

000 CONTINUAL LOW-RANK ADAPTERS FOR LLM-BASED 001 GENERATIVE RECOMMENDER SYSTEMS 002

003 **Anonymous authors**
004
005

006 Paper under double-blind review
007
008

009 ABSTRACT 010

011 While large language models (LLMs) achieve strong performance in recommendation,
012 they face challenges in continual learning as users, items, and user preferences evolve
013 over time. Existing LoRA-based continual methods primarily focus on preserving perfor-
014 mance on previous tasks, but this overlooks the unique nature of recommendation: the goal
015 is not to predict past preferences, and outdated preferences can even harm performance
016 when current interests shift significantly. To address this, we propose PESO (Proximally
017 Eregularized Single evolving lQra), a continual adaptation method for LoRA in recom-
018 mendation. PESO introduces a proximal regularizer that anchors the current adapter to its
019 most recent frozen state, enabling the model to flexibly balance adaptation and preserva-
020 tion, and to better capture recent user behaviors. Theoretically, we show that this proximal
021 design provides data-aware, direction-wise guidance in the LoRA subspace. Empirically,
022 PESO consistently outperforms existing LoRA-based continual learning methods.

023 1 INTRODUCTION

024 Large language models (LLMs) are increasingly used for recommendation by treating the task as sequence
025 generation: given a user’s interaction history, the model autoregressively generates the next item tokens (Bao
026 et al., 2025; Cao et al., 2024; Tan et al., 2024; Wang et al., 2024; Bao et al., 2023; Kweon et al., 2025; Lin
027 et al., 2025). In practice, LLM is fine-tuned on user histories paired with their next interactions, aligning
028 it with the recommendation objective. However, real-world interaction data are continuously collected and
029 evolve over time: new users and items appear, and user preferences drift. Periodic retraining from scratch
030 on both historical and new data is possible but highly inefficient, making *continual learning* (i.e., updating
031 the model effectively with new data) a natural and appealing solution.

032 It is well known that a continual model must balance *stability* (retaining past knowledge) and *plasticity*
033 (adapting to new knowledge) (Zhu et al., 2021; Arani et al., 2022; Ye et al., 2022; Zhang et al., 2024a; Yuan
034 et al., 2021; Do & Lauw, 2023; Mi et al., 2020). However, continual recommender systems present unique
035 interpretations of these concepts, and bear subtle but critical difference from other domains such as computer
036 vision. In most other domains, continual tasks are typically disjoint and not time-ordered (e.g., cats vs. dogs
037 → trucks vs. sedans), and the primary objective is to preserve performance on previous tasks (stability)
038 while adapting to new ones (plasticity). In contrast, the ultimate goal of continual recommendation is to
039 accurately capture evolving user preferences in order to predict which items a user *will* prefer in the near
040 future. That is, recommendation is not concerned with predicting past user preferences; in fact, outdated
041 preferences can even hinder performance if current user interests have shifted significantly (e.g., a user starts
042 preferring romance over action). Thus, stability in recommendation refers to preserving long-term user
043 preferences (e.g., enduring interests in certain genres or brands) that remain predictive, even if they are not
044 strongly reflected in recent data. Plasticity, on the other hand, is required to overwrite outdated preferences
and to capture emerging trends. This distinct setting in turn requires careful model design.

045 A common recipe for fine-tuning LLMs in recommendation is Low-Rank Adaptation (LoRA) (Hu et al.,
046 2022; Liu et al., 2025), due to its simplicity and modularity across components (e.g., attention layers).

047 LoRA freezes pretrained weights and injects lightweight, trainable low-rank matrices. This efficiency makes
 048 LoRA a natural candidate for continual learning, motivating our focus on continual LoRA for LLM-based
 049 recommender systems. A simple and intuitive approach is to maintain a *single evolving LoRA*: sequentially
 050 fine-tuning one adapter, initializing it from the previous stage and optimizing it on new data. This provides
 051 strong plasticity, while parameter inheritance provides partial preservation of past knowledge. However, it
 052 inevitably overwrites useful past knowledge during fine-tuning, leading to forgetting.

053 To mitigating forgetting, several works in vision have proposed the family of *cumulative LoRA* (Wu et al.,
 054 2025; Liang & Li, 2024; Lu et al., 2024), which typically use the sum of the new trainable adapter and
 055 all frozen past adapters. This design explicitly enhances stability by reusing prior adapters and expanding
 056 LoRA’s effective capacity, and it works well when tasks are largely independent (i.e., with minimal interference),
 057 allowing each adapter to encode task-specific knowledge. Intuitively, this might seem beneficial for
 058 recommendation, where preserving useful past preferences matters. However, our analysis shows that cumulative
 059 LoRA often underperforms the simpler single evolving LoRA. Unlike vision tasks, recommendation
 060 involves reappearing users with continuously evolving preferences. The model must therefore capture use-
 061 ful interference across stages, but frozen adapters entangle outdated and relevant preferences, making them
 062 hard to disentangle. In addition, as adapters accumulate over time, cumulative LoRA incurs growing storage
 063 costs and struggles to reflect their relative importance during aggregation.

064 To address these limitations, we adopt two principles: (1) avoid multiple adapters, which implicitly assume
 065 task independence, and (2) preserve past knowledge in a way that supports understanding of current user be-
 066 havior. Guided by this, we propose PESO (Proximally rEgularized Single evolving lOra), which maintains
 067 a single evolving LoRA adapter while regularizing it toward its past state with a lightweight proximal term.
 068 Unlike cumulative LoRA, PESO balances stability and plasticity through the natural competition between
 069 the data-fitting loss and the proximal term, allowing the model to decide what to adapt or retain. Theore-
 070 tically, we show that this design yields data-aware, direction-wise guidance in the LoRA subspace. We
 071 further instantiate it with a per-module softmax–Kullback–Leibler (KL) proximal, which preserves inter-
 072 nal module structure rather than treating all parameters equally (i.e., a more nuanced stability mechanism).
 073 Empirically, PESO consistently outperforms both cumulative LoRA and the single evolving adapter across
 074 multiple real-world datasets, achieving a more effective stability–plasticity balance for recommendation.

075 In summary, our main contributions are threefold. **(1) Analysis:** we identify the distinctive stabil-
 076 ity–plasticity challenge in continual recommendation and show empirically that cumulative LoRA, while
 077 effective in simulated user-disjoint settings, underperforms in the natural case where user preferences evolve
 078 across time stages; **(2) Method and Theory:** we propose PESO, a *proximally regularized LoRA* that an-
 079 chors each update to the previous state, with theory showing direction-wise, data-aware guidance and a
 080 per-module softmax–KL instantiation; **(3) Experiments:** we demonstrate through extensive experiments on
 081 real-world datasets that PESO consistently outperforms both single evolving and cumulative LoRA.

082 2 PRELIMINARY

083 **Notations.** We consider an LLM-based recommender that, given a user’s interaction history, autoregres-
 084 sively predicts the next item token. At time stage $t \in \{1, \dots, T\}$, let \mathcal{U}_t be the set of active users, \mathcal{I}_t the
 085 set of items, and $\mathcal{E}_t = \{x_u\}_{u \in \mathcal{U}_t}$ the collection of user sequences, where $x_u = (x_{u,1}, \dots, x_{u,N_u})$. Training
 086 uses next-item pairs induced from \mathcal{E}_t , yielding state- t data \mathcal{D}_t :

$$\mathcal{D}_t = \{(x_u, y_u) : u \in \mathcal{U}_t\}, \quad y_u = x_{u,N_u+1} \in \mathcal{I}_t. \quad (1)$$

087 Each item $x_{u,i}$ (and y_u) is represented by *semantic ID* obtained by a codebook-based tokenizer (e.g., RQ-
 088 VAE (Rajput et al., 2023)) trained on item semantic features (e.g., title/description), yielding fixed number of
 089 token IDs for each item. Semantic ID captures hierarchical semantics of items and works well in practice.¹
 090

091 ¹Adapting the tokenizer to new items over time is an interesting direction; here we fix the item tokenizer to isolate
 092 continual adaptation of the model (LoRA).

094 **Stability and Plasticity in Continual Recommendation.** We assume an initial model is pretrained offline
 095 on base data \mathcal{D}_1 , and then fine-tuned sequentially on chronologically arriving blocks $\mathcal{D}_2, \dots, \mathcal{D}_T$. The goal
 096 of continual recommendation is to minimize expected risk on upcoming interactions by balancing *stability*
 097 (retaining persistent long-term preferences) and *plasticity* (adapting to new or shifting preferences from
 098 recent data), thereby capturing evolving user interests (see Appendix A for a formal conceptual model).
 099 Concretely, for \mathcal{D}_t , the LLM is fine-tuned with the standard cross-entropy over the next-item token:

$$100 \quad L_{\text{ce}}^{\mathcal{D}_t} = \mathbb{E}_{(x,y) \sim \mathcal{D}_t} [-\log p_{\theta}(y | x)], \quad p_{\theta}(y | x) = \text{softmax}(z_{\theta}(x))_y, \quad (2)$$

102 where $z_{\theta}(x) \in \mathbb{R}^{|\mathcal{V}|}$ are the logits for the item vocabulary \mathcal{V} .

103 **Low-Rank Adaptation (LoRA).** LoRA freezes the pretrained LLM weight $W_0 \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$ and adds a
 104 trainable low-rank update:

$$105 \quad \Delta W = BA, \quad A \in \mathbb{R}^{r \times d_{\text{in}}}, \quad B \in \mathbb{R}^{d_{\text{out}} \times r}, \quad r \ll \min(d_{\text{in}}, d_{\text{out}}), \quad (3)$$

107 so that for an input $x \in \mathbb{R}^{d_{\text{in}}}$ the layer computes $(W_0 + \Delta W)x$. Only A and B are updated during fine-tuning,
 108 while W_0 remains fixed. This yields substantial parameter savings and modular, layer-wise adaptation (e.g.,
 109 on attention projections). In this work, our analysis and method operate entirely within this LoRA subspace
 110 and therefore inherit its efficiency. We now formally define our problem.

111 **Problem 1.** *(Continual adaptation of a generative recommender)* **Given:** (1) a pretrained LLM-based recommender model (fine-tuned with LoRA on \mathcal{D}_1), (2) a sequence of chronological data blocks $\mathcal{D}_2, \dots, \mathcal{D}_T$; **Goal:** learn updates that, at each stage t , adapt the model to \mathcal{D}_t while retaining useful knowledge from earlier stages, achieving high quality next-item recommendation via a balanced stability–plasticity.

116 3 ANALYSIS OF LORA VARIANTS FOR CONTINUAL RECOMMENDATION

117 We introduce two primary baselines for our problem: single evolving LoRA and the cumulative LoRA
 118 family. Then, we empirically compare them on a natural chronological split and a user-disjoint split.

120 **Single evolving LoRA.** At stage t , the LoRA matrices A_t and B_t are initialized (i.e., parameter inheritance)
 121 from the previous stage (A_{t-1} and B_{t-1}) and fine-tuned on new data \mathcal{D}_t :

$$122 \quad W_t = W_0 + B_t A_t, \quad B_t \leftarrow B_{t-1}, \quad A_t \leftarrow A_{t-1}, \quad (4)$$

124 where W_0 is the pretrained LLM weight (i.e., not LoRA updates). This baseline is simple and adapts effectively
 125 to new data, while parameter inheritance provides partial preservation of past knowledge at initialization.
 126 However, it inevitably overwrites useful past knowledge during fine-tuning, leading to forgetting.

