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Abstract

Generating annotated pairs of realistic tissue images along with their annotations is a chal-
lenging task in computational histopathology. Such synthetic images and their annotations
can be useful in training and evaluation of algorithms in the domain of computational
pathology. To address this, we present an interactive framework to generate pairs of real-
istic colorectal cancer histology images with corresponding tissue component masks from
the input gland layout. The framework shows the ability to generate realistic qualitative
tissue images preserving morphological characteristics including stroma, goblet cells and
glandular lumen. We show the appearance of glands can be controlled by user inputs such
as number of glands, their locations and sizes. We also validate the quality of generated
annotated pair with help of the gland segmentation algorithm.

Keywords: Computational Pathology, Generative Adversarial Networks, Tissue Image
Synthesis

1. Introduction

Deep learning techniques have shown great potential in solving problems in the field of
computational histopathology such as tumor segmentation (Bejnordi et al. (2017)), nuclei
classification (Tripathi and Singh (2020)) and cancer grading (Gupta et al. (2019); Shaban
et al. (2020)), particularly for facilitating clinical diagnosis. These applications generally
required a large amount of training data which is difficult to acquire, requires involvement of
highly trained pathologists and can be a time-consuming and costly process. Furthermore,
there are several confidentiality issues relating to patients, legal & ethical barriers while
collecting pathology images (Price and Cohen (2019), Chen et al. (2021)). Such develop-
ments compelled researchers to come up with novel solutions for generation of high-quality
pathology images (Kovacheva et al. (2016), Quiros et al. (2019), Levine et al. (2020)).

In pathology image analysis, due to tissue heterogeneity and variations in acquired tissue
images in laboratories, the data annotation phase must often be repeated for different tissue
types such as glands, fat tissues, blood vessels to achieve the optimal performance. For tasks
like gland segmentation, manual generation of component masks highlighting glandular por-
tions, can be a laborious and time-consuming task. This is a major obstacle to generating a
large amount of annotated data for segmentation algorithms. Some researchers have inves-
tigated generating synthetic pathology images from tissue component masks. For instance,
Senaras et al. (2018) proposed a model to generate breast cancer tissues conditioned on
the input nuclei masks; Deshpande et al. (2020) presented the framework to produce high
resolution colorectal tissue images based on glandular masks. Hou et al. (2019) proposed an
unsupervised pipeline to construct histopathology tissue images from corresponding nuclei

1



Figure 1: Concept diagram of the proposed framework. The framework generates annotated
pairs (b) of colorectal tissue images with their corresponding tissue component
(gland) masks from the input gland layout (a). The gland layout is a 2-d plane
where users can arrange glands on 2-d locations with suitable sizes. The generated
annotated pairs can be used in training and evaluation of the gland segmentation
algorithm.

masks constructed using the predefined random polygon generator. The pairs were used to
train the nuclei segmentation algorithm. These methods either assume input component
masks are already present, or require explicit construction of component masks by gener-
ating random shapes of respective tissue components like nuclei, which can be erroneous
and may not be realistic. Moreover, this process of crafting component masks can be tricky
for larger multi-cellular structures such as glands. Generating synthetic images along with
component masks simultaneously is therefore desirable as it potentially reduces the cost of
annotations and also constructs realistic annotated pairs.

In this work, we propose a user-interactive framework that can generate colorectal tissue
images along with corresponding tissue component masks simultaneously from the input
gland layout, a layout where user can specify locations and sizes of the glands in colorectal
tissue images. The conceptual view of our idea can be seen in Figure 1. We leverage
properties of GANs under an adversarial setting to produce realistic tissue images. Key
highlights of our work are:

1. We propose a framework that can generate realistic colorectal tissue images and cor-
responding tissue component/gland masks simultaneously.

2. The proposed framework allows user to change the appearance of glands by their
locations and sizes. To the best of our knowledge, it is the first framework that can
generate annotated colorectal tissue images controlled from the gland layout.

3. We demonstrate the efficacy of the annotated pairs generated using the proposed
framework for evaluation of the gland segmentation algorithm.

