of 0.47 on the test set. While encouraging,
this result is preliminary, and further investigation is required.

Table 26: Comparison of our method’s best performance for each ligand with other available methods
on selected ligands based on F1 score. The main values are based on their reported test set performance
as described in their respective papers. * Indicates they are reported on our test sets.

Ligand Metrics Prot2Token-C TargetS
(Yu et al., 2013)

LMetalSite
(Yuan et al., 2022b)

ZinCap
(Essien et al., 2019)

MIB2
(Lu et al., 2022)

CA2+ F1 0.6566* 0.392* 0.526 (0.7370*) - -
MCC - 0.320 (0.431*) 0.542 (0.7342*) - -
Acc - 0.984 (0.977*) 0.9884* - 0.941

MG2+ F1 0.4603* 0.433* 0.367 (0.5560*) - -
MCC - 0.383 (0.450*) 0.419 (0.5773*) - -
Acc - 0.990 (0.992*) 0.9949* - 0.946

ZN2+ F1 0.7594* 0.660* 0.76 (0.8299*) 0.451* -
MCC - 0.557 (0.660*) 0.761 (0.8275*) 0.54 (0.48*) -
Acc - 0.989 (0.989*) 0.9953* 0.870 (0.97*) 0.948

MN2+ F1 0.7376* 0.579* 0.662 (0.8048*) - -
MCC - 0.445 (0.574*) 0.661 (0.8024*) - -
Acc - 0.987 (0.989*) 0.995* - 0.950

A.4.5 SEQUENCE-TO-SEQUENCE

For the secondary structure prediction task, Prot2Token was trained to assign a secondary structure
class to each residue in the input protein sequence, treating the problem as a sequence-to-sequence
token prediction. The dataset was preprocessed to map residues to standard secondary structure labels
(helix, sheet, coil). Performance was evaluated using the macro-F1 score on the test set of PEER. As
shown in Table 27.

For the sequence-to-3D structure prediction task, we fine-tuned the last six blocks of the ESM2-
650m encoder within the Prot2Token framework. We used 8192 warmup steps for this particular
task. The model was trained to generate discrete structure tokens corresponding to backbone
coordinates, utilizing a VQ-VAE-based tokenizer. The current VQ-VAE implementation supports
protein sequences in the range of 50 to 512 residues. During training, model performance was
evaluated using TM-score on the test set explained in A.3.7, and at the end, the best checkpoint is
compared with other methods on a subset of CAMEO dataset reported in A.3.7.

During inference, we encountered a challenge where the decoder occasionally generated an output
sequence with either more or fewer tokens than the actual number of amino acids in the input sequence.
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To address this issue, we applied a constraint on the end <EOS> token probability. Specifically,
during inference, we artificially adjusted the probability of the <EOS> token, ensuring that it was only
allowed if the number of predicted 3D tokens matched the length of the input amino acid sequence.
This adjustment effectively enforced sequence alignment and resolved inconsistencies in output
length of generated structure.

Table 27: Secondary structure prediction evaluation. The baseline involves a linear classifier on top
of the frozen ESM model.

Method Macro-F1 Model

PEER (Xu et al., 2022) (fine-tuned) 82.73 ESM1-1b
Baseline 84.78 ESM2-650m

Prot2Token-B 83.56 ESM2-650m

To further evaluate the learned structure-aware representations, we utilized the CATH-labeled protein
sequences from (Wang et al., 2025a), specifically the CATH_nonredundant_S40 dataset (release
v4_3_0). In this dataset, no two sequences share more than 40% identity, and one representative
(the longest) from each CATH superfamily is selected. This provides a challenging testbed for
assessing the structural awareness of protein embeddings across three hierarchical CATH levels:
Class, Architecture, and Topology.

In addition to structural benchmarks, we examined functional grouping using kinase and deaminase
family datasets. Kinase domain sequences and their group labels were extracted from GPS 5.0 (Wang
et al., 2020), resulting in 336 kinases from nine groups. Deaminase sequences and their respective
family annotations were curated from a reference dataset (Huang et al., 2023). For each protein, we
generated embeddings and assessed whether these could successfully separate functional classes.

