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Abstract

We present Shape-Tailored Deep Neural Networks (ST-DNN). ST-DNN are deep
networks formulated through the use of partial differential equations (PDE) to be
defined on arbitrarily shaped regions. This is natural for problems in computer
vision such as segmentation, where descriptors should describe regions (e.g., of
objects) that have diverse shape. We formulate ST-DNNs through the Poisson PDE,
which can be used to generalize convolution to arbitrary regions. We stack multiple
PDE layers to generalize a deep CNN to arbitrarily shaped regions. We show that
ST-DNN are provably covariant to translations and rotations and robust to domain
deformations, which are important properties for computer vision tasks. We show
proof-of-concept empirical validation.

1 Introduction

Poisson Partial differential equations (PDEs) have desirable robustness and covariance properties and
can be tailored to region of interest, which are not present in modern convolutional neural networks
(CNNs). In this work we try to bridge this gap by introducing PDEs in CNNs architecture. To show
the advantage of these properties, we show their utility in segmentation.

CNNs have been used extensively for segmentation problems in computer vision (10; 11; 6; 23).
CNNs provide a framework for learning descriptors that are able to discriminate different textured
or semantic regions within images. Much progress has been made in segmentation with CNNs but
results are still far from human performance. Also, significant engineering must be performed to
adapt CNNs to segmentation problems. A basic component in the architecture for segmentation
problems involves labeling or grouping dense descriptors returned by a backbone CNN. A difficulty
in grouping these descriptors arises, especially near the boundaries of segmentation regions, as CNN
descriptors aggregate data from fixed shape (square neighborhoods) at each pixel and may thus
aggregate data from different segmentation regions. This makes grouping these descriptors into a
unique region difficult, which often results in errors in the grouping.

Our contributions are specifically (see Figure 1): 1) We construct and show how to train ST-DNN,
deep networks that perform shape-tailored spatial filtering via the Poisson PDE at each depth so
as to generalize a CNN to arbitrarily shaped regions. 2) We show analytically and empirically that
ST-DNNs are covariant to translations and rotations as they inherit this property from the Poisson
PDE. In segmentation, covariance (a.k.a., equivariance) to translation and rotation is a desired
property: if a segment in an image is found, then the corresponding segment should be found in the
translated / rotated image (or object). This property is not generally present with existing CNN-based
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segmentation methods even when trained with augmented translated and rotated images (3), and
requires special consideration.3) We show analytically and empirically that ST-DNNs are robust to
domain deformations. These result from viewpoint change or object articulation, and so they should
not affect the descriptor. 4) To demonstrate ST-DNN and the properties above, we validate them on
the task of texture segmentation, an important problem in low-level vision (17; 2).

Because of properties of the PDE, ST-DNN also have desirable generalization properties. This is
because: a) The robustness and covariance properties are built into our descriptors and do not need
to be learned from data, b) The PDE solutions, generalizations of Gabor-like filters (18; 26), have
natural image structure inherent in their solutions and so this does not need to be learned from data,
and c) Our networks have fewer parameters compared to existing networks in segmentation. This
is because the PDE solutions form a basis and only linear combinations of a few basis elements
are needed to learn discriminative descriptors for segmentation. In contrast, CNNs spend a lot of
parameters to learn this structure.

1.1 Related Work

CNNs have been applied to compute descriptors for semantic segmentation, where pixels in an image
are classified into certain semantic object classes (15; 12; 8; 20; 27; 16). Usually these classes are
limited to a few object classes and do not tackle general textures, where the number of classes may
be far greater, and thus such approaches are not directly applicable to texture segmentation. But
semantic segmentation approaches may eventually benefit from our methodology as descriptors
aggregating data only within objects or regions are also relevant to these problems. In (14) a learned
shape-tailored descriptor is constructed with a Siamese network on hand-crafted shape-tailored
descriptors. However, (14) only does shape-tailored filtering in pre-processing as layering these
requires new methods to train. We further examine covariance and robustness, not examined in (14).
Deformable convolutions (7) can also learn non rectangular receptive fields; however, they are not
provably robust and covariant, key motivations of our approach.

