

000 001 002 003 004 005 PROT2TOKEN: A UNIFIED FRAMEWORK FOR PROTEIN 006 MODELING VIA NEXT-TOKEN PREDICTION 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916

054 bridge the gap between raw protein information and human understanding, advancing research in
 055 drug discovery, disease mechanisms, and synthetic biology.
 056

057 While PLMs have significantly advanced protein-prediction tasks, current models require task-specific
 058 specialization after pre-training (Hu et al., 2023; Roche et al., 2024). This reliance on separate
 059 modules for distinct tasks leads to inefficient computational resource use and limited scalability.
 060 Most PLMs undergo post-training alignment with specialized predictor architectures for individual
 061 tasks, requiring independent training and fine-tuning—a time-consuming and resource-intensive
 062 approach (Weissenow & Rost, 2025). A unified tokenization protocol capable of standardizing diverse
 063 protein-prediction tasks would overcome this limitation, streamlining protein function prediction and
 064 enhancing its accessibility for real-world applications.

065 To the best of our knowledge, despite the emergence of foundation models for proteins, no comprehen-
 066 sive strategy exists to systematically map these heterogeneous outputs into a shared generative space.
 067 Instead, researchers often modify existing foundation models to suit particular applications (Schmirler
 068 et al., 2024), such as predicting 3D protein structures from sequences using customized techniques
 069 (Jumper et al., 2021; Lin et al., 2022). One key limitation is that most existing models are based on
 070 BERT-style architectures (Unsal et al., 2022), while effective for providing meaningful representation,
 071 lack the flexibility needed for diverse and controllable prediction capabilities. In natural language
 072 processing (NLP), the transition from BERT-style models to autoregressive GPT-style models has
 073 enabled more dynamic and human-understandable instructions (prompts) to control the generation
 074 process and therefore, handling a diverse set of predictions within the NLP domain (Ouyang et al.,
 075 2022; Achiam et al., 2023). A similar paradigm shift is necessary in protein research, moving beyond
 076 static encoders toward more advanced generative AI approaches that provide more comprehensive
 077 predictive capabilities.

078 Although autoregressive transformer models have been explored for the language of protein—such as
 079 ProGen2 (Nijkamp et al., 2023), RITA (Hesslow et al., 2022), and Ankh (Elnaggar et al., 2023)—they
 080 struggle with controllability and task, especially for protein-prediction tasks. Unlike language
 081 models in NLP, which effectively leverage prompting mechanisms for controllable and interpretable
 082 predictions, autoregressive PLMs currently lack robust methods to guide their outputs toward human-
 083 interpretable formats. This gap hinders their practical applicability and, in contrast to NLP, has
 084 compelled researchers to continue relying heavily on encoder-style PLMs, often building specialized
 085 architectures around these encoders for specific protein prediction tasks.

086 To address these limitations, this work takes a significant step toward unifying protein prediction
 087 by establishing a universal tokenization protocol that categorizes diverse tasks into five sets. We
 088 introduce a universal protocol for tokenizing different protein-prediction tasks, enabling a general
 089 autoregressive transformer predictor to leverage existing BERT-style PLMs (Figure 1). This gener-
 090 ative approach, guided by a unified next-token prediction loss, demonstrates generality across
 091 multiple protein-prediction task categories, including protein-level, residue-level, and protein-protein
 092 interaction-level tasks. We illustrate its versatility through extensive evaluation on five categories of
 093 tasks: Classification, Regression, Binding Site, Sequence-to-Sequence, and Other. Specific examples
 094 evaluated include kinase phosphorylation site prediction, protein-ligand binding site prediction, pro-
 095 tein 3D structure prediction, and protein mutation stability assessment. Furthermore, our framework
 096 inherently supports multi-task learning, and we provide initial analyses demonstrating synergistic
 097 performance improvements when related tasks are trained jointly.

098 For certain specialized tasks, such as predicting binding sites, we show that initializing the decoder
 099 through self-supervised pre-training significantly boosts performance. Specifically, for protein-ligand
 100 binding site prediction, we further analyzed the learned token representations, revealing meaningful
 101 relationships among ligand tokens that enabled us to enhance predictions for underrepresented ligands.
 102 We believe that our approach represents an essential step toward harnessing and upgrading large
 103 language models (LLMs) for robust and flexible protein prediction tasks.

104 1.1 RELATED WORK

105 Many specialized or *foundation* models now exist for proteins (Wang et al., 2025b), yet none provides
 106 a single, prompt-controllable interface capable of both generation and a diverse set of prediction tasks.
 107 We therefore group prior works into generative protein design, predictive representation learning, and
 108 unified models.

108 **Generative protein design.** Autoregressive language models dominate *de novo* sequence generation.
 109 *ProGen* first demonstrated controllable generation using functional tags (Madani et al., 2020).
 110 Subsequent scaling—*ProtGPT2 1.2b* (Ferruz et al., 2022), *rita 1.2b* (Hesslow et al., 2022), and
 111 *ProGen2 6.4b* (Nijkamp et al., 2023)—improved perplexity and experimental success yet still require
 112 task-specific fine-tuning or filtering to steer functions. Most recently, *ProGen3* extends this trend by
 113 scaling it up significantly, but reports limited controllability for fine-grained generation (Bhatnagar
 114 et al., 2025).

115 **Predictive representation learning.** A parallel thread focuses on bidirectional encoders that power
 116 task-specific heads. Large masked-language models such as *ESM2-15b* yield embeddings for a
 117 spectrum of downstream tasks (Lin et al., 2022) and even drive end-to-end folding with *ESMFold*
 118 (Lin et al., 2022)—yet the folding module is specialized for 3-D structure prediction. Likewise,
 119 *AlphaFold2* (AF2) couples *EvoFormer* encoders to a bespoke structure decoder (Varadi et al., 2022).
 120 Such “wrapper” architectures excel at their dedicated outputs but do not form a general predictor. We
 121 find only one cross-task autoregressive alternative: *PTMGPT2* (Shrestha et al., 2024), which adapts
 122 *GPT-2* with prompt-based fine-tuning to predict 19 classes of post-translational modifications (PTMs)
 123 in a single model—still restricted to the PTMs domain.

124 **Unified models.** Recently, models have emerged that aim to link protein design and prediction
 125 within a single system. *HelixProtX* unifies sequence, structure, and free text in one multimodal
 126 autoregressive transformer, capable of translating between any two of those modalities and predicting
 127 atom-level 3-D structure directly from sequence (Chen et al., 2024). *ProLLAMA* (Lv et al., 2024)
 128 adapts *LLaMA-2* through protein-specific instruction tuning so that one model, guided by natural-
 129 language prompts, can perform controllable sequence generation together with property-prediction
 130 tasks such as stability, fluorescence, binding affinity, and remote-homology classification (Lv et al.,
 131 2024). *InstructProtein* aligns protein sequences with human language via knowledge-graph-guided
 132 instruction tuning, allowing the model either to describe a protein’s function in free text or to generate
 133 a plausible sequence that satisfies a textual specification (Wang et al., 2023). Although these systems
 134 demonstrate encouraging modality transfer, they still depend on prompt engineering for fine-grained
 135 control and have yet to be benchmarked across the full suite of standard prediction tasks addressed in
 136 this work.

137 2 METHOD

139 2.1 PROT2TOKEN ARCHITECTURE

141 The *Prot2Token* framework is designed to unify diverse protein-related prediction tasks using a shared
 142 architecture based on encoder-decoder transformers. The core idea is to integrate an autoregressive
 143 decoder language model with existing encoder-style protein and optional chemical language models
 144 via cross-attention layers, thereby converting prediction tasks into a unified next-token prediction
 145 problem.

146 The architecture employs a pre-trained bidirectional transformer (*ESM2*) as the protein encoder.
 147 For tasks involving chemical information (e.g., ligand binding), an optional chemical encoder
 148 (*BARTSmiles*) (Chilingaryan et al., 2022) is used to process *SMILES* representations. These encoders
 149 transform their respective input sequences into contextual embeddings:

$$150 \quad h_{\text{enc}} = f_{\text{enc}}(x)$$

151 where $h_{\text{enc}} \in \mathbb{R}^{N \times d_{\text{enc}}}$ is the encoder output, N is the sequence length, and d_{enc} is the encoder’s
 152 hidden dimension.

153 We use distinct embedding tables for each encoder (protein and, if applicable, chemical) and the
 154 decoder to reflect their differing tokenization schemes and functional roles in the architecture.

155 To enhance the position-awareness of the sequence embeddings, we introduce a learnable positional
 156 embedding layer $g_{\text{pos}}(\cdot)$, producing augmented representations:

$$158 \quad h_{\text{aug}} = h_{\text{enc}} + g_{\text{pos}}(p)$$

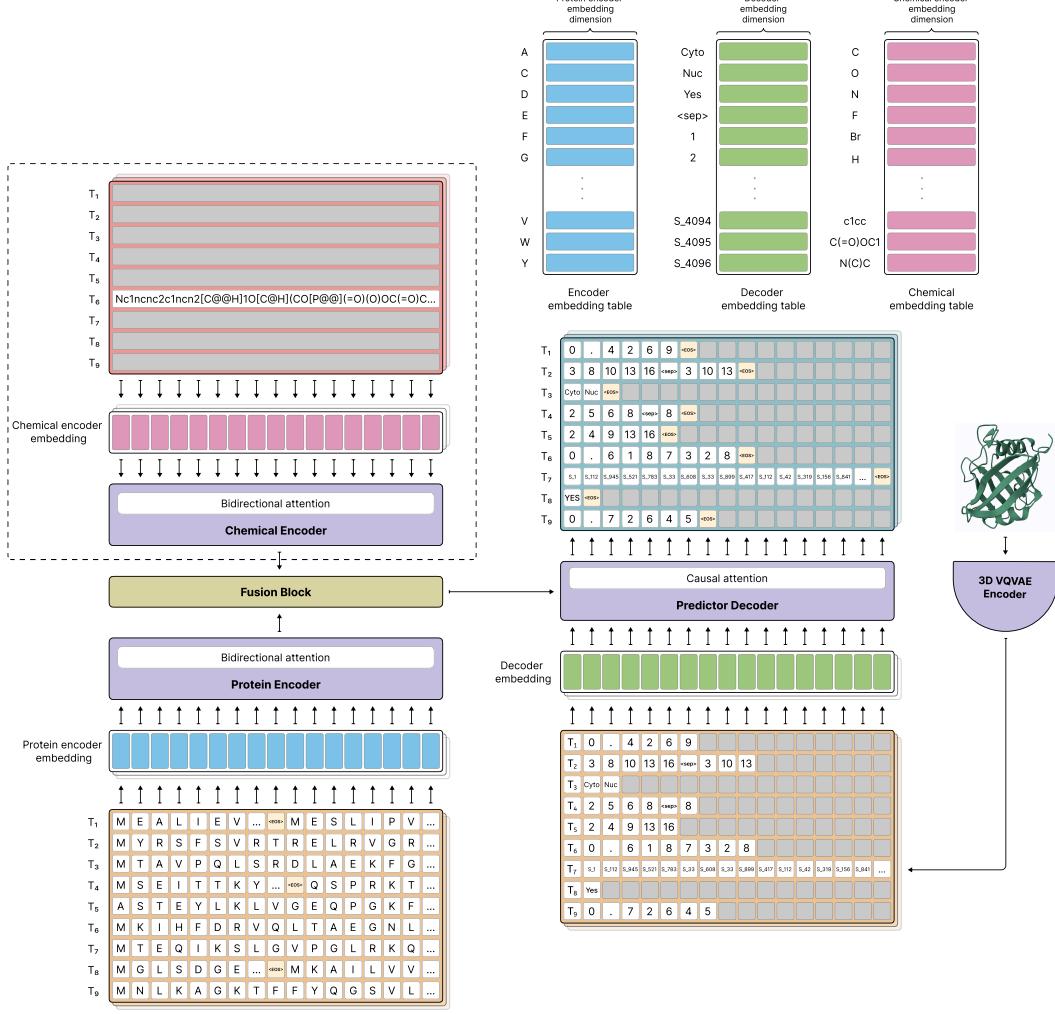
159 where $p \in \mathbb{R}^{N \times d_{\text{enc}}}$ is the learnable positional embedding.

160 To align the encoder output with the decoder’s hidden dimension d_{dec} , we apply a linear projection:

$$161 \quad h_{\text{proj}} = h_{\text{aug}} W_{\text{proj}} \quad \text{where } W_{\text{proj}} \in \mathbb{R}^{d_{\text{enc}} \times d_{\text{dec}}}$$

162 This projected representation $h_{\text{proj}} \in \mathbb{R}^{N \times d_{\text{dec}}}$ is fed into the decoder via cross-attention.
 163

164 The decoder is a causal (autoregressive) transformer composed of standard transformer components
 165 such as multi-head self-attention, feed-forward layers, and GeLU activations. *FlashAttention-2* is in-
 166 corporated to improve training speed and memory efficiency. For specific architectural configurations
 167 used in this work, refer to Table 10.



202 Figure 2: Detailed Architecture of *Prot2Token* Highlighting Multi-Task Capability. This diagram
 203 shows the *Prot2Token* components: a bidirectional Protein encoder and an optional Chemical Encoder,
 204 a Fusion block part, and an autoregressive Decoder guided by Task Token Embeddings for various
 205 prediction tasks (examples listed). This illustrates the framework’s potential for simultaneous multi-
 206 task learning; however, practical training of this work only focused on combinations of fewer tasks
 207 due to computational costs, demonstrating the principle.

208 To support multiple tasks within a unified training process, we introduce `task token`. These
 209 tokens, placed at the beginning of each output sequence, serve as prompts that guide the decoder’s
 210 behavior for each specific task. The task token sequence $t = (T_1, T_2, \dots, T_m)$ is embedded via a
 211 learnable embedding function:

$$e_{\text{task}} = g_{\text{task}}(t) \in \mathbb{R}^{m \times d_{\text{dec}}}$$

212 The decoder receives the embedded task tokens and attends to both them and the projected encoder
 213 outputs:

$$y = f_{\text{dec}}(h_{\text{proj}}, e_{\text{task}})$$

216 During inference, the decoder is autoregressive: it receives a special beginning-of-sequence (<BOS>)
 217 token followed by the task token, and generates each output token sequentially.
 218

219 The decoder factorizes the probability of the output sequence $x = (x_1, x_2, \dots, x_T)$ as:

$$220 \quad p(x) = \prod_{t=1}^T p_\theta(x_t | x_1, \dots, x_{t-1}) \\ 221 \\ 222$$

223 The training objective is to minimize the negative log-likelihood:

$$224 \quad L(\theta) = - \sum_{t=1}^T \log p_\theta(x_t | x_1, \dots, x_{t-1}) \\ 225 \\ 226$$

227 To better manage the role of prompt tokens, we assign token-specific weights $w_t \in [0, \infty)$ to control
 228 their contribution to the loss. Specifically, we set $w_1 = 0$ to exclude the prompt (task token)
 229 from the loss, while allowing other tokens $t \geq 2$ to be weighted differently:

$$230 \quad L(\theta) = - \sum_{t=1}^T w_t \log p_\theta(x_t | x_1, \dots, x_{t-1}) \\ 231 \\ 232$$

233 This flexible weighting helps tune the model’s attention to different parts of the label sequence.

234 Refer to Figure 2 for an overview of the *Prot2Token* architecture and Figure 4 for a closer look at how
 235 task tokens interact with the decoder. Architectural variants and configuration details are summarized
 236 in Table 10. By representing diverse outputs as token sequences, this design allows *Prot2Token* to
 237 unify a broad spectrum of protein prediction tasks under a single decoder, facilitating both joint and
 238 independent training regimes.

239 2.2 TOKENIZATION

240 The *Prot2Token* framework utilizes distinct tokenization strategies for its input encoders and the
 241 output decoder. Input sequences, such as protein amino acid sequences or chemical *SMILES* strings,
 242 are processed by the native tokenizers of their respective pre-trained encoders (e.g., *ESM2* for proteins,
 243 *BARTSmiles* (Chilingaryan et al., 2022) for chemicals). The core innovation resides in the unified
 244 tokenization strategy for the output labels predicted by the autoregressive decoder. This strategy is
 245 pivotal as it converts a wide array of biological prediction targets into standardized sequences of
 246 discrete tokens, enabling the decoder to handle diverse tasks via a consistent next-token prediction
 247 mechanism. All tokenized output sequences commence with a <BOS> token and conclude with an
 248 <EOS> token, clearly demarcating sequence boundaries.

249 As depicted in Figure 3, this approach transforms heterogeneous labels into a uniform sequential
 250 format, facilitating a task-agnostic decoding process. Specifically, for classification tasks, labels
 251 are mapped to unique discrete tokens, with multi-label tasks typically concatenating these tokens
 252 (often alphabetically). Regression tasks represent continuous numerical values through a granular
 253 digit-by-digit encoding of their character components (e.g., sign, digits, decimal point). Sequence-to-
 254 sequence tasks generate an output token for each residue in the input protein, maintaining a direct
 255 correspondence. Binding site prediction involves tokenizing the sorted 1-based indices of residues
 256 participating in interactions. Other complex output types, such as for PTMs, are also converted into
 257 specific token sequences, for instance, by listing potential and confirmed modification sites separated
 258 by a special <SEP> token. This universal tokenization protocol is fundamental to *Prot2Token*’s
 259 ability to unify a broad spectrum of protein prediction tasks within a single decoding architecture.
 260 Refer to Appendix A.2 for a comprehensive explanation of each specific tokenization method.

261 2.3 DATASETS

262 This work leverages a diverse set of tasks drawn from several established benchmarks and repositories,
 263 including PEER (Xu et al., 2022), ProteinShake (Kucera et al., 2023), CATH (Wang et al., 2025a),
 264 AlphaFoldDB (Varadi et al., 2022), and other curated sources such as ProteinGym (Notin et al., 2023).
 265 These datasets encompass a wide range of protein-related prediction tasks, including regression,
 266 classification, binding site, and sequence-to-sequence predictions. Details for each task, including
 267 preprocessing steps, are provided in Appendix A.3. All tasks in these datasets are tokenized according
 268 to the unified protocol described in Section 2.2.

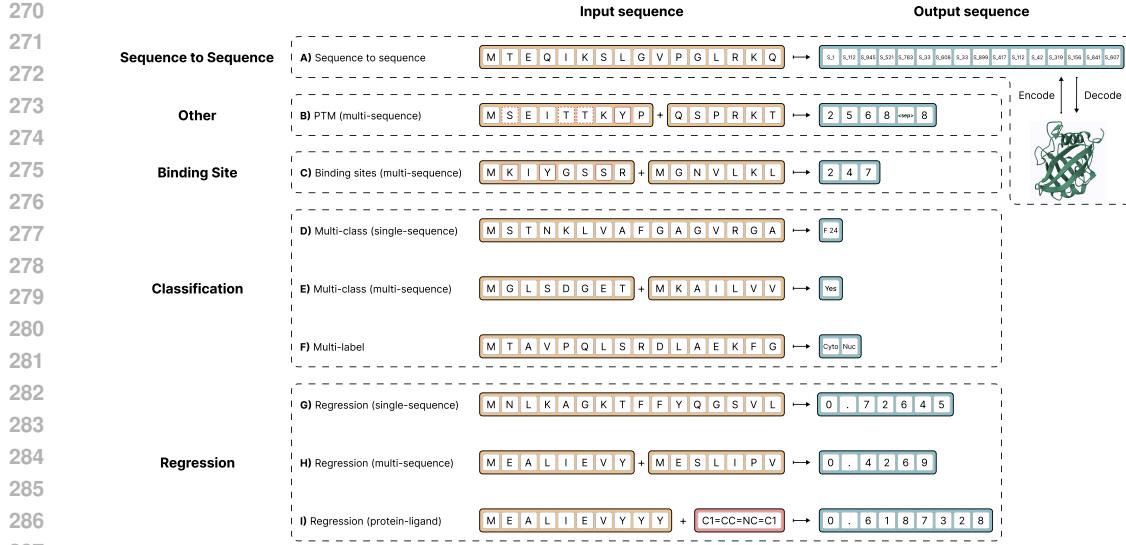


Figure 3: *Prot2Token* converts heterogeneous labels into uniform sequences: examples illustrate the five tokenization categories—(i) sequence-to-sequence, (ii) classification (multi-class/ multi-label), (iii) regression, (iv) binding-site indexing, and (v) other composite outputs such as PTM—highlighting the framework’s task-agnostic decoding format.

3 EXPERIMENTS

We evaluated *Prot2Token* in multiple tasks on different datasets, including the protein-level, residue-level, and protein-protein level. For a subset of these tasks, we incorporated a self-supervised pre-training stage for the autoregressive decoder as an initial step. In all experiments, the protein encoder in *Prot2Token* was initialized using the pre-trained *ESM2-650m* model. For the decoder part, we used an autoregressive language model with different configurations based on the size of the *ESM* encoder and hyperparameters of the autoregressive decoder (Appendix A.1). We only considered *BARTSmiles* as the chemical encoder for the protein-ligand affinity task and disabled it for the other tasks. We optimized the number of unfrozen ESM-2 encoder layers for each task to align model capacity with task complexity and data availability; specific hyperparameters for each task are detailed in Appendix A.4.