AlphaFold 2

Prot2Token

(A) (B) (C)

RMSD: 1.875 ÅTM-Score: 0.9194 TM-Score: 0.9526 RMSD: 1.966 Å TM-Score: 0.9234 RMSD: 1.782 Å

Figure 13: Randomly selected test set samples where our model achieved a TM-score above 0.90
versus AF2 high-pLDDT predictions. On average, each sample was predicted and converted in
approximately 1 second using an Nvidia A100 GPU.
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AlphaFold 2

Prot2Token

(A) (B) (C)

RMSD: 26.172 ÅTM-Score: 0.7385 TM-Score: 0.4921 RMSD: 30.447 Å TM-Score: 0.6833 RMSD: 18.115 Å

Figure 14: Randomly selected test set samples where the model achieved a TM-score lower than
0.75.

Table 28: Evaluation of protein embedding quality via clustering. Clustering performance is reported
for CATH structural hierarchy levels using the Calinski-Harabasz index (CHI), and for functional
groupings (kinase, deaminase) using Adjusted Rand Index (ARI). Higher values indicate more
accurate and biologically meaningful clusters. S-ESM stands for structure-aware ESM.

Methods CATH (CHI) Kinase group clustering (ARI) Deaminase clustering (ARI)
Class Architecture Topology

ESMC-600m (ESM Team, 2024) 19.87 7.70 4.06 0.1720 0.4067
ESM2-650m 13.16 7.30 4.35 0.2691 0.6473
S-ESM (Prot2Token-C encoder) 44.40 19.34 11.50 0.5806 0.7963

Clustering quality for the functional groups (kinase and deaminase families) was quantified using
the Adjusted Rand Index (ARI) after K-means clustering, while clustering for CATH structural
categories (Class, Architecture, Topology) was measured by the Calinski-Harabasz Index (CHI)
(Caliński & Harabasz, 1974), which captures the ratio of between- to within-cluster dispersion.
Table 28 summarizes the results for all models. Prot2Token’s encoder achieves markedly higher
CHI and ARI scores, especially in clustering kinase (ARI = 0.5806) and deaminase families (ARI =
0.7963), indicating improved capture of both structural and functional organization.

For qualitative comparison, Figure 16 presents a t-SNE visualization of protein embeddings colored
by true structural or functional labels. Compared to ESM2-650m and ESMC-600m, Prot2Token
embeddings yield more distinct and interpretable clusters that align with biological classification,
demonstrating both stronger structural feature extraction and functional group separation.
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Figure 15: Validation perplexity curve for sequence-to-3D structure prediction. While perplexity
keeps decreasing, the validation TM-score saturates at ≈0.55 on CAMEO 2024. Post-hoc analysis
shows the 3D tokenizer (VQ-VAE) itself reconstructs with an upper bound of ≈0.60 TM-score on
the same benchmark; hence the plateau reflects a tokenizer-imposed ceiling rather than insufficient
optimization of Prot2Token. Improving the tokenizer is likely required to push beyond this regime.
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Figure 16: Comparison of protein representations generated by Prot2Token and the base encoder
ESM2-650m. The t-SNE visualizations display protein embeddings for CATH structural classes,
architecture, and topology, as well as clustering for deaminase families and kinase groups. Colors
correspond to the known classes or families for each category.

A.4.6 OTHER

We utilized the TargetP-2 dataset which encompasses both cleavage site data and five types of
localization labels. We represented the label format as a combination of classification and regression
tasks, for instance, {sp, 96}, where sp denotes the localization label (Signal Peptide) and 96
indicates the cleavage site’s location. Additionally, to evaluate the model, we implemented a 5-fold
cross-validation strategy. We considered fine-tuning only the last layer of the ESM models for both
the Prot2Token model and the baseline comparison. Table 15 presents a comparative analysis of
Prot2Token against ESM with a linear classifier head. The results suggest that by enabling the
model to learn the locations of different amino acids through self-supervised auxiliary tasks, it
achieves more accurate predictions of cleavage site positions. Furthermore, the performance in
localization prediction also shows improvement with the integration of auxiliary tasks. We attribute
this enhancement in performance to the model’s improved understanding of cleavage site positions.
Note that the performance of bigger models was very similar to the smaller ones.