Covariance to rotation in CNNs has been examined in recent works, e.g., (22; 25; 1). They, however,
are not shape-tailored so do not aggregate data only within shaped regions. Lack of robustness to
deformation (and translation) in CNNs is examined in (3) and theoretically in (4). (21) constructs
deformation robust descriptors inspired by CNNs, but are hand-crafted.

2 Shape-tailored DNN through Poisson PDE and it’s Properties

In this section, we design a deep neural network that outputs descriptors at each pixel within an
arbitrary shaped region of interest and aggregates data only from within the region.

Shape-tailored Smoothing via Poisson PDE: To construct a shape-tailored deep network, we first
smooth the input to a layer using the Poisson PDE so as to aggregate data only within the region
of interest. Let R ⊂ Ω ⊂ R2 be the region of interest, where Ω is the domain of the input image
I : Ω→ Rk and k is the number of input channels to the layer. Let u : R→ RM (M is the number
of output channels) be the result of the smoothing; the components u of u solve the PDE within R:{

u(x)− α∆u(x) = I(x) x ∈ R
∇u(x) ·N = 0 x ∈ ∂R , (1)

where I is a channel of I, ∂R is the boundary of R, N is normal to ∂R, α is the scale of smoothing
and ∆/∇ are the Laplacian and the gradient respectively. It can be shown that the smoothing can be
written in the form u(x) =

∫
R
K(x, y)I(y)dy where K(., .) is the Green’s function of the PDE, a

smoothing kernel, which further shows that the PDE aggregates data only within R (see Figure 1).

Shape-tailored Deep Network: We can now generalize the operation of convolution tailored to
the region of interest by taking linear combinations of partial derivatives of the output of the PDE
equation 1. This is motivated by the fact that in R = R2, linear combinations of derivatives of
Gaussians can approximate any kernel arbitrarily well. Gaussian filters are the solution of the
heat equation, and the PDE equation 1 relates to the heat equation, i.e., equation 1 is the steady
state solution of a heat equation. Thus, linear combinations of derivatives of equation 1 generalize
convolution to an arbitrary shape R; in experiments, a few first order directional derivatives are
sufficient for our segmentation tasks (see Section 4 for details). A layer of the ST-DNN takes such
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linear combinations and rectifies it as follows:

fi[I](x) = r ◦ Li ◦ T [I](x), (2)

where I : R→ Rk is the input to the layer, T is an operator that outputs derivatives of the solution of
the Poisson PDE equation 1, Li(y) = wiy+bi is a point-wise linear function (i.e., a 1×1 convolution
applied to combine different channels), r is the rectified linear function, and i indexes the layer of the
network. Notice that since r and Li are pointwise operations, they preserve the property of T that it
aggregates data only within the region R. We now compose layers to construct a ST-DNN as follows:

F [I](x) = s ◦ fm ◦ fm−1 ◦ fm−2 ◦ ....f0 ◦ I(x), (3)

where F [I](x) is the output of the ST-DNN, f0, ..., fm are the m+ 1 layers of the network, I is the
input image, and s represents the soft-max operation (to bound the output values).

ST-DNN does not have a pooling layer because the PDE already aggregates data from a neighborhood
by smoothing; further, the lack of reduction in spatial dimension allows for more accurate shape
estimation in our subsequent segmentation, and avoids the need for up-sampling layers. We will show
that we can retain efficiency in training and inference.

2.1 Covariance and Robustness of ST-DNN

In addition to ST-DNN generalizing CNNs to arbitrary shaped regions, the ST-DNN is also covariant
to in-plane translation and rotation, and robustness to domain deformations due to properties of the
Poisson PDE. This means covariance also extends to our segmentation method, which is important
as any object segmented in an image will also be segmented if the camera undergoes these trans-
formations. Robustness to deformations is important as this means that small geometric variability
(e.g., shape variations in textons, small viewpoint change, object deformation) will not affect the
descriptors and the segmentation. We make these properties more precise, and give intuition for
proofs, leaving details to Appendix (see 5.1).