127 **Cumulative LoRA Variants.** To mitigate forgetting, cumulative LoRA has been widely used in domains
 128 such as vision (Wu et al., 2025; Liang & Li, 2024). At stage t , it reuses frozen adapters from past stages and
 129 adds a new trainable adapter by summing them during both training and inference. The effective update is

$$130 \quad W_t = W_0 + \sum_{i=1}^{t-1} \alpha_i \hat{B}_i \hat{A}_i + B_t A_t, \quad (5)$$

133 where W_0 is the pretrained LLM weight; $\{\hat{B}_i\}_{i=1}^{t-1}$ and $\{\hat{A}_i\}_{i=1}^{t-1}$ are frozen adapters from previous stages;
 134 and B_t, A_t are trainable at stage t . Following prior practice, we use normalized directions $\hat{B}_i = B_i / \|B_i\|_F$
 135 and $\hat{A}_i = A_i / \|A_i\|_F$, which improves stability. The scalar α_i are fixed or learned magnitudes. This design
 136 explicitly enhances stability and expands LoRA’s effective capacity, expected to work well when sequential
 137 tasks interfere minimally. However, for recommendation where user preferences evolve, this rationale
 138 weakens. To examine this, we study SumLoRA, which uses simple summation, in four variants: (i) *all*,
 139 summing all past adapters; (ii) *latest*, summing only the most recent adapter; (iii) *all+inherit*, summing all
 140 past adapters with parameter inheritance; and (iv) *latest+inherit*, using only the latest adapter with parameter

141 Table 1: (Left) Design choices; (Right) performance gain vs. single evolving LoRA (w.r.t. NDCG@5) in
 142 different task settings on Instrument dataset.

Method	Design choices			Task settings		
	Learnable mag.	Only latest	Param inherit	(1) User-disjoint	(2) Natural split	Diff. (1)-(2)
SUMLoRA _{ALL}	✗	✗	✗	-8.13%	-26.77%	18.64%
SUMLoRA _{LATEST}	✗	✓	✗	-12.20%	-22.05%	9.85%
SUMLoRA _{ALL+INHERIT}	✗	✗	✓	-3.25%	1.57%	-4.82%
SUMLoRA _{LATEST+INHERIT}	✗	✓	✓	0.00%	2.36%	-2.36%
SD-LoRA _{LATEST+INHERIT}	✓	✓	✓	3.25%	0.79%	2.46%

149 inheritance. The *all* variant corresponds to the original design of cumulative LoRA family. We also consider
 150 SD-LoRA, which extends summation with learnable magnitudes, with *all* equivalent to Wu et al. (2025).
 151 For analysis, we focus on the empirically stronger *latest+inherit*. Table 1 summarizes these design choices.
 152

153 **Two settings.** We evaluate methods in the two settings derived from the same user-item interaction data:
 154 (1) **Natural chronological split:** Interactions are sorted by time; a large portion (e.g., 60%) is used for
 155 pretraining (i.e., \mathcal{D}_1), and the remainder is divided into four equal incremental blocks, yielding $\mathcal{D}_1, \dots, \mathcal{D}_5$.
 156 For each \mathcal{D}_t , we apply leave-one-out per user (second-to-last item for validation, last item for test). See
 157 Appendix C.1 for details. (2) **Pseudo user-disjoint split:** Users are randomly partitioned into disjoint sets
 158 for \mathcal{D}_t ($t = 1, \dots, 5$), with block sizes matched to the chronological split. Item order within each user’s
 159 sequence is preserved. While similar users may induce some shared preferences across stages, this setting
 160 introduces relatively less cross-stage interference than the natural chronological case.

161 **Results.** Table 1 reports (1) the relative gain vs. single evolving LoRA on the user-disjoint split, (2) the
 162 relative gain on the chronological split, and (3) their difference (i.e., (1)-(2)). We summarize the findings:
 163 First, the **Diff.** column shows that the original cumulative design (i.e., SUMLoRA_{ALL}) performs much worse
 164 in the natural chronological setting than in the user-disjoint setting, confirming that it is better suited for
 165 tasks with minimal interference and ill-suited for recommendation. Second, in the **Natural split**, SUM-
 166 LoRA_{ALL} performs worst, followed by *latest*, *all+inherit*, and *latest+inherit*, suggesting that (a) aggregat-
 167 ing all past adapters hinders adaptation, and (b) parameter inheritance is essential for gradual, proximal
 168 evolution of LoRA with respect to the previous state. Finally, SD-LoRA_{LATEST+INHERIT} fails to improve over
 169 fixed-magnitude SUMLoRA_{LATEST+INHERIT}, since useful past components are entangled with stale ones, mak-
 170 ing weighting ineffective. Overall, continual recommendation requires evolving adapters with *controlled*
 171 *stability*, rather than rigid reuse of past ones, to capture user preference dynamics.

172 4 PROPOSED FRAMEWORK: PESO

173 Our design philosophy is to (1) avoid using multiple LoRA adapters, which implicitly assume task inde-
 174 pendence, and (2) preserve past knowledge in a way that supports understanding of current user behavior.
 175 Guided by this, we propose PESO (Proximally rEgularized SIngle evolving lOra), which maintains a single
 176 evolving LoRA adapter and regularizes each update by keeping the current adapter close to the previous
 177 one (shown in Figure 1). We begin by presenting the *quadratic proximal framework* and its theoretical
 178 implications, and then instantiate PESO with a *softmax-KL proximal* to demonstrate its practical effect.

179 4.1 SINGLE EVOLVING LORA WITH A PROXIMAL REGULARIZER

180 **General framework.** We maintain a single evolving LoRA and anchor each update to the previous adapter
 181 with a proximal term. Let $v_t \in \mathbb{R}^m$ denote the concatenation of all flattened LoRA A/B parameters at time
 182 stage t . We partition coordinates into groups $g \in \{1, \dots, G\}$ (e.g., per module such as attention layers) and
 183 write $v^{(g)}$ for group g . The overall loss function for time stage t is

$$184 \quad L_t = L_{ce}^{\mathcal{D}_t} + \underbrace{\frac{\lambda}{2} \sum_{g=1}^G \|v_t^{(g)} - v_{t-1}^{(g)}\|_{H_{t-1}^{(g)}}^2}_{\text{proximal term}}, \quad v_t \leftarrow v_{t-1} \text{ at init}, \quad (6)$$

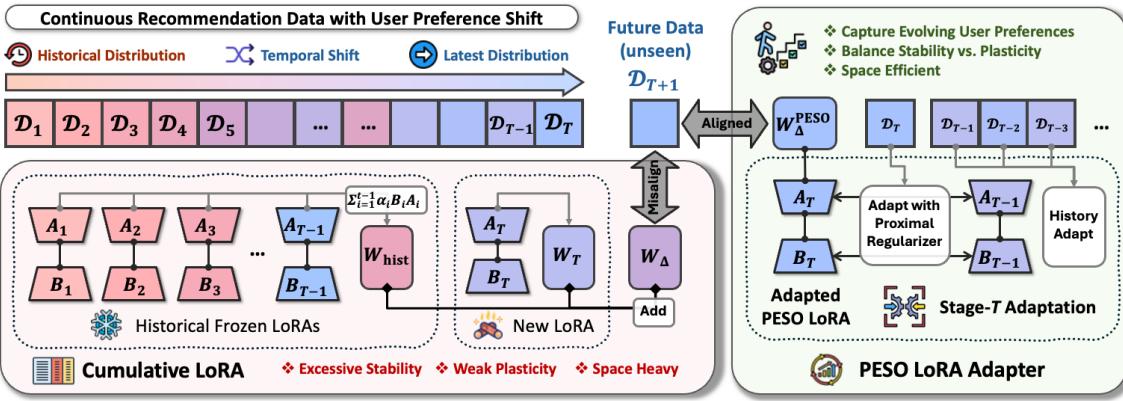


Figure 1: Conceptual overview of Cumulative LoRA and our proposed PESO with proximal regularizer.

where $L_{\text{ce}}^{\mathcal{D}_t}$ is the data-fitting term on \mathcal{D}_t (i.e., cross-entropy, Eq. (2)), $\|z\|_H^2 := z^\top H z$, $\lambda > 0$ controls regularization strength, and each $H_{t-1}^{(g)} \succeq 0$ is a (symmetric) PSD metric that is fixed during stage t ; it can be constant (e.g., $H_{t-1}^{(g)} = I$, corresponding to the L2 case) or precomputed at the previous adapter $v_{t-1}^{(g)}$. We initialize $v_t \leftarrow v_{t-1}$ so the proximal penalty starts at zero and grows only as v_t departs from v_{t-1} . This design leverages the natural competition between the data-fitting loss (which pulls toward the optimal state for \mathcal{D}_t) and the proximal term (which pulls toward the previous state). Next, we theoretically show how this yields data-aware, direction-wise guidance in the LoRA subspace.

Theoretical setup. To analyze how the proximal term interacts with the data-fitting loss, we approximate the data-fitting term. We restrict updates to a fixed m -dimensional LoRA subspace. Let $\theta_0 \in \mathbb{R}^d$ be the parameter vector (base LLM and LoRA) after training on the first data block ($t=1$). From $t \geq 2$, let $\theta(v) = \theta_0 + Uv$ with $U \in \mathbb{R}^{d \times m}$ and non-LoRA coordinates frozen (i.e., assume $U = [I_m \ 0]$). For input $x = (\text{prompt}, \text{item sequence})$ and next-item token y , let $s(\theta, x)$ be the scalar logit of the ground-truth token. Linearize once at $v = 0$:

$$s(\theta_0 + Uv, x) \approx s(\theta_0, x) + \Phi(x)^\top v, \quad \Phi(x) := U^\top \nabla_{\theta} s(\theta_0, x) \in \mathbb{R}^m, \quad (7)$$

where $\Phi(x)$ is tangent feature of x . For analysis we use a mean-squared-error surrogate for Eq. (2) and define the stage- t optimum $v_t^* = \arg \min_v L^{\mathcal{D}_t}(v)$. A second-order expansion at v_t^* yields quadratic loss

$$L^{\mathcal{D}_t}(v) \approx \frac{1}{2} (v - v_t^*)^\top \Sigma_t (v - v_t^*), \quad \Sigma_t = \mathbb{E}_{x \sim \mathcal{D}_t} [\Phi(x) \Phi(x)^\top] \succeq 0, \quad (8)$$

where Σ_t is the tangent-feature second-moment matrix for time stage t , capturing *how much the stage- t data supports different directions in the LoRA subspace* (i.e., $u^\top \Sigma_t u = \mathbb{E}_{\mathcal{D}_t}[(\Phi(x)^\top u)^2] \forall u \in \mathbb{R}^m$). See Appendix B.1 for full setup and assumptions. In what follows, we present a general proposition showing that our proximal framework yields direction-wise interpolation between the new optimum and the previous adapter, and then derive its L2 corollary to provide intuition into the stability–plasticity balance.

Proposition 1 (Generalized–eigen interpolation with a quadratic proximal). *Let $\Sigma_t = \Sigma_t^\top \succeq 0$. Define the block-diagonal proximal metric $H_{t-1} := \text{blkdiag}(H_{t-1}^{(1)}, \dots, H_{t-1}^{(G)}) \succeq 0$, with each $H_{t-1}^{(g)}$ symmetric PSD and independent of v during stage t . Under the quadratic approximation in Eq. (8), our loss Eq. (6) is:*

$$L_t(v) = \frac{1}{2} (v - v_t^*)^\top \Sigma_t (v - v_t^*) + \frac{\lambda}{2} (v - v_{t-1})^\top H_{t-1} (v - v_{t-1}). \quad (9)$$

235 Let $\{(q_k, \rho_k)\}_{k=1}^r$ be generalized eigenpairs of (Σ_t, H_{t-1}) on $\text{range}(H_{t-1})$ (i.e., $\Sigma_t q_k = \rho_k H_{t-1} q_k$), normalized by $q_i^\top H_{t-1} q_j = \delta_{ij}$, where $r = \text{rank}(H_{t-1})$. With $\langle u, w \rangle_{H_{t-1}} := u^\top H_{t-1} w$,

$$238 \quad \langle v, q_k \rangle_{H_{t-1}} = \frac{\rho_k}{\rho_k + \lambda} \langle v_t^*, q_k \rangle_{H_{t-1}} + \frac{\lambda}{\rho_k + \lambda} \langle v_{t-1}, q_k \rangle_{H_{t-1}}, \quad k = 1, \dots, r. \quad (10)$$

240 The proof of Proposition 1 is deferred to Appendix B.2. To build intuition, we specialize Proposition 1 to
241 the L2 case by taking $H_{t-1} = I$. Then the generalized eigenpairs reduce to ordinary eigenpairs of Σ_t and
242 $\langle \cdot, \cdot \rangle_{H_{t-1}}$ becomes the standard inner product, yielding the following corollary.