Table 29: Localization and cleavage site prediction. "Aux" denotes self-supervised auxiliary tasks
using STYKNR amino acids. Localization and cleavage site metrics are based on Macro-F1 and MAE,
respectively.

Method Aux-Tasks Cleavage Site localization

Baseline (ESM2-35m) - - 90.96
Prot2Token-A - 3.6392 90.56
Prot2Token-A Aux (12k) 2.9205 92.30

In the next step, we fine-tuned the model starting from the latest checkpoint obtained during the
self-supervised pre-training stage that is reported in Appendix A.4.3. This process involved jointly
training six PTMs alongside self-supervised samples. The maximum sequence length for input
protein sequences was set to 1024 tokens, and the batch size was adjusted to process 98,304 tokens
per iteration.
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Notably, while it was possible to exclude self-supervised tasks entirely during fine-tuning, retaining a
subset of these samples led to improved generalization and enhanced performance on the protein-
kinase phosphorylation site prediction. From the 33 total blocks in the protein encoder, we selectively
fine-tuned the last eight blocks by unfreezing their weights for training. The results are presented in
Table 30.

Table 30: PTMs comparison based on F1 score on our test sets. †: There is a strong possibility of
data contamination between our test set and the PTMGPT2 training set. As a result, PTMGPT2
may achieve artificially high performance on our test set due to memorization, while its real-world
performance on unseen samples could be lower.

PTM Prot2Token (Ours) ESM-2 PTMGPT2† (Shrestha et al., 2024)
Ubiquitylation 0.1382 0.1993 0.165

Phosphorylation 0.4055 0.3908 0.400
Acetylation 0.307 0.3273 0.350
Methylation 0.4608 0.4532 0.596

N-linked Glycosylation 0.9689 0.9586 0.862
O-linked Glycosylation 0.4695 0.4597 0.531

Succinylation 0.2663 0.3515 0.540

A.5 PROTEIN-LIGAND BINDING SITE TASK TOKENS INTERPRETATION

In this section, we scrutinized the task token embeddings of the decoder that was pre-trained on all 41
ligands in the previous section to find the sign of chemical properties of ligands and their relationships
together.

Empirically, based on the F1 scores of the ligands that the model was trained and evaluated on, the
task token embeddings successfully captured meaningful representations of the ligands. However, to
solidify this framework as a foundation for future research, we aimed to validate these embeddings
from an additional perspective. Our goal is to create a robust infrastructure that can incorporate
more ligands into a single model, thereby addressing the scarcity of data for certain ligands through
knowledge transfer between ligands. To achieve this, first, from all 41 ligands, we selected top 28
ligands based on F1 score and filtered the rest and then, we analyzed the task token embeddings of
the remaining ligands by clustering them to explore ligand similarities in the embedding space.

Simultaneously, we clustered the ligands based on their biochemical features in the real world, and in
the last step, we investigated the correlation between these two clustering approaches. The purpose of
this comparison was to determine whether the learned task token embeddings genuinely reflect real-
world relationships between ligands or if they merely memorize specific patterns without capturing
meaningful biochemical similarities. Figure 17 highlights the intersection between the two spaces of
ligand representations: the embedding space and the biochemical feature space. It illustrates which
ligands or sets of ligands have their relationships successfully captured by the generated task token
embeddings, as reflected by their agreement with relationships derived from biochemical features,
and which embeddings failed to capture such relationships. More details, including feature selection,
methods, and the interpretation algorithm are in the following subsections.

A.5.1 INTERPRETATION

In this study, we developed a protein binding site prediction model using a multi-task learning frame-
work, where each task represents a specific ligand. A 640-dimensional task token was incorporated
for each ligand alongside the protein sequences. During training, the model learned meaningful task
token embeddings that effectively represent ligands and their unique characteristics.