2. Materials and Methods

Our aim is to develop the framework to construct the colorectal tissue image having be-
nign/normal grade of cancer and its corresponding tissue component mask highlighting
glandular regions, from the input gland layout. The gland layout can be described as a
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first quadrant Cartesian plane where users can arrange glands on its 2-d spatial locations.
The gland layout is consumed by the framework f that constructs the tissue component
mask first, which later assists to generate the complete tissue image of size N ×N pixels.
The overview is given in Figure 2. Below we describe the main components of the proposed
framework:

Figure 2: Block diagram of the proposed framework: (a) shows an input gland layout where
glands are arranged on 2-d spatial locations. Each gland is characterized by a
gland specific vector which undergoes affine transformation to form latent vectors
(b). Each latent vector is consumed by the mask generator which outputs binary
individual glandular masks (c). The generated masks along with input bounding
boxes act as an input to the bilinear interpolation algorithm, which wraps gener-
ated masks inside bounding boxes creating the cumulative mask (d). The channel
reducer network consumes the cumulative mask and generates the complete tissue
component mask (e), which is then passed through the encoder-decoder network
generating the final tissue image (f). There are three discriminators employed for
generated mask, image and glandular parts inside the image.

The input gland layout can be assumed as a set of n glands, Glayout = {gk ≡ (
−→
lk ,
−→sk ) |

k = 1, 2...n}, where
−→
lk and −→sk denote the location and size vectors respectively of the

gland gk. The gland gk is characterized by a gland specific vector −→zk sampled from the
Gaussian noise z ∼ N (0, 1). The Gaussian noise is used to ensure the variable appearance
of glandular objects in the final image. The gland specific vector −→zk is passed through the
affine transformation A, generating n latent embeddings {ak | k = 1, 2...n} of dimensionality
D, i.e., ak = A(−→zk ; θA), where θA represents the function’s trainable weights.
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2.1 Generation of Tissue Component Mask

Generated latent embeddings are then consumed by the mask generator network M , gen-
erating the corresponding individual gland binary masks {mk | k = 1, 2...n}, each of the
size B ×B pixels i.e., mk = M(ak; θM ), where θM denotes the trainable parameters of the
network. The mask generator network is comprised of series of blocks having transpose
convolution layer followed by the ReLU activation.

Next step is to align generated binary masks on the appropriate locations and construct
the tissue component mask of same size as that of the final image, i.e. N × N pixels.
For this purpose, we utilize the input bounding boxes for each object, {bk | k = 1, 2...n}.
These bounding boxes are either obtained from the datasets (procedure given in section
3.1) or realized from the input location and size parameters (section A.3). Each gland
specific vector −→zk is multiplied element-wise with the individual glandular mask mk, and
wrapped to the positions of bounding box bk using the fixed bilinear interpolation function
F (Jaderberg et al. (2015)), to give the cumulative mask of dimensionality D×B×B , i.e.,
C = F ({−→zk ,mk, bk | k = 1, 2...n}). The cumulative mask has D channels which are then
reduced to 1 channel using the channel reducer network R, to give the tissue component or
gland mask, i.e. T = R(C, θR), where θR denotes its trainable parameters.

2.2 Tissue Image Generation

After generating the tissue component mask, we feed it to the encoder-decoder network E.
The image-to-image translation encoder-decoder network is used as an image generator, to
construct the final tissue image Z = E(T, θE). The encoder consists of a series of (convolu-
tion + ReLU) blocks that generate a fixed size encoding of the input image. The decoder
constructs the final image using a series of (Transpose convolution + ReLU) blocks. Similar
to the generator used in (Isola et al. (2017)), the network E also adopted skip-connections
between the layers with the same sized feature maps so that the first downsampling layer is
connected with the last upsampling layer, the second downsampling layer is connected with
the second last upsampling layer, and so on. These skip-connections give image generator
the flexibility to bypass the encoding part to subsequent layers and enable consideration of
low level features from earlier encoding blocks in the generator.

