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ABSTRACT

While large language models (LLMs) achieve strong performance in recommendation,
they face challenges in continual learning as users, items, and user preferences evolve
over time. Existing LoRA-based continual methods primarily focus on preserving perfor-
mance on previous tasks, but this overlooks the unique nature of recommendation: the goal
is not to predict past preferences, and outdated preferences can even harm performance
when current interests shift significantly. To address this, we propose PESO (Proximally
rEgularized Single evolving lOra), a continual adaptation method for LoRA in recommen-
dation. PESO introduces a proximal regularizer that anchors the current adapter to its
most recent frozen state, enabling the model to flexibly balance adaptation and preserva-
tion, and to better capture recent user behaviors. Theoretically, we show that this proximal
design provides data-aware, direction-wise guidance in the LoRA subspace. Empirically,
PESO consistently outperforms existing LoRA-based continual learning methods.

1 INTRODUCTION
Large language models (LLMs) are increasingly used for recommendation by treating the task as sequence
generation: given a user’s interaction history, the model autoregressively generates the next item tokens (Bao
et al., 2025; Cao et al., 2024; Tan et al., 2024; Wang et al., 2024; Bao et al., 2023; Kweon et al., 2025; Lin
et al., 2025). In practice, LLM is fine-tuned on user histories paired with their next interactions, aligning
it with the recommendation objective. However, real-world interaction data are continuously collected and
evolve over time: new users and items appear, and user preferences drift. Periodic retraining from scratch
on both historical and new data is possible but highly inefficient, making continual learning (i.e., updating
the model effectively with new data) a natural and appealing solution.

It is well known that a continual model must balance stability (retaining past knowledge) and plasticity
(adapting to new knowledge) (Zhu et al., 2021; Arani et al., 2022; Ye et al., 2022; Zhang et al., 2024a; Yuan
et al., 2021; Do & Lauw, 2023; Mi et al., 2020). However, continual recommender systems present unique
interpretations of these concepts, and bear subtle but critical difference from other domains such as computer
vision. In most other domains, continual tasks are typically disjoint and not time-ordered (e.g., cats vs. dogs
→ trucks vs. sedans), and the primary objective is to preserve performance on previous tasks (stability)
while adapting to new ones (plasticity). In contrast, the ultimate goal of continual recommendation is to
accurately capture evolving user preferences in order to predict which items a user will prefer in the near
future. That is, recommendation is not concerned with predicting past user preferences; in fact, outdated
preferences can even hinder performance if current user interests have shifted significantly (e.g., a user starts
preferring romance over action). Thus, stability in recommendation refers to preserving long-term user
preferences (e.g., enduring interests in certain genres or brands) that remain predictive, even if they are not
strongly reflected in recent data. Plasticity, on the other hand, is required to overwrite outdated preferences
and to capture emerging trends. This distinct setting in turn requires careful model design.

A common recipe for fine-tuning LLMs in recommendation is Low-Rank Adaptation (LoRA) (Hu et al.,
2022; Liu et al., 2025), due to its simplicity and modularity across components (e.g., attention layers).
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LoRA freezes pretrained weights and injects lightweight, trainable low-rank matrices. This efficiency makes
LoRA a natural candidate for continual learning, motivating our focus on continual LoRA for LLM-based
recommender systems. A simple and intuitive approach is to maintain a single evolving LoRA: sequentially
fine-tuning one adapter, initializing it from the previous stage and optimizing it on new data. This provides
strong plasticity, while parameter inheritance provides partial preservation of past knowledge. However, it
inevitably overwrites useful past knowledge during fine-tuning, leading to forgetting.

To mitigating forgetting, several works in vision have proposed the family of cumulative LoRA (Wu et al.,
2025; Liang & Li, 2024; Lu et al., 2024), which typically use the sum of the new trainable adapter and
all frozen past adapters. This design explicitly enhances stability by reusing prior adapters and expanding
LoRA’s effective capacity, and it works well when tasks are largely independent (i.e., with minimal interfer-
ence), allowing each adapter to encode task-specific knowledge. Intuitively, this might seem beneficial for
recommendation, where preserving useful past preferences matters. However, our analysis shows that cumu-
lative LoRA often underperforms the simpler single evolving LoRA. Unlike vision tasks, recommendation
involves reappearing users with continuously evolving preferences. The model must therefore capture use-
ful interference across stages, but frozen adapters entangle outdated and relevant preferences, making them
hard to disentangle. In addition, as adapters accumulate over time, cumulative LoRA incurs growing storage
costs and struggles to reflect their relative importance during aggregation.