To validate the task token embeddings, we employed two clustering approaches: one based on the
trained task token embeddings and the other on biochemical ligand features. For precise clustering
and clearer analysis, ligands with an F1 score below 0.5 were excluded to minimize noise, leaving
28 out of 41 ligands for analysis. Task token embeddings were reduced to 27 principal components
using PCA, preserving 99% of the variance, and clustered with k-means to generate target clusters.
For validating all ligands, the full set of 41 ligands was included. In this case, task token embeddings
were reduced to 40 components to preserve 99% of the variance, and the same clustering method
was applied. For the ligand features, 26 biochemical descriptors were collected, covering physical,
chemical, electronic, hydrophilic, lipophilic, and geometric properties.
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A systematic feature selection process evaluated all possible combinations of up to 13 features
selected from these 26 descriptors (approximately 39 million combinations) to optimize clustering
quality against the target clusters. The ARI was used as the selection metric, while Normalized
Mutual Information (NMI) and Pairwise Accuracy metrics were later employed to evaluate the final
selection.

The clustering results demonstrate that the learned task token embeddings are meaningful, as their
clustering aligns closely with that based on ligand-specific biochemical features. Moderate-to-high
agreement metrics (ARI=0.447, NMI=0.614, and pairwise-accuracy=0.783) highlight
the embeddings’ ability to capture key biochemical characteristics of ligands. Chemically significant
features, such as MolecularWeight, NetCharge, and RotatableBonds, identified as part
of the optimal feature set, further reinforce the relevance of the embeddings. The overlap and
similarity in ligand grouping across both clustering approaches validate the hypothesis that the task
token embeddings effectively encode biologically and chemically meaningful information.

However, reducing task token embeddings or biochemical features to 2D for visualization causes
significant information loss, making 2D clustering plots less informative (Figures 23 and 24). These
findings emphasize the importance of preserving higher-dimensional information for accurate in-
terpretation and highlight the value of task token embeddings in ligand characterization for protein
binding site prediction. Figure 18 shows the embeddings-based clustering, while Figure 19 shows the
features-based clustering, and Figure 17 illustrates the global, local, and no relationships between the
two approaches of embeddings-based clustering and features-based clustering.

Global relationships. Figure 17 highlights the ligands that have been clustered correctly across
and within both clustering approaches. For instance, in Cluster 3, the solid circles for ACO, ATP,
FAD, GTP, NAD, and SAM ligands represent ligands that have been consistently clustered across
and within the same clusters in both approaches. This indicates that the task token embeddings
successfully capture their similarity with each other and with the rest of the ligands.

Local relationships. Figure 17 also depicts ligands that have been clustered correctly only within
clusters in both clustering approaches. For example, the stars in cluster 3 for FE2+ and MN2+

indicate that these ligands are grouped but appear in different clusters across the two approaches.
Nevertheless, the task token embeddings still manage to capture their similarity with each other, even
if they fail to capture their similarity with other ligands.

No relationships. For some ligands, the task token embeddings fail to accurately capture their
global or local relationships. This may be due to the ligand features collected not being entirely
representative and requiring further refinement, or because the task token embeddings themselves
need improvement. Figure 17 illustrates these no relationships using triangles; for instance,
the HEM ligand has been grouped with different ligands across different clusters in both approaches.

For further investigation of the task token embeddings, we incorporated all 41 ligands into
the clustering analysis. The metrics showed a notable drop: ARI=0.259, NMI=0.333, and
Pairwise-Accuracy=0.733. This decrease was expected, as including task token embeddings
for ligands with low F1 scores introduced some misaligned clusters. However, a closer examination
reveals that the embeddings still effectively capture the global and local relationships between most
ligands. Figures 20 and 21 depict the embeddings-based clustering and features-based clustering,
respectively, while Figure 22 illustrates the global, local, and no relationships across all 41 ligands.
Notably, out of the 41 ligands, the task token embeddings successfully represented 21 ligands globally,
13 ligands locally, and misrepresented 7 ligands. These results indicate that the task token embeddings
consistently demonstrate strong global and local relationships, effectively capturing biochemical
similarities among ligands. This reinforces the conclusion that the model has learned meaningful
representations, even for ligands with low F1 scores.