2.3 Discriminators

We employ 3 discriminator neural networks in an adversarial training setting: mask dis-
criminator DT (T, θTD) for the generated tissue component mask (T ), image discriminator
DZ(Z, θZD

) for the generated tissue image Z, and the gland discriminator DG(Zgi , θGD
)

for glandular portions {Zgi | i = 1, 2..n} inside the tissue image, where n is the number
of glands; θTD , θZD

and θGD
denotes the respective trainable parameters of those discrim-

inators. The first two discriminators employ PatchGAN (Isola et al. (2017)) discriminator
which predicts the realism of the different portions from the generated component mask and
the tissue image, respectively. The adversarial losses based on these discriminators ensure
tissue component masks and tissue images are realistic.

The architecture of the gland discriminator is comprised of a series of convolution op-
erations and predicts a single score of realism for the generated glandular portions cropped
out from the final tissue image based on input bounding boxes, and resized to a fixed size
using bilinear interpolation (Jaderberg et al. (2015)). It ensures the generated glands, one
by one, appear real with their micro components like goblet cells and lumen.
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We employ an adversarial loss function (Goodfellow et al. (2014)) for all discriminators.
A discriminator Dt(X, θtD) attempts to maximize the loss by classifying the input image X
generated by the generator function G(X, θG) which tries to minimize it, where θtD and θG
denotes the set of trainable parameters of the respective networks. Dt is the discriminator
type (of DT , DZ or DG). The adversarial min-max loss function is given by,

min
θG

max
θtD

LtGAN (θG, θtD) = EX∼pdata(X)[logDt(X, θtD)]+EX∼pX(X)[log(1−Dt(G(X, θG), θDt)]

(1)

The training loss of the proposed framework is made up of several terms as it involves
multiple networks. Full details about all the loss components and model architectures can
be found in Appendices A.1 and A.2, respectively.

3. Experiments and Results

In this section, we discuss the process of data collection, model training, and assess the
generated images both visually and quantitatively.

3.1 Data Acquisition

We use the DigestPath (Li et al. (2019)) colonoscopy tissue segment dataset to assess the
performance of our algorithm. The dataset is collected from the DigestPath2019 challenge1.
It contains 660 very large tissue images with an average size of 5000 × 5000 pixels. Each
image is associated with pixel-level annotation for glandular regions. This dataset originally
contained annotations for malignant lesions (250 images) only. In order to obtain a tissue
segmentation mask for benign glands, we used a semi-automatic approach. For this purpose,
we first trained a gland segmentation model named Mild-Net (Graham et al. (2019)) on the
GlaS dataset (Sirinukunwattana et al. (2017); Sirinukunwattana et al. (2015)), and obtained
gland segmentation masks for images with normal grades, in the DigestPath dataset which
were manually refined. From these image, we extracted 1733 patches of size 512× 512 that
were later resized to 256 × 256. Out of these, we kept around 1300 patches for training
(train set) and the rest for testing purpose (test set).

The procedure to acquire bounding boxes from the gland masks collected from the

digestpath dataset, and also to construct them from the input location
−→
l and size −→s

parameters (gland layout) is given in appendix A.3.

3.2 Model Training

To train the whole framework, we set the target tissue image size N = 256, input noise
dimensionality for the gland specific embeddings, dim(z) = 6, latent vector size D = 32
and generated per gland size B = 64. For the loss function (shown in equation 5), we set
λ1 = λ2 = λ3 = 100.0 and λ4 = λ5 = λ6 = 1.0 after cross-validation tuning.

We train all models using Adam optimizer (Kingma and Ba (2014)) with learning rate
10−4 and batch size 1 for approx 300K iterations. For each iteration, we first update
the generator weights f , then update discriminators DT , DZ , and DG. The framework is
implemented in Pytorch on an Nvidia Titan X and took almost 2 days for training.

1. https://digestpath2019.grand-challenge.org/
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Figure 3: Visual results of generated colorectal tissue images along with their gland segmen-
tation masks from input gland layouts (a). (b) shows original gland segmentation
masks while (c) shows the ground truth tissue images.