To address these limitations, we adopt two principles: (1) avoid multiple adapters, which implicitly assume
task independence, and (2) preserve past knowledge in a way that supports understanding of current user be-
havior. Guided by this, we propose PESO (Proximally rEgularized Single evolving lOra), which maintains
a single evolving LoRA adapter while regularizing it toward its past state with a lightweight proximal term.
Unlike cumulative LoRA, PESO balances stability and plasticity through the natural competition between
the data-fitting loss and the proximal term, allowing the model to decide what to adapt or retain. Theo-
retically, we show that this design yields data-aware, direction-wise guidance in the LoRA subspace. We
further instantiate it with a per-module softmax–Kullback–Leibler (KL) proximal, which preserves inter-
nal module structure rather than treating all parameters equally (i.e., a more nuanced stability mechanism).
Empirically, PESO consistently outperforms both cumulative LoRA and the single evolving adapter across
multiple real-world datasets, achieving a more effective stability–plasticity balance for recommendation.

In summary, our main contributions are threefold. (1) Analysis: we identify the distinctive stabil-
ity–plasticity challenge in continual recommendation and show empirically that cumulative LoRA, while
effective in simulated user-disjoint settings, underperforms in the natural case where user preferences evolve
across time stages; (2) Method and Theory: we propose PESO, a proximally regularized LoRA that an-
chors each update to the previous state, with theory showing direction-wise, data-aware guidance and a
per-module softmax–KL instantiation; (3) Experiments: we demonstrate through extensive experiments on
real-world datasets that PESO consistently outperforms both single evolving and cumulative LoRA.

2 PRELIMINARY

Notations. We consider an LLM-based recommender that, given a user’s interaction history, autoregres-
sively predicts the next item token. At time stage t ∈ {1, . . . , T}, let Ut be the set of active users, It the
set of items, and Et = {xu}u∈Ut

the collection of user sequences, where xu = (xu,1, . . . , xu,Nu
). Training

uses next-item pairs induced from Et, yielding state-t data Dt:

Dt = {(xu, yu) : u ∈ Ut}, yu = xu,Nu+1 ∈ It. (1)

Each item xu,i (and yu) is represented by semantic ID obtained by a codebook-based tokenizer (e.g., RQ-
VAE (Rajput et al., 2023)) trained on item semantic features (e.g., title/description), yielding fixed number of
token IDs for each item. Semantic ID captures hierarchical semantics of items and works well in practice.1

1Adapting the tokenizer to new items over time is an interesting direction; here we fix the item tokenizer to isolate
continual adaptation of the model (LoRA).
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Stability and Plasticity in Continual Recommendation. We assume an initial model is pretrained offline
on base data D1, and then fine-tuned sequentially on chronologically arriving blocks D2, . . . ,DT . The goal
of continual recommendation is to minimize expected risk on upcoming interactions by balancing stability
(retaining persistent long-term preferences) and plasticity (adapting to new or shifting preferences from
recent data), thereby capturing evolving user interests (see Appendix A for a formal conceptual model).
Concretely, for Dt, the LLM is fine-tuned with the standard cross-entropy over the next-item token:

LDt
ce = E(x,y)∼Dt

[
− log pθ(y | x)

]
, pθ(y | x) = softmax

(
zθ(x)

)
y
, (2)

where zθ(x) ∈ R|V| are the logits for the item vocabulary V .

Low-Rank Adaptation (LoRA). LoRA freezes the pretrained LLM weight W0 ∈ Rdout×din and adds a
trainable low-rank update:

∆W = BA, A ∈ Rr×din , B ∈ Rdout×r, r ≪ min(din, dout), (3)

so that for an input x ∈ Rdin the layer computes (W0+∆W )x. Only A and B are updated during fine-tuning,
while W0 remains fixed. This yields substantial parameter savings and modular, layer-wise adaptation (e.g.,
on attention projections). In this work, our analysis and method operate entirely within this LoRA subspace
and therefore inherit its efficiency. We now formally define our problem.
Problem 1. (Continual adaptation of a generative recommender) Given: (1) a pretrained LLM-based rec-
ommendation model (fine-tuned with LoRA onD1), (2) a sequence of chronological data blocksD2, . . . ,DT ;
Goal: learn updates that, at each stage t, adapt the model to Dt while retaining useful knowledge from ear-
lier stages, achieving high quality next-item recommendation via a balanced stability–plasticity.

3 ANALYSIS OF LORA VARIANTS FOR CONTINUAL RECOMMENDATION

We introduce two primary baselines for our problem: single evolving LoRA and the cumulative LoRA
family. Then, we empirically compare them on a natural chronological split and a user-disjoint split.