Optimization was carried out with the AdamW optimizer (Loshchilov, 2017), applying a weight decay of 0.1 and using beta-1 and beta-2 values of 0.9 and 0.98, respectively, while setting epsilon to 1e-7. The learning rate followed a cosine annealing schedule with an initial warm-up phase (Loshchilov & Hutter, 2016), starting at 1e-6 and gradually increasing to 5e-5 over the first 256 steps unless stated otherwise. The training was performed using the PyTorch 2 framework (Ansel et al., 2024) on a single computational node equipped with four Nvidia A100 GPUs (80GB each).

3.1 CLASSIFICATION

This category includes multi-class, multi-label and hierarchical classification tasks such as Deeploc 2.0 and ER. The results are shown in Tables 1 and 2. In Deeploc 2 dataset, we significantly improved the performance compared to the original method, and also, the ER task result showed that the performance was boosted 7.5 percent by using multi-task learning. We could not calculate the Fmax metric for the EC and GO tasks, so we only considered the accuracy and F_1 scores to evaluate performance. Consequently, direct comparisons with other methods were not possible. Supplementary results with additional details are in Appendix A.4.1.

3.2 REGRESSION

This category encompasses four tasks: protein stability prediction, fluorescence intensity prediction, protein-ligand binding affinity estimation, and protein mutation stability assessment. The first two

324 tasks utilize a single protein sequence as input. In contrast, the protein-ligand affinity task takes both
 325 a protein sequence and a molecular *SMILES* string as input, while the mutation stability task uses a
 326 pair of protein sequences representing wild-type and mutant variants.
 327

328
 329 Table 1: Localization prediction using Deeploc-2
 330 dataset. The results are based on the independent
 331 test set.

Method	Macro-F ₁	Encoder
Baseline	0.449	ESM2-650m
Deeploc-2 (Thumuluri et al., 2022)	0.46	ProtT5
Prot2Token-B	0.5364	ESM2-650m

332
 333 The results for these tasks are presented in Tables 3, 4, 6, and 7. Additional experimental details can be
 334 found in Appendix A.4.2. Across all regression tasks, *Prot2Token* consistently outperformed baseline
 335 methods from the PEER benchmark. Notably, in the fluorescence prediction task, multi-task learning
 336 led to a performance gain of up to 5.6% (Table 7). For mutation stability prediction, *Prot2Token*
 337 achieved a substantial improvement of over 51.5% compared to the best-performing baseline model
 338 as shown in Table 4.
 339

340 3.3 BINDING SITE

341 We evaluated *Prot2Token* on two binding site prediction tasks: protein-ligand and protein-protein. For
 342 protein-ligand binding sites, each ligand type is represented by a dedicated task token in the decoder,
 343 which enables the model to capture ligand-specific interactions directly from protein sequences and
 344 learnable task tokens.
 345

346 Table 3: Comparing protein-ligand affinity pre-
 347 diction methods on the test set. †: chemical
 348 encoder is attached.

Method	RMSE	Encoder
PEER (Xu et al., 2022) (fine-tuned)	1.559	ESM1-1b
PEER (Xu et al., 2022) (fine-tuned)	1.562	ProtBert
Prot2Token-B†	1.3887	ESM2-650m

349 Table 2: Comparing methods on ER dataset.
 350 PLA and ST stand for protein-ligand affinity and
 351 stability, respectively. †: chemical encoder is
 352 attached.

Method	Aux-Tasks	Accuracy	Encoder
Baseline	-	83.81	ESM2-650m
CoupleNet (Hu et al., 2023)	-	89.0	ProtT5
Prot2Token-B	-	79.29	ESM2-650m
Prot2Token-B†	Deeploc+PLA+ST	86.83	ESM2-650m

353 Table 4: Comparison of mutation effect prediction
 354 models on the ProteinGym benchmark with
 355 original supervised 5-fold cross-validation indices.
 356 Additional baselines are included from the
 357 original ProteinGym paper (Notin et al., 2023). †
 358 denotes a linear layer fine-tuned on the last four
 359 encoder blocks.

Method	Spearman
ESM-1v	0.542
MSAT	0.568
Trancption	0.571
ProteinNPT	0.613
Baseline (ESM-2†)	0.8812 ± 0.003
Prot2Token-C	0.9294 ± 0.0018

360 Table 5: F₁ scores for the top 10 ligands across different training configurations on the test sets, with
 361 varying numbers of auxiliary ligands. The table summarizes the impact of jointly training with 10,
 362 20, 30, and 41 ligands on binding site prediction. † indicates that self-supervised tasks were excluded
 363 during supervised training.

Ligand	10 ligands †	10 ligands	20 ligands	30 ligands	41 ligands
Average	0.1883	0.6076	0.5942	0.6181	0.6132
Weighted Average	0.1849	0.6297	0.6277	0.6368	0.6353

364 We introduced a separate self-supervised pre-training stage for the decoder weights to enhance model
 365 initialization to improve predictive performance of binding site prediction-type tasks before training
 366 such tasks. This strategy significantly improves the model’s ability across tasks require a wide range
 367 of binding site indices. A detailed rationale and methodology for this self-supervised pre-training are
 368 provided in Appendix A.4.3. We reported high-level performance results of protein-ligand binding
 369 site prediction in Table 5, demonstrating that *Prot2Token* achieves competitive predictive accuracy
 370 across various ligand types with the help of self-supervised pre-training (see detailed results of this
 371 task and protein-protein binding site in Appendix A.4.4).

Table 6: Comparing *Prot2Token* with other methods on stability prediction.

Method	Spearman	Encoder
Baseline	0.7527	ESM2-650m
PEER(Xu et al., 2022) (fine-tuned)	0.75	ESM1-1b
PEER(Xu et al., 2022) (fine-tuned)	0.771	ProtBert
Prot2Token-B	0.7947	ESM2-650m

Table 7: Comparing fluorescence prediction methods w/ and w/o multi-task learning. PLA and ST stand for protein-ligand affinity and stability, respectively. We considered the fine-tuned methods of PEER as the comparison. \dagger : chemical encoder is attached.

Method	Aux-tasks	Spearman	Encoder
Baseline	-	0.676	ESM2-650m
PEER (Xu et al., 2022)	-	0.679	ESM1-1b
PEER (Xu et al., 2022)	-	0.679	ProtBert
Prot2Token-B	-	0.7389	ESM2-650m
Prot2Token-B \dagger	PLA	0.7766	ESM2-650m
Prot2Token-B \dagger	PLA+ST	0.78	ESM2-650m

Furthermore, to understand the representation learned by the task tokens, we explored their embeddings and identified relationships that correlate closely with biochemical properties (Appendix A.5). These findings, visualized in Appendix, Figure 17, indicate that task tokens not only serve as input identifiers but also encode biologically relevant information. Leveraging these insights, we further utilized the learned relationships to boost predictive accuracy for underrepresented ligands, achieving significant performance gains as summarized in Table 34. More details in Appendix A.5.5.

3.4 SEQUENCE-TO-SEQUENCE

In this part, we evaluated *Prot2Token* on residue-wise sequences by formulating it as a sequence labeling task, where the model generates a discrete token for each residue in the input protein sequence. The main focus of this section is on the challenging task of sequence-to-3D structure prediction. Here, *Prot2Token* is trained to generate discrete 3D structure tokens from amino acid sequences using a vector quantized variational autoencoder (VQ-VAE) based representation for protein backbone coordinates. The results are summarized in Table 8, which reports TM-score and runtime for representative structure prediction methods. Notably, *Prot2Token-D* demonstrates a dramatic speed advantage, producing structure predictions for a typical 384-residue protein in 1–2 seconds on a single A100 GPU—approximately three orders of magnitude faster than AF2 with multiple sequence alignment (MSA) input, which typically requires 18–25 minutes for inference. This substantial speed-up makes *Prot2Token* particularly well-suited for large-scale or real-time structure generation scenarios. Representative examples of successful and unsuccessful 3D structure predictions are illustrated in Figure 13 and Figure 14, respectively. Interestingly, although the validation perplexity continues to decrease (Figure 15), structure accuracy plateaus at ~ 0.55 TM-score on CAMEO 2024; this aligns with the ~ 0.60 TM-score reconstruction ceiling of the VQ-VAE tokenizer, indicating a tokenizer-imposed bottleneck rather than a lack of decoder convergence. Results for secondary structure appear in Appendix; Table 27.

Table 8: 3D structure prediction on continuous automated model evaluation (CAMEO 2024) (Jan 2024 to Jan 2025) (Haas et al., 2018). Inference time of all methods is reported on identical A100 hardware for a representative 384-residue protein sequence. † Due to computational cost, TM-score for AF2 methods is reported from the *ESM2* publication, using the CAMEO benchmark from April 2022 and June 2022.

Method	TM-score	A100 Wall-clock (384-aa)	Speed-up
Prot2Token-D	0.54	1–2 s	≈1000×
ESMFold (ESM2-3B) (ESM Team, 2024)	0.79	14.2 s	77×
AF2 (w/o MSA) (Varadi et al., 2022)†	0.41	20–30 s	54×
AF2 (w/ MSA) (Varadi et al., 2022)†	0.88	18–25 min	1×

3.5 OTHER TYPES

Building on the model’s ability to predict binding sites (Section 3.3), we extended our approach to include protein-kinase phosphorylation site prediction, a task with significant real-world applications. For this, we selected protein-kinase sequence pairs along with their corresponding phosphorylation sites and jointly trained them alongside 20 self-supervised tasks. The fine-tuning phase started from the latest checkpoint obtained during the self-supervised pre-training stage. In this task, the self-supervised tasks were reduced to a total of 20,000 samples. Substrate sequences longer than 1,280 amino acids were excluded during training and evaluation. Additionally, the total sequence

length, combining substrate and kinase sequences, was capped at 2,048 tokens, with kinase sequences truncated as necessary to fit within this limit. The batch size was set to process 98,304 tokens per iteration. We enabled fine-tuning of the last eight blocks of the protein encoder.

Table 9, compares our results with two phosphorylation prediction tools, GPS 6.0 (Chen et al., 2023) and KinasePhos3 (Ma et al., 2023). Predictions with scores above 0.7 were classified as true positives. For GPS 6.0, we generated results by selecting each kinase group individually on its platform. Since the training split of GPS 6.0 is not publicly available, there is a risk of data contamination between our validation set and GPS 6.0’s training data. This could result in artificially high-performance estimates for GPS 6.0, potentially reflecting memorization rather than true generalization.

Table 9: Comparative F₁ results of our method against leading tools (KinasePhos3 and GPS 6.0) across the validation, GPS test, and rare groups test sets.

Method	Validation Set (F ₁)	GPS Test Set (F ₁)	Rare Groups Test Set (F ₁)
KinasePhos3 (Ma et al., 2023)	0.0747	0.0421	0.3178
GPS 6.0 (Chen et al., 2023)	0.3076	0.2398	0.4000
Prot2Token-C	0.4966	0.4059	0.4242

4 DISCUSSION

This work introduces *Prot2Token*, a unified tokenization framework that reimagines protein prediction tasks as a next token prediction. By developing a versatile tokenization strategy, we demonstrate that a single autoregressive decoder can effectively map the latent representations of pre-trained PLMs to a diverse array of biological outputs—ranging from residue-level annotations and scalar properties to complex 3D structural coordinates. This approach has the potential to represent a paradigm shift from utilizing specialized, task-specific heads to employing a general-purpose sequence generation mechanism, thereby enabling multi-task learning across completely different protein tasks that seemed impossible before.

4.1 KEY INSIGHTS AND EMPIRICAL OBSERVATIONS

Throughout the development and evaluation of *Prot2Token*, we observed several distinct behaviors that highlight both the capabilities and the idiosyncrasies of modeling proteins via next-token prediction.

Unified Tokenization. A central outcome of this study is the validation of our universal tokenization protocol. Our primary objective was not to train a single, monolithic model covering all possible downstream tasks but rather to demonstrate the feasibility of mapping the vast landscape of protein prediction problems into a cohesive generative framework. As illustrated in Figure 3, we established that virtually all protein tasks can be categorized into five structural categories: Classification, Regression, Binding Site, Sequence-to-Sequence, and Other (complex composite) tasks. By selecting and evaluating at least one representative candidate from each category, we confirmed that this unified next-token prediction format yields robust performance comparable to, and often exceeding, specialized or baseline models. This provides a scalable blueprint for bringing diverse biological tasks into the generative interface without requiring bespoke architectures for each domain.

Hierarchical Regression. A distinct advantage emerged from our single-digit tokenization strategy for regression tasks, which benefited most significantly from the unified framework. Unlike standard predictors that output a continuous value in a single "shot," our autoregressive approach effectively performs a coarse-to-fine prediction. By generating values digit-by-digit, the model first establishes the order of magnitude before iteratively refining the precision. This multi-step process allows for dynamic internal adjustments as the prediction becomes more granular. Consequently, *Prot2Token* outperformed the strong *ESM* + linear probe baseline—utilizing the same encoder—in nearly all regression benchmarks. As evidenced by Tables 3, 4, 6, 7, and Appendix Tables 21, 22, our method significantly surpasses the best baseline in all tasks except protein thermostability prediction (Table 23), validating that discretizing continuous spaces into hierarchical token sequences is a highly effective modeling strategy.

Multi-Task Learning. While investigating the full spectrum of cross-task learning (including negative transfer) was constrained by the computational cost of balancing highly diverse data distributions, we utilized protein-ligand binding site prediction as a controlled environment to study these dynamics. By treating the prediction of binding sites for 41 distinct ligands as separate tasks (each defined by a

unique prompt) we observed that aggregating tasks yielded clear synergistic benefits, particularly for data-scarce targets. Crucially, our deep investigation into the learned task token embeddings (Appendix A.5) revealed that the model encoded physicochemical correlations, grouping ligands by properties such as molecular weight and charge without explicit supervision. This semantic structure in the task space facilitated knowledge transfer, allowing the model to leverage latent patterns from over-represented ligands to significantly boost prediction accuracy for chemically similar, underrepresented ligands (Table 34). Beyond the ligand domain, we similarly observed beneficial correlations when aggregating distinct prediction types to form auxiliary tasks for a specific target, as demonstrated by the performance gains reported in Tables 2 and 7.

Simplification and Efficiency. A defining capability of *Prot2Token* is its ability to bring disparate and structurally complex tasks, such as kinase-specific phosphorylation (requiring multi-sequence context) and 3D structure prediction (requiring geometric reasoning), into the same simplified architectural flow. This unification renders traditionally complex prediction pipelines computationally straightforward. In the case of 3D structure prediction, this simplicity translates to an inference speedup of approximately $\sim 1000 \times$ compared to AlphaFold2 (Table 8). This efficiency arises because every amino acid contributes to only one fixed computational step in the decoder’s generation process, avoiding the expensive bi-directional recycling iterations of specialized models. Notably, when compared against the single-sequence (no-MSA) version of AlphaFold2, *Prot2Token* surpasses the baseline in both prediction quality and inference speed, demonstrating that general-purpose autoregressive decoders are a viable, high-throughput alternative for structure modeling.

4.2 LIMITATIONS

The quality and distribution of labels vary significantly across protein prediction tasks. While some datasets are uniform, others suffer from extreme imbalance; for instance, the Fold classification dataset contains classes with single samples (Appendix A.4.1), and binding site indices follow a severe long-tail distribution (Figure 9 and Figure 10). Our analysis suggests this sensitivity is a data limitation rather than an architectural flaw, as *Prot2Token* excels when data is abundant. We mitigated some of these irregularities via engineering interventions—such as token weighting and self-supervised pre-training—rather than fundamental architectural changes. This heterogeneity necessitated validating the tokenization protocol across task categories rather than pursuing a monolithic “all-task” training run. However, we anticipate this issue will diminish in real-world applications where datasets are typically magnitudes larger than academic benchmarks, thereby reducing the prevalence of extreme data label sparsity.

Furthermore, performance is intrinsically bounded by the foundational models used. Biases in the protein encoder (e.g., ESM2) propagate to predictions, for instance, the accuracy plateau in 3D structure prediction ($\text{TM-score} \approx 0.55$) reflects the reconstruction ceiling of the VQ-VAE tokenizer. Consequently, closing these gaps requires integrating higher-fidelity components rather than altering the predictor architecture.

4.3 FUTURE DIRECTIONS

Looking ahead, several research avenues promise to extend the capabilities of this framework. A primary technical objective is the development of high-fidelity, discrete tokenizers for 3D structures that can surpass the current reconstruction bottlenecks, potentially allowing the speed of *Prot2Token* to be paired with high-accuracy folding. Additionally, moving beyond deterministic greedy decoding to explore stochastic sampling strategies could unlock a richer landscape of probabilistic outputs, which is particularly valuable for modeling conformational diversity in structure prediction.

Perhaps the most compelling direction is the inversion of the current paradigm: extending *Prot2Token* from prediction to generation. The unified architecture naturally supports both workflows where the model could not only predict properties from sequence but also generate novel sequences conditioned on desired property tokens. This would allow for the seamless integration of prediction and design within a single cohesive model, potentially accelerating the *in silico* development of novel therapeutics and biomaterials.

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
543 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
544 [arXiv preprint arXiv:2303.08774](https://arxiv.org/abs/2303.08774), 2023.

545 Jingmin An and Xiaogang Weng. Collectively encoding protein properties enriches protein language
546 models. *BMC bioinformatics*, 23(1):467, 2022.
547

548 Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
549 Bin Bao, Peter Bell, David Berard, Evgeni Burovski, et al. Pytorch 2: Faster machine learning
550 through dynamic python bytecode transformation and graph compilation. In *Proceedings of the*
551 *29th ACM International Conference on Architectural Support for Programming Languages and*
552 *Operating Systems, Volume 2*, pp. 929–947, 2024.

553 Jose Juan Almagro Armenteros, Marco Salvatore, Olof Emanuelsson, Ole Winther, Gunnar Von Hei-
554 jne, Arne Elofsson, and Henrik Nielsen. Detecting sequence signals in targeting peptides using
555 deep learning. *Life science alliance*, 2(5), 2019.
556

557 Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge Weissig, Ilya N.
558 Shindyalov, and Philip E. Bourne. The protein data bank. *Nucleic Acids Research*, 28(1):235–242,
559 01 2000. ISSN 0305-1048. doi: 10.1093/nar/28.1.235. URL <https://doi.org/10.1093/nar/28.1.235>.
560

561 Aadyot Bhatnagar, Sarthak Jain, Joel Beazer, Samuel C Curran, Alexander M Hoffnagle, Kyle Ching,
562 Michael Martyn, Stephen Nayfach, Jeffrey A Ruffolo, and Ali Madani. Scaling unlocks broader
563 generation and deeper functional understanding of proteins. *bioRxiv*, pp. 2025–04, 2025.
564

565 Brigitte Boeckmann, Amos Bairoch, Rolf Apweiler, Marie-Claude Blatter, Anne Estreicher, Elisabeth
566 Gasteiger, Maria J Martin, Karine Michoud, Claire O'Donovan, Isabelle Phan, et al. The swiss-prot
567 protein knowledgebase and its supplement trembl in 2003. *Nucleic acids research*, 31(1):365–370,
568 2003.

569 Anton Bushuiev, Roman Bushuiev, Petr Kouba, Anatolii Filkin, Marketa Gabrielova, Michal Gabriel,
570 Jiri Sedlar, Tomas Pluskal, Jiri Damborsky, Stanislav Mazurenko, et al. Learning to design protein-
571 protein interactions with enhanced generalization, 2024. URL <https://arxiv.org/abs/2310.18515>.
572

573 Tadeusz Caliński and Jerzy Harabasz. A dendrite method for cluster analysis. *Communications in*
574 *Statistics-theory and Methods*, 3(1):1–27, 1974.

575 Miaoqiao Chen, Weizhi Zhang, Yujie Gou, Danyang Xu, Yuxiang Wei, Dan Liu, Cheng Han,
576 Xinhe Huang, Chengzhi Li, Wanshan Ning, et al. Gps 6.0: an updated server for prediction of
577 kinase-specific phosphorylation sites in proteins. *Nucleic acids research*, 51(W1):W243–W250,
578 2023.

579 Tianlong Chen and Chengyue Gong. Hotprotein: A novel framework for protein thermostability
580 prediction and editing. *NeurIPS 2022*, 2022.
581

582 Zhiyuan Chen, Tianhao Chen, Chenggang Xie, Yang Xue, Xiaonan Zhang, Jingbo Zhou, and Xiaomin
583 Fang. Unifying sequences, structures, and descriptions for any-to-any protein generation with the
584 large multimodal model helixprotx. [arXiv preprint arXiv:2407.09274](https://arxiv.org/abs/2407.09274), 2024.
585

586 Gayane Chilingaryan, Hovhannes Tamoyan, Ani Tevosyan, Nelly Babayan, Lusine Khond-
587 karyan, Karen Hambardzumyan, Zaven Navoyan, Hrant Khachatrian, and Armen Aghajanyan.
588 Bartsmisses: Generative masked language models for molecular representations. [arXiv preprint](https://arxiv.org/abs/2211.16349)
589 [arXiv:2211.16349](https://arxiv.org/abs/2211.16349), 2022.