3.3 Visual Results

The visual results of generated tissue images (from the test set), can be seen in Figure
3. We can observe that glandular shape are preserved, tissue components like goblet cells,
stromal regions are constructed with fidelity with moderate deformities in the glandular
lumen. The generated tissue component masks also appear close to actual masks. The
slight deformities and variations in shapes of those masks is a result of using Gaussian noise
in the representation embedding of glands, which also make them realistic in nature. We

also investigate the change in appearance of glands after altering size −→s and location
−→
l .

Figure 4 shows the results of tissue images after changing their locations and sizes. The
bounding boxes get modified after altering sizes and locations, which effectively change the
size and orientation of glands.

3.4 Quantitative Analysis

We evaluate the quality of generated images (from the test set) using the Frechet Inception
Distance (FID) (Heusel et al. (2017)), a standard metric used to assess the quality of
images by the generative model. It computes the distance between convolution feature
maps calculated for real and generated images. For our experiments, to collect convolution
features, we use the pretrained InceptionV3 (Szegedy et al. (2016)) network trained on
the ImageNet dataset (Deng et al. (2009)). The lower the FID score is the better is the
image quality. As the metric depends on the image size, to get a sense of its scale, we
also compute the FID score between ground truth images and random noise of the same
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Figure 4: The leftmost image (a) shows the generated sample out from the proposed frame-
work. Images on the right to it shows the change in appearance of the yellow

bordered gland, after altering location
−→
l = (lx, ly) and size −→s = (sx, sy). (b) and

(c) shows the shift of that gland to left side (lowering lx) and upwards (increasing
ly), respectively. For the same gland, (d) shows the contraction horizontally and
(e) shows expansion vertically after reducing (sx) and increasing (sy), respectively.

size. As a baseline, we adapt the image-to-image translation network Pix2Pix (Isola et al.
(2017)) to generate tissue images from existing tissue component masks, and compute the
FID for tissue images generated by it. The comparative results are shown in Table 1. Table
1 shows the proposed model achieves better results compared to the random noise and little
inferior to that of that of Pix2Pix. The reason can be that as, we are aiming to construct
gland segmentation masks as well along with the final tissue images, while Pix2Pix assumes
ground truth masks already present and constructs the tissue image from it. Thus, the
construction error in generation of masks can influence the performance of our framework,
and may slightly lower the quality of generated images. However, looking at the scale of
FID values, the difference between both frameworks is not significant.

Model FID

Random 485

Pix2Pix 120

Proposed Framework 134

Table 1: Frechet Inception Distance (FID) score comparison

3.5 Assessment through gland segmentation

We also assess the quality of annotated pairs generated by our framework using the U-
net based gland segmentation algorithm (Ronneberger et al. (2015)). We train U-net on
patches of size 256× 256 from the train set and compute segmentation masks of both real
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Figure 5: Samples of both real (above) and constructed (below) annotated pairs of tis-
sue images and corresponding gland segmentation masks. The masks shown on
the right side are generated from the U-net based segmentation algorithm when
applied on original (above) and synthetic (below) images.

and synthetic images from the test set. We use the Dice score (Zou et al. (2004)) between
the real component masks and masks computed by U-net on real images, and also between
the generated component masks and masks computed by U-net on synthetic images. Sample
results are shown in Figure 5.

We obtained an average Dice index of 0.9022 (with standard deviation 0.006) and 0.9001
(with standard deviation 0.012) for both respective cases. This highly similar obtained score
validates the applicability of both generated tissue images along with their tissue component
masks, for the evaluation of gland segmentation algorithms.

4. Conclusion and Future Directions

In this paper, we presented a framework to generate annotated pairs of colorectal tissue im-
ages along with their tissue component masks. We performed experiments on DigestPath
dataset and demonstrate the framework’s ability to generate realistic images preserving
morphological features including stroma, goblet cells and glandular lumen. The generated
images maintain good FID scores when compared with the state-of-the-art image-to-image
translation model. We showed variability in glandular appearance after altering sizes and
locations of glands. Additionally, we also demonstrated the applicability of synthetic anno-
tated pairs for the evaluation of gland segmentation algorithms.