Single evolving LoRA. At stage t, the LoRA matrices At and Bt are initialized (i.e., parameter inheritance)
from the previous stage (At−1 and Bt−1) and fine-tuned on new data Dt:

Wt = W0 +BtAt, Bt←Bt−1, At←At−1, (4)

where W0 is the pretrained LLM weight (i.e., not LoRA updates). This baseline is simple and adapts effec-
tively to new data, while parameter inheritance provides partial preservation of past knowledge at initializa-
tion. However, it inevitably overwrites useful past knowledge during fine-tuning, leading to forgetting.

Cumulative LoRA Variants. To mitigate forgetting, cumulative LoRA has been widely used in domains
such as vision (Wu et al., 2025; Liang & Li, 2024). At stage t, it reuses frozen adapters from past stages and
adds a new trainable adapter by summing them during both training and inference. The effective update is

Wt = W0 +

t−1∑
i=1

αiB̂iÂi +BtAt, (5)

where W0 is the pretrained LLM weight; {B̂i}t−1
i=1 and {Âi}t−1

i=1 are frozen adapters from previous stages;
and Bt, At are trainable at stage t. Following prior practice, we use normalized directions B̂i = Bi/∥Bi∥F
and Âi = Ai/∥Ai∥F , which improves stability. The scalar αi are fixed or learned magnitudes. This design
explicitly enhances stability and expands LoRA’s effective capacity, expected too work well when sequen-
tial tasks interfere minimally. However, for recommendation where user preferences evolve, this rationale
weakens. To examine this, we study SumLoRA, which uses simple summation, in four variants: (i) all,
summing all past adapters; (ii) latest, summing only the most recent adapter; (iii) all+inherit, summing all
past adapters with parameter inheritance; and (iv) latest+inherit, using only the latest adapter with parameter

3
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Table 1: (Left) Design choices; (Right) performance gain vs. single evolving LoRA (w.r.t. NDCG@5) in
different task settings on Instrument dataset.

Design choices Task settings
Method Learnable mag. Only latest Param inherit (1) User-disjoint (2) Natural split Diff. (1)-(2)

SUMLORAALL ✗ ✗ ✗ −8.13% −26.77% 18.64%
SUMLORALATEST ✗ ✓ ✗ −12.20% −22.05% 9.85%
SUMLORAALL+INHERIT ✗ ✗ ✓ −3.25% 1.57% −4.82%
SUMLORALATEST+INHERIT ✗ ✓ ✓ 0.00% 2.36% −2.36%
SD-LORALATEST+INHERIT ✓ ✓ ✓ 3.25% 0.79% 2.46%

inheritance. The all variant corresponds to the original design of cumulative LoRA family. We also consider
SD-LoRA, which extends summation with learnable magnitudes, with all equivalent to Wu et al. (2025).
For analysis, we focus on the empirically stronger latest+inherit. Table 1 summarizes these design choices.

Two settings. We evaluate methods in the two settings derived from the same user-item interaction data:
(1) Natural chronological split: Interactions are sorted by time; a large portion (e.g., 60%) is used for
pretraining (i.e., D1), and the remainder is divided into four equal incremental blocks, yielding D1, . . . ,D5.
For each Dt, we apply leave-one-out per user (second-to-last item for validation, last item for test). See
Appendix C.1 for details. (2) Pseudo user-disjoint split: Users are randomly partitioned into disjoint sets
for Dt (t = 1, . . . , 5), with block sizes matched to the chronological split. Item order within each user’s
sequence is preserved. While similar users may induce some shared preferences across stages, this setting
introduces relatively less cross-stage interference than the natural chronological case.

Results. Table 1 reports (1) the relative gain vs. single evolving LoRA on the user-disjoint split, (2) the
relative gain on the chronological split, and (3) their difference (i.e., (1)-(2)). We summarize the findings:
First, the Diff. column shows that the original cumulative design (i.e., SUMLORAALL) performs much worse
in the natural chronological setting than in the user-disjoint setting, confirming that it is better suited for
tasks with minimal interference and ill-suited for recommendation. Second, in the Natural split, SUM-
LORAALL performs worst, followed by latest, all+inherit, and latest+inherit, suggesting that (a) aggregat-
ing all past adapters hinders adaptation, and (b) parameter inheritance is essential for gradual, proximal
evolution of LoRA with respect to the previous state. Finally, SD-LORALATEST+INHERIT fails to improve over
fixed-magnitude SUMLORALATEST+INHERIT, since useful past components are entangled with stale ones, mak-
ing weighting ineffective. Overall, continual recommendation requires evolving adapters with controlled
stability, rather than rigid reuse of past ones, to capture user preference dynamics.