243 **Corollary 2** (L2 special case of Proposition 1). Take $H_{t-1} = I$. If $\Sigma_t q_k = \sigma_k^2 q_k$ with $\{q_k\}$ orthonormal,

$$245 \quad \langle v, q_k \rangle = \frac{\sigma_k^2}{\sigma_k^2 + \lambda} \langle v_t^*, q_k \rangle + \frac{\lambda}{\sigma_k^2 + \lambda} \langle v_{t-1}, q_k \rangle, \quad k = 1, \dots, r. \quad (11)$$

248 In a nutshell, Corollary 2 shows a **data-aware balance between stability and plasticity** in our framework.
249 Recall that $\Sigma_t = \mathbb{E}_{\mathcal{D}_t} [\Phi(x)\Phi(x)^\top]$ summarizes how much the stage- t data *supports* different directions in
250 the LoRA subspace. Its eigenvectors q_k are principal directions, with eigenvalues σ_k^2 measuring the strength
251 of support along each direction under \mathcal{D}_t . By Corollary 2, along any q_k the update is a weighted average of
252 v_t^* and v_{t-1} , with weight toward v_t^* equal to $\sigma_k^2 / (\sigma_k^2 + \lambda)$. Thus, when σ_k^2 is large (strong support in \mathcal{D}_t),
253 v_t moves toward v_t^* along q_k (e.g., the user starts engaging more with mystery than sci-fi); when σ_k^2 is small
254 (weak support), v_t stays close to v_{t-1} (e.g., a stable brand affinity not observed this week). If $\sigma_k^2 = 0$, the
255 component along q_k is kept exactly from the previous stage. See App. B.3 for more detailed explanation.

256 4.2 SOFTMAX–KL AS A PROXIMAL REGULARIZER

258 As shown earlier, the L2 proximal (i.e., $H_{t-1}^{(g)} = I$) is a special case of our general proximal form with
259 H_{t-1} . However, it penalizes all coordinate changes equally, treating modules uniformly, ignoring internal
260 structure, and not adapting to the previous state v_{t-1} . To address this, we instantiate the proximal term with
261 a *softmax–KL proximal* that preserves per-module structure and leverages the previous state. Formally, the
262 stage- t objective of PESO is:

$$263 \quad L_t = L_{\text{ce}}^{\mathcal{D}_t} + \lambda \sum_{g=1}^G \underbrace{D_{\text{KL}}(\text{softmax}(v_t^{(g)}) \parallel \text{softmax}(v_{t-1}^{(g)}))}_{\mathcal{K}_{\text{blk}}(v_t, v_{t-1})}, \quad v_t \leftarrow v_{t-1} \text{ at init.} \quad (12)$$

266 We first show that the softmax–KL proximal locally reduces to a quadratic form, and then give a corollary
267 that interprets it as a p -weighted variance, providing an intuitive view of its module-wise stability.

270 **Proposition 3** (Per-module softmax–KL is locally quadratic). Let $v_t^{(g)}$ be the subvector for group $g \in$
271 $\{1, \dots, G\}$ (e.g., a module), $p^{(g)} = \text{softmax}(v_{t-1}^{(g)})$, and $\Delta^{(g)} = v_t^{(g)} - v_{t-1}^{(g)}$. Then, for small $\Delta^{(g)}$,

$$273 \quad \mathcal{K}_{\text{blk}}(v_t, v_{t-1}) = \frac{\lambda}{2} \sum_{g=1}^G (\Delta^{(g)})^\top \left(\text{diag}(p^{(g)}) - p^{(g)} p^{(g)\top} \right) \Delta^{(g)} + o\left(\sum_g \|\Delta^{(g)}\|^2\right) \quad (13)$$

$$274 \quad = \frac{\lambda}{2} \Delta^\top \underbrace{\text{blkdiag}(H_{t-1}^{(1)}, \dots, H_{t-1}^{(G)})}_{=: H_{t-1}} \Delta + o\left(\sum_g \|\Delta^{(g)}\|^2\right), \text{ with } H_{t-1}^{(g)} = \text{diag}(p^{(g)}) - p^{(g)} (p^{(g)})^\top \succeq 0.$$

275 The proof of Proposition 3 is deferred to Appendix B.4. Proposition 3 shows the **softmax–KL proximal is**
276 **locally the quadratic** $\frac{\lambda}{2} \|v_t - v_{t-1}\|_{H_{t-1}}^2$ with $H_{t-1} = \text{blkdiag}(H_{t-1}^{(1)}, \dots, H_{t-1}^{(G)})$. Hence, Proposition 1
277 applies directly, suggesting it has effect of data-aware balance of stability and plasticity.

282 Table 2: Recommendation performance averaged across time stages for PESO and continual competitors.
 283 The best and second-best results are marked in **bold** and underline, respectively.
 284

285 Methods	286 Instruments				287 Movies & TVs				288 Books			
	289 H@5	290 H@10	291 N@5	292 N@10	293 H@5	294 H@10	295 N@5	296 N@10	297 H@5	298 H@10	299 N@5	300 N@10
PRETRAIN	0.0166	0.0216	0.0115	0.0131	0.0166	0.0231	0.0111	0.0132	0.0258	0.0283	0.0196	0.0204
SINGLE EVOLVING LoRA	0.0181	0.0253	0.0127	0.0150	0.0175	0.0247	0.0116	0.0138	0.0448	<u>0.0557</u>	0.0308	0.0344
Cumulative LoRA Family												
INFLoRA _{ALL}	0.0156	0.0214	0.0105	0.0124	0.0103	0.0139	0.0067	0.0079	0.0236	0.0332	0.0161	0.0193
INFLoRA _{LATEST}	0.0131	0.0167	0.0090	0.0102	0.0073	0.0092	0.0047	0.0054	0.0152	0.0197	0.0108	0.0123
INFLoRA _{ALL+INHERIT}	0.0149	0.0219	0.0104	0.0126	0.0109	0.0147	0.0072	0.0085	0.0249	0.0324	0.0171	0.0195
INFLoRA _{LATEST+INHERIT}	0.0137	0.0202	0.0095	0.0116	0.0094	0.0132	0.0060	0.0072	0.0225	0.0288	0.0153	0.0174
SUMLoRA _{ALL}	0.0134	0.0215	0.0093	0.0119	0.0102	0.0130	0.0067	0.0076	0.0264	0.0402	0.0176	0.0221
SUMLoRA _{LATEST}	0.0143	0.0221	0.0099	0.0124	0.0102	0.0130	0.0067	0.0076	0.0246	0.0354	0.0161	0.0196
SUMLoRA _{ALL+INHERIT}	0.0182	0.0260	0.0129	0.0154	0.0160	0.0234	0.0107	0.0131	0.0409	0.0514	0.0287	0.0321
SUMLoRA _{LATEST+INHERIT}	<u>0.0185</u>	0.0255	0.0130	0.0152	0.0172	0.0237	0.0114	0.0135	0.0433	0.0542	0.0306	0.0341
SD-LoRA _{ALL}	0.0156	0.0226	0.0107	0.0129	0.0094	0.0133	0.0061	0.0074	0.0238	0.0351	0.0162	0.0198
SD-LoRA _{LATEST}	0.0156	0.0218	0.0102	0.0123	0.0101	0.0142	0.0069	0.0082	0.0241	0.0327	0.0159	0.0186
SD-LoRA _{ALL+INHERIT}	0.0176	0.0238	0.0124	0.0144	0.0118	0.0171	0.0077	0.0094	0.0332	0.0412	0.0234	0.0260
SD-LoRA _{LATEST+INHERIT}	0.0184	0.0254	0.0128	0.0150	0.0165	0.0235	0.0109	0.0131	0.0432	0.0530	0.0308	0.0340
PESO	0.0193	0.0268	0.0138	0.0162	0.0180	0.0251	0.0118	0.0141	0.0448	0.0569	0.0311	0.0351
Performance Gain (%)												
VS. SINGLE EVOLVING LoRA	6.63%	5.93%	8.66%	8.00%	2.86%	1.62%	1.72%	2.17%	0.00%	2.15%	0.97%	2.03%
VS. SUMLoRA _{LATEST+INHERIT}	4.32%	5.10%	6.15%	6.58%	4.65%	5.91%	3.51%	4.44%	3.46%	4.98%	1.63%	2.93%
VS. SD-LoRA _{LATEST+INHERIT}	4.89%	5.51%	7.81%	8.00%	9.09%	6.81%	8.26%	7.63%	3.70%	7.36%	0.97%	3.24%

300 **Corollary 4** (Softmax–KL equals p -weighted variance). *With notation as above, up to an additive constant,*

$$301 \quad \mathcal{K}_{\text{blk}}(v_t, v_{t-1}) = \frac{\lambda}{2} \sum_{g=1}^G \text{Var}_{p^{(g)}}(\Delta^{(g)}), \quad \text{Var}_{p^{(g)}}(\Delta^{(g)}) = \sum_{i \in g} p_i^{(g)} (\Delta_i^{(g)} - \mu^{(g)})^2 \text{ and } \mu^{(g)} = \sum_{i \in g} p_i^{(g)} \Delta_i^{(g)}. \quad (14)$$

305 Corollary 4 shows that, the softmax–KL proximal can be interpreted as a *p-weighted variance* of parameter
 306 changes. Consequently, the proximal (i) penalizes *reshuffling* of weight mass within each module more than
 307 uniform shifts, and (ii) protects coordinates with higher prior mass more strongly. **This yields module-wise,**
 308 **previous-state-aware stability** without killing plasticity: updates still move toward new optima where data
 309 provides strong support (as in Proposition 1), while staying close to the previous state otherwise.

310 5 EXPERIMENTS

312 We design experiments to answer four key questions: **RQ1:** To what extent does PESO outperform competitors?
 313 **RQ2:** Which proximal regularizer works best in PESO? **RQ3:** How do hyperparameters affect
 314 performance of PESO? **RQ4:** How does PESO compare to traditional continual recommenders?

315 5.1 EXPERIMENTAL SETTINGS

317 **Datasets.** We use the real-world Amazon Review dataset, which contains user reviews (treated as implicit
 318 interactions) on products over time. We focus on three categories: Musical Instruments, Movies & TV, and
 319 Books. Detailed preprocessing steps and dataset statistics are provided in Appendix C.1. The processed data
 320 yield $\{\mathcal{D}_1, \dots, \mathcal{D}_5\}$, where \mathcal{D}_1 is a large pretraining set and $\mathcal{D}_2, \dots, \mathcal{D}_4$ are smaller incremental sets.

321 **Evaluation.** For each \mathcal{D}_t , we apply leave-one-out evaluation per user, reserving the last item for testing.
 322 Following (Wang et al., 2024; Bao et al., 2025), we construct multiple training pairs (x_u, y_u) per user using
 323 a sliding window of size 20. Starting from the LLM pretrained on \mathcal{D}_1 , at each stage $t = 2, \dots, 5$ the model
 324 is fine-tuned and then generates 10 items via constrained beam search restricted to valid item tokens. We
 325 report Hit@5/10 and NDCG@5/10, averaged over $\mathcal{D}_2, \dots, \mathcal{D}_4$. Full evaluation details are in Appendix C.1.