The idea can be extended in future to generate annotated tissue image pairs for various
tasks in computational histopathology such as nuclei segmentation, cancer grading etc.
The generated pairs can potentially replace the real-world training data, pass the legal and
security barriers while using them, assist the training and validation of digital pathology
algorithms, and reduce the cost and efforts of acquiring data.
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Appendix A.

A.1 Training Loss Components

Here we give details about all loss components used in our framework. The complete frame-
work with trainable parameters {θA, θM , θR, θE , θTD , θZD

, θGD
} is trained by minimizing a

loss function with the following components:

Individual Glandular Masks Reconstruction Loss: This component penalize the dif-
ference between ground truth {m̂k | k = 1, 2...n} and generated individual binary glandular
masks {mk | k = 1, 2...n} using the mean square error (MSE) as follows,

LGlandMaskRec(θA, θM ) =
n∑
k=1

MSE(m̂k,mk) (2)

where m̂k is the ground truth, mk is the generated individual glandular mask and n is the
number of glands in the tissue image. As we saw in section 2, mk is dependent on the
trainable parameters θA and θM . Similarly, we can define the other loss components.

Mask Reconstruction Loss: This loss is employed to penalize the difference between
ground truth T̂ and generated tissue component mask T with mean square error (MSE) as
below,

LMaskRec(θA, θM , θR) = MSE(T̂ , T ) (3)

where T̂ is ground truth and T is the generated tissue component mask.

Image Reconstruction Loss: This component captures the reconstruction error between
ground truth Ẑ and generated tissue image Z using the L1 difference,

LImageRec(θA, θM , θR, θE) = ‖Ẑ − Z‖1 (4)

where Ẑ is ground truth and Z is the generated tissue image.

Adversarial Loss Components: As we discussed in section 2.3, we employ 3 adversarial
loss components: LTGAN , LZGAN and LGGAN for tissue component mask, tissue image and the
glandular portions cropped out from the tissue image, respectively. Their expressions can
be realized by putting t = T , t = Z and t = G in (1).

Thus, the overall learning problem can be cast as a the following adversarial optimization
problem based on the linear combination of adversarial and reconstruction losses,

(5)

min
θA,θM ,θR,θE

max
θMD

,θZD
,θGD

λ1LImageRec(θA, θM , θR, θE) + λ2LMaskRec(θA, θM , θR)

+ λ3LGlandMaskRec(θA, θM ) + λ4L
T
GAN (θG = {θA, θM , θR}, θtD = θMD

)

+ λ5L
Z
GAN (θG = {θA, θM , θR, θE}, θtD = θZD

)

+ λ6L
G
GAN (θG = {θA, θM , θR, θE}, θtD = θGD

)

where λ1, λ2..λ6 denote the weights of corresponding loss components.
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A.2 Neural Network Architectures

Here we describe all network architectures for all components in our proposed framework.

Mask Generator Network

We generate the segmentation mask for each of the glands using the mask generator net-
work. The input is the individual gland latent vectors obtained after affine transformation
on the original gland embeddings, and output is the M ×M glandular mask with all ele-
ments ranged between 0 and 1. The mask regression network composed of series of mask
generator blocks, where each block consist of interpolation + convolution + batch normal-
ization + ReLU activation operations. The exact architecture is shown in the table 2, while
architecture of the mask generator block is shown in Table 3.

Index Inputs Operation Output Shape

(1) - Gland Latent Vector 32

(2) (1) Reshape 32 x 1 x 1

(3) (2) Mask Generator Block 32 x 2 x 2

(4) (3) Mask Generator Block 32 x 4 x 4

(5) (4) Mask Generator Block 32 x 8 x 8

(6) (5) Mask Generator Block 32 x 16 x 16

(7) (6) Mask Generator Block 32 x 32 x 32

(8) (7) Mask Generator Block 32 x 64 x 64

(9) (8) Conv2d (K=1, 32 → 1) 1 x 64 x 64

(10) (9) Sigmoid 1 x 64 x 64

Table 2: Architecture of the mask generator network. The function implements function M
from the main text. The notation Conv2d(K , Cin → Cout) is a convolution with
K×K kernels, Cin input channels and Cout output channels; all convolutions with
stride 1 with zero padding that ensures input and output have the same spatial
size.