4 PROPOSED FRAMEWORK: PESO
Our design philosophy is to (1) avoid using multiple LoRA adapters, which implicitly assume task inde-
pendence, and (2) preserve past knowledge in a way that supports understanding of current user behavior.
Guided by this, we propose PESO (Proximally rEgularized Single evolving lOra), which maintains a single
evolving LoRA adapter and regularizes each update by keeping the current adapter close to the previous
one (shown in Figure 1). We begin by presenting the quadratic proximal framework and its theoretical
implications, and then instantiate PESO with a softmax–KL proximal to demonstrate its practical effect.
4.1 SINGLE EVOLVING LORA WITH A PROXIMAL REGULARIZER

General framework. We maintain a single evolving LoRA and anchor each update to the previous adapter
with a proximal term. Let vt ∈ Rm denote the concatenation of all flattened LoRA A/B parameters at time
stage t. We partition coordinates into groups g ∈ {1, . . . , G} (e.g., per module such as attention layers) and
write v(g) for group g. The overall loss function for time stage t is

Lt = LDt
ce +

λ

2

G∑
g=1

∥ v(g)t − v
(g)
t−1 ∥2H(g)

t−1︸ ︷︷ ︸
proximal term

, vt ← vt−1 at init, (6)

4
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Figure 1: Conceptual overview of Cumulative LoRA and our proposed PESO with proximal regularizer.

where LDt
ce is the data-fitting term on Dt (i.e., cross-entropy, Eq. (2)), ∥z∥2H := z⊤Hz, λ > 0 controls

regularization strength, and each H
(g)
t−1 ⪰ 0 is a (symmetric) PSD metric that is fixed during stage t; it can

be constant (e.g., H(g)
t−1 = I , corresponding to the L2 case) or precomputed at the previous adapter v(g)t−1.

We initialize vt← vt−1 so the proximal penalty starts at zero and grows only as vt departs from vt−1. This
design leverages the natural competition between the data-fitting loss (which pulls toward the optimal state
for Dt) and the proximal term (which pulls toward the previous state). Next, we theoretically show how this
yields data-aware, direction-wise guidance in the LoRA subspace.

Theoretical setup. To analyze how the proximal term interacts with the data-fitting loss, we approximate
the data-fitting term. We restrict updates to a fixed m-dimensional LoRA subspace. Let θ0 ∈ Rd be the
parameter vector (base LLM and LoRA) after training on the first data block (t=1). From t ≥ 2, let
θ(v) = θ0 + Uv with U ∈ Rd×m and non-LoRA coordinates frozen (i.e., assume U = [Im 0]). For input
x = (prompt, item sequence) and next-item token y, let s(θ, x) be the scalar logit of the ground-truth token.
Linearize once at v = 0:

s(θ0 + Uv, x) ≈ s(θ0, x) + Φ(x)⊤v, Φ(x) := U⊤∇θs(θ0, x) ∈ Rm, (7)

where Φ(x) is tangent feature of x. For analysis we use a mean-squared-error surrogate for Eq. (2) and
define the stage-t optimum v∗t = argminv L

Dt(v). A second-order expansion at v∗t yields quadratic loss

LDt(v) ≈ 1

2
(v − v∗t )

⊤Σt (v − v∗t ), Σt = Ex∼Dt

[
Φ(x)Φ(x)⊤

]
⪰ 0, (8)

where Σt is the tangent-feature second-moment matrix for time stage t, capturing how much the stage-t
data supports different directions in the LoRA subspace (i.e., u⊤Σtu = EDt

[(Φ(x)⊤u)2] ∀u ∈ Rm). See
Appendix B.1 for full setup and assumptions. In what follows, we present a general proposition showing
that our proximal framework yields direction-wise interpolation between the new optimum and the previous
adapter, and then derive its L2 corollary to provide intuition into the stability–plasticity balance.

Proposition 1 (Generalized–eigen interpolation with a quadratic proximal). Let Σt = Σ⊤
t ⪰ 0. Define the

block-diagonal proximal metric Ht−1 := blkdiag
(
H

(1)
t−1, . . . ,H

(G)
t−1

)
⪰ 0, with each H

(g)
t−1 symmetric PSD

and independent of v during stage t. Under the quadratic approximation in Eq. (8), our loss Eq. (6) is:

Lt(v) =
1

2
(v − v∗t )

⊤Σt(v − v∗t ) +
λ

2
(v − vt−1)

⊤Ht−1(v − vt−1). (9)

5
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Let {(qk, ρk)}rk=1 be generalized eigenpairs of (Σt, Ht−1) on range(Ht−1) (i.e., Σtqk = ρkHt−1qk), nor-
malized by q⊤i Ht−1qj = δij , where r = rank(Ht−1). With ⟨u,w⟩Ht−1 := u⊤Ht−1w,

⟨v, qk⟩Ht−1
=

ρk
ρk + λ

⟨v∗t , qk⟩Ht−1
+

λ

ρk + λ
⟨vt−1, qk⟩Ht−1

, k = 1, . . . , r. (10)

The proof of Proposition 1 is deferred to Appendix B.2. To build intuition, we specialize Proposition 1 to
the L2 case by taking Ht−1 = I . Then the generalized eigenpairs reduce to ordinary eigenpairs of Σt and
⟨·, ·⟩Ht−1

becomes the standard inner product, yielding the following corollary.