326 **Compared methods and implementation details.** We compare PESO with several LoRA-based baselines
 327 for continual learning, all using the same cross-entropy loss and Llama-3.2 1B (Grattafiori et al., 2024) as
 328 backbone. The bottom baseline is PRETRAIN, trained on \mathcal{D}_1 and directly evaluated at $t = 2, \dots, 4$. Among

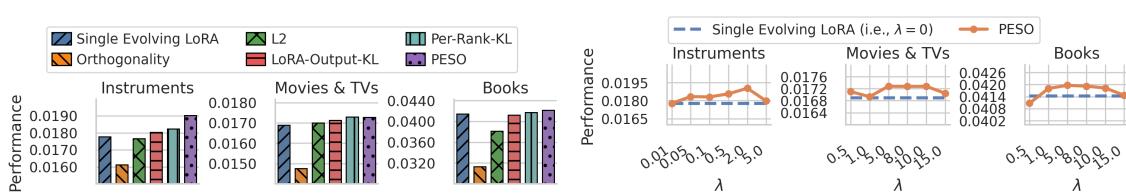


Figure 2: Performance comparison of different regularization methods against the previous LoRA. Figure 3: Impact of the scaling weight λ for the proximal term on PESO performance.

continual methods, we consider: (1) *single evolving LoRA*; and (2) the *cumulative family*, which combines past and current adapters: *SumLoRA*, *SD-LoRA* (Wu et al., 2025), and *InfLoRA* (Liang & Li, 2024). SD-LoRA learns magnitudes for normalized past adapters, while InfLoRA precomputes LoRA- A via SVD of the input covariance and trains only B , to better align with current data and reduce task-interference. As discussed in Section 3, original cumulative designs use *all past adapters without inheritance (all)*. For recommendation, we further test three variants: *latest* (most recent only), *all+inherit* (all with inheritance), and *latest+inherit* (latest with inheritance). For hyperparameters, λ is searched over $[0.5, 1.0, 2.0, 5.0, 8.0]$ (set to 2.0 for Instruments, 5.0 for Movies&TV and Books). SD-LoRA magnitudes start at 1.0.

5.2 EXPERIMENTAL RESULTS AND DISCUSSION

Main Results (RQ1). Table 2 reports results across four metrics and three datasets in continual settings. First, all continual learning methods consistently outperform PRETRAIN, highlighting the importance of adapting to new data to capture evolving user preferences, even when incremental data is much smaller (e.g., 10%) than the pretraining data. Second, neither single evolving LoRA nor the cumulative family dominates, while PESO consistently achieves the best results, with average gains of 3.71%, 4.62%, and 6.26% over the best competitors (SINGLE EVOLVING LORA, SUMLORA_{LATEST+INHERIT}, and SD-LORA_{LATEST+INHERIT}). Cumulative LoRA, though more complex and storage-heavy, often underperforms or only matches single evolving LoRA, as rigidly reusing frozen adapters overly constrains adaptation to evolving user preferences. By contrast, PESO uses flexible proximal regularization toward the latest state, allowing the data-fitting loss and proximal term to jointly decide what to preserve or update. Third, as discussed in detail in Section 3, regarding SumLoRA and SD-LoRA, original cumulative designs (using all past adapters without inheritance) perform worst, while variants with inheritance or only the latest adapter do better. Notably, some non-inheritance variants even fall below PRETRAIN, showing that without gradual evolution, continual learning can harm more than help. InfLoRA yields the weakest results overall, likely because, although it incorporates input data covariance information, freezing A prevents inheritance and gradual adaptation across time, both of which are crucial in continual recommendation.

Analysis on Proximal Regularizer (RQ2). Unless otherwise noted, all subsequent subsections report average performance across four metrics (Hit@5, Hit@10, NDCG@5, NDCG@10). We compare PESO with four alternative regularizers on the previous adapter: orthogonality, L2 proximal, LoRA-Output KL, and Per-Rank KL (Figure 2). Orthogonality, an interference-minimization strategy common in vision, performs far worse than all methods, showing that minimizing interference across stages is harmful in continual recommendation. L2 proximal, which penalizes the L2 distance between current and previous parameters, is often comparable to single evolving LoRA but worse than PESO, suggesting that uniform constraints are insufficient. LoRA-Output KL (softmax-KL applied in LoRA output, i.e., function space) and Per-Rank KL (softmax-KL applied on each rank of LoRA matrices, i.e., finer parameter granularity) are slightly worse or comparable to PESO, suggesting that regularization directly in the parameter space with module-aware structure is more effective, or at least sufficient, compared to output-level or overly fine-grained constraints.

Hyperparameter Analysis (RQ3). (a) Scaling parameter λ for proximal term in PESO. Figure 3 shows performance as λ varies. Starting from $\lambda = 0$ (i.e., single evolving LoRA), performance improves as λ

376 increases, then either decreases or plateaus, confirming that λ serves as a tunable trade-off between stability
 377 and plasticity: too small harms stability; too large harms plasticity. In addition, performance is not highly
 378 sensitive to λ , as results remain stable across a broad range of values. **(b) Learning rate for continual**
 379 **stages.** See Appendix C.2 for full results and discussion. Since incremental datasets are much smaller
 380 than the pretraining set, performance is highly sensitive to learning rate. Our results show that using the
 381 pretraining rate leads to overfitting, while scaling the rate down ($\approx 0.05\text{--}0.1\times$) yields the best performance.
 382

383 Comparison with Traditional Continual Recommenders (RQ4).

384 Details are in Appendix C.3; Table 3 shows a subset (top: traditional, bottom: LLM-based). LLM-based methods generally
 385 outperform traditional two-tower models, except on Instruments, where explicit dual modeling of users and items helps. While
 386 PESO achieves higher absolute performance, continual methods
 387 like PISA (Yoo et al., 2025) yield larger relative gains in two-tower
 388 models, reflecting the advantage of explicit user embeddings in cap-
 389 turing preference drift and the challenge of doing so with LLMs.
 390

391 6 RELATED WORKS

392 **LLM-based Generative Recommender Systems.** Recent advances in large language models (LLMs) have
 393 inspired generative approaches to recommendation, where the task is framed as sequence generation. Instead
 394 of ranking items from a candidate set, the model autoregressively generates the next item token given a user’s
 395 interaction history. Variants of this paradigm includes zero-shot prompting (Lyu et al., 2023), ID-token
 396 generation (Tan et al., 2024; Wang et al., 2024), data-efficient fine-tuning (Lin et al., 2024), uncertainty-
 397 aware decoding (Kweon et al., 2025), and alignment techniques for recommendation objectives (Cao et al.,
 398 2024; Bao et al., 2025; Chen et al., 2024). These works demonstrate that LLMs can flexibly leverage textual
 399 and structural signals for recommendation, but they typically assume static data. In contrast, real-world
 400 interactions arrive continuously, requiring models that can adapt to evolving user preferences without costly
 401 retraining. Our work addresses this gap by studying continual adaptation of generative LLM recommenders.
 402

403 **Continual Learning for Foundational Models and LoRA.** Classical continual recommenders use param-
 404 eter regularization (Xu et al., 2020; Wang et al., 2021; 2023b; Yoo et al., 2025), replay buffers (Prabhu et al.,
 405 2020; Ahrabian et al., 2021; Zhang et al., 2024b; Zhu et al., 2023), or dynamic architectures (He et al., 2023;
 406 Zhang et al., 2023). With large foundational models, parameter-efficient fine-tuning (PEFT) has become
 407 central, with LoRA (Hu et al., 2022) as a standard choice. In vision, several continual extensions have
 408 been proposed, such as cumulative aggregation of frozen adapters (Liang & Li, 2024; Lu et al., 2024) and
 409 learnable magnitude scaling (SD-LoRA) (Wu et al., 2025), which are effective when tasks interference is
 410 minimal. However, these methods are less suitable for recommendation, where user preferences evolve over
 411 time. Our work differs by proposing a proximal single evolving LoRA that avoids the forgetting of single
 412 evolving LoRA and the rigidity of cumulative LoRA, better suiting the continual recommendation setting.
 413

414 7 CONCLUSION

415 We have studied the problem of continual adaptation for LLM-based generative recommender systems,
 416 where user interactions arrive over time and preferences evolve. Single evolving LoRA offers strong plas-
 417 ticity but suffers from forgetting, while cumulative LoRA improves stability but entangles outdated signals.
 418 Our proposed PESO strikes a better balance by maintaining a single adapter and regularizing it toward its
 419 prior state, allowing the model to decide what to adapt and what to preserve. Our theoretical analysis has
 420 shown that the proximal design provides data-aware, direction-wise guidance in the LoRA subspace, and
 421 our instantiation with per-module softmax–KL further preserves internal parameter structure. Empirical
 422 results across multiple real-world datasets confirm that PESO consistently outperforms existing baselines,
 achieving a superior stability–plasticity balance.

Table 3: Comparison of traditional and LLM-based methods.

Method	Instruments	Movies & TVs	Books
Pretrain	0.0153	0.0028	0.0041
Fine-tuning	0.0180	0.0114	0.0218
PISA	0.0194	0.0106	0.0301
Pretrain	0.0157	0.0160	0.0235
Fine-tuning	0.0178	0.0169	0.0414
PESO	0.0190	0.0173	0.0422

423 **Ethics Statement.** This work focuses on continual learning methods for large language model (LLM)-based
424 recommender systems. It does not involve human subjects, sensitive personal data, or private user information.
425 All experiments are conducted on publicly available benchmark datasets (Amazon Reviews). We
426 followed standard preprocessing protocols, and no personally identifiable information was used or released.
427 While recommender systems can influence user exposure to content, this study is purely methodological and
428 does not deploy or interact with real users. We acknowledge the potential societal risks of recommendation
429 technologies, such as reinforcing biases or filter bubbles, and we emphasize that our method (PESO)
430 is designed as a modular continual learning technique, independent of any particular application domain or
431 societal factors.

432 **Reproducibility Statement.** The paper provides: (1) detailed descriptions of datasets, preprocessing steps,
433 and evaluation protocols (Section 5.1, Appendix C.1); (2) clear definitions of baselines, the proposed method
434 (PESO), and its theoretical analyses (Sections 3, 4, Appendix B); and (3) hyperparameter settings, search
435 ranges, and sensitivity analyses (Section 5). Results are reported across multiple datasets and metrics for
436 robustness. Full proofs are included in Appendix B. We will release our implementation and data-processing
437 scripts upon publication to ensure reproducibility.

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

470 REFERENCES
471

472 Kian Ahrabian, Yishi Xu, Yingxue Zhang, Jiapeng Wu, Yuening Wang, and Mark Coates. Structure aware
473 experience replay for incremental learning in graph-based recommender systems. In *Proceedings of the*
474 *30th ACM International Conference on Information & Knowledge Management*, pp. 2832–2836, 2021.

475 Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A general continual learning
476 method based on complementary learning system. *arXiv preprint arXiv:2201.12604*, 2022.

477

478 Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An effective and
479 efficient tuning framework to align large language model with recommendation. In *Proceedings of the*
480 *17th ACM conference on recommender systems*, pp. 1007–1014, 2023.

481 Keqin Bao, Jizhi Zhang, Wenjie Wang, Yang Zhang, Zhengyi Yang, Yanchen Luo, Chong Chen, Fuli Feng,
482 and Qi Tian. A bi-step grounding paradigm for large language models in recommendation systems. *ACM*
483 *Transactions on Recommender Systems*, 3(4):1–27, 2025.

484

485 Yuwei Cao, Nikhil Mehta, Xinyang Yi, Raghunandan Keshavan, Lukasz Heldt, Lichan Hong, Ed H Chi, and
486 Maheswaran Sathiamoorthy. Aligning large language models with recommendation knowledge. *arXiv*
487 *preprint arXiv:2404.00245*, 2024.