590 Gene Ontology Consortium. The gene ontology project in 2008. *Nucleic acids research*, 36(suppl_1):
591 D440–D444, 2008.
592

593 UniProt Consortium. Uniprot: a worldwide hub of protein knowledge. *Nucleic acids research*, 47
(D1):D506–D515, 2019.

594 Ahmed Elnaggar, Hazem Essam, Wafaa Salah-Eldin, Walid Moustafa, Mohamed Elkerdawy, Char-
 595 lotte Rochereau, and Burkhard Rost. Ankh: Optimized protein language model unlocks general-
 596 purpose modelling. [arXiv preprint arXiv:2301.06568](https://arxiv.org/abs/2301.06568), 2023.

597

598 ESM Team. Esm cambrian: Revealing the mysteries of proteins with unsupervised learning, 2024.
 599 URL <https://evolutionaryscale.ai/blog/esm-cambrian>.

600 Clement Essien, Duolin Wang, and Dong Xu. Capsule network for predicting zinc binding sites
 601 in metalloproteins. In [2019 IEEE International Conference on Bioinformatics and Biomedicine
 \(BIBM\)](#), pp. 2337–2341. IEEE, 2019.

602

603 Noelia Ferruz and Birte Höcker. Controllable protein design with language models. [Nature Machine
 604 Intelligence](#), 4(6):521–532, 2022.

605

606 Noelia Ferruz, Steffen Schmidt, and Birte Höcker. Protgpt2 is a deep unsupervised language model
 607 for protein design. [Nature communications](#), 13(1):4348, 2022.

608 Benoit Gaujac, Jérémie Donà, Liviu Copoiu, Timothy Atkinson, Thomas Pierrot, and Thomas D
 609 Barrett. Learning the language of protein structure. [arXiv preprint arXiv:2405.15840](https://arxiv.org/abs/2405.15840), 2024.

610

611 Jürgen Haas, Alessandro Barbato, Dario Behringer, Gabriel Studer, Steven Roth, Martino Bertoni,
 612 Khaled Mostaguir, Rafal Gumienny, and Torsten Schwede. Continuous automated model evalua-
 613 tion (cameo) complementing the critical assessment of structure prediction in casp12. [Proteins:
 614 Structure, Function, and Bioinformatics](#), 86:387–398, 2018.

615 Daniel Hesslow, Niccolò Zanichelli, Pascal Notin, Iacopo Poli, and Debora Marks. Rita: a study on
 616 scaling up generative protein sequence models. [arXiv preprint arXiv:2205.05789](https://arxiv.org/abs/2205.05789), 2022.

617

618 Jie Hou, Badri Adhikari, and Jianlin Cheng. Deepsf: deep convolutional neural network for mapping
 619 protein sequences to folds. [Bioinformatics](#), 34(8):1295–1303, 2018.

620

621 Bozhen Hu, Cheng Tan, Jun Xia, Jiangbin Zheng, Yufei Huang, Lirong Wu, Yue Liu, Yongjie Xu, and
 622 Stan Z Li. Learning complete protein representation by deep coupling of sequence and structure.
 623 [bioRxiv](#), pp. 2023–07, 2023.

624

625 Xiuzhen Hu, Qiwen Dong, Jianyi Yang, and Yang Zhang. Recognizing metal and acid radical
 626 ion-binding sites by integrating ab initio modeling with template-based transfers. [Bioinformatics](#),
 627 32(21):3260–3269, 2016.

628

629 Jiaying Huang, Qiupeng Lin, Hongyuan Fei, Zixin He, Hu Xu, Yunjia Li, Kunli Qu, Peng Han, Qiang
 630 Gao, Boshu Li, et al. Discovery of deaminase functions by structure-based protein clustering. [Cell](#),
 631 186(15):3182–3195, 2023.

632

633 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 634 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
 635 protein structure prediction with alphafold. [nature](#), 596(7873):583–589, 2021.

636

637 Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang Li, Benjamin A
 638 Shoemaker, Paul A Thiessen, Bo Yu, et al. Pubchem 2023 update. [Nucleic acids research](#), 51(D1):
 639 D1373–D1380, 2023.

640

641 Tim Kucera, Carlos Oliver, Dexiong Chen, and Karsten Borgwardt. Proteinshake: Building datasets
 642 and benchmarks for deep learning on protein structures. In [Thirty-seventh Conference on Neural
 643 Information Processing Systems Datasets and Benchmarks Track](#), 2023.

644

645 Tim Kucera, Carlos Oliver, Dexiong Chen, and Karsten Borgwardt. Proteinshake: building
 646 datasets and benchmarks for deep learning on protein structures. [Advances in Neural Information
 647 Processing Systems](#), 36, 2024.

648

649 Weizhong Li and Adam Godzik. Cd-hit: a fast program for clustering and comparing large sets of
 650 protein or nucleotide sequences. [Bioinformatics](#), 22(13):1658–1659, 2006.

651

652 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa,
 653 Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of protein sequences at
 654 the scale of evolution enable accurate structure prediction. [bioRxiv](#), 2022:500902, 2022.

648 Huaqing Liu, Peiyi Chen, Xiaochen Zhai, Ku-Geng Huo, Shuxian Zhou, Lanqing Han, and Guoxin
 649 Fan. Ppb-affinity: Protein-protein binding affinity dataset for ai-based protein drug discovery.
 650 *Scientific Data*, 11(1):1–11, 2024.

651

652 I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.

653 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv*
 654 *preprint arXiv:1608.03983*, 2016.

655

656 Chih-Hao Lu, Chih-Chieh Chen, Chin-Sheng Yu, Yen-Yi Liu, Jia-Jun Liu, Sung-Tai Wei, and Yu-
 657 Feng Lin. Mib2: metal ion-binding site prediction and modeling server. *Bioinformatics*, 38(18):
 658 4428–4429, 2022.

659

660 Liuzhenghao Lv, Zongying Lin, Hao Li, Yuyang Liu, Jiaxi Cui, Calvin Yu-Chian Chen, Li Yuan,
 661 and Yonghong Tian. Prollama: A protein large language model for multi-task protein language
 662 processing. *arXiv preprint arXiv:2402.16445*, 2024.

663

664 Renfei Ma, Shangfu Li, Wenshuo Li, Lantian Yao, Hsien-Da Huang, and Tzong-Yi Lee. Kinasephos
 665 3.0: redesign and expansion of the prediction on kinase-specific phosphorylation sites. *Genomics,*
666 proteomics & bioinformatics, 21(1):228–241, 2023.

667

668 Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand, Raphael R Eguchi,
 669 Po-Ssu Huang, and Richard Socher. Progen: Language modeling for protein generation. *arXiv*
 670 *preprint arXiv:2004.03497*, 2020.

671

672 Nozomi Nagano. Ezcadb: the enzyme catalytic-mechanism database. *Nucleic acids research*, 33
 673 (suppl_1):D407–D412, 2005.

674

675 Erik Nijkamp, Jeffrey A Ruffolo, Eli N Weinstein, Nikhil Naik, and Ali Madani. Progen2: exploring
 676 the boundaries of protein language models. *Cell systems*, 14(11):968–978, 2023.

677

678 Pascal Notin, Aaron Kollasch, Daniel Ritter, Lood van Niekerk, Steffanie Paul, Han Spinner, Nathan
 679 Rollins, Ada Shaw, Rose Orenbuch, Ruben Weitzman, Jonathan Frazer, Mafalda Dias, Dinko
 680 Franceschi, Yarin Gal, and Debora Marks. Proteingym: Large-scale benchmarks for protein fitness
 681 prediction and design. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
 682 (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 64331–64379. Curran
 683 Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/cac723e5ff29f65e3fcbb0739ae91bee-Paper-Datasets_and_Benchmarks.pdf.

684

685 Dan Ofer, Nadav Brandes, and Michal Linial. The language of proteins: Nlp, machine learning &
 686 protein sequences. *Computational and Structural Biotechnology Journal*, 19:1750–1758, 2021.

687

688 Marina V Omelchenko, Michael Y Galperin, Yuri I Wolf, and Eugene V Koonin. Non-homologous
 689 isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution. *Biology*
 690 *direct*, 5:1–20, 2010.

691

692 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 693 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 694 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 695 27744, 2022.

696

697 Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Peter Chen, John Canny, Pieter Abbeel,
 698 and Yun Song. Evaluating protein transfer learning with tape. *Advances in neural information*
 699 *processing systems*, 32, 2019.

700

701 Rahmatullah Roche, Bernard Moussad, Md Hossain Shuvo, Sumit Tarafder, and Debswapan Bhat-
 702 tacharya. Equipnas: improved protein–nucleic acid binding site prediction using protein-language-
 703 model-informed equivariant deep graph neural networks. *Nucleic Acids Research*, 52(5):e27–e27,
 704 2024.

705

706 Robert Schmirler, Michael Heinzinger, and Burkhard Rost. Fine-tuning protein language models
 707 boosts predictions across diverse tasks. *Nature Communications*, 15(1):7407, 2024.

702 Jung Eun Shim, Ji Hyun Kim, Junha Shin, Ji Eun Lee, and Insuk Lee. Pathway-specific protein
 703 domains are predictive for human diseases. *PLoS computational biology*, 15(5):e1007052, 2019.
 704

705 Palistha Shrestha, Jeevan Kandel, Hilal Tayara, and Kil To Chong. Post-translational modification
 706 prediction via prompt-based fine-tuning of a gpt-2 model. *Nature Communications*, 15(1):6699,
 707 2024.

708 Baris E Suzek, Yuqi Wang, Hongzhan Huang, Peter B McGarvey, Cathy H Wu, and UniProt
 709 Consortium. Uniref clusters: a comprehensive and scalable alternative for improving sequence
 710 similarity searches. *Bioinformatics*, 31(6):926–932, 2015.

711 Vineet Thumuluri, José Juan Almagro Armenteros, Alexander Rosenberg Johansen, Henrik Nielsen,
 712 and Ole Winther. Deeploc 2.0: multi-label subcellular localization prediction using protein
 713 language models. *Nucleic Acids Research*, 50(W1):W228–W234, 2022.

714 Serbulent Unsal, Heval Atas, Muammer Albayrak, Kemal Turhan, Aybar C Acar, and Tunca Doğan.
 715 Learning functional properties of proteins with language models. *Nature Machine Intelligence*, 4
 716 (3):227–245, 2022.

717 Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina
 718 Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, et al. AlphaFold protein
 719 structure database: massively expanding the structural coverage of protein-sequence space with
 720 high-accuracy models. *Nucleic acids research*, 50(D1):D439–D444, 2022.

721 Chenwei Wang, Haodong Xu, Shaofeng Lin, Wankun Deng, Jiaqi Zhou, Ying Zhang, Ying Shi,
 722 Di Peng, and Yu Xue. Gps 5.0: An update on the prediction of kinase-specific phosphorylation
 723 sites in proteins. *Genomics, Proteomics Bioinformatics*, 18(1):72–80, 2020. ISSN 1672-0229.
 724 doi: <https://doi.org/10.1016/j.gpb.2020.01.001>. URL <https://www.sciencedirect.com/science/article/pii/S1672022920300279>.

725 Duolin Wang, Mahdi Pourmirzaei, Usman L Abbas, Shuai Zeng, Negin Manshour, Farzaneh Esmaili,
 726 Biplab Poudel, Yuexu Jiang, Qing Shao, Jin Chen, et al. S-plm: Structure-aware protein language
 727 model via contrastive learning between sequence and structure. *Advanced Science*, 12(5):2404212,
 728 2025a.

729 Lei Wang, Xudong Li, Han Zhang, Jinyi Wang, Dingkang Jiang, Zhidong Xue, and Yan Wang. A
 730 comprehensive review of protein language models, 2025b. URL <https://arxiv.org/abs/2502.06881>.

731 Zeyuan Wang, Qiang Zhang, Keyan Ding, Ming Qin, Xiang Zhuang, Xiaotong Li, and Huajun Chen.
 732 Instructprotein: Aligning human and protein language via knowledge instruction. *arXiv preprint*
 733 [arXiv:2310.03269](https://arxiv.org/abs/2310.03269), 2023.

734 Edwin C Webb et al. *Enzyme nomenclature 1992. Recommendations of the Nomenclature
 735 Committee of the International Union of Biochemistry and Molecular Biology on the
 736 Nomenclature and Classification of Enzymes*. Number Ed. 6. Academic Press, 1992.

737 Konstantin Weissenow and Burkhard Rost. Are protein language models the new universal key?
 738 *Current Opinion in Structural Biology*, 91:102997, 2025.

739 Minghao Xu, Zuobai Zhang, Jiarui Lu, Zhaocheng Zhu, Yangtian Zhang, Ma Chang, Runcheng
 740 Liu, and Jian Tang. Peer: a comprehensive and multi-task benchmark for protein sequence
 741 understanding. *Advances in Neural Information Processing Systems*, 35:35156–35173, 2022.

742 Dong-Jun Yu, Jun Hu, Jing Yang, Hong-Bin Shen, Jinhui Tang, and Jing-Yu Yang. Designing
 743 template-free predictor for targeting protein-ligand binding sites with classifier ensemble and
 744 spatial clustering. *IEEE/ACM transactions on computational biology and bioinformatics*, 10(4):
 745 994–1008, 2013.

746 Qianmu Yuan, Sheng Chen, Yu Wang, Huiying Zhao, and Yuedong Yang. Alignment-free metal
 747 ion-binding site prediction from protein sequence through pretrained language model and multi-
 748 task learning. *Briefings in Bioinformatics*, 10 2022a. ISSN 1477-4054. doi: 10.1093/bib/bbac444.
 749 URL <https://doi.org/10.1093/bib/bbac444>.

756 Qianmu Yuan, Sheng Chen, Yu Wang, Huiying Zhao, and Yuedong Yang. Alignment-free metal ion-
757 binding site prediction from protein sequence through pretrained language model and multi-task
758 learning. *Briefings in bioinformatics*, 23(6):bbac444, 2022b.

759
760 Chengxin Zhang, Xi Zhang, Lydia Freddolino, and Yang Zhang. Biolip2: an updated structure
761 database for biologically relevant ligand–protein interactions. *Nucleic acids research*, 52(D1):
762 D404–D412, 2024.

763 Feixiang Zhou, Shuo Zhang, Hufeng Zhang, and Jian K Liu. Procesa: Contrast-enhanced structure-
764 aware network for thermostability prediction with protein language models. *Journal of Chemical
765 Information and Modeling*, 65(5):2304–2313, 2025.

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

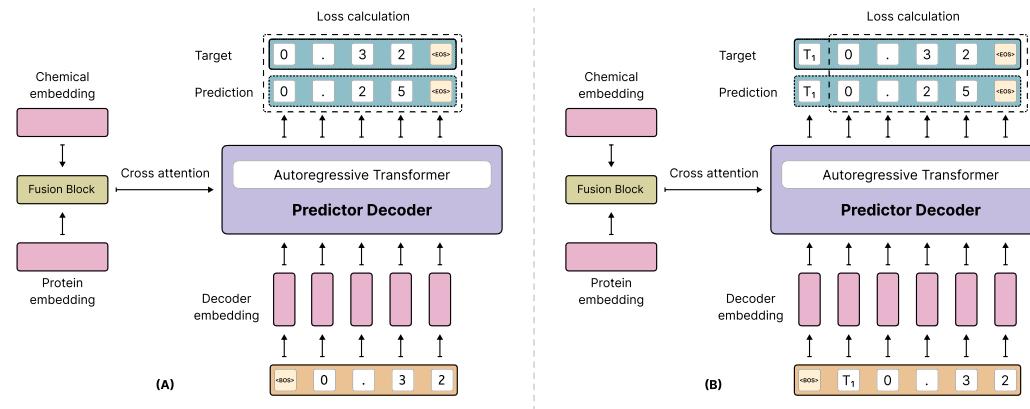
805

806

807

808

809

810 A APPENDIX
811812
813 A.1 ARCHITECTURE
814815
816
817 The *predictor decoder* in Prot2Token is an autoregressive transformer that utilizes two information
818 streams: (i) the fused encoder context, derived from protein (and optionally, chemical) embeddings
819 processed and merged by the fusion block, and (ii) a sequence of decoder input tokens (Figure 4).
820 The fusion block employs a straightforward architecture where, for instance, protein encoder outputs
821 are first augmented with a learnable positional encoding and subsequently passed through a linear
822 projection layer before being utilized by the decoder.
823824 In the standard setting (Figure 4A), the decoder input begins with a special $\langle \text{BOS} \rangle$ token followed
825 directly by the tokenized label sequence (e.g., the digits of a regression target). Each position attends
826 only to previous tokens via causal masking, while simultaneously receiving global context through
827 cross-attention to the fused encoder features. The training objective is the negative log-likelihood of
828 the full label sequence, so loss is accumulated over every decoder position.
829830 For multi-task training, we prepend a task token T_i that specifies which prediction head the
831 decoder should emulate (Figure 4B). This token is drawn from its own learnable embedding table
832 and is passed through the same decoder stack as the label tokens, enabling the model to condition its
833 hidden states on task identity. During optimization, we apply the token-weighted loss described in
834 Section 2.2: the task token position is assigned weight $w_1 = 0$, effectively masking it from gradient
835 updates, whereas the remaining positions use token-specific weights w_t , allowing each token to be
836 penalized differently during training. This scheme enables the prompt to steer the generation process
837 without being penalized for reconstruction errors.
838839
840
841
842
843
844
845
846
847
848
849
850
851
852 Figure 4: Task-token prompting and loss masking in the *Prot2Token* decoder. (A) Standard decoding
853 starts with a $\langle \text{BOS} \rangle$ token and predicts label tokens, computing loss over all positions. (B) Prompted
854 decoding inserts a task token (T_1) before labels; this token is zero-weighted in the loss, guiding the
855 model without affecting training error.
856
857
858
859860 Together, these mechanisms allow a single decoder to (i) handle heterogeneous output formats, (ii)
861 switch tasks via lightweight prompt tokens, and (iii) share parameters across tasks without duplicating
862 specialized heads.
863Different configuration of *Prot2Token* is shown in Table 10.

864

865

Table 10: *Prot2Token* model configurations.

866

867

Name	Encoder	Decoder			
		Embedding dimension	Feedforward dimension	heads	Layers
Prot2Token-A	ESM2-35m	480	960	8	4
Prot2Token-B	ESM2-650m	640	1280	8	8
Prot2Token-C	ESM2-650m	640	2560	16	16
Prot2Token-D	ESM2-650m	1280	5120	16	16

871

872

873

During inference, the decoder generates tokens autoregressively, starting from the initial input (`<BOS>` or `Task token`) and predicting one token at a time. While various decoding strategies exist for autoregressive transformers—such as top- k sampling, nucleus (top- p) sampling, and temperature-controlled sampling—we focus exclusively on *greedy decoding* in this work, where at each step the most probable token is selected. Exploring the effects of stochastic sampling methods on prediction performance is left for future investigation.

874

875

876

The *Prot2Token* framework employs distinct tokenization approaches for its input encoders and the output decoder. Input sequences, such as protein amino acid sequences or chemical *SMILES* representations, are processed using the built-in tokenizers associated with their respective pre-trained encoders. For instance, the protein encoder typically utilizes the character-level tokenizer from models like *ESM2* (which includes 33 unique tokens, encompassing standard amino acids and special characters). Similarly, if a chemical encoder is used (e.g., for protein-ligand tasks), it would employ its specific tokenizer, such as the unigram tokenizer from *BARTSmiles* (Chilingaryan et al., 2022)(with 1025 unique tokens, including special characters).

877

878

The core innovation of *Prot2Token* lies in its unified tokenization strategy developed for the output labels predicted by the autoregressive decoder. This strategy is crucial as it converts diverse biological prediction targets into sequences of discrete tokens. This conversion enables the decoder to handle a wide array of tasks through a consistent next-token prediction mechanism. All tokenized output sequences are standardized to begin with a `<BOS>` token and end with an `<EOS>` (end-of-sequence) token. These special tokens clearly define the boundaries of the output sequence for the decoder.

879

880

The specific methods for tokenizing different types of labels are categorized by the nature of the prediction task (Figure 3):

881

882

A.2.1 CLASSIFICATION

883

Classification tasks involve assigning one or more categorical labels to a protein or a pair of proteins. This category includes multi-class, multi-label, and hierarchical classification.

884

Multi-class classification. In multi-class each input (single protein sequence or multiple sequences like a protein pair) is assigned exactly one label from a predefined set of mutually exclusive classes, and each possible class label is mapped to a unique, discrete token. Examples include predicting protein fold class, subcellular localization, or enzyme reaction (ER) categorization. For tasks involving interactions, such as predicting if two proteins interact (a binary classification based on a protein pair input), the output is also a single token (e.g., `Interacted`). In general, the target output sequence for the decoder is a single token representing the correct class.