Corollary 2 (L2 special case of Proposition 1). Take Ht−1 = I . If Σtqk = σ2
kqk with {qk} orthonormal,

⟨v, qk⟩ =
σ2
k

σ2
k + λ

⟨v∗t , qk⟩+
λ

σ2
k + λ

⟨vt−1, qk⟩, k = 1, · · · , r. (11)

In a nutshell, Corollary 2 shows a data-aware balance between stability and plasticity in our framework.
Recall that Σt = EDt [Φ(x)Φ(x)

⊤] summarizes how much the stage-t data supports different directions in
the LoRA subspace. Its eigenvectors qk are principal directions, with eigenvalues σ2

k measuring the strength
of support along each direction under Dt. By Corollary 2, along any qk the update is a weighted average of
v∗t and vt−1, with weight toward v∗t equal to σ2

k/(σ
2
k + λ). Thus, when σ2

k is large (strong support in Dt),
vt moves toward v∗t along qk (e.g., the user starts engaging more with mystery than sci-fi); when σ2

k is small
(weak support), vt stays close to vt−1 (e.g., a stable brand affinity not observed this week). If σ2

k = 0, the
component along qk is kept exactly from the previous stage. See App. B.3 for more detailed explanation.

4.2 SOFTMAX–KL AS A PROXIMAL REGULARIZER

As shown earlier, the L2 proximal (i.e., H(g)
t−1 = I) is a special case of our general proximal form with

Ht−1. However, it penalizes all coordinate changes equally, treating modules uniformly, ignoring internal
structure, and not adapting to the previous state vt−1. To address this, we instantiate the proximal term with
a softmax–KL proximal that preserves per-module structure and leverages the previous state. Formally, the
stage-t objective of PESO is:

Lt = LDt
ce + λ

G∑
g=1

DKL

(
softmax(v

(g)
t ) ∥ softmax(v

(g)
t−1)

)
︸ ︷︷ ︸

Kblk(vt,vt−1)

, vt ← vt−1 at init. (12)

We first show that the softmax–KL proximal locally reduces to a quadratic form, and then give a corollary
that interprets it as a p-weighted variance, providing an intuitive view of its module-wise stability.

Proposition 3 (Per-module softmax–KL is locally quadratic). Let v(g)t be the subvector for group g ∈
{1, . . . , G} (e.g., a module), p(g) = softmax(v

(g)
t−1), and ∆(g) = v

(g)
t − v

(g)
t−1. Then, for small ∆(g),

Kblk(vt, vt−1) =
λ

2

G∑
g=1

(
∆(g)

)⊤(
diag

(
p(g)

)
− p(g)p(g)

⊤)
∆(g) + o

(∑
g ∥∆(g)∥2

)
(13)

=
λ

2
∆⊤ blkdiag

(
H

(1)
t−1, . . . ,H

(G)
t−1

)︸ ︷︷ ︸
=:Ht−1

∆+ o
(∑

g ∥∆(g)∥2
)
, with H

(g)
t−1 = diag(p(g))− p(g)(p(g))⊤ ⪰ 0.

The proof of Proposition 3 is deferred to Appendix B.4. Proposition 3 shows the softmax–KL proximal is
locally the quadratic λ

2 ∥vt − vt−1∥2Ht−1
with Ht−1 = blkdiag(H

(1)
t−1, . . . ,H

(G)
t−1). Hence, Proposition 1

applies directly, suggesting it has effect of data-aware balance of stability and plasticity.
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Table 2: Recommendation performance averaged across time stages for PESO and continual competitors.
The best and second-best results are marked in bold and underline, respectively.