Definition 1 An operator S : I → I (from the set of images I to itself) is covariant to a classW of
transformations if S[I ◦ w] = [SI] ◦ w for every I ∈ I and w ∈ W .

Theorem 1 The ST-DNN equation 3 is covariant to the set of translations and rotations, i.e., x→
Rx+ T whereR is a 2× 2 rotation matrix and T ∈ R2.

Theorem 2 The ST-DNN equation 3 is insensitive to deformations, i.e.,

|F [I ◦ w]− F [I]| ≤ C‖w − id‖H1 , (4)

where w : Ω→ Ω is a domain deformation, id is the identity map, H1 is the Sobolev norm (measures
both the amount and smoothness of the deformation), and C is a constant independent of w, I .

3 Training and Inference with ST-DNNs

Given the ST-DNN of Section 2, the loss function to train such descriptors from ground truth
segmentation masks (motivated by consistency to the segmentation algorithm based on classical
segmentation energies (5; 24)) is defined as:

L(W) =

N∑
i=1

1

|Ri|

∫
Ri

||FW(x)− ai||22dx−
∑
i

∑
j 6=i

||ai − aj||22 (5)

where i, j ∈ {1, 2, ..., N} are the indices for the regions in the ground truth segmentation, FW(x)
is the output of the ST-DNN, W are the weights of the network (i.e., weights on derivatives of
the Poisson PDE solution), |Ri| is the area of region i, and ai is the average descriptor within the
ith region, i.e., ai = 1

|Ri|
∫
Ri

FW(x)dx. The loss function is comprised of two terms. The first
component of the loss is minimized when the learned descriptor is constant within regions Ri so
that each region consists of parts of the image with uniform descriptor. The second term forces the
learned descriptor of different regions to be different to discriminate different textures.
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Computing gradients of the loss function for training requires consideration as it involves differen-
tiating through PDEs. The most straightforward way to do this involves discretizing the PDE, so
the solution is a linear matrix system as we do in this paper. This allows the use of existing deep
learning packages to perform backprop by storing the matrix in memory. However, this can lead to
large memory consumption as the matrix can be large and is only feasible for small images. The
more accurate method, though more difficult to implement, is to avoid storing the matrix and instead
compute the solution by an iterative numerical PDE method that does not require storage of matrices.

At inference the regions of segmentation are estimated iteratively together with updates of the ST-
DNN for each of the regions as they evolve. We minimize the (non-convex) energy i.e. the first term
of the training loss plus boundary regularisation term, with respect to the region. We use gradient
descent to minimize the energy. The curve (boundary of regions) evolution is implemented with a
method analogous to level set methods (19) by evolving smooth indicator functions of regions for
convenient implementation. The method involves joint updates of the regions and the shape-tailored
descriptors within the evolving regions. Our method typically takes a few iterations (approx. 20) to
converge in our experiments. For more details of the inference refer to Appendix Algorithm 1.

4 Experiments

For the experiments we have used a four layer ST-DNN with 100, 40, 20, 5 hidden units respectively.
The smoothing parameter α is set to 5.

Covariance and Robustness of ST-DNN: To demonstrate the covariance of ST-DNN to translation
and rotation, each image in the test set was randomly rotated and cropped to a rectangle at random
positions (to simulate translation) in the rotated image. We segment the original and the transformed
image, denoted S[I] and S[I ◦ w], respectively, where w is the transformation used to produce
the translated/rotated image. We then measure the difference between S[I] ◦ w and S[I ◦ w]
through GT-covering; both should be equal if the descriptor is covariant. Results are summarized
in Table 1. ST-DNN outperforms resnet101-all-ce by a margin of almost 25%. Note ST-DNN uses
no data augmentation, whereas the competing networks are augmented with translated and rotated
images. To demonstrate robustness to deformation, for each image in the dataset we generate random
deformations of varying deformation norm ‖v‖2 between 20 and 80. We examine the robustness
of descriptors to deformations of increasing norm by comparing the segmentation of the original
and deformed images similar to the covariance experiment. Results are in Table 1, which show
that ST-DNN is more robust by large margins than competing descriptors, and the robustness over
competing methods increases with increasing norm.