Operation Output Shape

Interpolation 32 x 2S x 2S

Conv2d (K=3, 32 → 32) 32 x 2S x 2S

Batch Normalization 32 x 2S x 2S

ReLU 32 x 2S x 2S

Table 3: Architecture of the mask generator block. The input is the feature map of shape
C × S × S, where C is the number of channels from the feature map of the last
layer, and S × S is the dimension of height and width.
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Channel Reducer Network

The generated cumulative mask (explained in 2.1) has 32 channels, which got reduced to
1 using the channel reducer network, forming the tissue component mask. The network
comprised of a series of convolution + Relu operations. The exact architecture is shown in
Table A.2.

Index Inputs Operation Output Shape

(1) - Generate Cumulative Mask 32 x 256 x 256

(2) (1) Conv2d (K=3, 32 → 16) 16 x 256 x 256

(3) (2) LeakyReLU 16 x 256 x 256

(4) (3) Conv2d (K=3, 16 → 8) 8 x 256 x 256

(5) (4) LeakyReLU 8 x 256 x 256

(6) (5) Conv2d (K=3, 8 → 4) 4 x 256 x 256

(7) (6) LeakyReLU 4 x 256 x 256

(8) (7) Conv2d (K=3, 8 → 4) 1 x 256 x 256

(9) (8) LeakyReLU 1 x 256 x 256

Table 4: Architecture of the channel reducer network. The network implements function R
from the main text. LeakyReLU uses a negative slope coefficient of 0.2

Encoder-Decoder Network

The final tissue image is generated from the generated tissue component mask with the help
of encoder decoder network. The encoder consist of a series of “Encode” blocks (shown in
Table 6) and generates the lower sized encoding of the input mask, while decoder comprised
of a series of “Decode” blocks (shown in Table 7) and generates the final tissue image from
the encoding. The exact architecture of the encoder-decoder network is shown in Table 5.

Mask and Image Discriminators

The discriminator we employed has the similar architecture for both tissue component masks
(DT ) and tissue images (DT ), takes the real or fake image of shape C × 256 × 256 as an
input (C = 1 for component mask and C = 3 for tissue image), and classifies an overlapping
grid of size 7×7 image patches from the input image as real or fake. The exact architecture
of the discriminator is shown in Table 8
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Index Inputs Operation Output Shape

(1) - Generate Component Mask 1 x 256 x 256

(2) (1) Encode(1,64) 64 x 128 x 128

(3) (2) Encode(64,128) 128 x 64 x 64

(4) (3) Encode(128,256) 256 x 32 x 32

(5) (4) Encode(256,512) 512 x 16 x 16

(6) (5) Encode(512,512) 512 x 8 x 8

(7) (6) Encode(512,512) 512 x 4 x 4

(8) (7) Encode(512,512) 512 x 2 x 2

(9) (8) Encode(512,512) 512 x 1 x 1

(10) (9,8) Decode(512,512) 1024 x 2 x 2

(11) (10,7) Decode(1024,512) 1024 x 4 x 4

(12) (11,6) Decode(1024,512) 1024 x 8 x 8

(13) (12,5) Decode(1024,512) 1024 x 16 x 16

(14) (12,4) Decode(1024,256) 512 x 32 x 32

(15) (14,3) Decode(512,128) 256 x 64 x 64

(16) (15,2) Decode(256,64) 128 x 128 x 128

(17) (16) Upsample 128 x 256 x 256

(18) (17) Conv2d (K=4, 128 → 3) 3 x 256 x 256

(19) (18) Tanh 3 x 256 x 256

Table 5: Architecture of the encoder-decoder network. The network implements the func-
tion E from the main text.