885

Multi-label classification. Multi-label is employed when a single protein (or input entity) can be associated with multiple labels simultaneously from non-mutually exclusive classes. This is common in tasks such as predicting gene ontology (GO) terms (e.g., GO:0005737 for cytoplasm, GO:0005829 for cytosol) or certain subcellular localization tasks (e.g., DeepLoc 2.0 (Thumuluri et al., 2022)) where a protein might reside in multiple compartments. Each relevant label is converted into its unique token, and these tokens are concatenated into a single target sequence, typically sorted alphabetically to ensure consistency (e.g., GO:0005737, GO:0005829).

890

891

Hierarchical classification. In tasks such as enzyme commission (EC) and ER predictions, proteins are categorized hierarchically. For EC, each enzyme is assigned a series of numbers representing its

918 specific catalytic activity. If the goal is to do hierarchical classification, it necessitates a specialized
 919 tokenization approach. As an example, the EC classification system is divided into four levels:
 920 the first level indicates the main enzyme class, the second level specifies the subclass, the third
 921 level defines the sub-subclass, and the fourth level denotes the serial number of the enzyme in its
 922 sub-subclass. We tokenize each EC number associated with an enzyme into a hierarchical sequence
 923 of tokens. For example, an enzyme with EC numbers 1.1.1.1 and 2.2.2.2 is tokenized as
 924 {ec_1, 1, 1, 1, ec_2, 2, 2, 2}, with each part of the EC number being represented as
 925 an individual token. This approach allows the model to capture the hierarchical nature of enzyme
 926 classifications effectively, ensuring that the different levels of EC labels are properly represented and
 927 learned. In addition to this hierarchical tokenization, we could employ a second approach where each
 928 complete EC number is treated as a unique and distinct code similar to GO datasets. For example,
 929 an enzyme with EC numbers 1.1.1.1 and 3.4.24.4 could be tokenized as {ec_1.1.1.1,
 930 ec_3.4.24.4}, with each token acting as a representative for an entire EC number. This method is
 931 also applicable to the ER dataset. This alternative tokenization could yield different results depending
 932 on the task. In our early experiments, we found that converting ER labels into a hierarchical format
 933 reduced performance compared to using a multi-label classification format, while the opposite was
 934 true for the EC task. However, we did not investigate this thoroughly in our work.

935 A.2.2 REGRESSION

936 Regression tokenization is employed for tasks requiring the prediction of continuous numerical
 937 values, represented as either floating-point or integer numbers, derived from single protein sequences,
 938 multiple sequences, or protein-ligand pairs. Illustrative examples include the prediction of protein
 939 stability (ΔT_m), fluorescence intensity (single sequence input), protein-protein structure similarity
 940 scores (multi-sequence input), and protein-ligand affinity (protein sequence and ligand SMILES string
 941 as input). Two primary strategies exist for tokenizing such numerical labels. The first, binning,
 942 involves discretizing the range of continuous values into a predefined number of fixed-size bins.
 943 For instance, if target scores range from 0.0 to 10.0, this range could be divided into 1.0-sized bins,
 944 yielding 11 distinct token categories. However, this method can suffer from limitations, particularly
 945 when data is unevenly distributed, as some bins may contain very few or no samples, leading to
 946 imbalanced data representation and potential biases during model training. To circumvent these
 947 issues, *Prot2Token* adopts a second approach: a digit-by-digit encoding strategy. In this method, each
 948 numerical value is transformed into a sequence of its constituent characters, including the sign, digits,
 949 and decimal point. This technique offers a more granular and inherently balanced representation
 950 of numerical values, promoting a more uniform distribution of data for the model. For example, a
 951 property value of -0.65 is tokenized into the sequence {minus, 0, ., 6, 5}. Similarly, a
 952 value of 123.45 would become {1, 2, 3, ., 4, 5}. During the training phase, a consistent
 953 numerical precision, typically four decimal places, is maintained for all regression labels prior to
 954 tokenization. Furthermore, if target values undergo normalization (e.g., to the [0, 1] range), the
 955 token sequences predicted by the decoder are first reconverted to numerical form and subsequently
 956 de-normalized to their original scale for evaluation.

957 We investigated the impact of token ordering on regression performance by reversing the target
 958 sequence to a right-to-left format (least significant digit first). We observed a measurable degradation
 959 in performance compared to the standard left-to-right approach. We attribute this to the loss of the
 960 coarse-to-fine inductive bias inherent in left-to-right generation, where the model first predicts the
 961 most significant digits (establishing magnitude) before refining the value with lower-order precision;
 962 reversing this order forces the model to predict fine-grained details without an established context for
 963 the overall scalar value, leading to overfitting and reduced accuracy.

964 A.2.3 SEQUENCE-TO-SEQUENCE

965 This tokenization is applied when the output is a sequence of labels corresponding residue-by-residue
 966 to the input protein sequence, meaning the output token sequence length mirrors the input protein
 967 length. Examples include Secondary Structure (SS) prediction, where each amino acid is classified
 968 into states like α -helix (H), β -strand (E), or coil (C), forming a target sequence like {H, H, C,
 969 . . .}. Another application is 3D structure prediction using structural alphabets. For instance, the
 970 encoder part of a pre-trained VQVAE model (Gaujac et al., 2024) converts 3D coordinates into a
 971 sequence of discrete 3D_number tokens (e.g., 4096), where each amino acid corresponds to one
 972 3D_i token encoding 3D structural information.

972 A.2.4 BINDING SITE
973

974 Binding site prediction involves identifying specific residue indices involved in molecular interactions,
975 such as with ligands, ions, or other proteins. For protein-ligand or protein-ion binding tasks, the
976 binding residues are represented directly by their sorted 1-based indices; for example, if residues
977 at positions 2, 3, 5, and 9 are involved in binding, the target sequence is simply {2, 3, 5, 9}.
978 Self-supervised learning tasks proposed in this work also utilizes index-based tokenization. For
979 example, to predict the positions of all Serine (S) residues in a sequence MSGLSNYT (Serines at
980 positions 2 and 5), the target sequence would be {2, 5}. Twenty such tasks can be created, one for
981 each standard amino acid, helping the decoder learn sequence-position relationships.
982

982 A.2.5 OTHER TYPES
983

984 This category includes tasks like PTMs prediction and tasks that combine different output types.
985

986 **PTMs.** This involves identifying potential modification sites and the actual modified sites. For a
987 single protein sequence input, the target sequence typically lists the 1-based indices of all potential
988 PTM sites (e.g., S, T, Y for phosphorylation), followed by a special separator token (<SEP>),
989 and then the 1-based indices of experimentally confirmed positive sites, all sorted numerically. For
990 example, for a sequence ASSKYKAMTV, phosphorylation prediction might yield {2, 3, 5, 9,
991 <SEP>, 3, 9}. In multi-sequence PTM tasks, such as substrate-kinase phosphorylation prediction,
992 the input consists of both substrate and kinase sequences. The output tokenization still focuses on the
993 substrate, listing potential and confirmed phosphorylation sites on the substrate sequence based on
994 the interaction context provided by the kinase.

995 **Combination.** Tasks like TargetP 2.0 (Armenteros et al., 2019) combine classification and regression.
996 For instance, a label might be represented as {sp, 96}, where sp is a localization class token
997 (Signal Peptide) and 96 is a binding site representing the cleavage site position. This is tokenized by
998 concatenating these two types.
999

1000 A.3 DATASET

1001 To assess *Prot2Token* across a representative spectrum of protein–biology problems, we assembled
1002 datasets from several public repositories and task-specific benchmarks. The statistics of each task are
1003 shown in Table 11.

1004
1005 Table 11: Dataset Statistics Overview. This table presents the details of the datasets utilized in this
1006 study. †: Randomly 300k of samples are used for the training in each fold.
1007

	Dataset	Train	Validation	Test	Task Type
1008	Enzyme commission (Omelchenko et al., 2010)	15,550	1,720	1,919	Classification
1009	Gene ontology (Consortium, 2008)	29,898	3,322	3,415	Classification
1010	Fold classification - Fold (Hou et al., 2018)	12,312	736	718	Classification
1011	Enzyme reaction (Webb et al., 1992)	29,215	2,562	5,651	Classification
1012	Human PPI (Xu et al., 2022)	35,669	315	237	Classification
1013	DeepLoc 2.0 (Thumaluri et al., 2022)	22,841	5,462	1,717	Classification
1014	Kinase group classification (Chen et al., 2023)	5,382	969	-	Classification
1015	Mutation stability (Notin et al., 2023)	≈1.92 million†	≈480,000 (5-fold)	-	Regression
1016	Structure similarity (Kucera et al., 2023)	300,700	4,560	4,851	Regression
1017	Protein-ligand affinity (Xu et al., 2022)	16,436	937	285	Regression
1018	Protein-protein binding affinity (Liu et al., 2024)	765	180	270	Regression
1019	Stability (Xu et al., 2022)	53,571	2,512	12,851	Regression
1020	Fluorescence (Xu et al., 2022)	21,446	5,362	27,271	Regression
1021	Thermostability (Chen & Gong, 2022)	131,260	14,584	36,461	Regression
1022	Protein-protein binding site (Bushuiev et al.)	759,282	2,918	5,499	Binding site
1023	Protein-ligand binding site (Bushuiev et al.)	16,796	2,644	5,153	Binding site
1024	Structure prediction (Varadi et al., 2022)	10,876,251	5,000	5,000	Sequence to sequence
1025	Secondary structure (Xu et al., 2022)	8,678	2,170	513	Sequence to sequence
	Target-P 2.0 (Armenteros et al., 2019)	10,400	2,605	-	Other (classification, regression)
	PTMs	Table 12	Table 12	Table 12	Other (PTM)
	Kinase phosphorylation (Chen et al., 2023)	5,382	969	146	Other (PTM)

1023 A.3.1 PEER BENCHMARK

1024 The PEER benchmark (Xu et al., 2022) provides a unified evaluation suite for protein sequence
1025 understanding, integrating datasets for protein function, subcellular localisation, secondary structure,

protein–protein interaction (PPI), and protein–ligand affinity prediction. Each task is delivered with homology-aware train/validation/test splits and pre-defined evaluation metrics, enabling direct comparison between conventional feature-engineering pipelines, sequence-embedding models, and large-scale protein language models. From PEER we adopt five datasets that align with our experimental focus: (i) human PPI pairs for binary interaction prediction, (ii) secondary-structure assignments for residue-level sequence-to-sequence labelling, (iii) fluorescence intensities for single-sequence regression, (iv) stability (ΔT_m) measurements for mutation-effect regression, and (v) protein–ligand affinity (PLA) scores for sequence–SMILES binding prediction.

A.3.2 DEEPLOC 2

For subcellular localization we adopted the DeepLoc 2.0 dataset (Thumuluri et al., 2022), which assigns up to ten compartment labels per eukaryotic protein: *Cytoplasm*, *Nucleus*, *Extracellular*, *Cell membrane*, *Mitochondrion*, *Plastid*, *Endoplasmic reticulum*, *Lysosome/Vacuole*, *Golgi apparatus*, and *Peroxisome*. DeepLoc 2.0 provides a five-fold homology partition with a maximum 30 % pairwise sequence identity between folds. In our experiments the first four folds are merged for training, while the fifth fold serves as the validation set. Evaluation is performed on the independent Human Protein Atlas (HPA) test set released with DeepLoc 2.0, which contains experimentally verified localizations for six compartments (*Cytoplasm*, *Nucleus*, *Cell membrane*, *Mitochondrion*, *Endoplasmic reticulum*, and *Golgi apparatus*). Final performance is reported on this HPA test set.

A.3.3 PTMs

In this section, we describe the process of collecting PTM data. While numerous databases and publications provide PTM data, most only offer sequence fragments, typically 21 amino acids long, with the PTM located at the center position. The largest database with PTM annotations is UniProt (Consortium, 2019), which contains over 200 million protein sequences and provides annotations for more than 200 PTM types and their respective positions for some sequences. We downloaded full-length protein sequences and PTM annotations from UniProt, focusing on annotations in the *Modified Residue*, *Lipidation*, *Glycosylation*, and *Cross-link* sections and performed an advanced search in these sections using a wildcard (*) to retrieve all values. This resulted in 106,195 protein sequences from the Reviewed (Swiss-Prot) (Boeckmann et al., 2003) dataset and 4,173,205 sequences from the Unreviewed (TREMBL) dataset. To ensure data quality, we exclusively used the protein sequences from the Reviewed (Swiss-Prot) dataset.

We downloaded the 106,195 protein sequences as JSON files for further processing, only sequences with lengths of 1,022 amino acids or fewer were retained. Next, CD-HIT (Li & Godzik, 2006) was applied to cluster the sequences based on a similarity threshold of 40% ($c=0.4$), grouping sequences with similarity above 40% into the same cluster. Subsequently, we split the data into training and testing sets in a 4:1 ratio, ensuring that sequences within the same cluster were assigned to the same dataset. Given the distribution of PTM types, we focused on six types for this study: Phosphorylation (S), Methylation (R), N-glycosylation (N), O-glycosylation (T), Acetylation (K), and Ubiquitylation (K).

Table 12 shows the statistics of the PTM datasets.

Table 12: Statistics of PTM datasets.

PTM type	Annotation in Uniprot	Amino acid	Number of sequences	Number of positions
Ubiquitylation	Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)	K	2,370	5,029
Phosphorylation	Phosphoserine	S	34,260	121,398
Acetylation	N6-acetylysine	K	9,115	23,615
Methylation	Omega-N-methylarginine	R	1,813	3,279
N-linked Glycosylation	N-linked (GlcNAc...) asparagine	N	30,310	11,576
O-linked Glycosylation	O-linked (GalNAc...) threonine	T	568	2,723
Succinylation	N6-succinyllysine	K	2,392	7,446

A.3.4 KINASE-SPECIFIC PHOSPHORYLATION SITES

The dataset was gathered from GPS 6.0 (Chen et al., 2023) and contains 24,160 phosphorylation sites. We mapped IDs from the UniProt database (Consortium, 2019) and obtained 13,374 sequences with kinase information. To retrieve kinase sequences, we used Kinase.com and the UniProt database. To reduce sequence similarity, we applied CD-HIT (Li & Godzik, 2006) with a 70% similarity threshold to group similar protein substrate sequences. We kept representatives from each cluster and

1080 selected positive substrate-kinase pairs using two criteria: (1) cross-cluster selection, where pairs
 1081 from different clusters were kept to increase diversity, and (2) within-cluster selection, where only
 1082 one unique kinase pair per cluster was retained to avoid repetition. The final dataset includes kinase
 1083 sequences, kinase information (group/family/kinase), substrate UniProt IDs, substrate sequences, and
 1084 phosphorylation sites. It contains 386 kinase types across 12 groups.

1085 The dataset was randomly split into training (5,382 unique substrates) and validation (969 unique
 1086 substrates) sets. To ensure rigorous evaluation, we defined three distinct test sets, carefully designed
 1087 to prevent any data contamination between the test, training, and validation sets:
 1088

1089 **Rare-Group Test Set.** This set includes 14 samples from two rare kinase groups, ‘*RGC*’
 1090 and ‘*PKL*’, which have a limited number of available samples. These groups were completely
 1091 excluded from the training set to assess the model’s ability to generalize to underrepresented kinase
 1092 groups. This dataset is specifically used for evaluating on phosphorylation site prediction.
 1093

1094 **GPS-Test Set.** To have a direct comparison with existing methods such as GPS 6.0, we
 1095 adopted the test set used in the GPS study. This dataset contains 146 samples of substrate-kinase
 1096 pairs, including phosphorylation site and kinase group annotations. All samples belong to the
 1097 ‘*CMGC*’ kinase group. Table 13 presents the number of samples in each set, while Table 14 details
 1098 the distribution of samples across kinase groups in each dataset.
 1099

1100 Table 13: Dataset statistics, including the number of samples, phosphorylation sites (p-sites), and kinase groups
 1101 for the training, validation, GPS test, and rare group test sets, along with overall dataset totals.
 1102

Dataset	Number of samples	Number of p-sites	Number of groups
All samples	6,511	13,374	12
Training set	5,382	10,621	10
Validation set	969	2,455	9
GPS-test	146	278	1
Rare-Group	14	25	2

1109 Table 14: Distribution of samples across kinase groups for the training, validation, GPS test, and rare group test
 1110 sets.
 1111

Group	Training set	Validation set	GPS-test	Rare-Group
AGC	1,446	231	-	-
Atypical	270	58	-	-
CAMK	653	96	-	-
CK1	100	27	-	-
CMGC	1,466	264	146	-
Other	491	99	-	-
STE	211	34	-	-
TK	677	149	-	-
TKL	68	11	-	-
RGC	-	-	-	2
PKL	-	-	-	12

1123 A.3.5 PROTEIN MUTATION STABILITY

1124 In this study, we used the supervised Deep Mutational Scanning (DMS) cross-validation subset of the
 1125 ProteinGym (Notin et al., 2023) benchmark, a large-scale and standardized resource for evaluating
 1126 protein fitness prediction models. The supervised DMS dataset comprises over 250 high-throughput
 1127 assays, covering more than 2.4 million amino acid substitutions across 217 proteins, and approxi-
 1128 mately 300,000 indel mutations across 66 proteins. Each assay provides experimentally measured
 1129 phenotypic effects for a wide range of mutations, reflecting properties such as thermostability, binding
 1130 affinity, aggregation, and viral replication. We followed the five-fold cross-validation indices defined
 1131 by ProteinGym, conducting five independent training runs, each on a 300,000-sample subset of the
 1132 full dataset due to computational constraints. ProteinGym categorizes benchmarks by mutation type
 1133 (substitutions vs. indels) and ground-truth source (DMS assays vs. clinical annotations); in this work,
 we utilized only substitution dataset within the supervised regime.

1134
1135

A.3.6 PROTEIN MELTING TEMPERATURE

1136
1137
1138
1139
1140
1141
1142
1143

We leveraged the HotProtein (Chen & Gong, 2022) sequence-only benchmark to predict protein melting temperatures from primary sequence alone. HotProtein comprises 182,000 amino acid sequences of 230 organisms, each labeled with the optimal growth temperature of its source organism (-20°C to 120°C) as a lower bound proxy of the true melting temperature of the protein. For evaluation, the ProCeSa (Zhou et al., 2025) paper defined 10-fold cross-validation splits on various subsets of the dataset, such as HP-S2C2 (binary: hot vs. cold), HP-S2C5 (five-class), and HP-S (full dataset). In our study, we used only the first fold of the provided splits, further dividing the training portion into training and validation sets.

1144
1145

A.3.7 3D STRUCTURE PREDICTION

1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

For training our model on sequence-to-structure prediction, we constructed a large-scale dataset from UniRef50 (Consortium, 2019), a redundancy-reduced cluster of protein sequences derived from UniProt. This provided approximately 67 million unique sequences. We mapped these sequences to their predicted structures using the UniProt AF2 Structural Database (Varadi et al., 2022), yielding 40 million PDB files. To ensure high structural confidence, we filtered out structures with mean pLDDT scores below 0.85, resulting in about 11 million high-confidence entries. From this filtered pool, we randomly selected 5,000 PDBs each for validation and test sets, ensuring all selected structures had average pLDDT scores above 0.90. The remaining structures were used for training. All 3D structures were converted into discrete token sequences using a pre-trained VQ-VAE model (Gaujac et al., 2024), enabling their use as target labels for autoregressive sequence-to-structure modeling.

1156
1157
1158
1159
1160
1161

The continuous automated model evaluation (CAMEO) (Haas et al., 2018) platform offers continuous, automated benchmarking of protein structure prediction methods by evaluating their performance on newly released target sequences each week, providing a real-time complement to the biennial CASP experiment. In this study, we used CAMEO targets released between January 2024 and January 2025, comprising 668 protein sequences. After filtering for sequences between 50 and 512 amino acids in length, the final dataset contained 576 sequences.

1162
1163

A.3.8 PROTEIN-PROTEIN AFFINITY

1164
1165
1166
1167
1168
1169

We used data from PPB-Affinity (Liu et al., 2024), the largest publicly available dataset for protein-protein binding (PPB) affinity. PPB-Affinity provides key information, including crystal structures of protein-protein complexes, PPB affinity values, receptor protein chains, and ligand protein chains. Since PPB-Affinity does not include protein sequences, we retrieved them from the RCSB Protein Data Bank (PDB) (Berman et al., 2000) based on the protein names provided in PPB-Affinity. To construct a relevant dataset for our model, we applied the following filtering steps:

1170
1171
1172
1173
1174
1175
1176
1177
1178

1. **Chain Filtering** – We removed samples containing more than two chains, retaining only those with a single receptor chain and a single ligand chain.
2. **Mutation Removal** – Samples containing mutated sequences were excluded.
3. **Affinity Label Processing** – For identical protein complexes with multiple PPB affinity values, we averaged the KD (M) values to obtain a single affinity label.
4. **Data Splitting** – The final dataset was split into training (50%), validation (20%), and testing (30%) sets, resulting in 765, 180, and 270 samples, respectively.