Instruments Movies & TVs Books
Methods H@5 H@10 N@5 N@10 H@5 H@10 N@5 N@10 H@5 H@10 N@5 N@10
PRETRAIN 0.0166 0.0216 0.0115 0.0131 0.0166 0.0231 0.0111 0.0132 0.0258 0.0283 0.0196 0.0204
SINGLE EVOLVING LORA 0.0181 0.0253 0.0127 0.0150 0.0175 0.0247 0.0116 0.0138 0.0448 0.0557 0.0308 0.0344
Cumulative LoRA Family
INFLORAALL 0.0156 0.0214 0.0105 0.0124 0.0103 0.0139 0.0067 0.0079 0.0236 0.0332 0.0161 0.0193
INFLORALATEST 0.0131 0.0167 0.0090 0.0102 0.0073 0.0092 0.0047 0.0054 0.0152 0.0197 0.0108 0.0123
INFLORAALL+INHERIT 0.0149 0.0219 0.0104 0.0126 0.0109 0.0147 0.0072 0.0085 0.0249 0.0324 0.0171 0.0195
INFLORALATEST+INHERIT 0.0137 0.0202 0.0095 0.0116 0.0094 0.0132 0.0060 0.0072 0.0225 0.0288 0.0153 0.0174
SUMLORAALL 0.0134 0.0215 0.0093 0.0119 0.0102 0.0130 0.0067 0.0076 0.0264 0.0402 0.0176 0.0221
SUMLORALATEST 0.0143 0.0221 0.0099 0.0124 0.0102 0.0130 0.0067 0.0076 0.0246 0.0354 0.0161 0.0196
SUMLORAALL+INHERIT 0.0182 0.0260 0.0129 0.0154 0.0160 0.0234 0.0107 0.0131 0.0409 0.0514 0.0287 0.0321
SUMLORALATEST+INHERIT 0.0185 0.0255 0.0130 0.0152 0.0172 0.0237 0.0114 0.0135 0.0433 0.0542 0.0306 0.0341
SD-LORAALL 0.0156 0.0226 0.0107 0.0129 0.0094 0.0133 0.0061 0.0074 0.0238 0.0351 0.0162 0.0198
SD-LORALATEST 0.0156 0.0218 0.0102 0.0123 0.0101 0.0142 0.0069 0.0082 0.0241 0.0327 0.0159 0.0186
SD-LORAALL+INHERIT 0.0176 0.0238 0.0124 0.0144 0.0118 0.0171 0.0077 0.0094 0.0332 0.0412 0.0234 0.0260
SD-LORALATEST+INHERIT 0.0184 0.0254 0.0128 0.0150 0.0165 0.0235 0.0109 0.0131 0.0432 0.0530 0.0308 0.0340
PESO 0.0193 0.0268 0.0138 0.0162 0.0180 0.0251 0.0118 0.0141 0.0448 0.0569 0.0311 0.0351
Performance Gain (%)
VS. SINGLE EVOLVING LORA 6.63% 5.93% 8.66% 8.00% 2.86% 1.62% 1.72% 2.17% 0.00% 2.15% 0.97% 2.03%
VS. SUMLORALATEST+INHERIT 4.32% 5.10% 6.15% 6.58% 4.65% 5.91% 3.51% 4.44% 3.46% 4.98% 1.63% 2.93%
VS. SD-LORALATEST+INHERIT 4.89% 5.51% 7.81% 8.00% 9.09% 6.81% 8.26% 7.63% 3.70% 7.36% 0.97% 3.24%

Corollary 4 (Softmax–KL equals p-weighted variance). With notation as above, up to an additive constant,

Kblk(vt, vt−1) =
λ

2

G∑
g=1

Varp(g)

(
∆(g)

)
, Varp(g)(∆(g)) =

∑
i∈g

p
(g)
i (∆

(g)
i − µ(g))2 and µ(g) =

∑
i∈g

p
(g)
i ∆

(g)
i .

(14)
Corollary 4 shows that, the softmax–KL proximal can be interpreted as a p-weighted variance of parameter
changes. Consequently, the proximal (i) penalizes reshuffling of weight mass within each module more than
uniform shifts, and (ii) protects coordinates with higher prior mass more strongly. This yields module-wise,
previous-state–aware stability without killing plasticity: updates still move toward new optima where data
provides strong support (as in Proposition 1), while staying close to the previous state otherwise.

5 EXPERIMENTS

We design experiments to answer four key questions: RQ1: To what extent does PESO outperform com-
petitors? RQ2: Which proximal regularizer works best in PESO? RQ3: How do hyperparameters affect
performance of PESO? RQ4: How does PESO compare to traditional continual recommenders?

5.1 EXPERIMENTAL SETTINGS

Datasets. We use the real-world Amazon Review dataset, which contains user reviews (treated as implicit
interactions) on products over time. We focus on three categories: Musical Instruments, Movies & TV, and
Books. Detailed preprocessing steps and dataset statistics are provided in Appendix C.1. The processed data
yield {D1, . . . ,D5}, where D1 is a large pretraining set and D2, . . . ,D4 are smaller incremental sets.