Comparison of ST-DNN to Standard DNNs: We compare our method ST-DNN (ours) on a texture
segmentation dataset (13) against popular deep learning architectures in computer vision - DeepLab-
v3 (6), and FCN-ResNet101 (11) and with a modified version of ST-DNN where the descriptor is
calculated on the entire image (ST-DNN (RL)). ST-DNN networks have 8900 parameters and is
trained with only 128 images. ST-DNN is around 3 orders of magnitude smaller than standard deep
networks and takes around 2 orders of magnitude less training data (e.g., FCN-ResNet101 uses 50,000
images plus augmented data and has 45 million parameters), but still outperforms these networks.
We have trained FCN-ResNet101 and DeepLab-v3 on saliency detection datasets (large datasets for
binary segmentation) and fine tuned on the base dataset augmented with 8 rotations and 5 scales. We
have used both cross entropy loss (denoted with ce) and our loss (denoted with ’ours’) for standard
deep learning networks in our experiments. Quantitative results are shown in Table 2. ST-DNN
outperforms all other deep networks by good margins. Notice that because of the desirable properties
of PDEs STDNN (RL) perform better than DNN based architecture ST-DNN (ours) performs better
than ST-DNN (RL) because of the iterative update of the region.
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Deformation Experiment
Sobolev Norm 20 40 80
DeepLab-v3 0.85 0.76 0.66

FCN-ResNet101 0.81 0.75 0.65
ST-DNN 0.88 0.85 0.81

Covariance Experiment
FCN-ResNet101 ST-DNN

0.69 0.87
Table 1: Covariance and Deformation: Com-
parison of ST-DNN with DNNs

Method GT-cov. Method GT-cov
ST-DNN (ours) 0.94 ST-DNN (RL) 0.89
resnet101-ce 0.79 resnet101-ours 0.83
deeplabv3-ce 0.86 deeplabv3-ours 0.85

Table 2: Segmentation Results: Comparison
of ST-DNN with DNNs.
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5 Appendix

Figure 1: Shape-tailored DNNs and its optimization aim to compute dense descriptors that aggregate
data only within regions of segmentation. Two different points in each of the images are shown; heat
maps defined by ST-DNNs show the location’s contribution to the ST-DNN descriptor at the point
(yellow is high; blue is low). Points in the foreground/background aggregate only data from their
respective regions (shape-tailored). Using Poisson PDEs to define ST-DNNs ensures it is provably
robust to deformations and covariant to translations and rotations, properties that make learning more
data efficient. Red points in each image both have similar descriptors as they are shape-tailored and
robust/covariant, which is desired since both points belong to the same segmentation region.

5.1 Analytical Proofs for Covariance and Robustness

The proof of Theorem 1 (covariance of ST-DNN to rotation and translation) follows from basic
properties of the Laplace equation (9); we state these properties in terms of our language of covariant
operators, and show the proof for the convenience of the reader. We will show Theorem 2 (robustness
of ST-DNN to domain deformations) as a consequence of properties of linear PDE theory.

We repeat the definition of covariant operator:

Definition 2 An operator T : I → I is covariant to a classW of transformations if

T [I ◦ w] = [TI] ◦ w,

for every I ∈ I and w ∈ W .

We show covariance of the Laplace operator, and as a consequence, the covariance of the Poisson
PDE and the ST-DNN.

Theorem 3 The Laplacian operator ∆ =
∑
i
∂2

∂x2
i

is covariant to rotations, x→ Rx where R is a
rotation matrix.