1179
1180
1181
1182
1183
1184
1185
1186
1187

The (KD_KD) values, representing dissociation constants, were preprocessed to ensure numerical stability and improve model performance. First, a log10 transformation was applied to address the wide dynamic range and skewed distribution of KD values, using the formula: $KD_{\log} = \log_{10}(KD + \epsilon)$, where $\epsilon = 10^{-16}$ prevents undefined values for extremely small inputs. The log-transformed values were then normalized to a range between 0 and 1 using Min-Max scaling based on the training dataset's minimum and maximum $KD_{\log \log}$ values. Importantly, during model metric calculation and evaluation, both the log-transformation and normalization effects were reversed, ensuring that the calculated metrics accurately reflect the original KD scale. This preprocessing pipeline provided a consistent and interpretable representation of KD values for both model training and evaluation.

1188
1189

A.3.9 GENE ONTOLOGY

1190
1191
1192
1193
1194
1195
1196
1197
1198

The GO knowledge-base provides curated associations between protein sequences and hierarchically organized terms spanning three sub-ontologies: Molecular Function, Biological Process and Cellular Component (Consortium, 2008). We downloaded the most recent GOA-UniProt annotation file, removed electronically inferred codes (IEA) and retained only leaf-level terms, yielding a multi-label dataset in which each protein can carry dozens of GO terms. Following the convention in (Consortium, 2008), proteins were clustered at 30 % global sequence identity with MMseqs2; clusters were then split 80 / 10 / 10 into training, validation and test partitions to avoid homologous leakage. Labels are tokenised as individual GO identifiers in alphabetical order, in accordance with the scheme in Section 2.2.

1199
1200
1201
1202
1203
1204
1205
1206
1207

A.3.10 ENZYME REACTION

The ER corpus collates detailed reaction schemata and catalytic-site annotations for enzymes, originally introduced by Webb (Webb et al., 1992). We used the reaction–protein mappings distributed via EzCatDB (Nagano, 2005), which capture bond-level changes and catalytic residue motifs. Each protein may participate in multiple reactions, making ER a multi-label classification task. Sequences were clustered at 40 % identity and split into 70 % training, 15 % validation and 15 % test sets. Reaction identifiers were tokenised as discrete labels; hierarchical relations (substrate → product) are ignored in this work.

1208
1209
1210
1211
1212
1213
1214
1215
1216

A.3.11 ENZYME COMMISSION

The EC hierarchy assigns a four-level numerical code to every known enzymatic function (Omelchenko et al., 2010). We retrieved the full set of Swiss-Prot entries with experimentally verified EC numbers from the UniProt “enzyme.dat” archive (Omelchenko et al., 2010). Proteins were redundancy-reduced at 40 % identity and stratified into train/val/test splits by superfamily. Tokenisation follows the hierarchical scheme in Section 2.2: each digit of the EC code is emitted as an independent token (e.g. 1, 1, 1, 1). This framing yields a four-step sequence-to-sequence prediction task.

1217
1218
1219
1220
1221
1222
1223
1224

A.3.12 FOLD CLASSIFICATION

For remote-homology evaluation we use the dataset released with DeepSF (Hou et al., 2018), which maps protein sequences onto 1,195 folds derived from CATH (Wang et al., 2025a) and SCOP. The authors provide non-redundant splits with a maximum 40 % sequence identity between training (12,312 proteins), validation (736 proteins) and test (718 proteins) sets (Hou et al., 2018). Each fold ID is tokenised as a single class token, rendering the task a large-scale multi-class classification benchmark.

1225
1226
1227
1228
1229
1230
1231
1232
1233

A.3.13 TARGETP 2.0 LOCALIZATION

TargetP 2.0 offers a homology-partitioned dataset for predicting N- or C-terminal targeting peptides and corresponding subcellular localizations (Armenteros et al., 2019). We downloaded the FASTA sequences and label CSVs from the official service repository. After filtering fragments and sequences shorter than 50 residues, the data comprise ten localization classes (*Chloroplast*, *Mitochondrion*, *Secretory pathway*, etc.), with an external HPA test set for human proteins (Armenteros et al., 2019). We adhere to the original nested cross-validation splits for training and use the HPA subset exclusively for final evaluation, casting the task as multi-class prediction with one token per localization label.

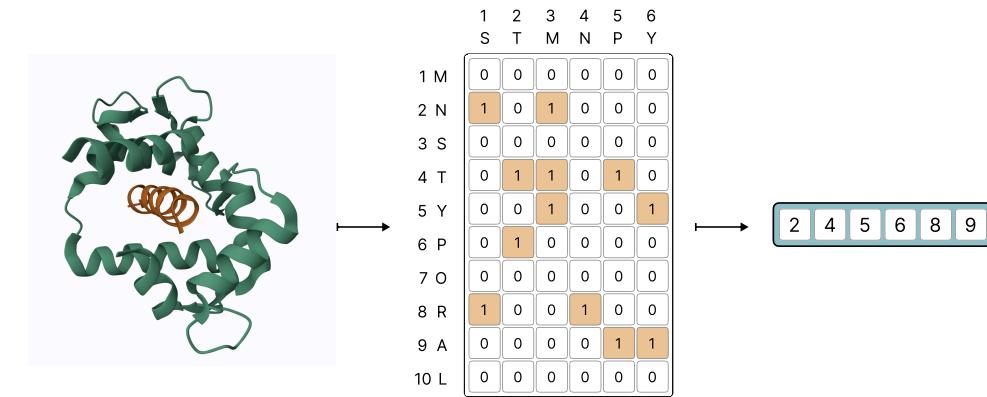
1234
1235

A.3.14 PROTEIN-LIGAND BINDING SITE

1236
1237
1238
1239
1240
1241

BioLip2 (Zhang et al., 2024) is one of the most comprehensive databases for ligand-protein interactions, primarily derived from the PDB database. Each entry in BioLip2 includes detailed annotations on ligand-binding residues, ligand-binding affinities, catalytic site residues, EC numbers and GO terms. The database is also cross-linked with external resources, including RCSB PDB, UniProt, and PubMed. To obtain protein sequences, we used receptor sequences clustered at a 90% identity cutoff. For annotations, we retrieved data for each ligand-protein interaction site. To increase the complexity of binding site prediction and enhance model robustness, we further clustered the data at

1242 a 40% identity cutoff. This additional clustering step helps prevent data leakage between training,
 1243 evaluation, and testing datasets. We first removed DNA and RNA sequences and excluded any
 1244 sequences with fewer than 50 residues. Next, we generated FASTA files containing residues and
 1245 annotations for all 5,717 ligands. We then applied a threshold cutoff, selecting ligands that bind
 1246 with over 100 sequences, resulting in 41 ligands. We aimed to balance selecting the most significant
 1247 ligands based on a literature review while ensuring a sufficient number of samples for training and
 1248 testing the model. We used CD-HIT to cluster the data with a 40% identity cutoff before splitting the
 1249 data into training, evaluation, and testing datasets. Because of the limited number of samples and
 1250 to ensure sufficient data for testing, we used two splitting ratios: 70%, 10%, and 20% for training,
 1251 evaluation, and testing, respectively, for the first 30 ligands in Table 15, and also, 50%, 20%, and
 1252 30% for training, evaluation, and testing, respectively, for the remaining ligands.
 1253



1266 Figure 5: Tokenisation workflow for protein–protein binding sites. A distance cut-off is applied to a
 1267 residue–residue distance matrix derived from the PDB complex to flag contacting residues. Rows
 1268 with at least one contact are collapsed into a sorted list of residue indices, which becomes the target
 1269 token sequence.
 1270

A.3.15 PROTEIN-PROTEIN BINDING SITE

1274 To construct a dataset for protein binding site prediction, we used the PPIRef (Bushuev et al.)
 1275 pair dataset, which specifies interacting protein chain pairs based on a contact threshold. To ensure
 1276 high-quality and complete data, we retrieved all corresponding PDB entries from the PDB database
 1277 and extracted the relevant chains based on PPIRef annotations. For each protein complex, we extracted
 1278 the amino acid sequences and computed residue-level binding sites by analyzing spatial proximity.
 1279 Specifically, we calculated the centroid of each residue by averaging the atomic coordinates (excluding
 1280 hydrogens), then computed a pairwise distance matrix between all centroids from the two chains.
 1281 Residues were labeled as binding site residues if any cross-chain centroid distance fell below a 6 Å
 1282 threshold (Figure 5). To augment the dataset, we alternated which chain was considered the "target"
 1283 and which was the "binder" in each complex. The resulting dataset includes the fields: PDB ID,
 1284 Target Chain, Binder Chain, Target Sequence, Binder Sequence, Target Binding Sites, and Binder
 1285 Binding Sites. For training and evaluation, we performed a randomized split grouped by PDB IDs,
 1286 ensuring that each PDB complex appears in only one of the train, validation, or test sets to avoid data
 1287 leakage.
 1288

A.3.16 PROTEIN-PROTEIN STRUCTURE SIMILARITY

1290 ProteinShake (Kucera et al., 2023) is a Python toolkit developed to streamline dataset construction and
 1291 benchmarking in protein structure-based deep learning. It supports both custom and pre-processed
 1292 datasets sourced from the PDB database and AFDB, and associates each dataset with well-defined
 1293 prediction tasks and evaluation metrics. The framework includes standardized data splits based on
 1294 sequence and structural similarity, enabling rigorous and reproducible comparisons across models
 1295 and modalities (e.g., graphs, voxel grids, and point clouds). In this work, we adopt the protein-
 1296 protein structure similarity dataset provided by ProteinShake and follow their *Structure Split* protocol,

1296 applying a 70% similarity threshold to partition the data for evaluation. Notably, we use only the
 1297 protein sequence information as input and do not leverage 3D structural features.
 1298

1300 Table 15: Dataset statistics of all ligands.

Ligand No	Chemical Formula	Name	BioLip Fasta Name	Num Sequences	Binding Sites
1	Zn ²⁺	Zinc Ion	ZN.fasta	4665	23310
2	CA ²⁺	Calcium Ion	CA.fasta	3043	22161
3	CLA	Chlorophyll A	CLA.fasta	342	17690
4	FAD	Flavin-Adenine Dinucleotide	FAD.fasta	825	16583
5	HEM	Heme	HEM.fasta	845	13118
6	NAD	Nicotinamide Adenine Dinucleotide	NAD.fasta	658	10615
7	ADP	Adenosine Diphosphate	ADP.fasta	941	9899
8	MG ²⁺	Magnesium Ion	MG.fasta	2951	9494
9	NAP	Nicotinamide Adenine Dinucleotide Phosphate	NAP.fasta	462	8108
10	ATP	Adenosine Triphosphate	ATP.fasta	680	7635
11	HEC	Heme C	HEC.fasta	264	7296
12	SF4	Iron/Sulfur Cluster	SF4.fasta	509	5834
13	FMN	Flavin Mononucleotide	FMN.fasta	437	5789
14	SAH	S-Adenosyl-L-Homocysteine	SAH.fasta	392	4675
15	NDP	Nucleotide Diphosphate	NDP.fasta	243	4301
16	ANP	Adenylyl-imidodiphosphate	ANP.fasta	354	3861
17	GDP	Guanosine Diphosphate	GDP.fasta	339	3792
18	GLC	Glucose	GLC.fasta	454	3674
19	PLP	Pyridoxal-5'-Phosphate	PLP.fasta	377	3608
20	MN ²⁺	Manganese Ion	MN.fasta	789	3315
21	COA	Coenzyme A	COA.fasta	259	2870
22	SAM	S-Adenosylmethionine	SAM.fasta	214	2540
23	AMP	Adenosine Monophosphate	AMP.fasta	275	2430
24	BGC	Beta-D-Glucose	BGC.fasta	331	2375
25	FE ³⁺	Ferric Ion	FE.fasta	532	2268
26	MAN	Mannose	MAN.fasta	446	2047
27	FES	Iron-Sulfur Cluster	FES.fasta	272	1986
28	PO ₄ ³⁻	Phosphate Ion	PO4.fasta	378	1908
29	GTP	Guanosine Triphosphate	GTP.fasta	150	1724
30	UDP	Uridine Diphosphate	UDP.fasta	154	1601
31	CU ²⁺	Copper Ion	CU.fasta	331	1530
32	GSH	Glutathione	GSH.fasta	200	1516
33	AGS	Agrmatine Sulfate	AGS.fasta	136	1512
34	ACO	Aconitase	ACO.fasta	108	1482
35	GAL	Galactose	GAL.fasta	233	1188
36	SO ₄ ²⁻	Sulfate Ion	SO4.fasta	218	1177
37	CLR	Cholesterol	CLR.fasta	176	1112
38	Y01	Cholesterol Hemisuccinate	Y01.fasta	106	991
39	BMA	Beta-Mannose	BMA.fasta	158	696
40	FE ²⁺	Ferrous Ion	FE2.fasta	186	675
41	CO ²⁺	Cobalt Ion	CO.fasta	160	660

1326
1327 A.4 EXPERIMENTS1328
1329 A.4.1 CLASSIFICATION

1330
1331 For the Fold classification task, we maintained the *ESM* model weights as fixed and only unlocked
 1332 its last six layers to be fine-tuned and connected to the decoder. Many classes in this dataset have
 1333 a low number of samples, e.g., one sample for a high number of classes. That is why we saw
 1334 unstable training when we did single-task training on *Prot2Token*. However, when we combined Fold
 1335 classification with auxiliary tasks like ER, the training became stable (Table 29).

1336
1337 Table 16: Fold classification training in single-task and multi-task training on Fold-fold test set.

Method	Aux-Tasks	Accuracy
Baseline (ESM2-650m)	-	32.87
Prot2Token-B	-	N/A
Prot2Token-B	ER	31.47

1343
1344 Regarding the Human PPI task, we maintained the *ESM* model weights as fixed and only unlocked
 1345 the last four layers of it to be fine-tuned and connected to the decoder. Note that to give the encoder
 1346 two sequences at one feed for PPI, we concatenated two sequences using the <EOS> token. We
 1347 observed that adding more tasks helped boost the performance of Human PPI (Table 16). However,
 1348 *Prot2Token* tended to overfit on this task, indicating that the improvement from adding auxiliary
 1349 tasks may be due to the regularization effect of multi-task learning. We used early stopping to avoid
 overfitting.

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

For the GO and EC tasks, we encountered a limitation in calculating the Fmax metric, which is commonly used for performance evaluation in these tasks. Instead, we used accuracy and F_1 score to assess our model’s performance. Consequently, we were unable to directly compare our results with those of other methods that report their performance in terms of Fmax. This discrepancy highlights a significant challenge in benchmarking our approach against existing methods. The GO tasks are further divided into three categories: biological process (BP), molecular function (MF), and cellular component (CC). We jointly trained all four tasks (the three GO tasks and the EC task) together in a multi-task learning manner. Detailed performance metrics for these tasks are presented in Table 17. We maintained the *ESM* model weights as fixed and only unlocked the last four layers of it to be fine-tuned and connected it to the decoder and a linear classifier for *Prot2Token*. Note that labels in these tasks are highly imbalanced.

1371

1372

1373

1374

Table 18: Comparing GO and EC tasks with the baseline on accuracy and F_1 score metrics. The baseline is a linear evaluation of *ESM*. All methods are based on *ESM2-650m*.

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

Next, we aimed to predict kinase groups based on substrate sequences. Specifically, we investigated how much information about the related kinase groups the model can infer solely from substrate sequences. To achieve this, we considered our processed training and validation datasets (refer to Appendix A.3), assigning multi-label classification labels by removing *Unknown*, *RGC*, *PKL*, and *UNK* samples from the training set and merging the remaining nine kinase groups associated with each substrate. The model takes a substrate sequence as input and predicts the corresponding kinase groups in alphabetical order. We allow *Prot2Token* to fine-tune the weights of the last 6 blocks of the protein encoder (*ESM2-650m*). After convergence, the decoder achieves the per-group F_1 scores listed in Table 19. Despite receiving no kinase information at inference time, *Prot2Token* recovers group memberships with a macro-averaged F_1 of 0.54, confirming that substrate context alone encodes considerable family-specific signal.

1398

1399

1400

1401

1402

1403

Table 17: Human PPI performance on PEER test set.

Method	Aux-Tasks	Accuracy	Encoder
PEER (Xu et al., 2022) (fine-tuned)	-	78.17	ESM1-1b
Prot2Token-B	-	71.3	ESM2-650m
Prot2Token-B	Deeploc	78.48	ESM2-650m
Prot2Token-B	Deeploc+ER+Fold	80.17	ESM2-650m

Table 18: Comparing GO and EC tasks with the baseline on accuracy and F_1 score metrics. The baseline is a linear evaluation of *ESM*. All methods are based on *ESM2-650m*.

Method	Task	Accuracy	F_1 Score
Baseline	EC	99.79	0.5383
Baseline	GO-BP	N/A	0.0043
Baseline	GO-MF	N/A	0.1028
Baseline	GO-CC	N/A	0.1327
Prot2Token-B	EC	99.85	0.6796
Prot2Token-B	GO-BP	95.88	0.0103
Prot2Token-B	GO-MF	97.20	0.0116
Prot2Token-B	GO-CC	95.35	0.0089

Table 19: Per-group F_1 scores for substrate-only kinase group classification via *Prot2Token-C*.

Group	AGC	Atypical	CMGC	CAMK	CK1	Other	STE	TK	TKL
F_1	0.555	0.493	0.634	0.420	0.539	0.605	0.357	0.674	0.500

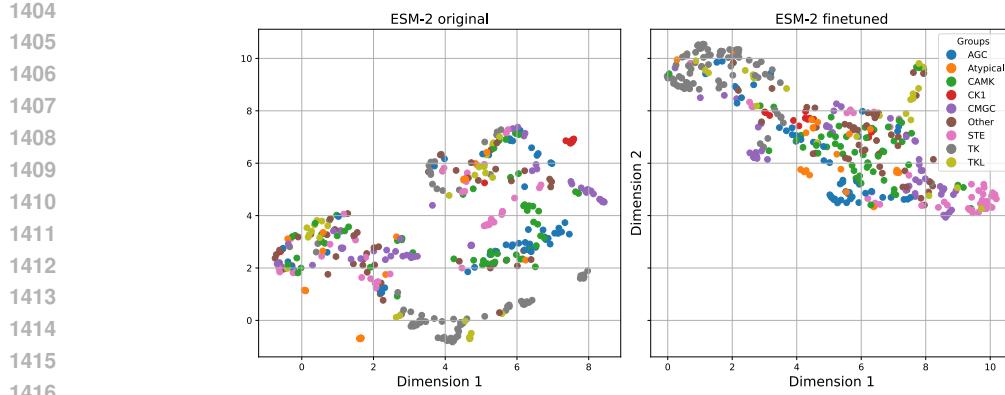


Figure 6: UMAP visualization of unique kinase sequences on the original and fine-tuned checkpoints of *ESM2-650m*.

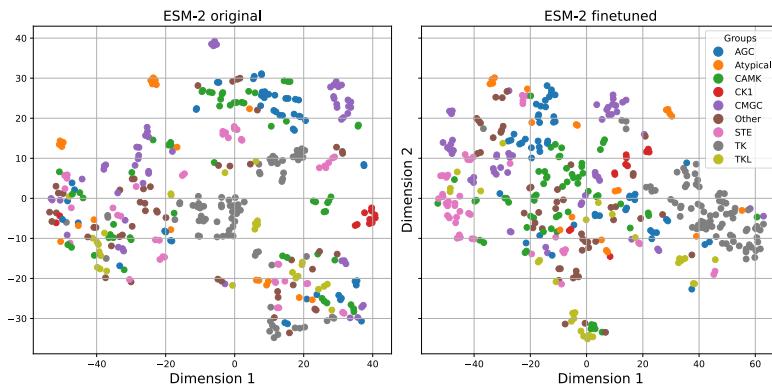


Figure 7: t-SNE visualization of unique kinase sequences on the original and fine-tuned checkpoints of *ESM2-650m*.

Table 20: Unsupervised clustering metrics for kinase embeddings. Larger values denote better separability.

Metric	Original	Fine-tuned
Silhouette (cosine)	-0.039	0.091
Calinski-Harabasz	7.00	24.10

To further interpret the kinase group classification results, we analyzed the sequence embeddings of all unique kinase sequences present in the GPS 6.0 dataset before and after fine-tuning the protein encoder part of Prot2Token-C on the kinase group classification labels. Sequences from the *RGC*, *PKL*, and *Unknown* groups were excluded. Each remaining kinase sequence was passed through the pre-trained *ESM2-650m* model with a maximum input length of 2048. Token-wise embeddings were extracted, then trimmed to remove the *<BOS>* and *<EOS>* tokens, and average pooling was applied to yield a fixed-length 1280-dimensional representation per sequence, aligned with the model’s hidden size.

We performed dimensionality reduction using t-SNE and UMAP to visualize these embeddings in two dimensions based on their known group assignments. Visualizations revealed that the original pretrained model exhibited weak separation among groups. However, when we repeated the same process using the fine-tuned *ESM2* checkpoint (updated only via substrate-based kinase group classification), the resulting projections displayed improved clustering by group. These qualitative trends were confirmed with unsupervised clustering metrics, including the silhouette score and

the Calinski-Harabasz index. As shown in Figures 6 and 7 and Table 20, the fine-tuned encoder demonstrates clearer group structure despite never directly observing kinase sequences during training—suggesting that supervised signals from substrates alone can reorganize the encoder’s representation space in a biologically meaningful way.