Evaluation. For each Dt, we apply leave-one-out evaluation per user, reserving the last item for testing.
Following (Wang et al., 2024; Bao et al., 2025), we construct multiple training pairs (xu, yu) per user using
a sliding window of size 20. Starting from the LLM pretrained on D1, at each stage t = 2, . . . , 5 the model
is fine-tuned and then generates 10 items via constrained beam search restricted to valid item tokens. We
report Hit@5/10 and NDCG@5/10, averaged over D2, . . . ,D4. Full evaluation details are in Appendix C.1.

Compared methods and implementation details. We compare PESO with several LoRA-based baselines
for continual learning, all using the same cross-entropy loss and Llama-3.2 1B (Grattafiori et al., 2024) as
backbone. The bottom baseline is PRETRAIN, trained on D1 and directly evaluated at t = 2, . . . , 4. Among
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Figure 2: Performance comparison of different regu-
larization methods against the previous LoRA.

Figure 3: Impact of the scaling weight λ for the prox-
imal term on PESO performance.

continual methods, we consider: (1) single evolving LoRA; and (2) the cumulative family, which combines
past and current adapters: SumLoRA, SD-LoRA (Wu et al., 2025), and InfLoRA (Liang & Li, 2024). SD-
LoRA learns magnitudes for normalized past adapters, while InfLoRA precomputes LoRA-A via SVD of
the input covariance and trains only B, to better align with current data and reduce task-interference. As
discussed in Section 3, original cumulative designs use all past adapters without inheritance (all). For
recommendation, we further test three variants: latest (most recent only), all+inherit (all with inheritance),
and latest+inherit (latest with inheritance). For hyperparameters, λ is searched over [0.5, 1.0, 2.0, 5.0, 8.0]
(set to 2.0 for Instruments, 5.0 for Movies&TV and Books). SD-LoRA magnitudes start at 1.0.

5.2 EXPERIMENTAL RESULTS AND DISCUSSION

Main Results (RQ1). Table 2 reports results across four metrics and three datasets in continual settings.
First, all continual learning methods consistently outperform PRETRAIN, highlighting the importance of
adapting to new data to capture evolving user preferences, even when incremental data is much smaller (e.g.,
10%) than the pretraining data. Second, neither single evolving LoRA nor the cumulative family dominates,
while PESO consistently achieves the best results, with average gains of 3.71%, 4.62%, and 6.26% over
the best competitors (SINGLE EVOLVING LORA, SUMLORALATEST+INHERIT, and SD-LORALATEST+INHERIT).
Cumulative LoRA, though more complex and storage-heavy, often underperforms or only matches single
evolving LoRA, as rigidly reusing frozen adapters overly constrains adaptation to evolving user preferences.
By contrast, PESO uses flexible proximal regularization toward the latest state, allowing the data-fitting
loss and proximal term to jointly decide what to preserve or update. Third, as discussed in detail in Sec-
tion 3, regarding SumLoRA and SD-LoRA, original cumulative designs (using all past adapters without
inheritance) perform worst, while variants with inheritance or only the latest adapter do better. Notably,
some non-inheritance variants even fall below PRETRAIN, showing that without gradual evolution, contin-
ual learning can harm more than help. InfLoRA yields the weakest results overall, likely because, although
it incorporates input data covariance information, freezing A prevents inheritance and gradual adaptation
across time, both of which are crucial in continual recommendation.

Analysis on Proximal Regularizer (RQ2). Unless otherwise noted, all subsequent subsections report aver-
age performance across four metrics (Hit@5, Hit@10, NDCG@5, NDCG@10). We compare PESO with
four alternative regularizers on the previous adapter: orthogonality, L2 proximal, LoRA-Output KL, and
Per-Rank KL (Figure 2). Orthogonality, an interference-minimization strategy common in vision, performs
far worse than all methods, showing that minimizing interference across stages is harmful in continual rec-
ommendation. L2 proximal, which penalizes the L2 distance between current and previous parameters, is
often comparable to single evolving LoRA but worse than PESO, suggesting that uniform constraints are
insufficient. LoRA-Output KL (softmax-KL applied in LoRA output, i.e., function space) and Per-Rank KL
(softmax-KL applied on each rank of LoRA matrcies, i.e., finer parameter granularity) are slightly worse
or comparable to PESO, suggesting that regularization directly in the parameter space with module-aware
structure is more effective, or at least sufficient, compared to output-level or overly fine-grained constraints.