Operation Output Shape

Conv2d (K=4, Cin → Cout) Cout x S x S

Instance Normalization (if normalize=True) Cout x S x S

LeakyReLU Cout x S x S

Dropout (if dropout=True) Cout x S x S

Table 6: Architecture of the “Encode” block. LeakyReLU uses a negative slope coefficient
of 0.2

Operation Output Shape

ConvTranspose2d(K=4, Cin → Cout) Cout x S x S

Instance Normalization Cout x S x S

ReLU Cout x S x S

Dropout (if dropout=True) Cout x S x S

Table 7: Architecture of the “Decode” block

Gland Discriminator

Our gland discriminator DG consumes image pixels corresponding to glandular areas from
the real or fake tissue images, and classifies them as real or fake. The glandular areas are
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Index Inputs Operation Output Shape

(1) - Generate the Image C x 256 x 256

(2) (1) Conv2d (K=4, C → 16, S=2) 16 x 128 x 128

(3) (2) LeakyReLU 16 x 128 x 128

(4) (3) Conv2d (K=4, 16 → 32, S=2) 32 x 64 x 64

(5) (4) LeakyReLU 32 x 64 x 64

(6) (5) Instance Normalization 32 x 64 x 64

(7) (6) Conv2d (K=4, 32 → 64, S=2) 64 x 32 x 32

(8) (7) LeakyReLU 64 x 32 x 32

(9) (8) Instance Normalization 64 x 32 x 32

(10) (9) Conv2d (K=4, 64 → 128, S=2) 128 x 16 x 16

(11) (10) LeakyReLU 128 x 16 x 16

(12) (11) Instance Normalization 128 x 16 x 16

(13) (12) Conv2d (K=4, 128 → 256, S=2) 256 x 8 x 8

(14) (13) LeakyReLU 256 x 8 x 8

(15) (14) Instance Normalization 256 x 8 x 8

(16) (15) Conv2d (K=4, 256 → 1 , S=1) 1 x 7 x 7

Table 8: Architecture of the Discriminator network. C=1 when input is the tissue compo-
nent mask and C=3 for the tissue image. All but the last Conv2d operation has
stride 2. LeakyReLU uses a negative slope coefficient of 0.2

Index Inputs Operation Output Shape

(1) - Crop glandular portions from the generated image 3 x 64 x 64

(2) (1) Conv2d (K=5, 3 → 16, S=2) 16 x 30 x 30

(3) (2) Batch Normalization 16 x 30 x 30

(4) (3) LeakyReLU 16 x 30 x 30

(5) (4) Conv2d (K=5, 16 → 32, S=2) 32 x 13 x 13

(6) (5) Batch Normalization 32 x 13 x 13

(7) (6) LeakyReLU 32 x 13 x 13

(8) (7) Conv2d (K=5, 32 → 64, S=2) 64 x 5 x 5

(9) (8) Global Average Pooling 64

(10) (9) Affine Transformation 1024

(11) (10) Affine Transformation 1

Table 9: Architecture of the gland discriminator, Dgland. LeakyReLU uses a negative slope
coefficient of 0.2

cropped out using their bounding box coordinates, and resized to 64 × 64 pixels using the
bilinear interpolation method. The exact architecture of the gland discriminator is shown
in Table 9
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A.3 Acquisition of Bounding Boxes

After we collect the tissue images and their annotated gland masks from the digestpath
dataset as described in section 3.1, we used the OpenCV (Open Source Computer Vision
Library) python library (Bradski (2000)) to extract the location of glands i.e., centroids of
white blob objects from the black and white tissue component mask (as shown in mask in
figure 1). Later we also collected the bounding boxes of those identified glandular objects
using the built-in function boundingRect() function of the same library.

During inference, apart from using the ground truth bounding boxes obtained by the
procedure described above, we also construct bounding box for the gland gk using the

input size −→sk and location
−→
lk attributes, taken from the gland layout. Given the input size−→

lk = (skx, sky), where sx and sy are the horizontal and vertical spanning lengths of glands,

and the centroid location
−→
lk = (lkx, lky), the bounding box coordinates for gk are computed

as,

bk = (lkx − (skx/2), (lky − (sky/2), (lkx + (skx/2), (lky + (sky/2)). (6)

Overall, input to the proposed framework is the set of glandular locations, their sizes,
their bounding boxes acquired from the dataset or constructed using the above procedure,
and output is the pair of the tissue image and its tissue component mask.
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