488

489 Yuxin Chen, Junfei Tan, An Zhang, Zhengyi Yang, Leheng Sheng, Enzhi Zhang, Xiang Wang, and Tat-Seng
490 Chua. On softmax direct preference optimization for recommendation. *Advances in Neural Information
Processing Systems*, 37:27463–27489, 2024.

491

492 Jaime Hieu Do and Hady W Lauw. Continual collaborative filtering through gradient alignment. In *Pro-
ceedings of the 17th ACM Conference on Recommender Systems*, pp. 1133–1138, 2023.

493

494 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
495 Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models.
496 *arXiv preprint arXiv:2407.21783*, 2024.

497

498 Bowei He, Xu He, Yingxue Zhang, Ruiming Tang, and Chen Ma. Dynamically expandable graph convolu-
499 tion for streaming recommendation. In *Proceedings of the ACM Web Conference 2023*, pp. 1457–1467,
500 2023.

501

502 Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgen: Simplifying
503 and powering graph convolution network for recommendation. In *Proceedings of the 43rd International
ACM SIGIR conference on research and development in Information Retrieval*, pp. 639–648, 2020.

504

505 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
506 Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

507

508 Wonbin Kweon, Sanghwan Jang, SeongKu Kang, and Hwanjo Yu. Uncertainty quantification and decom-
509 position for llm-based recommendation. In *Proceedings of the ACM on Web Conference 2025*, pp. 4889–
510 4901, 2025.

511

512 Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learning. In
513 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 23638–
514 23647, 2024.

515

516 Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli Feng, Yinwei Wei, and Tat-Seng Chua. Data-efficient
fine-tuning for llm-based recommendation. In *Proceedings of the 47th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval*, pp. 365–374, 2024.

517 Xinyu Lin, Haihan Shi, Wenjie Wang, Fuli Feng, Qifan Wang, See-Kiong Ng, and Tat-Seng Chua. Order-
 518 agnostic identifier for large language model-based generative recommendation. In *Proceedings of the*
 519 *48th international ACM SIGIR conference on research and development in information retrieval*, pp.
 520 1923–1933, 2025.

521 Jialin Liu, Jianhua Wu, Jie Liu, and Yutai Duan. Learning attentional mixture of loras for language model
 522 continual learning. *arXiv preprint arXiv:2409.19611*, 2024.

524 Yuting Liu, Jinghao Zhang, Yizhou Dang, Yuliang Liang, Qiang Liu, Guibing Guo, Jianzhe Zhao, and Xing-
 525 wei Wang. Cora: Collaborative information perception by large language model’s weights for recommen-
 526 dation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 12246–12254,
 527 2025.

528 Haodong Lu, Chongyang Zhao, Jason Xue, Lina Yao, Kristen Moore, and Dong Gong. Adaptive rank, re-
 529 duced forgetting: Knowledge retention in continual learning vision-language models with dynamic rank-
 530 selective lora. *arXiv preprint arXiv:2412.01004*, 2024.

532 Hanjia Lyu, Song Jiang, Hanqing Zeng, Yinglong Xia, Qifan Wang, Si Zhang, Ren Chen, Christopher Leung,
 533 Jiajie Tang, and Jiebo Luo. Llm-rec: Personalized recommendation via prompting large language models.
 534 *arXiv preprint arXiv:2307.15780*, 2023.

535 Fei Mi, Xiaoyu Lin, and Boi Faltings. Ader: Adaptively distilled exemplar replay towards continual learning
 536 for session-based recommendation. In *Proceedings of the 14th ACM Conference on Recommender
 537 Systems*, pp. 408–413, 2020.

539 Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions our
 540 progress in continual learning. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
 541 UK, August 23–28, 2020, Proceedings, Part II 16*, pp. 524–540. Springer, 2020.

542 Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu, Lukasz Heldt,
 543 Lichan Hong, Yi Tay, Vinh Tran, Jonah Samost, et al. Recommender systems with generative retrieval.
 544 *Advances in Neural Information Processing Systems*, 36:10299–10315, 2023.

546 Tianhao Shi, Yang Zhang, Zhijian Xu, Chong Chen, Fuli Feng, Xiangnan He, and Qi Tian. Preliminary
 547 study on incremental learning for large language model-based recommender systems. In *Proceedings of
 548 the 33rd ACM International Conference on Information and Knowledge Management*, pp. 4051–4055,
 549 2024.

550 Juntao Tan, Shuyuan Xu, Wenyue Hua, Yingqiang Ge, Zelong Li, and Yongfeng Zhang. Idgenrec: Llm-
 551 recsys alignment with textual id learning. In *Proceedings of the 47th international ACM SIGIR conference
 552 on research and development in information retrieval*, pp. 355–364, 2024.

554 Wenjie Wang, Honghui Bao, Xinyu Lin, Jizhi Zhang, Yongqi Li, Fuli Feng, See-Kiong Ng, and Tat-Seng
 555 Chua. Learnable item tokenization for generative recommendation. In *Proceedings of the 33rd ACM
 556 International Conference on Information and Knowledge Management*, pp. 2400–2409, 2024.

558 Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and Xuan-
 559 Jing Huang. Orthogonal subspace learning for language model continual learning. In *Findings of the
 560 Association for Computational Linguistics: EMNLP 2023*, pp. 10658–10671, 2023a.

561 Yuening Wang, Yingxue Zhang, and Mark Coates. Graph structure aware contrastive knowledge distilla-
 562 tion for incremental learning in recommender systems. In *Proceedings of the 30th ACM International
 563 Conference on Information & Knowledge Management*, pp. 3518–3522, 2021.

564 Yuening Wang, Yingxue Zhang, Antonios Valkanas, Ruiming Tang, Chen Ma, Jianye Hao, and Mark Coates.
 565 Structure aware incremental learning with personalized imitation weights for recommender systems. In
 566 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 4711–4719, 2023b.

567 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
 568 Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Proceedings of the*
 569 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 139–149, 2022.

570 Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhu Li, Hanspeter Pfister, Deyu Meng,
 571 Kede Ma, and Ying Wei. Sd-lora: Scalable decoupled low-rank adaptation for class incremental learning.
 572 *arXiv preprint arXiv:2501.13198*, 2025.

573 Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, and Mark Coates. Graphsail: Graph struc-
 574 ture aware incremental learning for recommender systems. In *Proceedings of the 29th ACM International*
 575 *Conference on Information & Knowledge Management*, pp. 2861–2868, 2020.

576 Mao Ye, Ruichen Jiang, Haoxiang Wang, Dhruv Choudhary, Xiaocong Du, Bhargav Bhushanam, Aryan
 577 Mokhtari, Arun Kejariwal, and Qiang Liu. Future gradient descent for adapting the temporal shifting data
 578 distribution in online recommendation systems. In *Uncertainty in Artificial Intelligence*, pp. 2256–2266.
 579 PMLR, 2022.

580 Hyunsik Yoo, SeongKu Kang, Ruizhong Qiu, Charlie Xu, Fei Wang, and Hanghang Tong. Embracing
 581 plasticity: Balancing stability and plasticity in continual recommender systems. In *Proceedings of the*
 582 *48th International ACM SIGIR conference on research and development in Information Retrieval*, pp.
 583 2092–2101, 2025.

584 Fajie Yuan, Guoxiao Zhang, Alexandros Karatzoglou, Joemon Jose, Beibei Kong, and Yudong Li. One
 585 person, one model, one world: Learning continual user representation without forgetting. In *Proceedings*
 586 *of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval*,
 587 pp. 696–705, 2021.

588 Kexin Zhang, Yichao Wang, Xiu Li, Ruiming Tang, and Rui Zhang. Incmsr: An incremental learning
 589 approach for multi-scenario recommendation. In *Proceedings of the 17th ACM International Conference*
 590 *on Web Search and Data Mining*, pp. 939–948, 2024a.

591 Peiyan Zhang, Yuchen Yan, Chaozhuo Li, Senzhang Wang, Xing Xie, Guojie Song, and Sunghun Kim.
 592 Continual learning on dynamic graphs via parameter isolation. In *Proceedings of the 46th International*
 593 *ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 601–611, 2023.

594 Xinni Zhang, Yankai Chen, Chenhao Ma, Yixiang Fang, and Irwin King. Influential exemplar replay for
 595 incremental learning in recommender systems. In *Proceedings of the AAAI Conference on Artificial*
 596 *Intelligence*, volume 38, pp. 9368–9376, 2024b.

597 Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ming Chen, and Ji-Rong Wen. Adapt-
 598 ing large language models by integrating collaborative semantics for recommendation. In *2024 IEEE 40th*
 599 *International Conference on Data Engineering (ICDE)*, pp. 1435–1448. IEEE, 2024.

600 Jianing Zhu, Jiangchao Yao, Bo Han, Jingfeng Zhang, Tongliang Liu, Gang Niu, Jingren Zhou, Jian-
 601 liang Xu, and Hongxia Yang. Reliable adversarial distillation with unreliable teachers. *arXiv preprint*
 602 *arXiv:2106.04928*, 2021.

603 Jieming Zhu, Guohao Cai, Junjie Huang, Zhenhua Dong, Ruiming Tang, and Weinan Zhang. Reloop2:
 604 Building self-adaptive recommendation models via responsive error compensation loop. In *Proceedings*
 605 *of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 5728–5738, 2023.

611 **A CONCEPTUAL MODELING OF EVOLVING USER PREFERENCES**

612
613 We assume an initial model is pretrained offline on base data \mathcal{D}_1 , and then fine-tuned sequentially on chrono-
614 logically arriving blocks $\mathcal{D}_2, \dots, \mathcal{D}_T$. Let x_u^{t-1} denote u 's interaction history available before stage t , and let
615 $P_t(y | x_u^{t-1})$ be the conditional distribution of the next item y during stage t , representing user preferences.
616 In continual recommendation, these distributions evolve over time, which can be conceptually modeled as

617
$$P_t(y | x_u^{t-1}) \approx \alpha_t P_{t-1}(y | x_u^{t-1}) + (1 - \alpha_t) Q_t(y | x_u^{t-1}), \quad (15)$$

618 where P_{t-1} captures stability (persistent long-term preferences), Q_t captures plasticity (new or shifting
619 preferences estimated from new data), and $\alpha_t \in [0, 1]$ controls the balance. The goal is to minimize expected
620 risk on upcoming interactions by balancing stability and plasticity.

622 **B DETAILED THEORETICAL ANALYSIS**

623 **B.1 SETUP AND ASSUMPTIONS**

624
625 **Assumption 1** (Parameters and LoRA subspace). *Let $\theta \in \mathbb{R}^d$ denote the vectorized concatenation of all
626 model parameters (base LLM and LoRA). Let θ_0 be the parameter vector after training on the first data
627 block ($t=1$). From $t \geq 2$, restrict updates to a fixed m -dimensional LoRA subspace spanned by columns of
628 $U \in \mathbb{R}^{d \times m}$ and write*

629
$$\theta = \theta_0 + Uv, \quad v \in \mathbb{R}^m,$$

630 with all non-LoRA coordinates frozen. Without loss of generality, assume $U = [I_m \ 0]$, i.e., the LoRA
631 subspace is the first m coordinates.