Proof 1 Let u ∈ I, and let R be a rotation. Consider

∂

∂xi
u(Rx) =

[
∂

∂xi
u(Rx)

]T
∇u(Rx) (6)

= eTi R
T∇u(Rx) = [∇u(Rx)]TRei. (7)

Also,

∂

∂xi

[
∂u

∂xj
(Rx)

]
=

[
∇ ∂u

∂xj

]T
(Rx)Rei (8)

so,

∂

∂xi
[∇u(Rx)] = Hu(Rx)Rei (9)
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so ,
∂

∂xi
[∇u(Rx)]

T
= (Rei)

THu(Rx). (10)

Thus,

∂2

∂x2
i

u(Rx) =
∂

∂xi
[∇u(Rx)]TRei = (Rei)

THu(Rx)Rei. (11)

Then,

∆(u ◦R)(x) =
∑
i

∂2

∂x2
i

u(Rx)

=
∑
i

(Rei)
THu(Rx)Rei = tr[RTHu(Rx)R]

= tr[Hu(Rx)]

= ∆u(Rx),

(12)

where the second last equality is due to the invariance of the trace to similarity transformations.

Theorem 4 The Laplacian operator is covariant to translations, x→ x+ t, where t is a vector.

Proof 2 We have,
∂

∂xi
[u(x+ t)] =

∂u

∂xi
(x+ t). (13)

Similarly,

∂2

∂x2
i

[u(x+ t)] =
∂

∂xi

[
∂u

∂xi
(x+ t)

]
=
∂2u

∂x2
i

(x+ t)

(14)

Thus, ∆(u ◦ T )(x) = (∆u) ◦ T where T (x) = x+ t.

Corollary 1 The solution u of the Poisson equation, i.e.,

u(x)− α∆u(x) = I(x), (15)

u = T [I] is covariant to translations and rotations.

Proof 3 This follows from the covariance of the Laplacian, and the identity map.

We can now show covariance of the ST-DNN to translations and rotations.

Theorem 5 The ST-DNN equation (3 main paper) is covariant to translations and rotations.

Proof 4 Since ST-DNNs are composition of solutions of Poisson Equations with fully connected
layer across channels and non-linearity in multiple layers. A linear combination of channels and
point-wise non-linear operation preserves the covariance of rotation and translations, hence the
ST-DNNs are covariant to translations and rotations.

We now show robustness of the ST-DNN to domain deformations with respect to the Sobolev
norm; that is, we show that the output of a ST-DNN layer does not change much if deformed by a
transformation with small Sobolev norm (a smooth transformation that has small displacement). The
Sobolev measures the smoothness of the deformation, i.e., the L2 norm of the deformation and the
gradient of the deformation. We have the following theorem:

Theorem 6 The solution of the ST-DNN is robust to deformations, i.e.,

|T [I ◦ w]− T [I]| ≤ C‖w − id‖H1 , (16)

where T is the mapping from the image to the solution of the ST-DNN, w : Ω → Ω is a domain
deformation, id is the identity map, and H1 indicates the Sobolev norm.
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Proof 5 This is a consequence of Lemma equation 1 below, which shows that each layer of the
ST-DNN is robust. Stacking such layers preserves the robustness by applying Lemma 1 successively.

We now prove robustness of layers of ST-DNN. For convenience in the proof, we assume the input
operates on the domain Ω = R2, which avoids having to consider the boundary and more complicated
formulas that do not affect the essence of the argument. Let

f [I] = r[(L ◦D ◦K) ∗ I] (17)
be a layer of ST-DNN. Here r is the rectified linear unit, K is the kernel representing, the Green’s
function of the Poisson equation (we assume for this proof that the domain of the image is all of R2),
D is the derivative operator representing oriented gradients (or parial derivatives of an finite order),
and L is a weight matrix of fully connected layer across channels.