A.4.2 REGRESSION

In the regression experiments, we fixed the majority of the *ESM* encoder parameters, unfreezing only the last six layers for joint fine-tuning with the decoder. For comparison, baseline models attach a single linear regression head to a frozen encoder. Because Spearman correlation is invariant to monotonic transformations, we found that min–max scaling the labels to $[0, 1]$ with four digits precision after floating point markedly improved convergence and performance: the decoder learns the structure of numerical outputs more rapidly when they occupy a consistent range. For the RMSE report, we scaled the numbers back to their original range.

To evaluate sequence-based prediction of structural similarity, we tokenized the ProteinShake structure-similarity dataset (*Structure Split*) and concatenated each pair of sequences with an $\langle \text{EOS} \rangle$ separator. Only the last four encoder blocks were trainable, and batches contained 128 sequence pairs. Results are summarised in Table 18.

Table 21: Protein–protein structure similarity on the ProteinShake test set (*Structure Split*). All ProteinShake baselines rely on 3-D structural input; \dagger denotes a linear layer fine-tuned on the last four encoder blocks.

Method	Spearman ρ
Baseline (ESM-2 \dagger)	0.4653
ProteinShake (Graph) (Kucera et al., 2024)	0.5180
ProteinShake (Point) (Kucera et al., 2024)	0.5640
ProteinShake (Voxel) (Kucera et al., 2024)	0.5730
Prot2Token-C	0.5267

Regarding the protein-protein affinity task, the labels were normalized to $[0, 1]$. We used the same hyperparameters of structure-similarity task, with a freshly initialized decoder. Performance, reported as RMSE (lower is better), appears in Table 21.

Table 22: Protein–protein binding affinity prediction on PPB-Affinity. The baseline is based on ESM-2 650m encoder.

Method	RMSE (\downarrow)
baseline (Liu et al., 2024)	2.1040
Prot2Token-C	1.6632

For the HotProtein HP-S regression split we applied the same min–max label normalisation as in the other regression tasks. Results are reported in Table 22, improving upon the HotProtein by roughly 2.5–3.0 pp in both correlation metrics.

Table 23: Performance of predicting thermostability on HotProtein (HP-S test split, fold 1). \dagger denotes a linear layer fine-tuned on the last four encoder blocks.

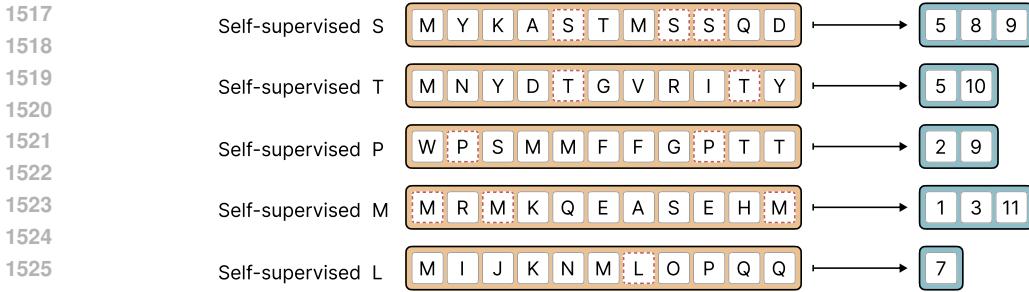
Method	Spearman	Pearson
TAPE (Rao et al., 2019)	0.504	0.453
ESM-1B	0.807	0.809
HotProtein (Chen & Gong, 2022)	0.823	0.827
Prot2Token-C	0.8437	0.8439
Baseline (ESM-2 \dagger)	0.8644	0.8699

A.4.3 SELF-SUPERVISED PRE-TRAINING OF DECODER

In our preliminary experiments with the phosphorylation PTMs and protein-ligand binding site tasks, we initially focused on directly predicting positive sites using the *Prot2Token* framework. However,

1512 we observed suboptimal performance despite experimenting with different label formatting methods.
 1513 Upon further analysis, we hypothesized that this issue arose primarily from the lack of inductive
 1514 biases inherent to specialized models, which were missing in the *Prot2Token* model’s decoder due to
 1515 its random initialization.

1516



1527 Figure 8: Illustration of self-supervised pre-training tasks designed for the decoder. For each amino
 1528 acid (e.g., S, T, P, M, L), the model is trained to predict the positions of its occurrences within
 1529 a given protein sequence. Highlighted residues are the targets, and the output is a list of their
 1530 corresponding indices. This enables the decoder to learn position-aware amino acid representations
 1531 in a label-free manner.

1532

1533

1534

1535 Specialized baseline approaches commonly restrict the prediction space by focusing on specific
 1536 amino acids known to undergo modifications, such as serine (S), threonine (T), and tyrosine (Y) in
 1537 phosphorylation tasks. These approaches implicitly encode biases about label structures into their
 1538 predictive mechanisms. Conversely, *Prot2Token*, being an autoregressive model with a randomly
 1539 initialized decoder, initially lacked these intrinsic biases, severely impacting its predictive accuracy,
 1540 especially in tasks with extensive label vocabularies.

1541

1542

1543

1544

1545

1546

1547

1548

1549 To address this challenge, we introduced a self-supervised pre-training strategy to effectively embed
 1550 inductive biases into the decoder before fine-tuning it on the main supervised tasks. The key idea
 1551 behind this self-supervised approach is straightforward yet effective: the decoder is trained to
 1552 recognize amino acid positions within sequences (Figure 8). For instance, given an amino acid
 1553 sequence such as MSGLSNYT, the model learns to output positional indices 2, 5 corresponding to the
 1554 amino acid S. We constructed twenty such self-supervised tasks, each dedicated to recognizing the
 1555 positions of a different amino acid type. Importantly, generating these self-supervised samples does
 1556 not require human annotation, making it a cost-effective method to improve model initialization and
 1557 predictive performance.

1558

1559

1560

1561

1562

1563

1564

1565

1566 Our empirical results, presented in Table 23, demonstrate a clear positive correlation between
 1567 the volume of self-supervised auxiliary samples and model performance improvements on the
 1568 phosphorylation task. Notably, incorporating a broader range of amino acids, such as K, N, and
 1569 R, alongside the typical phosphorylation targets (S, T, Y), significantly boosted model accuracy,
 1570 highlighting the utility of teaching these biases to the decoder.

1571

1572

1573

1574 Table 24: Phosphorylation site prediction. "Aux" denotes self-supervised auxiliary tasks. All results
 1575 are based on *Prot2Token-B* model.

Data	Accuracy	F ₁
Phosphorylation	55.69	0.0198
Phosphorylation + STY-Aux (150k)	74.57	0.0592
Phosphorylation + STY-Aux (250k)	91.49	0.1799
Phosphorylation + STYKNR-Aux (250k)	94.14	0.3052

1576

1577

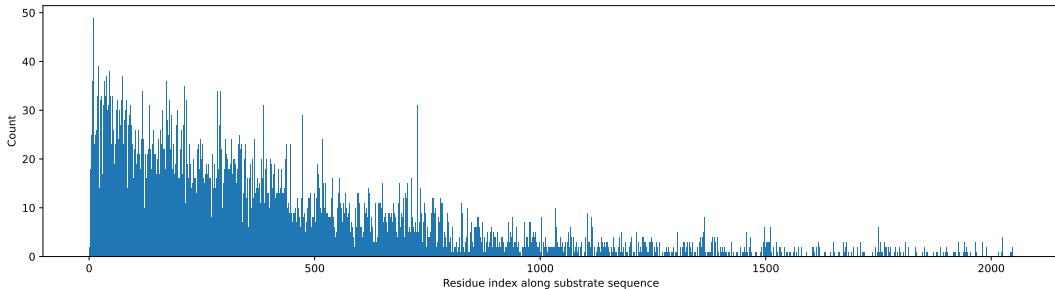
1578

1579

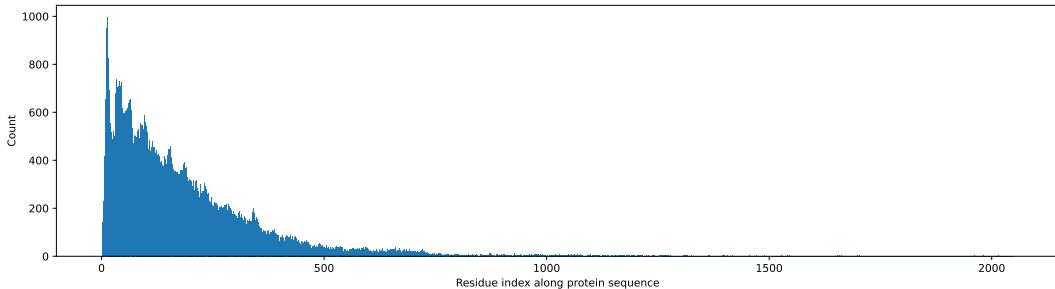
1580 Furthermore, Figures 9 and 10 illustrate the frequency distribution of labels in phosphorylation
 1581 and protein-ligand binding site tasks, respectively. These figures clearly show the imbalanced and

1566 sparse nature of labels, underscoring why explicit inductive biases provided through self-supervised
 1567 pre-training are crucial for effective model training.
 1568

1569 We pre-trained the decoder once using 20 self-supervised tasks—each targeting the positional
 1570 prediction of one amino acid type—to serve as a general-purpose initialization for all downstream
 1571 tasks involving binding site prediction. This avoids the computational cost of re-adding auxiliary self-
 1572 supervised tasks per downstream task, while still equipping the decoder with biologically meaningful
 1573 priors.



1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585 Figure 9: Distribution of phosphorylation-site indices in the training set ($n = 11,449$ sites across
 1586 5,694 peptides). Only residues at positions ≤ 2048 are shown; 176 rarer sites at higher indices were
 1587 excluded. Each bar corresponds to a single residue position (bin width = 1).



1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601 Figure 10: Distribution of protein-ligand binding-site indices aggregated across all 41 ligand classes
 1602 in the training set. Bars represent individual residue positions (bin width=1). Sites located
 1603 beyond residue 2048 (< 2 % of all annotated positions) were excluded for clarity.
 1604
 1605
 1606

1607 A critical consideration in applying this self-supervised learning strategy is maintaining a frozen
 1608 encoder during the pre-training phase. Allowing updates to the encoder parameters at this stage
 1609 can inadvertently introduce shortcut learning effects, causing the model to collapse and diminishing
 1610 its predictive capabilities on downstream tasks. Consequently, freezing the encoder ensures that
 1611 the decoder robustly learns meaningful positional and structural biases, significantly enhancing its
 1612 predictive performance on binding site types of tasks.
 1613

1614 We randomly sampled 4 million protein sequences from the UniRef50 database (Suzek et al., 2015)
 1615 for training and 4k for validation data. From them, we artificially created 80 million and 20k self-
 1616 supervised samples, subsequently, by crafting each amino-acid-type/protein as one sample. Again,
 1617 we sampled 1 million and 1k samples from them, respectively, to build the training and validation
 1618 sets.
 1619

1620 We used input sequence length of 2048, a weight decay of 0.01, and batch size of 192 samples,
 1621 equivalent to 73,728 tokens. Also, we set the warmup steps to 512. We only froze the encoder weights
 1622 and made other parameters trainable. After training for 16 epochs, the model showed perplexity of

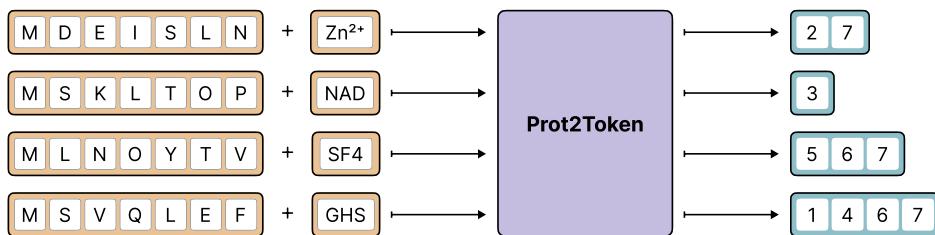
1620 2.31 on the validation set. This indicates that it almost perfectly converted the embeddings from
 1621 the encoder back to their original protein sequences by learning to find the locations of each type of
 1622 amino acid.
 1623

1624 A.4.4 BINDING SITE 1625

1626 Based on the order of ligands presented in Table 24, we grouped the ligands into distinguishable sets
 1627 of 10, 20, 30, and all 41 ligands. Each ligand in a set was treated as a separate task defined by a task
 1628 token figure 11, and trained together in one training session.

1629 We selected a discrete task-token representation for ligands, rather than a continuous chemical encoder
 1630 input (e.g., via SMILES), based on three key considerations. First, empirical evaluations demonstrated
 1631 that our token-based approach yielded superior performance compared to architectures utilizing
 1632 current pre-trained chemical encoders, suggesting limitations in the efficacy of chemical encoders
 1633 for binding residue prediction. Second, this discrete formulation facilitates deep interpretability; by
 1634 isolating ligand representations, we were able to analyze the learned embedding space to confirm
 1635 that the model captures meaningful physicochemical relationships between ligands (A.5). Finally, a
 1636 fixed vocabulary remains highly practical for many applications, such as ion binding, where the target
 1637 space is naturally bounded, allowing our framework to robustly support a wider range of simultaneous
 1638 targets (41 types) than many existing specialized predictors.
 1639

1640 We selected each of those sets and jointly trained them alongside 20 self-supervised tasks using the
 1641 latest checkpoint from the self-supervised pre-training phase. For this fine-tuning phase, the self-
 1642 supervised tasks were reduced to a total number of 20k samples. Also, we removed protein samples
 1643 with lengths greater than 1280 and set batch size to 98,304 tokens. During all training processes, only
 1644 the last eight blocks of the encoder (*ESM2-650m*) were fine-tuned, while all non-encoder parameters
 1645 of the supermodel were fully fine-tuned.



1653 Figure 11: Jointly training protein–ligand binding-site across 41 types of ligands by representing
 1654 ligands with task tokens.
 1655

1656
 1657
 1658 It is worth noting that while we could have excluded the self-supervised tasks entirely from the
 1659 fine-tuning stage, retaining a portion of these samples resulted in a measurable improvement in the
 1660 model’s performance on the supervised protein-ligand tasks.
 1661

1662 Direct comparison of our method with other available methods was not straightforward due to several
 1663 technical issues and potential overlap between their training data and our test sets; however, results of
 1664 the comparison are provided in Table 25.
 1665

1666 For fine-tuning on the protein-ligand datasets, the model was trained on a combined training set of
 1667 selected ligands. During training, validation was performed for each ligand individually, and the
 1668 best checkpoint for each ligand was saved based on its validation set performance. At the end of
 1669 training, these best checkpoints were evaluated on their respective test sets. Figure 12 shows the
 1670 average validation F₁ score across epochs, with the highest average performance observed at epoch
 1671 30. However, this checkpoint showed slightly lower average test performance compared to using
 1672 individual best checkpoints for each ligand.
 1673

The results for all ligands are presented in Table 25. To compute the metric for the autoregressive
 model’s output, each amino acid in a protein was treated as an individual positive or negative sample.
 Predicted binding residues from the decoder were considered positive samples, while all other amino

1674 acids were treated as negative (zero) samples. The metrics were then calculated based on this
 1675 classification.

1676 To provide a comparison of our model’s performance with other available methods, we present the
 1677 results in Table 26. However, the comparison process faced several challenges: some web servers
 1678 were not operational during testing, while others only allowed predictions on individual samples,
 1679 making bulk evaluation difficult and very slow to response. We attempted to evaluate IonCom (Hu
 1680 et al., 2016), and MIB2 (Lu et al., 2022) server tools, but encountered several issues: MIB2 had
 1681 extremely slow response times, and IonCom imposed strict sample limitations for evaluation.

1682
 1683 Table 25: F_1 scores of all ligands across different training configurations, with varying numbers of
 1684 auxiliary ligands on the test sets. The table summarizes the impact of jointly training with 10, 20, 30,
 1685 and 41 ligands on binding site prediction. * indicates that pre-trained decoder weights were not used,
 1686 and † indicates that self-supervised tasks were excluded during supervised training.

Ligands	10 tasks †*	10 tasks*	10 tasks	20 tasks	30 tasks	41 tasks
ZN^{2+}	0.0678	0.0657	0.7434	0.7498	0.7594	0.7575
CO^{2+}	0.1022	0.0888	0.6566	0.6493	0.6472	0.6474
CLA	0.2749	0.2519	0.477	0.3763	0.4936	0.4762
FAD	0.1744	0.1476	0.6882	0.6565	0.6473	0.6537
HEM	0.243	0.232	0.6554	0.6698	0.6871	0.6796
NAD	0.1662	0.1248	0.6862	0.6851	0.6862	0.6952
ADP	0.1105	0.1053	0.6057	0.5779	0.5897	0.5834
MG^{2+}	0.482	0.0326	0.4466	0.4603	0.4522	0.4575
NAP	0.1559	0.1417	0.6629	0.6813	0.6861	0.6746
ATP	0.1059	0.0927	0.4538	0.4355	0.5317	0.505
Average (top 10)	0.1883	0.1283	0.6076	0.5942	0.6181	0.6130
HEC	-	-	-	0.6438	0.6511	0.6537
SF4	-	-	-	0.6508	0.584	0.5685
FMN	-	-	-	0.6921	0.6983	0.6945
SAH	-	-	-	0.6385	0.6473	0.6503
NDP	-	-	-	0.7122	0.7085	0.6979
ANP	-	-	-	0.6153	0.6214	0.6217
GDP	-	-	-	0.5948	0.6335	0.6465
GLC	-	-	-	0.2091	0.2237	0.2214
PLP	-	-	-	0.777	0.778	0.762
MN^{2+}	-	-	-	0.7278	0.7245	0.7376
Average (top 20)	-	-	-	0.6102	0.6172	0.6130
COA	-	-	-	-	0.3978	0.4011
SAM	-	-	-	-	0.6355	0.6252
AMP	-	-	-	-	0.4316	0.4432
BGC	-	-	-	-	0.2165	0.1932
FE^{3+}	-	-	-	-	0.6756	0.6606
MAN	-	-	-	-	0.1407	0.1216
FES	-	-	-	-	0.7162	0.7018
PO_4^{3-}	-	-	-	-	0.2288	0.2278
GTP	-	-	-	-	0.5332	0.5461
UDP	-	-	-	-	0.5522	0.5391
Average (top 30)	-	-	-	-	0.566	0.5615
CU^{2+}	-	-	-	-	-	0.5607
GSH	-	-	-	-	-	0.6924
AGS	-	-	-	-	-	0.5301
ACO	-	-	-	-	-	0.5026
GAL	-	-	-	-	-	0.2762
SO_4^{2-}	-	-	-	-	-	0.1386
CLR	-	-	-	-	-	0.0373
Y01	-	-	-	-	-	0.0419
BMA	-	-	-	-	-	0.2273
FE^{2+}	-	-	-	-	-	0.6033
CO^{2+}	-	-	-	-	-	0.517
Average (all)	-	-	-	-	-	0.5115

1724
 1725 Additionally, a potential overlap between the training data of these methods and our crafted test sets
 1726 further made a fair evaluation complicated. This was particularly evident for LMetalSite (Yuan et al.,
 1727 2022a), where their reported performance on their own test sets was significantly lower compared to
 their results on our test sets, indicating a sign of data leaking in this comparison.

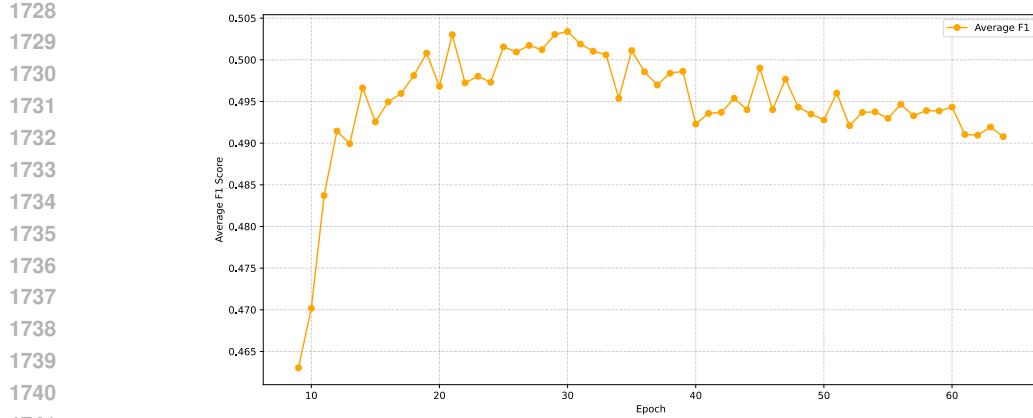


Figure 12: Average of F_1 values for all 41 ligands during the training based on the validation sets. The performance peaked at epoch 30.

Finally, preliminary experiments were conducted on Protein-Protein Binding Site Prediction using the PPIRef dataset (Bushuiev et al.). The task involved predicting the binding interface residues on a target protein given the sequences of both the target and binder proteins (concatenated as input). Binding residues were defined as those on the target protein within 6 Å of the binder. Initial results using the simplified index tokenization yielded an F_1 score of 0.47 on the test set. While encouraging, this result is preliminary, and further investigation is required.