A.5.2 FEATURES POOL CREATION

The feature pool of 26 descriptors was carefully designed to capture the physical, chemical, and
structural properties of ligands, making them particularly suitable for describing protein-ligand
interactions. These features were selected using domain knowledge of protein-ligand interactions
and their ability to explain binding phenomena effectively. Two primary sources were used to collect
these features:
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Figure 17: Global Relationships indicate that general biochemical features shared among many ligands have
been captured. Local Relationships reflect the successful capture of biochemical properties between specific
ligands and their closely related counterparts. No Relationships indicate that the biochemical properties were not
captured at all.

• PubChem (Kim et al., 2023), a free online database maintained by the National Center for
Biotechnology Information (NCBI), which provides precomputed chemical information for
small molecules, drugs, and bioactive compounds. Features were retrieved using Compound
IDs (CIDs) and SMILES, a text-based representation of molecular structures.

• The second source was RDKit, an open-source cheminformatics toolkit, where SMILES
strings were converted into molecular objects and processed using various descriptors to
compute additional features.

Table 31 shows the set of 26 features, categorized into seven groups, captures the properties of
metal ions and molecules from multiple perspectives, providing a comprehensive description of their
binding potential with proteins.

A.5.3 OPTIMIZING FEATURE SELECTION

Our approach leverages clustered embeddings as a reference to evaluate clustered features from
various feature combinations, identifying the best set of features to describe ligands based on the
highest ARI score. We began with task token embeddings of ligands that achieved high F1 scores to
ensure noise reduction and high-quality clustering. These embeddings, initially 640-dimensional,
were reduced to 27 principal components using PCA while retaining 99% of the variance. The reduced
embeddings were then clustered using k-means, with the optimal number of clusters determined via
the Elbow method, serving as the target clusters.

To identify the most informative ligand features, we implemented a search algorithm (Algorithm 1)
that evaluates all possible combinations of up to 13 features from a pool of 26. In the first iteration, the
algorithm selects a single feature (26 possible options). In the second iteration, it selects two features
(325 possible combinations). This process continues up to 13 features, yielding approximately 39
million combinations. For each combination, the ligand-based feature clustering is performed, and
the ARI score is computed. The feature combination that achieves the highest ARI score is selected
as the best set.

Next, we removed the threshold constraint and extended the algorithm to all 41 ligands, examining
whether task token embeddings captured meaningful representations for ligands with F1 scores
below 0.5. This analysis demonstrated that the embeddings retained significant information even for
lower-performing ligands.

Table 32 presents the output of our searching algorithm, showing the top three feature combinations
based on the ARI metric for the top 28 ligands. Table 33 displays the top three feature combinations
for the entire set of 41 ligands.
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Table 31: All 26 features we used in the interpretation step.
No. Name Description Source
1 MolecularWeight Total molecular mass PubChem
2 ExactMass High-precision mass of the molecule PubChem
3 MolecularVolume Estimated molecular volume RDKit
4 HeavyAtomCount Count of non-hydrogen atoms RDKit
5 RingCount Total number of rings in the molecule RDKit
6 CarbonCount Number of carbon atoms RDKit
7 OxygenCount Number of oxygen atoms RDKit

Polarity and Hydrophobicity Features
8 LogP Partition coefficient (hydrophobicity) PubChem
9 MolLogP Alternative measure of hydrophobicity RDKit
10 HydrophobicSurfaceArea Hydrophobic interaction area (TPSA) RDKit
11 TPSA Topological Polar Surface Area (polarity) PubChem
12 Hydrophilicity Difference between molecular weight and hydrophobicity RDKit
13 Polarizability Molecular refractivity RDKit
14 Refractivity A measure of a molecule’s polarizability RDKit