632 **Assumption 2** (Linearization and tangent features.). *Let $s(\theta, x) \in \mathbb{R}$ be the scalar logit of the ground-truth
633 next item. We linearize s at $v = 0$ (i.e., at $\theta = \theta_0$):*

634
$$s(\theta_0 + v, x) \approx s(\theta_0, x) + v^\top U^\top \nabla_{\theta} s(\theta_0, x) = s_0(x) + v^\top \Phi(x),$$

635 with tangent features of x

636
$$\Phi(x) := U^\top \nabla_{\theta_{1:m}} s(\theta_0, x) \in \mathbb{R}^m.$$

637 **Assumption 3** (Data and loss.). *Let $(x, y) \sim \mathcal{D}_t$ be examples in block t . In recommendation, $x =$
638 $(\text{prompt, item sequence})$ and $y \in \mathcal{V}$ is the next-item token. Training typically uses cross-entropy on log-
639 its; for analysis, we use a mean-squared-error (MSE) surrogate. Define the block- t risk*

640
$$L^{\mathcal{D}_t}(v) = \mathbb{E}_{(x,y) \sim \mathcal{D}_t} \left[\frac{1}{2} (s(\theta_0 + v, x) - r_t(x, y))^2 \right].$$

641 where $r_t(x, y) \in \mathbb{R}$ is a calibrated target score for the ground-truth next item.

642 Note that under the linearization, this yields a quadratic risk with positive-semidefinite curvature. All later
643 proofs use only this PSD curvature, not the exact form of r_t .

644 **Assumption 4** (Quadratic form under the linearization.). *Substituting $s(\theta_0 + v, x) \approx s_0(x) + \Phi(x)^\top v$
645 gives, up to an additive constant,*

646
$$L^{\mathcal{D}_t}(v) = b_t^\top v + \frac{1}{2} v^\top \Sigma_t v, \quad b_t := \mathbb{E}_{\mathcal{D}_t} [(s_0(x) - r_t(x, y)) \Phi(x)], \quad \Sigma_t := \mathbb{E}_{\mathcal{D}_t} [\Phi(x) \Phi(x)^\top] \succeq 0.$$

647 Define the block- t optimum

648
$$v_t^* = \arg \min_v L^{\mathcal{D}_t}(v).$$

649 A second-order Taylor expansion of L_t at v_t^* gives

650
$$L^{\mathcal{D}_t}(v) = L^{\mathcal{D}_t}(v_t^*) + \underbrace{(\nabla L^{\mathcal{D}_t})^\top(v_t^*)(v - v_t^*)}_{=0} + \frac{1}{2} (v - v_t^*)^\top \underbrace{\nabla^2 L^{\mathcal{D}_t}(v_t^*)}_{=\Sigma_t} (v - v_t^*).$$

658 *Dropping the constant term, the centered quadratic risk used throughout is*

$$659 \quad L^{\mathcal{D}_t}(v) = \frac{1}{2}(v - v_t^*)^\top \Sigma_t (v - v_t^*),$$

660 where Σ_t is the tangent-feature second-moment matrix for time stage t , capturing *how much the stage- t data*

661 *supports different directions in the LoRA subspace* (i.e., $u^\top \Sigma_t u = \mathbb{E}_{\mathcal{D}_t}[(\Phi(x)^\top u)^2] \forall u \in \mathbb{R}^m$). Also note

662 that we fix the linearization at θ_0 : $s(\theta_0 + Uv, x) \approx s_0(x) + \Phi(x)^\top v$ with $\Phi(x) = U^\top \nabla_\theta s(\theta_0, x)$. Although

663 $\Phi(x)$ is fixed across t , the $\Sigma_t = \mathbb{E}_{\mathcal{D}_t}[\Phi(x)\Phi(x)^\top]$ varies with the data block distribution, so drift is captured

664 via Σ_t and the shifting optimum v_t^* .

665

666 **Remark: relinearization per block.** If desired, one may instead relinearize at $\theta_0 + Uv_{t-1}$, replacing $\Phi(x)$

667 by $\Phi_{t-1}(x) = U^\top \nabla_\theta s(\theta_0 + Uv_{t-1}, x)$ and Σ_t by $\mathbb{E}[\Phi_{t-1}\Phi_{t-1}^\top]$. All propositions and closed forms carry

668 over with these substitutions; the only change is that the curvature reflects the anchor v_{t-1} of the current

669 block. We found fixed linearization sufficient and notationally lighter.

670

671 B.2 PROOF OF PROPOSITION 1.

672 **Assumption 5** (Complementarity (no doubly-flat directions)). *On the LoRA subspace \mathbb{R}^m , let $\Sigma_t \succeq 0$ and*

673 *$H \succeq 0$ be symmetric (and fixed w.r.t. v). Assume*

$$674 \quad \ker(\Sigma_t) \cap \ker(H) = \{0\}. \quad (16)$$

675 *Equivalently, for all $x \neq 0$, $x^\top \Sigma_t x > 0$ or $x^\top H x > 0$.*

676 *Proof.* (i) Differentiate:

$$677 \quad \nabla_v \mathcal{L}_t(v) = \Sigma_t(v - v_t^*) + \lambda H_{t-1}(v - v_{t-1}). \quad (17)$$

678 Setting the gradient to zero gives the normal equation

$$679 \quad (\Sigma_t + \lambda H_{t-1})v = \Sigma_t v_t^* + \lambda H_{t-1} v_{t-1}. \quad (18)$$

680 For any $x \neq 0$,

$$681 \quad x^\top (\Sigma_t + \lambda H_{t-1})x = x^\top \Sigma_t x + \lambda x^\top H_{t-1} x \geq 0. \quad (19)$$

682 Equality forces $x \in \ker(\Sigma_t) \cap \ker(H_{t-1})$, which is $\{0\}$ by Assumption 5; hence $\Sigma_t + \lambda H_{t-1} \succ 0$. Therefore

683 Eq. (18) has the unique solution

$$684 \quad v = (\Sigma_t + \lambda H_{t-1})^{-1}(\Sigma_t v_t^* + \lambda H_{t-1} v_{t-1}). \quad (20)$$

685 (ii) Let (q_k, ρ_k) be any generalized eigenpair on $\text{range}(H_{t-1})$ with $q_i^\top H_{t-1} q_j = \delta_{ij}$ and $\Sigma_t q_k = \rho_k H_{t-1} q_k$.
686 Left-multiply Eq. (18) by q_k^\top and use symmetry of Σ_t, H_{t-1} :

$$687 \quad q_k^\top \Sigma_t v + \lambda q_k^\top H_{t-1} v = q_k^\top \Sigma_t v_t^* + \lambda q_k^\top H_{t-1} v_{t-1}. \quad (21)$$

688 Since $\Sigma_t q_k = \rho_k H_{t-1} q_k$ and $\langle u, w \rangle_{H_{t-1}} = u^\top H_{t-1} w$,

$$689 \quad (\rho_k + \lambda) \langle v, q_k \rangle_{H_{t-1}} = \rho_k \langle v_t^*, q_k \rangle_{H_{t-1}} + \lambda \langle v_{t-1}, q_k \rangle_{H_{t-1}}, \quad (22)$$

690 which yields the stated interpolation.

691 (iii) **Note on $\ker(H_{t-1})$.** If $H_{t-1} \succ 0$, then $r = m$ and (ii) covers all directions. If H_{t-1} is singular,
692 the interpolation is stated on $\text{range}(H_{t-1})$; along $\ker(H_{t-1})$, $q^\top H_{t-1}(\cdot) \equiv 0$, and the complementarity
693 assumption rules out underdetermined (doubly-flat) directions, ensuring uniqueness. \square

705 B.3 INTUITIVE EXPLANATION OF COROLLARY 2
706707 Here, we give a more intuitive explanation of how PESO provides data-aware, direction-wise guidance.
708

- 709 • Semantics of Directions (q_k) (Decoupled Preference Axes): Mathematically, the eigenvectors q_k of
710 the gradient covariance Σ_t represent principal directions of variation in the parameter space. Intu-
711 itively, these act as independent, latent axes of user preference (e.g., one axis might capture "Sci-Fi
712 affinity," another "Price Sensitivity"). Because eigenvectors are orthogonal, PESO effectively de-
713 couples these preferences, allowing the model to update one specific behavior (e.g., learning a new
714 interest) without interfering with unrelated long-term knowledge.
- 715 • The Mechanism (σ_k^2) (Signal Strength as a Gate): The eigenvalue σ_k^2 measures the "loudness"
716 or salience of each preference axis in the current data stream. PESO uses this to dynamically
717 interpolate between the previous state and the new data:
 - 718 – High Plasticity for Strong Signals (Large σ_k^2): When the current data contains strong evidence
719 for a specific pattern (e.g., the user is binge-watching Mystery), the gradient variance along
720 that axis is high. PESO detects this "loud" signal and allows the parameters to move freely
721 toward the new optimum v_t^* , ensuring rapid adaptation to short-term shifts.
 - 722 – High Stability for Weak Signals (Small σ_k^2): When a preference axis is irrelevant to the cur-
723 rent context (e.g., the user loves Acoustic Guitars, but hasn't interacted with them recently),
724 the gradient variance is near zero (noise). PESO interprets this silence not as a negation of
725 preference, but as a lack of data. It essentially "locks" these parameters to the previous state
726 v_{t-1} , protecting long-term interests from being overwritten by noise.

727 B.4 PROOF OF PROPOSITION 3
728729 To prove Proposition 3, we first establish the following proposition for arbitrary v_t and v_{t-1} , and then extend
730 it to the blockwise case.731 **Proposition 5** (Local quadratic form of softmax-KL proximal). *Let $p := \text{softmax}(v_{t-1}) \in \mathbb{R}^d$ and $\Delta :=$
732 $v_t - v_{t-1}$. Define*

733
$$\mathcal{K}(\Delta) := D_{\text{KL}}(\text{softmax}(v_{t-1} + \Delta) \parallel \text{softmax}(v_{t-1})). \quad (23)$$

734 Then $\mathcal{K}(0) = 0$, $\nabla \mathcal{K}(0) = 0$, and the second-order Taylor expansion at $\Delta = 0$ is
735

736
$$\mathcal{K}(\Delta) = \frac{1}{2} \Delta^\top (\text{diag}(p) - pp^\top) \Delta + o(\|\Delta\|^2). \quad (24)$$

737 Equivalently,

738
$$\mathcal{K}(\Delta) = \frac{1}{2} \underbrace{\left(\sum_{i=1}^d p_i (\Delta_i - \mu)^2 \right)}_{\text{Var}_p(\Delta)} + o(\|\Delta\|^2), \quad \mu := \sum_{i=1}^d p_i \Delta_i. \quad (25)$$

739
740
741
742

743 *Proof.* Write $r(\Delta) := \text{softmax}(v_{t-1} + \Delta) \in \mathbb{R}^d$ and $p := r(0) = \text{softmax}(v_{t-1})$. By definition,
744

745
$$\mathcal{K}(\Delta) = \sum_{i=1}^d r_i(\Delta) \log \frac{r_i(\Delta)}{p_i}. \quad (26)$$

746
747

748 (i) At $\Delta = 0$ we have $r(0) = p$, so
749

750
$$\mathcal{K}(0) = \sum_i p_i \log(p_i/p_i) = 0. \quad (27)$$

751

752 For the gradient, differentiate using the scalar identity $\frac{d}{dx}[x \log(x/c)] = \log(x/c) + 1$:

753

$$\frac{\partial \mathcal{K}}{\partial \Delta_a} = \sum_{i=1}^d \frac{\partial r_i}{\partial \Delta_a} \left(\log \frac{r_i}{p_i} + 1 \right). \quad (28)$$

754 Evaluating at $\Delta = 0$ gives $\log(r_i/p_i) = 0$ and hence

755

$$\left[\nabla \mathcal{K}(0) \right]_a = \sum_{i=1}^d \left[\frac{\partial r_i}{\partial \Delta_a} \right]_{\Delta=0} = \frac{\partial}{\partial \Delta_a} \left(\sum_{i=1}^d r_i(\Delta) \right) \Big|_{\Delta=0} = \frac{\partial}{\partial \Delta_a}(1) = 0, \quad (29)$$

756 since softmax outputs sum to one for all Δ .