Table 26: Comparison of our method’s best performance for each ligand with other available methods on selected ligands based on F_1 score. The main values are based on their reported test set performance as described in their respective papers. * Indicates they are reported on our test sets.

Ligand	Metrics	Prot2Token-C	TargetS (Yu et al., 2013)	LMetalSite (Yuan et al., 2022b)	ZinCap (Essien et al., 2019)	MIB2 (Lu et al., 2022)
CA ²⁺	F_1	0.6566*	0.392*	0.526 (0.7370*)	-	-
	MCC	-	0.320 (0.431*)	0.542 (0.7342*)	-	-
	Acc	-	0.984 (0.977*)	0.9884*	-	0.941
MG ²⁺	F_1	0.4603*	0.433*	0.367 (0.5560*)	-	-
	MCC	-	0.383 (0.450*)	0.419 (0.5773*)	-	-
	Acc	-	0.990 (0.992*)	0.9949*	-	0.946
ZN ²⁺	F_1	0.7594*	0.660*	0.76 (0.8299*)	0.451*	-
	MCC	-	0.557 (0.660*)	0.761 (0.8275*)	0.54 (0.48*)	-
	Acc	-	0.989 (0.989*)	0.9953*	0.870 (0.97*)	0.948
MN ²⁺	F_1	0.7376*	0.579*	0.662 (0.8048*)	-	-
	MCC	-	0.445 (0.574*)	0.661 (0.8024*)	-	-
	Acc	-	0.987 (0.989*)	0.995*	-	0.950

A.4.5 SEQUENCE-TO-SEQUENCE

For the secondary structure prediction task, *Prot2Token* was trained to assign a secondary structure class to each residue in the input protein sequence, treating the problem as a sequence-to-sequence token prediction. The dataset was preprocessed to map residues to standard secondary structure labels (helix, sheet, coil). Performance was evaluated using the macro- F_1 score on the test set of PEER. As shown in Table 27.

For the sequence-to-3D structure prediction task, we fine-tuned the last six blocks of the *ESM2-650m* encoder within the *Prot2Token* framework. We used 8192 warmup steps for this particular task. The model was trained to generate discrete structure tokens corresponding to backbone coordinates, utilizing a VQ-VAE-based tokenizer. The current VQ-VAE implementation supports protein sequences in the range of 50 to 512 residues. During training, model performance was evaluated using TM-score on the test set explained in A.3.7, and at the end, the best checkpoint is compared with other methods on a subset of CAMEO dataset reported in A.3.7.

During inference, we encountered a challenge where the decoder occasionally generated an output sequence with either more or fewer tokens than the actual number of amino acids in the input sequence.

1782 To address this issue, we applied a constraint on the end `<EOS>` token probability. Specifically,
 1783 during inference, we artificially adjusted the probability of the `<EOS>` token, ensuring that it was only
 1784 allowed if the number of predicted 3D tokens matched the length of the input amino acid sequence.
 1785 This adjustment effectively enforced sequence alignment and resolved inconsistencies in output
 1786 length of generated structure.

1787

1788

1789

1790

1791

1792

1793 Table 27: Secondary structure prediction evaluation. The baseline involves a linear classifier on top
 1794 of the frozen *ESM* model.

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805 To further evaluate the learned structure-aware representations, we utilized the CATH-labeled protein
 1806 sequences from (Wang et al., 2025a), specifically the `CATH_nonredundant_S40` dataset (release
 1807 v4_3_0). In this dataset, no two sequences share more than 40% identity, and one representative
 1808 (the longest) from each CATH superfamily is selected. This provides a challenging testbed for
 1809 assessing the structural awareness of protein embeddings across three hierarchical CATH levels:
 1810 Class, Architecture, and Topology.

1811 In addition to structural benchmarks, we examined functional grouping using kinase and deaminase
 1812 family datasets. Kinase domain sequences and their group labels were extracted from GPS 5.0 (Wang
 1813 et al., 2020), resulting in 336 kinases from nine groups. Deaminase sequences and their respective
 1814 family annotations were curated from a reference dataset (Huang et al., 2023). For each protein, we
 1815 generated embeddings and assessed whether these could successfully separate functional classes.

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

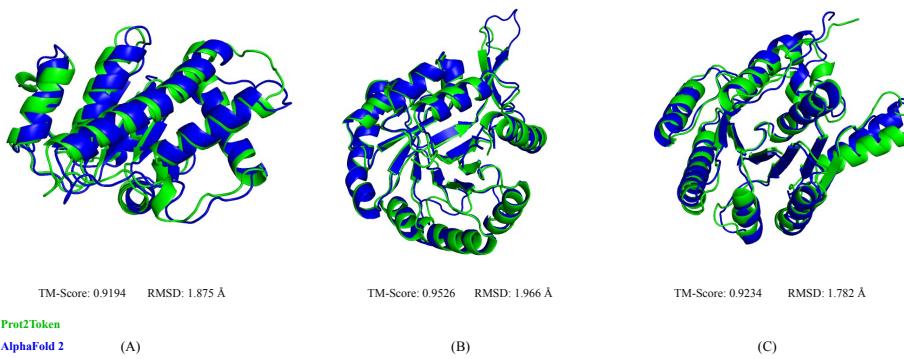
1830

1831

1832

1833

1834 Figure 13: Randomly selected test set samples where our model achieved a TM-score above 0.90
 1835 versus *AF2* high-pLDDT predictions. On average, each sample was predicted and converted in
 approximately 1 second using an Nvidia A100 GPU.



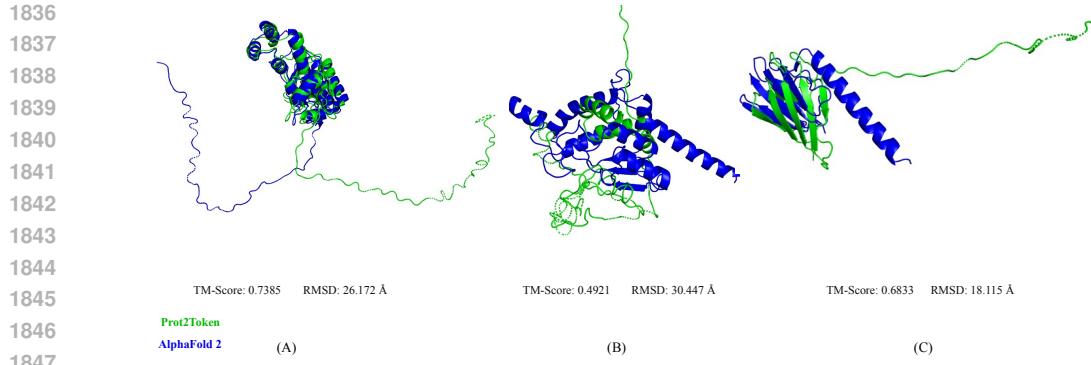


Figure 14: Randomly selected test set samples where the model achieved a TM-score lower than 0.75.

Table 28: Evaluation of protein embedding quality via clustering. Clustering performance is reported for CATH structural hierarchy levels using the Calinski-Harabasz index (CHI), and for functional groupings (kinase, deaminase) using Adjusted Rand Index (ARI). Higher values indicate more accurate and biologically meaningful clusters. *S-ESM* stands for structure-aware *ESM*.

Methods	CATH (CHI)			Kinase group clustering (ARI)	Deaminase clustering (ARI)
	Class	Architecture	Topology		
ESMC-600m (ESM Team, 2024)	19.87	7.70	4.06	0.1720	0.4067
ESM2-650m	13.16	7.30	4.35	0.2691	0.6473
S-ESM (Prot2Token-C encoder)	44.40	19.34	11.50	0.5806	0.7963

Clustering quality for the functional groups (kinase and deaminase families) was quantified using the Adjusted Rand Index (ARI) after K-means clustering, while clustering for CATH structural categories (Class, Architecture, Topology) was measured by the Calinski-Harabasz Index (CHI) (Calinski & Harabasz, 1974), which captures the ratio of between- to within-cluster dispersion. Table 28 summarizes the results for all models. *Prot2Token*'s encoder achieves markedly higher CHI and ARI scores, especially in clustering kinase (ARI = 0.5806) and deaminase families (ARI = 0.7963), indicating improved capture of both structural and functional organization.

For qualitative comparison, Figure 16 presents a t-SNE visualization of protein embeddings colored by true structural or functional labels. Compared to *ESM2-650m* and *ESMC-600m*, *Prot2Token* embeddings yield more distinct and interpretable clusters that align with biological classification, demonstrating both stronger structural feature extraction and functional group separation.

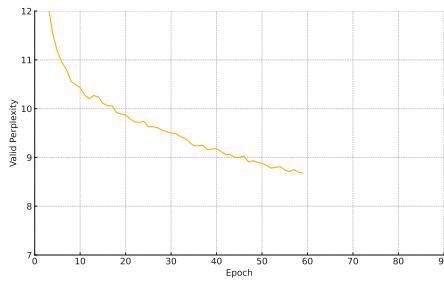


Figure 15: Validation perplexity curve for sequence-to-3D structure prediction. While perplexity keeps decreasing, the validation TM-score saturates at ≈ 0.55 on CAMEO 2024. Post-hoc analysis shows the 3D tokenizer (VQ-VAE) itself reconstructs with an upper bound of ≈ 0.60 TM-score on the same benchmark; hence the plateau reflects a tokenizer-imposed ceiling rather than insufficient optimization of *Prot2Token*. Improving the tokenizer is likely required to push beyond this regime.

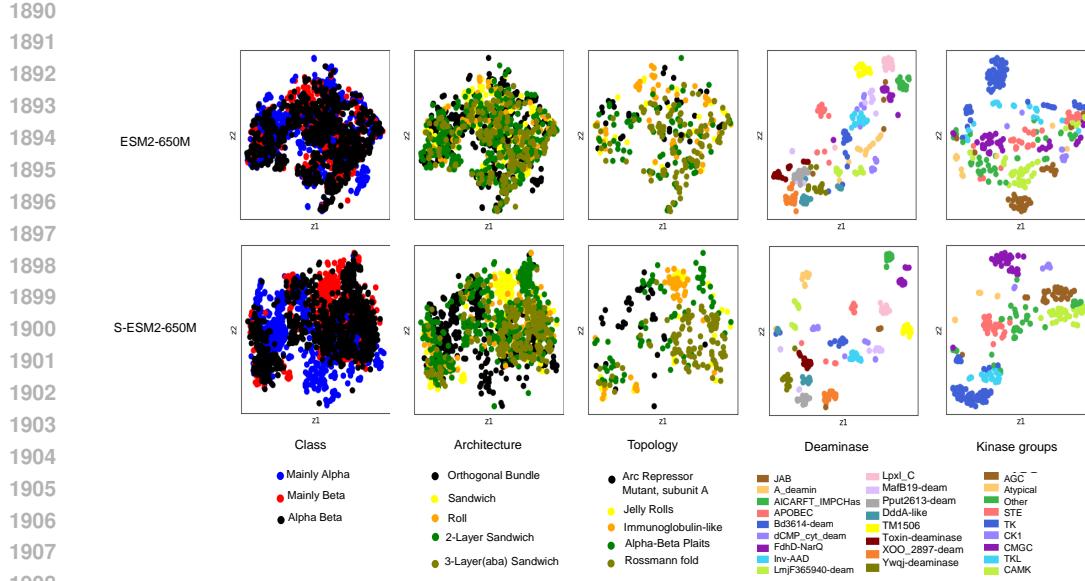


Figure 16: Comparison of protein representations generated by *Prot2Token* and the base encoder *ESM2-650m*. The t-SNE visualizations display protein embeddings for CATH structural classes, architecture, and topology, as well as clustering for deaminase families and kinase groups. Colors correspond to the known classes or families for each category.

A.4.6 OTHER

We utilized the TargetP-2 dataset which encompasses both cleavage site data and five types of localization labels. We represented the label format as a combination of classification and regression tasks, for instance, $\{sp, 96\}$, where sp denotes the localization label (Signal Peptide) and 96 indicates the cleavage site's location. Additionally, to evaluate the model, we implemented a 5-fold cross-validation strategy. We considered fine-tuning only the last layer of the *ESM* models for both the *Prot2Token* model and the baseline comparison. Table 15 presents a comparative analysis of *Prot2Token* against *ESM* with a linear classifier head. The results suggest that by enabling the model to learn the locations of different amino acids through self-supervised auxiliary tasks, it achieves more accurate predictions of cleavage site positions. Furthermore, the performance in localization prediction also shows improvement with the integration of auxiliary tasks. We attribute this enhancement in performance to the model's improved understanding of cleavage site positions. Note that the performance of bigger models was very similar to the smaller ones.

Table 29: Localization and cleavage site prediction. "Aux" denotes self-supervised auxiliary tasks using STYKNR amino acids. Localization and cleavage site metrics are based on Macro-F₁ and MAE, respectively.

Method	Aux-Tasks	Cleavage Site	localization
Baseline (ESM2-35m)	-	-	90.96
Prot2Token-A	-	3.6392	90.56
Prot2Token-A	Aux (12k)	2.9205	92.30

In the next step, we fine-tuned the model starting from the latest checkpoint obtained during the self-supervised pre-training stage that is reported in Appendix A.4.3. This process involved jointly training six PTMs alongside self-supervised samples. The maximum sequence length for input protein sequences was set to 1024 tokens, and the batch size was adjusted to process 98,304 tokens per iteration.

1944 Notably, while it was possible to exclude self-supervised tasks entirely during fine-tuning, retaining a
 1945 subset of these samples led to improved generalization and enhanced performance on the protein-
 1946 kinase phosphorylation site prediction. From the 33 total blocks in the protein encoder, we selectively
 1947 fine-tuned the last eight blocks by unfreezing their weights for training. The results are presented in
 1948 Table 30.

1949

1950

1951 Table 30: PTMs comparison based on F_1 score on our test sets. \dagger : There is a strong possibility of
 1952 data contamination between our test set and the PTMGPT2 training set. As a result, PTMGPT2
 1953 may achieve artificially high performance on our test set due to memorization, while its real-world
 1954 performance on unseen samples could be lower.

1955

1956

1957

1958

PTM	Prot2Token (Ours)	ESM-2	PTMGPT2 † (Shrestha et al., 2024)
Ubiquitylation	0.1382	0.1993	0.165
Phosphorylation	0.4055	0.3908	0.400
Acetylation	0.307	0.3273	0.350
Methylation	0.4608	0.4532	0.596
N-linked Glycosylation	0.9689	0.9586	0.862
O-linked Glycosylation	0.4695	0.4597	0.531
Succinylation	0.2663	0.3515	0.540

1959

1960

1961 A.5 PROTEIN-LIGAND BINDING SITE TASK TOKENS INTERPRETATION

1962

1963 In this section, we scrutinized the task token embeddings of the decoder that was pre-trained on all 41
 1964 ligands in the previous section to find the sign of chemical properties of ligands and their relationships
 1965 together.

1966 Empirically, based on the F_1 scores of the ligands that the model was trained and evaluated on, the
 1967 task token embeddings successfully captured meaningful representations of the ligands. However, to
 1968 solidify this framework as a foundation for future research, we aimed to validate these embeddings
 1969 from an additional perspective. Our goal is to create a robust infrastructure that can incorporate
 1970 more ligands into a single model, thereby addressing the scarcity of data for certain ligands through
 1971 knowledge transfer between ligands. To achieve this, first, from all 41 ligands, we selected top 28
 1972 ligands based on F_1 score and filtered the rest and then, we analyzed the task token embeddings of
 1973 the remaining ligands by clustering them to explore ligand similarities in the embedding space.

1974 Simultaneously, we clustered the ligands based on their biochemical features in the real world, and in
 1975 the last step, we investigated the correlation between these two clustering approaches. The purpose of
 1976 this comparison was to determine whether the learned task token embeddings genuinely reflect real-
 1977 world relationships between ligands or if they merely memorize specific patterns without capturing
 1978 meaningful biochemical similarities. Figure 17 highlights the intersection between the two spaces of
 1979 ligand representations: the embedding space and the biochemical feature space. It illustrates which
 1980 ligands or sets of ligands have their relationships successfully captured by the generated task token
 1981 embeddings, as reflected by their agreement with relationships derived from biochemical features,
 1982 and which embeddings failed to capture such relationships. More details, including feature selection,
 1983 methods, and the interpretation algorithm are in the following subsections.

1984

1985

1986 A.5.1 INTERPRETATION

1987 In this study, we developed a protein binding site prediction model using a multi-task learning frame-
 1988 work, where each task represents a specific ligand. A 640-dimensional task token was incorporated
 1989 for each ligand alongside the protein sequences. During training, the model learned meaningful task
 1990 token embeddings that effectively represent ligands and their unique characteristics.

1991 To validate the task token embeddings, we employed two clustering approaches: one based on the
 1992 trained task token embeddings and the other on biochemical ligand features. For precise clustering
 1993 and clearer analysis, ligands with an F_1 score below 0.5 were excluded to minimize noise, leaving
 1994 28 out of 41 ligands for analysis. Task token embeddings were reduced to 27 principal components
 1995 using PCA, preserving 99% of the variance, and clustered with k-means to generate target clusters.
 1996 For validating all ligands, the full set of 41 ligands was included. In this case, task token embeddings
 1997 were reduced to 40 components to preserve 99% of the variance, and the same clustering method
 1998 was applied. For the ligand features, 26 biochemical descriptors were collected, covering physical,
 1999 chemical, electronic, hydrophilic, lipophilic, and geometric properties.

1998 A systematic feature selection process evaluated all possible combinations of up to 13 features
 1999 selected from these 26 descriptors (approximately 39 million combinations) to optimize clustering
 2000 quality against the target clusters. The ARI was used as the selection metric, while Normalized
 2001 Mutual Information (NMI) and Pairwise Accuracy metrics were later employed to evaluate the final
 2002 selection.

2003 The clustering results demonstrate that the learned task token embeddings are meaningful, as their
 2004 clustering aligns closely with that based on ligand-specific biochemical features. Moderate-to-high
 2005 agreement metrics ($ARI=0.447$, $NMI=0.614$, and $pairwise-accuracy=0.783$) highlight
 2006 the embeddings' ability to capture key biochemical characteristics of ligands. Chemically significant
 2007 features, such as `MolecularWeight`, `NetCharge`, and `RotatableBonds`, identified as part
 2008 of the optimal feature set, further reinforce the relevance of the embeddings. The overlap and
 2009 similarity in ligand grouping across both clustering approaches validate the hypothesis that the task
 2010 token embeddings effectively encode biologically and chemically meaningful information.

2011 However, reducing task token embeddings or biochemical features to 2D for visualization causes
 2012 significant information loss, making 2D clustering plots less informative (Figures 23 and 24). These
 2013 findings emphasize the importance of preserving higher-dimensional information for accurate
 2014 interpretation and highlight the value of task token embeddings in ligand characterization for protein
 2015 binding site prediction. Figure 18 shows the embeddings-based clustering, while Figure 19 shows the
 2016 features-based clustering, and Figure 17 illustrates the global, local, and no relationships between the
 2017 two approaches of embeddings-based clustering and features-based clustering.

2018 **Global relationships.** Figure 17 highlights the ligands that have been clustered correctly across
 2019 and within both clustering approaches. For instance, in Cluster 3, the solid circles for ACO, ATP,
 2020 FAD, GTP, NAD, and SAM ligands represent ligands that have been consistently clustered across
 2021 and within the same clusters in both approaches. This indicates that the task token embeddings
 2022 successfully capture their similarity with each other and with the rest of the ligands.

2023 **Local relationships.** Figure 17 also depicts ligands that have been clustered correctly only within
 2024 clusters in both clustering approaches. For example, the stars in cluster 3 for FE^{2+} and MN^{2+}
 2025 indicate that these ligands are grouped but appear in different clusters across the two approaches.
 2026 Nevertheless, the task token embeddings still manage to capture their similarity with each other, even
 2027 if they fail to capture their similarity with other ligands.

2028 **No relationships.** For some ligands, the task token embeddings fail to accurately capture their
 2029 global or local relationships. This may be due to the ligand features collected not being entirely
 2030 representative and requiring further refinement, or because the task token embeddings themselves
 2031 need improvement. Figure 17 illustrates these no relationships using triangles; for instance,
 2032 the HEM ligand has been grouped with different ligands across different clusters in both approaches.

2033 For further investigation of the task token embeddings, we incorporated all 41 ligands into
 2034 the clustering analysis. The metrics showed a notable drop: $ARI=0.259$, $NMI=0.333$, and
 2035 $Pairwise-Accuracy=0.733$. This decrease was expected, as including task token embeddings
 2036 for ligands with low F_1 scores introduced some misaligned clusters. However, a closer examination
 2037 reveals that the embeddings still effectively capture the global and local relationships between most
 2038 ligands. Figures 20 and 21 depict the embeddings-based clustering and features-based clustering,
 2039 respectively, while Figure 22 illustrates the global, local, and no relationships across all 41 ligands.
 2040 Notably, out of the 41 ligands, the task token embeddings successfully represented 21 ligands globally,
 2041 13 ligands locally, and misrepresented 7 ligands. These results indicate that the task token embeddings
 2042 consistently demonstrate strong global and local relationships, effectively capturing biochemical
 2043 similarities among ligands. This reinforces the conclusion that the model has learned meaningful
 2044 representations, even for ligands with low F_1 scores.