Charge and Electrostatics Features
15 NetCharge Net electrical charge of the molecule PubChem
16 ElectrostaticPotential Approximate measure of electrostatic potential RDKit

Flexibility and Rotational Features
17 RotatableBonds Number of rotatable bonds PubChem
18 RotatableBondFraction Fraction of single bonds that are rotatable RDKit

Bond and Connectivity Features
19 SingleBonds Count of single bonds RDKit
20 DoubleBonds Count of double bonds RDKit
21 BalabanJ Balaban index (topological descriptor) RDKit

Hydrogen Bonding Features
22 HBondDonors Number of hydrogen bond donors PubChem
23 HBondAcceptors Number of hydrogen bond acceptors PubChem
24 HydrogenBondingPotential Difference between molecular weight and TPSA RDKit

Aromaticity and - Interactions
25 AromaticRings Number of aromatic rings RDKit
26 PiPiInteractionSites Number of - interaction sites RDKit

Algorithm 1 Ligand interpretation clustering
Input (features_pool (26 features), task_token_embeddings (640D), ligands (41), threshold (e.g., F1 > 0.5))
Output (best_features_combination, best_ari)
Step 1. Preprocessing:

(a) Filter Ligands:
high_quality_ligands← {ligand | F1(ligand) > threshold}
(b) Reduce Embeddings:
pca_embeddings← PCA(task_token_embeddings, n components, 99% variance)
(c) Find Clusters:
koptimal ← ElbowMethod(pca_embeddings)
target_clusters← KMeans(pca_embeddings, koptimal)

Step 2. Feature Combination Evaluation:
Initialization:
best_ari← −∞

for nfeatures = 1 to 13 do
combinations← Combinations(features_pool, nfeatures)

for each combination ∈ combinations do
feature_clusters← KMeans(combinations, koptimal)

ari← ComputeARI(feature_clusters, target_clusters)
if ari > best_ari then

best_ari← ari
best_features_combination← combination

end if
end for

end for
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Figure 18: Clustering results of embeddings on top 28 ligands based on F1 score.

Figure 19: Clustering results of features on the 28 selected ligands.

A.5.4 VISUALIZATION

To analyze the structural relationships within the high-dimensional ligand embeddings, we applied
dimensionality reduction techniques to project the representation of 41 ligands from the 640 dimen-
sional into a two-dimensional space for visualization. The methods explored included t-SNE (Figure
23) and UMAP (Figure 24).

Figure 20: Clustering results of embeddings on all 41 ligands based on F1 score.

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Figure 21: Clustering results of features on the 41 selected ligands.

Figure 22: Global Relationships indicate that general biochemical features shared among
many ligands have been captured. Local Relationships reflect the successful capture
of biochemical properties between specific ligands and their closely related counterparts. No
Relationships indicate that the biochemical properties were not captured at all.
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Table 32: Top three feature combinations for the 28 ligands.
No. Features Features ARI NMI Pairwise Accuracy

7 MolecularWeight, NetCharge, RotatableBonds, HydrogenBondingPotential, Carbon-
Count, SingleBonds, BalabanJ

0.447 0.614 0.783

12 LogP, NetCharge, RotatableBonds, ExactMass, Polarizability, AromaticRings, Mol-
LogP, MolecularVolume, HydrogenBondingPotential, CarbonCount, SingleBonds,
BalabanJ

0.423 0.573 0.772

13 MolecularWeight, LogP, NetCharge, RotatableBonds, ExactMass, Polarizability, Mol-
LogP, MolecularVolume, RingCount, HydrogenBondingPotential, CarbonCount, Bala-
banJ, Hydrophilicity

0.434 0.577 0.778

Table 33: Top three feature combinations for the entire set of 41 ligands.
No. Features Features ARI NMI Pairwise Accuracy

8 NetCharge, HBondDonors, HBondAcceptors, ExactMass, Refractivity, Hydrogen-
BondingPotential, SingleBonds, PiPiInteractionSites