757 (ii) Differentiate the gradient once more:

758

$$\frac{\partial^2 \mathcal{K}}{\partial \Delta_a \partial \Delta_b} = \sum_{i=1}^d \frac{\partial^2 r_i}{\partial \Delta_a \partial \Delta_b} \left(\log \frac{r_i}{p_i} + 1 \right) + \sum_{i=1}^d \frac{\partial r_i}{\partial \Delta_a} \frac{1}{r_i} \frac{\partial r_i}{\partial \Delta_b}. \quad (30)$$

759 At $\Delta = 0$, the first sum becomes $\sum_i \partial^2 r_i / \partial \Delta_a \partial \Delta_b$ (since $\log(r_i/p_i) = 0$), which is zero because
760 $\sum_i r_i(\Delta) \equiv 1$ for all Δ . Thus,

761

$$\left[\nabla^2 \mathcal{K}(0) \right]_{ab} = \sum_{i=1}^d \frac{1}{p_i} \left[\frac{\partial r_i}{\partial \Delta_a} \right]_{\Delta=0} \left[\frac{\partial r_i}{\partial \Delta_b} \right]_{\Delta=0}. \quad (31)$$

762 It remains to compute the Jacobian of softmax at v_{t-1} :

763

$$J_{ia} := \left[\frac{\partial r_i}{\partial \Delta_a} \right]_{\Delta=0} = \frac{\partial}{\partial v_a} \left(\frac{e^{v_i}}{\sum_j e^{v_j}} \right) \Big|_{v=v_{t-1}} = p_i (\mathbf{1}\{i=a\} - p_a). \quad (32)$$

764 Therefore,

765

$$\left[\nabla^2 \mathcal{K}(0) \right]_{ab} = \sum_{i=1}^d \frac{1}{p_i} J_{ia} J_{ib} = \sum_{i=1}^d p_i (\mathbf{1}\{i=a\} - p_a)(\mathbf{1}\{i=b\} - p_b). \quad (33)$$

766 Expanding the sum gives

767

$$\sum_i p_i \mathbf{1}\{i=a\} \mathbf{1}\{i=b\} - p_b \sum_i p_i \mathbf{1}\{i=a\} - p_a \sum_i p_i \mathbf{1}\{i=b\} + p_a p_b \sum_i p_i. \quad (34)$$

768 Since $\sum_i p_i = 1$ and $\sum_i p_i \mathbf{1}\{i=a\} = p_a$, this equals

769

$$\delta_{ab} p_a - p_a p_b - p_a p_b + p_a p_b = \delta_{ab} p_a - p_a p_b, \quad (35)$$

770 i.e.

771

$$\nabla^2 \mathcal{K}(0) = \text{diag}(p) - pp^\top. \quad (36)$$

772 (iii) By Taylor's theorem,

773

$$\mathcal{K}(\Delta) = \frac{1}{2} \Delta^\top (\text{diag}(p) - pp^\top) \Delta + o(\|\Delta\|^2). \quad (37)$$

774 Finally, note the algebraic identity (weighted variance):

775

$$\Delta^\top (\text{diag}(p) - pp^\top) \Delta = \sum_{i=1}^d p_i \Delta_i^2 - \left(\sum_{i=1}^d p_i \Delta_i \right)^2 = \sum_{i=1}^d p_i (\Delta_i - \mu)^2, \quad \mu := \sum_{i=1}^d p_i \Delta_i. \quad (38)$$

776 \square

Table 4: Dataset statistics.

		Total Users	New Users	Total Items	New Items	Total Interactions	Avg Seq Len	Sparsity
801	Instruments	\mathcal{D}_1	17,046	17,046	40,471	40,471	141,788	8.32 0.9998
		\mathcal{D}_2	1,772	1,183	8,346	2,900	13,197	7.45 0.9991
		\mathcal{D}_3	1,821	1,265	8,325	2,909	13,334	7.32 0.9991
		\mathcal{D}_4	2,289	1,684	9,617	3,864	18,811	8.22 0.9991
		\mathcal{D}_5	2,238	1,699	9,131	3,365	17,573	7.85 0.9991
		$\mathcal{D}_{1:5}$	22,877	NA	53,509	NA	204,703	NA NA
802	Movies & TVs	\mathcal{D}_1	17,928	17,928	39,228	39,228	190,411	10.62 0.9997
		\mathcal{D}_2	1,866	1,141	11,612	1,479	17,665	9.47 0.9992
		\mathcal{D}_3	2,106	1,200	12,658	1,926	19,874	9.44 0.9993
		\mathcal{D}_4	2,284	1,357	13,788	1,882	22,929	10.04 0.9993
		\mathcal{D}_5	2,332	1,552	13,491	1,559	22,225	9.53 0.9993
		$\mathcal{D}_{1:5}$	23,178	NA	46,074	NA	273,104	NA NA
803	Books	\mathcal{D}_1	15,406	15,406	35,984	35,984	164,858	10.7 0.9997
		\mathcal{D}_2	1,807	618	7,155	2,711	13,918	7.7 0.9989
		\mathcal{D}_3	1,672	619	6,484	2,278	12,395	7.41 0.9989
		\mathcal{D}_4	1,948	650	7,154	2,657	14,824	7.61 0.9989
		\mathcal{D}_5	1,652	1,025	5,913	2,274	11,990	7.26 0.9988
		$\mathcal{D}_{1:5}$	18,318	NA	45,904	NA	217,985	NA NA

Now we prove Proposition 3. Since the blockwise softmax-KL regularizer acts independently on each group g ,

$$\mathcal{K}_{\text{blk}}(\Delta) = \sum_{g=1}^G D_{\text{KL}}(\text{softmax}(v_{t-1}^{(g)} + \Delta^{(g)}) \parallel \text{softmax}(v_{t-1}^{(g)})), \quad (39)$$

with $\mathcal{K}^{(g)}$ defined on group g . Applying Proposition 5 to each group yields block Hessians

$$H^{(g)} = \text{diag}(p^{(g)}) - p^{(g)}(p^{(g)})^\top, \quad (40)$$

which assemble into the block-diagonal

$$H = \text{blockdiag}(H^{(1)}, \dots, H^{(G)}). \quad (41)$$

The variance identity holds within each group.

C EXPERIMENTS

C.1 EXPERIMENTAL SETUP

Datasets. We use the real-world temporal Amazon Review dataset, which contains user reviews (treated as implicit interactions) on Amazon products over time.² We focus on three categories: Musical Instruments, Movies & TV, and Books. For Instruments and Movies & TV, we use data from 2019–2023; for Books, we use 2022–2023. We take 60% of the data as pretraining \mathcal{D}_1 and split the remaining 40% into four equal incremental stages, $\mathcal{D}_2, \dots, \mathcal{D}_5$. For each incremental stage, we filter out users with fewer than five interactions. This ensures leave-one-out evaluation is feasible and makes incremental data even smaller than pretraining data, simulating real-world scenarios. Table 4 summarizes dataset statistics, including the number of users, items, and interactions at each stage, average sequence length, and sparsity.

²<https://amazon-reviews-2023.github.io/>

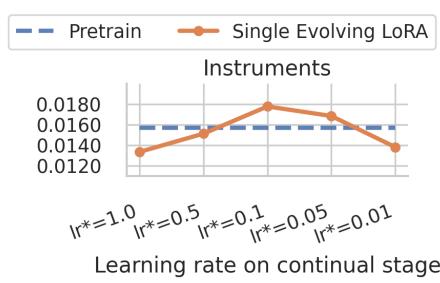


Figure 4: Impact of the learning rate for continual data on model performance.

Evaluation. For each \mathcal{D}_t , we apply leave-one-out per user: the second-to-last item is used for validation and the last item is reserved for testing. Following prior work (Wang et al., 2024; Bao et al., 2025), we construct multiple training pairs (x_u, y_u) per user u using a sliding window of size 20. The LLM trained on \mathcal{D}_1 serves as the pretrained model for all compared methods. At each stage $t = 2, \dots, 5$, after fine-tuning, the LLM autoregressively generates 10 items given the user history in the test pair. Generation uses constrained beam search restricted to valid item tokens, making it efficient and widely adopted in prior work (Wang et al., 2024; Rajput et al., 2023). With these 10 items, we evaluate against the ground-truth item and report Hit@5, Hit@10, NDCG@5, and NDCG@10, averaged over $\mathcal{D}_2, \dots, \mathcal{D}_4$.

Metrics. Hit@ k measures whether the ground-truth item appears among the k generated items. For a user u with ground-truth item y_u and a ranked list of predictions R_u ,

$$\text{Hit}@k(u) = \begin{cases} 1 & \text{if } y_u \in R_u[1 : k], \\ 0 & \text{otherwise.} \end{cases}$$

NDCG@ k (Normalized Discounted Cumulative Gain) additionally accounts for the position of the ground-truth item, giving higher credit when it appears closer to the top:

$$\text{NDCG}@k(u) = \begin{cases} \frac{1}{\log_2(\text{rank}(y_u)+1)} & \text{if } y_u \in R_u[1 : k], \\ 0 & \text{otherwise,} \end{cases}$$

Hit@ k captures whether the correct item is recommended at all, while NDCG@ k rewards ranking it higher in the list. We report averages of Hit@ k and NDCG@ k across all users, with $k \in 5, 10$.

C.2 LEARNING RATE ON CONTINUAL STAGE

Incremental datasets are much smaller than the pretraining set \mathcal{D}_1 (see Appendix C.1), making performance sensitive to learning rate. Figure 4 shows results for single evolving LoRA with varying learning rates on incremental data. Using the pretraining rate (0.0002; lr* = 1.0) performs worse than not learning new data, likely due to overfitting. The best performance occurs with lr* = 0.05–0.1, which aligns with the relative block size $|\mathcal{D}_t|/|\mathcal{D}_1| \approx 0.1$. This suggests that learning rates for incremental blocks should be scaled with respect to data size.

C.3 COMPARISON WITH TRADITIONAL CONTINUAL RECOMMENDER SYSTEMS

We compare our LLM-based methods (pretrain, single evolving LoRA, and PESO) against two-tower methods with LightGCN (He et al., 2020) as backbone, including Pretrain, Fine-tuning, Contrastive (Wang et al., 2021), Contrastive+PIW (Wang et al., 2023b), and PISA (Yoo et al., 2025). Two-tower models use explicit

893 Table 5: Comparison of LLM-based and traditional methods in continual recommendation.
894

			Instruments	Movies & TVs	Books
Traditional two-tower	Pretrain	0.0153	0.0028	0.0041	
	Fine-tuning	0.0180	0.0114	0.0218	
	Contrastive	0.0177	0.0101	0.0272	
	Contrastive + PIW	0.0193	0.0113	0.0243	
	PISA	0.0194	0.0106	0.0301	
LLM-based	Pretrain	0.0157	0.0160	0.0235	
	Fine-tuning (w/ LoRA)	0.0178	0.0169	0.0414	
	PESO	0.0190	0.0173	0.0422	

904
905
906 user and item embeddings, and their continual methods mitigate forgetting by regularizing user embeddings
907 against past versions: Contrastive maximizes mutual information between past and current embeddings,
908 Contrastive+PIW further adapts the regularization weights per user, and PISA combines stability and plas-
909 ticity regularization.

910 Table 5 reports results averaged across time stages and metrics. First, LLM-based recommenders (both
911 pretrain and continual) generally outperform traditional methods, highlighting the generalization ability and
912 knowledge transfer benefits of LLMs. On Instruments, however, the performance gap is smaller, suggesting
913 that explicit dual modeling of users and items still provides benefits for capturing collaborative signals. It is
914 worth noting that there also remains considerable headroom for LLM-based models if larger beam sizes are
915 used during generation.