2045 A.5.2 FEATURES POOL CREATION

2046 The feature pool of 26 descriptors was carefully designed to capture the physical, chemical, and
 2047 structural properties of ligands, making them particularly suitable for describing protein-ligand
 2048 interactions. These features were selected using domain knowledge of protein-ligand interactions
 2049 and their ability to explain binding phenomena effectively. Two primary sources were used to collect
 2050 these features:

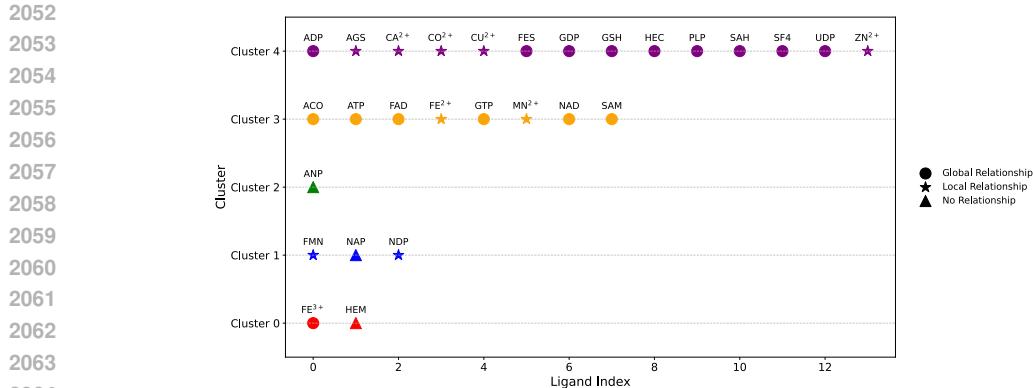


Figure 17: Global Relationships indicate that general biochemical features shared among many ligands have been captured. Local Relationships reflect the successful capture of biochemical properties between specific ligands and their closely related counterparts. No Relationships indicate that the biochemical properties were not captured at all.

- PubChem (Kim et al., 2023), a free online database maintained by the National Center for Biotechnology Information (NCBI), which provides precomputed chemical information for small molecules, drugs, and bioactive compounds. Features were retrieved using Compound IDs (CIDs) and *SMILES*, a text-based representation of molecular structures.
- The second source was RDKit, an open-source cheminformatics toolkit, where *SMILES* strings were converted into molecular objects and processed using various descriptors to compute additional features.

Table 31 shows the set of 26 features, categorized into seven groups, captures the properties of metal ions and molecules from multiple perspectives, providing a comprehensive description of their binding potential with proteins.

A.5.3 OPTIMIZING FEATURE SELECTION

Our approach leverages clustered embeddings as a reference to evaluate clustered features from various feature combinations, identifying the best set of features to describe ligands based on the highest ARI score. We began with task token embeddings of ligands that achieved high F_1 scores to ensure noise reduction and high-quality clustering. These embeddings, initially 640-dimensional, were reduced to 27 principal components using PCA while retaining 99% of the variance. The reduced embeddings were then clustered using k-means, with the optimal number of clusters determined via the Elbow method, serving as the target clusters.

To identify the most informative ligand features, we implemented a search algorithm (Algorithm 1) that evaluates all possible combinations of up to 13 features from a pool of 26. In the first iteration, the algorithm selects a single feature (26 possible options). In the second iteration, it selects two features (325 possible combinations). This process continues up to 13 features, yielding approximately 39 million combinations. For each combination, the ligand-based feature clustering is performed, and the ARI score is computed. The feature combination that achieves the highest ARI score is selected as the best set.

Next, we removed the threshold constraint and extended the algorithm to all 41 ligands, examining whether task token embeddings captured meaningful representations for ligands with F_1 scores below 0.5. This analysis demonstrated that the embeddings retained significant information even for lower-performing ligands.

Table 32 presents the output of our searching algorithm, showing the top three feature combinations based on the ARI metric for the top 28 ligands. Table 33 displays the top three feature combinations for the entire set of 41 ligands.

2106

2107

Table 31: All 26 features we used in the interpretation step.

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

No.	Name	Description	Source
1	MolecularWeight	Total molecular mass	PubChem
2	ExactMass	High-precision mass of the molecule	PubChem
3	MolecularVolume	Estimated molecular volume	RDKit
4	HeavyAtomCount	Count of non-hydrogen atoms	RDKit
5	RingCount	Total number of rings in the molecule	RDKit
6	CarbonCount	Number of carbon atoms	RDKit
7	OxygenCount	Number of oxygen atoms	RDKit
Polarity and Hydrophobicity Features			
8	LogP	Partition coefficient (hydrophobicity)	PubChem
9	MolLogP	Alternative measure of hydrophobicity	RDKit
10	HydrophobicSurfaceArea	Hydrophobic interaction area (TPSA)	RDKit
11	TPSA	Topological Polar Surface Area (polarity)	PubChem
12	Hydrophilicity	Difference between molecular weight and hydrophobicity	RDKit
13	Polarizability	Molecular refractivity	RDKit
14	Refractivity	A measure of a molecule's polarizability	RDKit
Charge and Electrostatics Features			
15	NetCharge	Net electrical charge of the molecule	PubChem
16	ElectrostaticPotential	Approximate measure of electrostatic potential	RDKit
Flexibility and Rotational Features			
17	RotatableBonds	Number of rotatable bonds	PubChem
18	RotatableBondFraction	Fraction of single bonds that are rotatable	RDKit
Bond and Connectivity Features			
19	SingleBonds	Count of single bonds	RDKit
20	DoubleBonds	Count of double bonds	RDKit
21	BalabanJ	Balaban index (topological descriptor)	RDKit
Hydrogen Bonding Features			
22	HBondDonors	Number of hydrogen bond donors	PubChem
23	HBondAcceptors	Number of hydrogen bond acceptors	PubChem
24	HydrogenBondingPotential	Difference between molecular weight and TPSA	RDKit
Aromaticity and - Interactions			
25	AromaticRings	Number of aromatic rings	RDKit
26	PiPiInteractionSites	Number of - interaction sites	RDKit

Algorithm 1 Ligand interpretation clustering**Input** (features_pool (26 features), task_token_embeddings (640D), ligands (41), threshold (e.g., $F1 > 0.5$))**Output** (best_features_combination, best_ari)**Step 1. Preprocessing:****(a) Filter Ligands:**high_quality_ligands $\leftarrow \{\text{ligand} \mid F1(\text{ligand}) > \text{threshold}\}$ **(b) Reduce Embeddings:**pca_embeddings $\leftarrow \text{PCA}(\text{task_token_embeddings}, n \text{ components}, 99\% \text{ variance})$ **(c) Find Clusters:** $k_{\text{optimal}} \leftarrow \text{ElbowMethod}(\text{pca_embeddings})$ target_clusters $\leftarrow \text{KMeans}(\text{pca_embeddings}, k_{\text{optimal}})$ **Step 2. Feature Combination Evaluation:****Initialization:**best_ari $\leftarrow -\infty$ **for** $n_{\text{features}} = 1$ **to** 13 **do**combinations $\leftarrow \text{Combinations}(\text{features_pool}, n_{\text{features}})$ **for each** combination \in combinations **do**feature_clusters $\leftarrow \text{KMeans}(\text{combinations}, k_{\text{optimal}})$ ari $\leftarrow \text{ComputeARI}(\text{feature_clusters}, \text{target_clusters})$ **if** ari $>$ best_ari **then**best_ari \leftarrow aribest_features_combination \leftarrow combination**end if****end for****end for**

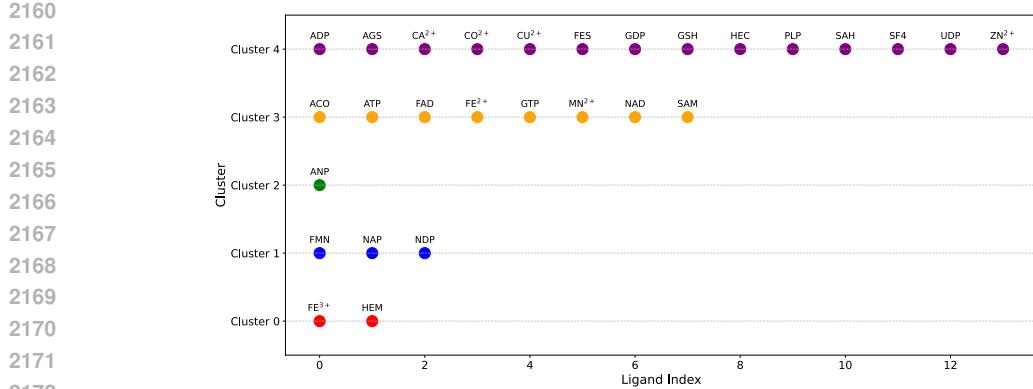
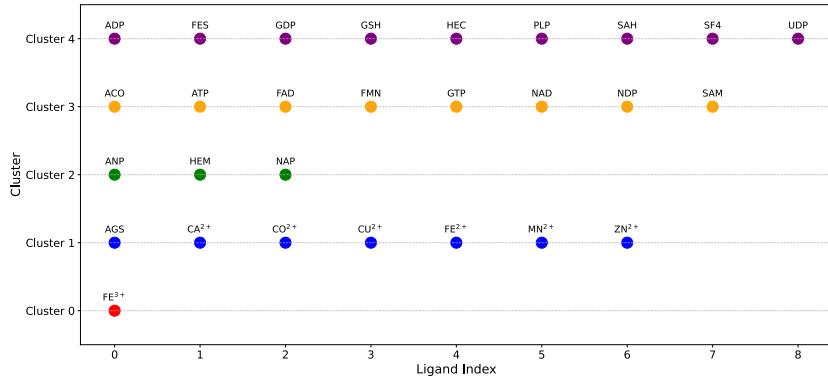
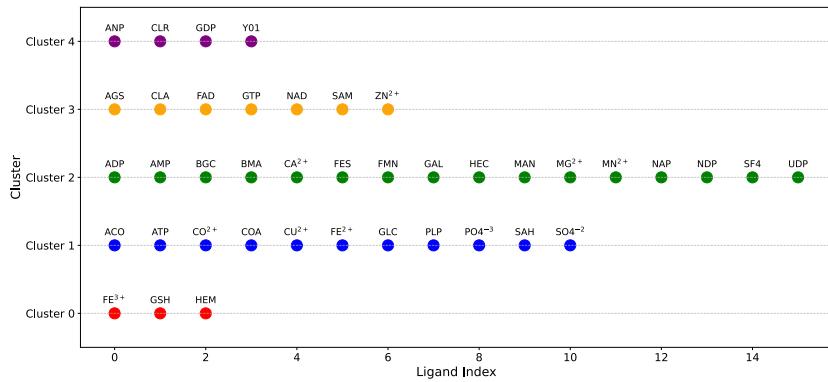
Figure 18: Clustering results of embeddings on top 28 ligands based on F_1 score.

Figure 19: Clustering results of features on the 28 selected ligands.

A.5.4 VISUALIZATION

2194 To analyze the structural relationships within the high-dimensional ligand embeddings, we applied
2195 dimensionality reduction techniques to project the representation of 41 ligands from the 640 dimensional
2196 space for visualization. The methods explored included t-SNE (Figure 23) and UMAP (Figure 24).
2197

Figure 20: Clustering results of embeddings on all 41 ligands based on F_1 score.

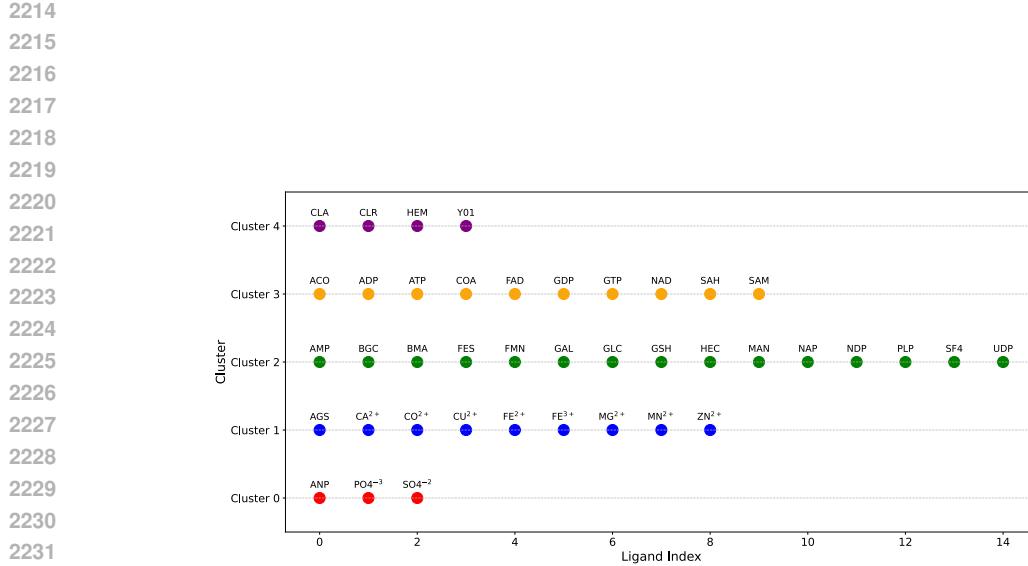


Figure 21: Clustering results of features on the 41 selected ligands.

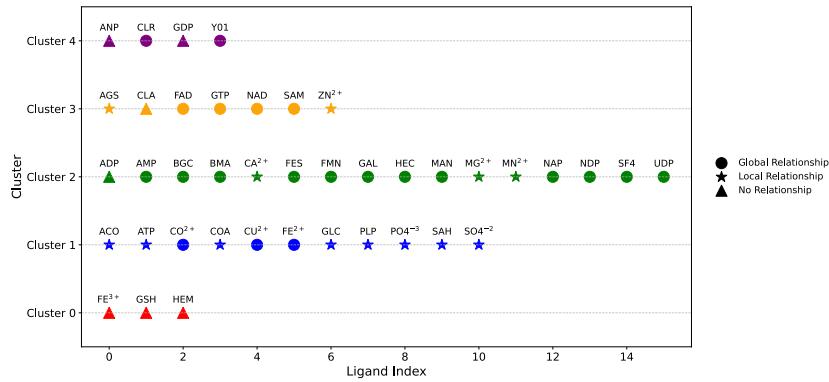


Figure 22: Global Relationships indicate that general biochemical features shared among many ligands have been captured. Local Relationships reflect the successful capture of biochemical properties between specific ligands and their closely related counterparts. No Relationships indicate that the biochemical properties were not captured at all.

Table 32: Top three feature combinations for the 28 ligands.

No. Features	Features	ARI	NMI	Pairwise Accuracy
7	MolecularWeight, NetCharge, RotatableBonds, HydrogenBondingPotential, CarbonCount, SingleBonds, BalabanJ	0.447	0.614	0.783
12	LogP, NetCharge, RotatableBonds, ExactMass, Polarizability, AromaticRings, MolLogP, MolecularVolume, HydrogenBondingPotential, CarbonCount, SingleBonds, BalabanJ	0.423	0.573	0.772
13	MolecularWeight, LogP, NetCharge, RotatableBonds, ExactMass, Polarizability, MolLogP, MolecularVolume, RingCount, HydrogenBondingPotential, CarbonCount, BalabanJ, Hydrophilicity	0.434	0.577	0.778

Table 33: Top three feature combinations for the entire set of 41 ligands.

No. Features	Features	ARI	NMI	Pairwise Accuracy
8	NetCharge, HBondDonors, HBondAcceptors, ExactMass, Refractivity, Hydrogen-BondingPotential, SingleBonds, PiPiInteractionSites	0.248	0.317	0.728
10	MolecularWeight, LogP, RotatableBonds, TPSA, MolLogP, MolecularVolume, SingleBonds, Hydrophilicity, ElectrostaticPotential, PiPiInteractionSites	0.206	0.319	0.709
13	LogP, NetCharge, HBondDonors, HBondAcceptors, TPSA, ExactMass, Polarizability, AromaticRings, Refractivity, DoubleBonds, BalabanJ, Hydrophilicity, PiPiInteractionSites	0.259	0.333	0.733

The perplexity parameter for t-SNE was set to 3, and the number of neighbors (`n_neighbors`) for UMAP was also set to 3. These parameters were chosen to focus on capturing local relationships among ligand embeddings and to preserve some global structural details. Additionally, the dimensionality of the output was set to two (`n_components=2`) because the visualizations are in two dimensions. All other parameters were kept at their default settings.

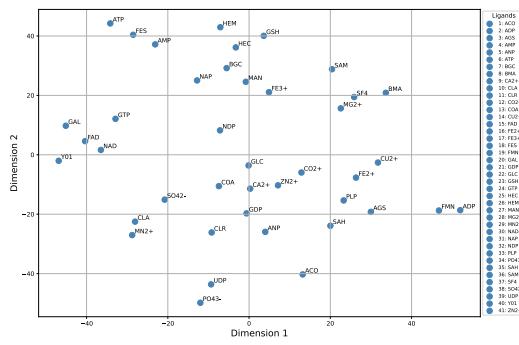


Figure 23: Visualization of task token embeddings using t-SNE.

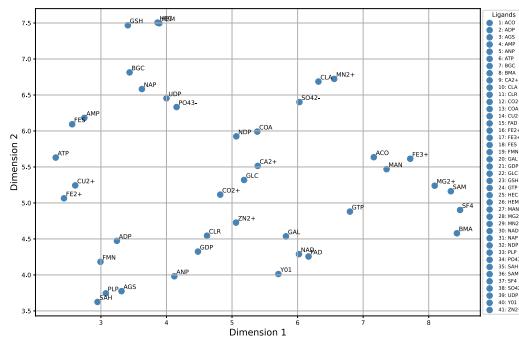


Figure 24: Visualization of task token embeddings using UMAP.

A 5.5 MULTI-TASK LEARNING EFFECT

In this section, we tried to investigate the effect of multi-task learning on three ligands that have low number of samples but share similar semanticity in the embedding space of task tokens (Figure 17). Therefore, we selected GSH, CO, AGS as our target ligands because (1) they belong to the

same cluster, (2) showed global or local relationships and, (3) have less than 200 or lower number of protein sequences in total. We considered three groups to measure the performance of three ligands. There groups are defined as follow:

Group 1. Combination of the target ligands, GSH, CO and AGS (Equivalent to 1,819 tokens).

Group 2. Combination of CLA, FAD, HEM and NAD as ligands that did not share a close semantic representation in Figure 17 (Equivalent to $\sim 43k$ tokens).

Group 3. Combination of Zn, Ca, ADP, members from cluster 4 (Equivalent to $\sim 37k$ tokens).

Need to point out, in order to make the comparison of group 2 and 3 fair, we considered the total number of tokens in these groups close to each other. Table 34 shows that group 3 which shares a similar cluster with the target ligands, improves F_1 score more than other groups.

Table 34: The effect of jointly training under representative ligands based on different auxiliary groups with respect to F_1 score. “-” means no auxiliary task is used during training the target task.

Target Task	-	Group 1	Group 2	Group 3
GSH	66.53	70.27	69.18	68.74
CO	35.87	32.65	29.26	58.48
AGS	31.63	22.94	43.18	49.09
Average	44.68	41.95 (-2.73)	47.21 (+2.53)	58.77 (+14.09)

A.6 BROADER IMPACT

The *Prot2Token* framework represents a significant advancement in computational biology, with potentially transformative impacts on protein research, therapeutic discovery, and biotechnology applications. By unifying diverse protein prediction tasks within a single, scalable architecture, *Prot2Token* substantially reduces computational requirements and simplifies model management. This democratization of sophisticated predictive capabilities could significantly enhance accessibility for research groups with limited computational resources, facilitating broader participation and innovation in the field. Moreover, the substantial speed improvements demonstrated by *Prot2Token*, particularly in protein structure prediction, may enable real-time applications in clinical and industrial settings, such as personalized medicine, real-time drug screening, and rapid biomarker discovery.

However, alongside these benefits, the wide applicability and powerful predictive capacity of *Prot2Token* also necessitate careful ethical consideration. As the barrier to rapid protein prediction and generation lowers, it becomes increasingly important to implement responsible practices around data usage and sharing, ensuring that predictive outputs, especially those related to therapeutics or biologically active molecules, are validated rigorously before clinical or environmental deployment. Additionally, there is a need to consider the implications of such advanced modeling capabilities on biosecurity. With models that can rapidly predict or design biologically active proteins, safeguards must be established to prevent misuse, including unintentional production of harmful or disruptive biological agents. Continued dialogue and collaboration between computational biologists, policymakers, and ethicists will be crucial to navigating these challenges responsibly.

A.7 LLM USAGE

In this manuscript, we used large language models only for copy-editing: improving grammar, clarity, and style of author-written text.