0.248 0.317 0.728

10 MolecularWeight, LogP, RotatableBonds, TPSA, MolLogP, MolecularVolume, Single-
Bonds, Hydrophilicity, ElectrostaticPotential, PiPiInteractionSites

0.206 0.319 0.709

13 LogP, NetCharge, HBondDonors, HBondAcceptors, TPSA, ExactMass, Polarizability,
AromaticRings, Refractivity, DoubleBonds, BalabanJ, Hydrophilicity, PiPiInteraction-
Sites

0.259 0.333 0.733

The perplexity parameter for t-SNE was set to 3, and the number of neighbors (n_neighbors) for
UMAP was also set to 3. These parameters were chosen to focus on capturing local relationships
among ligand embeddings and to preserve some global structural details. Additionally, the dimen-
sionality of the output was set to two (n_components=2) because the visualizations are in two
dimensions. All other parameters were kept at their default settings.

Figure 23: Visualization of task token embeddings using t-SNE.

Figure 24: Visualization of task token embeddings using UMAP.

A.5.5 MULTI-TASK LEARNING EFFECT

In this section, we tried to investigate the effect of multi-task learning on three ligands that have
low number of samples but share similar semanticity in the embedding space of task tokens (Figure
17). Therefore, we selected GSH, CO, AGS as our target ligands because (1) they belong to the
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same cluster, (2) showed global or local relationships and, (3) have less than 200 or lower number of
protein sequences in total. We considered three groups to measure the performance of three ligands.
There groups are defined as follow:

Group 1. Combination of the target ligands, GSH, CO and AGS (Equivalent to 1,819 tokens).

Group 2. Combination of CLA, FAD, HEM and NAD as ligands that did not share a close semantic
representation in Figure 17 (Equivalent to ∼ 43k tokens).

Group 3. Combination of Zn, Ca, ADP, members from cluster 4 (Equivalent to ∼ 37k tokens).

Need to point out, in order to make the comparison of group 2 and 3 fair, we considered the total
number of tokens in these groups close to each other. Table 34 shows that group 3 which shares a
similar cluster with the target ligands, improves F1 score more than other groups.

Table 34: The effect of jointly training under representative ligands based on different auxiliary groups with
respect to F1 score. "-" means no auxiliary task is used during training the target task.

Target Task - Group 1 Group 2 Group 3
GSH 66.53 70.27 69.18 68.74
CO 35.87 32.65 29.26 58.48
AGS 31.63 22.94 43.18 49.09
Average 44.68 41.95 (-2.73) 47.21 (+2.53) 58.77 (+14.09)

A.6 BROADER IMPACT

The Prot2Token framework represents a significant advancement in computational biology, with
potentially transformative impacts on protein research, therapeutic discovery, and biotechnology
applications. By unifying diverse protein prediction tasks within a single, scalable architecture,
Prot2Token substantially reduces computational requirements and simplifies model management.
This democratization of sophisticated predictive capabilities could significantly enhance accessibility
for research groups with limited computational resources, facilitating broader participation and
innovation in the field. Moreover, the substantial speed improvements demonstrated by Prot2Token,
particularly in protein structure prediction, may enable real-time applications in clinical and industrial
settings, such as personalized medicine, real-time drug screening, and rapid biomarker discovery.

However, alongside these benefits, the wide applicability and powerful predictive capacity of
Prot2Token also necessitate careful ethical consideration. As the barrier to rapid protein predic-
tion and generation lowers, it becomes increasingly important to implement responsible practices
around data usage and sharing, ensuring that predictive outputs, especially those related to thera-
peutics or biologically active molecules, are validated rigorously before clinical or environmental
deployment. Additionally, there is a need to consider the implications of such advanced modeling
capabilities on biosecurity. With models that can rapidly predict or design biologically active proteins,
safeguards must be established to prevent misuse, including unintentional production of harmful or
disruptive biological agents. Continued dialogue and collaboration between computational biologists,
policymakers, and ethicists will be crucial to navigating these challenges responsibly.

A.7 LLM USAGE

In this manuscript, we used large language models only for copy-editing: improving grammar, clarity,
and style of author-written text.
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