916 Second, While PESO outperforms traditional continual methods in absolute terms, the relative gains of
917 continual techniques over their respective pretraining baselines are larger in traditional settings. This is
918 likely because two-tower methods explicitly capture preference shifts through user embeddings, supporting
919 our view that modeling user preference drift is crucial in continual recommendation. At the same time,
920 it underscores the difficulty of capturing such dynamics in LLM-based methods, pointing to an important
921 direction for future research.

922 C.4 QUANTIFICATION OF DISTRIBUTION SHIFT

923 To validate the realism of our continual learning formulation, we explicitly quantified the user preference
924 drift between data blocks on the Instruments dataset. We employed a domain discrimination approach:

- 925 1. We embed user interaction sequences into fixed-dimensional vectors using pretrained codebooks.
- 926 2. For each pair of blocks $(t-1)$ and (t) , we train a binary logistic regression classifier to distinguish
927 samples from the two blocks.
- 928 3. We compute the **Drift Score** $\delta(t-1, t) = 2(\text{AUC} - 0.5) \in [0, 1]$, where 0 implies identical
929 distributions and 1 implies completely separable distributions.

930 Table 6 reports both the step-wise drift $\delta(t-1, t)$ and the cumulative drift from the base block $\delta(0, t)$. The
931 results show non-trivial step-wise drift and, crucially, a steady increase in cumulative drift (reaching 0.457
932 at $t = 4$). This confirms that user preferences structurally evolve away from the initial state, validating our
933 experimental setup.

940
941 Table 6: Quantification of distribution shift (Drift Score) on the Instruments dataset.
942
943
944
945

Measure	$t = 1$	$t = 2$	$t = 3$	$t = 4$
Step-wise $\delta(t-1, t)$	0.200	0.060	0.240	0.090
Cumulative $\delta(0, t)$	0.200	0.311	0.342	0.457

946
947 C.5 COMPARISON WITH ADDITIONAL BASELINES
948949 C.5.1 COMPARISON WITH STANDARD TRAINING PARADIGMS (FULL FINE-TUNING &
950 RETRAINING)
951952 To validate the effectiveness of our LoRA-based sequential fine-tuning approach, we compared it against
953 two traditional training paradigms:954
955 1. **Full-Parameter Fine-Tuning:** Updating all model parameters sequentially on new data blocks.
956 2. **Full Retraining:** Retraining the model from scratch on the cumulative dataset ($D_0 \cup \dots \cup D_t$) at
957 each stage.958 As shown in Table 7, **Single Evolving LoRA** consistently outperforms both approaches.
959960
961 • **vs. Full Fine-Tuning:** Full-parameter updates suffer from a dilemma: high learning rates ($2e-5$)
962 lead to catastrophic forgetting, while low rates ($2e-6$) result in insufficient adaptation. LoRA acts
963 as a structural regularizer, mitigating forgetting while enabling effective adaptation.
964
965 • **vs. Full Retraining:** While full retraining outperforms static pretraining, it underperforms sequential
966 fine-tuning. This aligns with prior work (Yoo et al., 2025), suggesting that sequential updates
967 naturally prioritize recent preference signals, whereas full retraining treats old and new data equally,
968 diluting the signal of evolving interests.969
970 Table 7: Comparison with Standard Training Paradigms (Full Fine-Tuning and Full Retraining).

Method	Hit@5	Hit@10	NDCG@5	NDCG@10
Pretrain (Static)	0.0166	0.0216	0.0115	0.0131
Full Retraining (Cumulative Data)	0.0170	0.0231	0.0121	0.0141
Full Fine-Tuning ($lr = 2e-5$)	0.0142	0.0228	0.0099	0.0127
Full Fine-Tuning ($lr = 2e-6$)	0.0171	0.0254	0.0122	0.0149
Single Evolving LoRA (LoRA Fine-Tuning)	0.0181	0.0253	0.0127	0.0150

971
972 C.5.2 COMPARISON WITH ADDITIONAL CONTINUAL LORA METHODS
973974 We compared PESO against O-LoRA (Wang et al., 2023a), AM-LoRA (Liu et al., 2024), and LSAT (Shi
975 et al., 2024) on the Instrument dataset. O-LoRA and AM-LoRA belong to the cumulative family but use
976 orthogonality or attention mechanisms to combine adapters, while LSAT utilizes adapter interpolation. As
977 shown in Table 8, PESO consistently outperforms all of them. This supports our claim that explicitly
978 maintaining discrete adapters is less effective for gradual preference drift than our proximal regularization
979 approach.

987
988 Table 8: Comparison with recent Continual PEFT methods on Instruments.
989
990

Method	Hit@5	Hit@10	NDCG@5	NDCG@10
Single Evolving LoRA	0.0181	0.0253	0.0127	0.0150
Cumulative LoRA	0.0182	0.0260	0.0129	0.0154
O-LoRA	0.0191	0.0259	0.0134	0.0156
AM-LoRA	0.0182	0.0240	0.0125	0.0144
LSAT	0.0164	0.0250	0.0117	0.0144
LSAT (+ Param Inheritance)	0.0183	0.0254	0.0130	0.0153
PESO	0.0193	0.0268	0.0138	0.0162

1000 C.6 PERFORMANCE ON LC-REC BACKBONE

1001
1002 To demonstrate robustness across architectures, we evaluated PESO using the LC-REC backbone (Zheng
1003 et al., 2024). As shown in Table 9, PESO maintains its superiority over baselines.1004
1005 Table 9: Performance comparison using the LC-REC backbone.

Method	Hit@5	Hit@10	NDCG@5	NDCG@10
Single Evolving LoRA	0.0164	0.0249	0.0119	0.0146
Cumulative LoRA	0.0178	0.0249	0.0122	0.0145
SD-LoRA	0.0185	0.0256	0.0127	0.0150
PESO	0.0179	0.0266	0.0130	0.0158

1013 C.7 STABILITY-PLASTICITY ANALYSIS VIA USER GROUPS

1014
1015 To examine how PESO balances long-term interests with current evolved preferences, we analyzed the final
1016 model’s performance on three distinct user groups in the Instruments dataset, acting as proxies for different
1017 drift patterns:1018
1019 1. **Continuous Users (Linear Drift):** Users present in all blocks.
1020 2. **Dormant Users (Non-linear/Cyclical Drift):** Users active in the past, absent in intermediate
1021 blocks, and returning in D_4 . This tests **stability** (retrieval of long-term preferences).
1022 3. **New Users (Sudden Shift):** Users appearing only in D_4 . This tests **plasticity** (adaptation to new
1023 signals).1024 Table 10 illustrates the trade-off. Single Evolving LoRA excels at New Users (Plasticity) but fails on Dor-
1025 mient Users due to forgetting. Cumulative LoRA preserves stability but fails to adapt to New Users. PESO
1026 achieves the best performance on both Dormant and New users, demonstrating an optimal dynamic balance.
1027

1028 C.8 PERFORMANCE ON NON-E-COMMERCE DATASET (YELP)

1029
1030 To further explore non-e-commerce domains, we evaluated PESO on the Yelp dataset, where interactions
1031 correspond to user check-ins at locations, using the same data-splitting strategy as in our main experiments.
1032 As shown in Table 11, PESO consistently outperforms strong competitors, including Single Evolving LoRA
1033 and SD-LoRA.

1034
1035 Table 10: Performance (NDCG@5) across different user groups representing stability and plasticity tests.
1036
1037

Method	Continuous Users	Dormant Users	New Users
Single Evolving LoRA (Plasticity-focused)	0.0480	0.0154	0.0116
Cumulative LoRA (Stability-focused)	0.0493	0.0164	0.0101
PESO (Balanced)	0.0480	0.0170	0.0122

1041
1042 This result is particularly notable given that, unlike Amazon products which feature detailed textual descriptions,
1043 Yelp locations often lack deep semantic content (consisting primarily of names like “Pizza Hut” or
1044 coarse categories like “Pizza” or “Restaurant”). This demonstrates the robustness of our method, showing it
1045 remains highly effective even in settings with limited semantic richness.
1046

1047
1048 Table 11: Performance comparison on the Yelp dataset.
1049

Methods	Hit@5	Hit@10	NDCG@5	NDCG@10
Pretrain	0.0201	0.0309	0.0126	0.0161
Single Evolving LoRA	0.0290	0.0442	0.0190	0.0239
SD-LoRA	0.0279	0.0432	0.0168	0.0230
PESO	0.0302	0.0454	0.0199	0.0248

1056
1057 C.9 EXPLICIT MEASUREMENT OF FORGETTING

1058 We measured the performance drop on past blocks to analyze forgetting behavior. Table 12 shows the
1059 difference between the final model’s performance on D_t and its initial performance at time t . While PESO
1060 shows selective forgetting on intermediate blocks (allowing it to shed obsolete trends), it achieves the highest
1061 overall performance and best retrieval for dormant users, indicating that this forgetting is benign and adaptive
1062 rather than catastrophic.
1063

1064
1065 Table 12: Performance drop on past blocks (lower is strictly less forgetting, but may imply rigidity).
1066

Method	Drop on D_0	Drop on D_1	Drop on D_2	Drop on D_3
Single Evolving LoRA	0.0062	0.0087	0.0042	0.0031
Cumulative LoRA	0.0060	0.0062	0.0035	0.0060
PESO	0.0062	0.0107	0.0048	0.0045

1071
1072 D EFFICIENCY ANALYSIS
1073

1074 PESO introduces negligible overhead compared to baselines:
1075

1076

- **Storage Complexity:** PESO stores only one previous LoRA adapter, resulting in $O(1)$ storage
1077 complexity relative to the number of stages. In contrast, Cumulative LoRA grows linearly $O(T)$ as
1078 it must store all past adapters.

1081
 1082 • **Computational Complexity:** PESO adds only a lightweight quadratic/KL penalty to the loss.
 1083 This requires no additional forward passes. In practice, we observed no measurable slowdown in
 1084 training time compared to standard Single LoRA fine-tuning.

1085
 1086
 1087 **E DISCUSSION ON PROMPT TUNING VS. LoRA**

1088
 1089 Prompt-tuning-based PEFT methods typically learn a prompt pool and dynamically retrieve the most relevant
 1090 prompts for each input, inserting them into the input or intermediate representations without updating
 1091 backbone weights (Wang et al., 2022). This introduces inference overhead because the model must compute
 1092 query features and perform similarity matching over a growing prompt pool at inference time. The
 1093 inference-inefficiency is even more severe in our generative recommendation setting: autoregressive generation
 1094 requires many forward passes per prediction, and each step would need repeated prompt retrieval.
 1095 Recent studies in vision (Wu et al., 2025; Liang & Li, 2024) also report that LoRA-based methods generally
 1096 outperform prompt-based approaches in large-scale tasks, making LoRA the preferred PEFT technique.

1097
 1098 **F PROMPT**

1099
 1100 We show below the template used in all experiments. Notably, `<a_[i1]><b_[j1]><c_[k1]><d_[l1]>`
 1101 represents one user-item interaction encoded as four semantic-ID tokens. For instance,
 1102 `<a_144><b_72><c_103><d_217>` is one such tuple describing a single interacted item (Rajput
 1103 et al., 2023; Wang et al., 2024).

1104
 1105 Below is an instruction that describes a task.
 1106 Write a response that appropriately completes the request.\n\n

```
1107     ### Instruction:\n1108     Based on the items that the user has interacted with:\n1109     <a_[i1]><b_[j1]><c_[k1]><d_[l1]>,\n1110     <a_[i2]><b_[j2]><c_[k2]><d_[l2]>,\n1111     ...,\n1112     <a_[iN]><b_[jN]><c_[kN]><d_[lN]>,\n1113     can you determine what item would be recommended to the user next?\n\n
```

1114 ### Response:

1115
 1116 **G USE OF LARGE LANGUAGE MODELS**

1117
 1118 LLMs were used only for writing polish (grammar and clarity). All content was reviewed and approved by
 1119 the authors. LLMs did not contribute to research ideation, algorithm design, implementation, or analysis.