We state the robustness of a layer of ST-DNN:

Lemma 1 A layer, f [I] = r[(L ◦D ◦K ∗ I], of a ST-DNN is Lipschitz continuous with respect to
diffeomorphisms in the Sobolev norm, i.e.,

|f [I ◦ w]− f [I]| ≤ C‖w − id‖H1 , (18)
where id(x) = x is the identity map, and C is a constant (independent of w and only of function of
the class of images), and ‖w‖2H1 =

∫
Ω

(|w(x)|+ |∇w(x)|2)dx. Note that w− id is the displacement.

Proof 6 Let w be a smooth diffeomorphism. Then by Lipschitz continuity of the ReLu,
|f [I ◦ w](x)− f [I](x)| ≤ |M ∗ (I ◦ w)(x)−M ∗ I(x)| (19)

where M = L ◦D ◦K. Note that by a change of variables,

M ∗ I(x) =
∑
y

M(x− w(y))I(w(y)) det∇w(y). (20)

Note that the determinent of the Jacobian appears if we weight the sum by the area measure, which
approximates the integral. Therefore,

M ∗ (I ◦ w)(x)−M ∗ I(x) =∑
y

[M(x− y)−M(x− w(y)) det∇w(y)]I(w(y)). (21)

We let w(y) = y + v(y). This gives us
det∇w(y) = 1 + div(v(y)) + det∇v(y).

We may bound the second term as
|div(v(y)) + det∇v(y)| ≤ C1|∇v(y)|2

by basic inequalities. Therefore,

|M(x− y)−M(x− w(y)) det∇w(y)| ≤
|M(x− y)−M(x− w(y))|+ C1M(x− w(y))|∇v(y)|2. (22)

By Lipschitz continuity of the Poisson kernel and derivatives, we have
|M(x− y)−M(x− w(y))| ≤ CG‖L‖∞|v(y)|. (23)

Note that the Poisson kernel has a singularity at the origin, so the statement is not precise; however,
as common in PDE analysis, as we will below compute integrals of the left hand quantity, we can
break the integral into two terms one that integrates the singularity in a small ball (which is finite)
and the other that integrates the right hand side, that we analyze below. The former will disappear to
zero as the ball goes to zero. We omit the details to avoid hiding the main argument.

We also have that
|M(x− w(y))| ≤ C2‖L‖∞. (24)

Therefore,
|f [I ◦ w](x)− f [I](x)| ≤

C‖L‖∞‖I‖∞
∫

Ω

(|v(y)|2 + |∇v(y)|2)dy

= C‖L‖∞‖I‖∞‖w − id‖2H1 .

(25)
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For a multi layer multiple layers network with N layers we will have:

|T [I ◦ w]− T [I]| ≤

(

N∏
i=1

Ci‖Li‖∞)C0‖L0‖∞‖I‖∞‖w − id‖2H1

= C‖w − id‖H1 ,

(26)

Algorithm 1 Texture Segmentation with ST-DNNs
1: Input: An initialization of φi
2: repeat
3: Set regions: Ri = {x ∈ Ω : i = argmaxjφj(x)}
4: Compute dilations, D(Ri), of Ri
5: Compute FRi

in D(Ri), compute ai = 1/|Ri| ·
∫
Ri

FRi
(x)dx.

6: Compute band pixels Bi = D(Ri) ∩D(Ω\Ri)
7: Compute Gi = ‖FRi

(x))− ai‖22 for x ∈ Bi. F is evaluated from the neural network.
8: Update pixels x ∈ D(Ri) ∩D(Rj) as follows:

φτ+∆τ
i (x) = φτi (x)−∆τ(Gi(x)−Gj(x))|∇φτi (x)|+

∆τ · βκi|∇φτi (x)|.
(27)

9: Update all other pixels as

φτ+∆τ
i (x) = φτi (x) + ∆τ · βκi|∇φτi (x)|.

10: Clip between 0 and 1: φi = max{0,min{1, φi}}.
11: until regions have converged
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