Hyperparameter Analysis (RQ3). (a) Scaling parameter λ for proximal term in PESO. Figure 3 shows
performance as λ varies. Starting from λ = 0 (i.e., single evolving LoRA), performance improves as λ
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increases, then either decreases or plateaus, confirming that λ serves as a tunable trade-off between stability
and plasticity: too small harms stability; too large harms plasticity. In addition, performance is not highly
sensitive to λ, as results remain stable across a broad range of values. (b) Learning rate for continual
stages. See Appendix C.2 for full results and discussion. Since incremental datasets are much smaller
than the pretraining set, performance is highly sensitive to learning rate. Our results show that using the
pretraining rate leads to overfitting, while scaling the rate down (≈ 0.05–0.1×) yields the best performance.

Table 3: Comparison of traditional
and LLM-based methods.

Method Instruments Movies & TVs Books

Pretrain 0.0153 0.0028 0.0041
Fine-tuning 0.0180 0.0114 0.0218
PISA 0.0194 0.0106 0.0301

Pretrain 0.0157 0.0160 0.0235
Fine-tuning 0.0178 0.0169 0.0414
PESO 0.0190 0.0173 0.0422

Comparison with Traditional Continual Recommenders (RQ4).
Details are in Appendix C.3; Table 3 shows a subset (top: tra-
ditional, bottom: LLM-based). LLM-based methods generally
outperform traditional two-tower models, except on Instruments,
where explicit dual modeling of users and items helps. While
PESO achieves higher absolute performance, continual methods
like PISA (Yoo et al., 2025) yield larger relative gains in two-tower
models, reflecting the advantage of explicit user embeddings in cap-
turing preference drift and the challenge of doing so with LLMs.

6 RELATED WORKS

LLM-based Generative Recommender Systems. Recent advances in large language models (LLMs) have
inspired generative approaches to recommendation, where the task is framed as sequence generation. Instead
of ranking items from a candidate set, the model autoregressively generates the next item token given a user’s
interaction history. Variants of this paradigm includes zero-shot prompting (Lyu et al., 2023), ID-token
generation (Tan et al., 2024; Wang et al., 2024), data-efficient fine-tuning (Lin et al., 2024), uncertainty-
aware decoding (Kweon et al., 2025), and alignment techniques for recommendation objectives (Cao et al.,
2024; Bao et al., 2025; Chen et al., 2024). These works demonstrate that LLMs can flexibly leverage textual
and structural signals for recommendation, but they typically assume static data. In contrast, real-world
interactions arrive continuously, requiring models that can adapt to evolving user preferences without costly
retraining. Our work addresses this gap by studying continual adaptation of generative LLM recommenders.

Continual Learning for Foundational Models and LoRA. Classical continual recommenders use param-
eter regularization (Xu et al., 2020; Wang et al., 2021; 2023b; Yoo et al., 2025), replay buffers (Prabhu et al.,
2020; Ahrabian et al., 2021; Zhang et al., 2024b; Zhu et al., 2023), or dynamic architectures (He et al., 2023;
Zhang et al., 2023). With large foundational models, parameter-efficient fine-tuning (PEFT) has become
central, with LoRA (Hu et al., 2022) as a standard choice. In vision, several continual extensions have
been proposed, such as cumulative aggregation of frozen adapters (Liang & Li, 2024; Lu et al., 2024) and
learnable magnitude scaling (SD-LoRA) (Wu et al., 2025), which are effective when tasks interference is
minimal. However, these methods are less suitable for recommendation, where user preferences evolve over
time. Our work differs by proposing a proximal single evolving LoRA that avoids the forgetting of single
evolving LoRA and the rigidity of cumulative LoRA, better suiting the continual recommendation setting.

7 CONCLUSION

We have studied the problem of continual adaptation for LLM-based generative recommender systems,
where user interactions arrive over time and preferences evolve. Single evolving LoRA offers strong plas-
ticity but suffers from forgetting, while cumulative LoRA improves stability but entangles outdated signals.
Our proposed PESO strikes a better balance by maintaining a single adapter and regularizing it toward its
prior state, allowing the model to decide what to adapt and what to preserve. Our theoretical analysis has
shown that the proximal design provides data-aware, direction-wise guidance in the LoRA subspace, and
our instantiation with per-module softmax–KL further preserves internal parameter structure. Empirical
results across multiple real-world datasets confirm that PESO consistently outperforms existing baselines,
achieving a superior stability–plasticity balance.
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Ethics Statement. This work focuses on continual learning methods for large language model (LLM)-based
recommender systems. It does not involve human subjects, sensitive personal data, or private user informa-
tion. All experiments are conducted on publicly available benchmark datasets (Amazon Reviews). We
followed standard preprocessing protocols, and no personally identifiable information was used or released.
While recommender systems can influence user exposure to content, this study is purely methodological and
does not deploy or interact with real users. We acknowledge the potential societal risks of recommenda-
tion technologies, such as reinforcing biases or filter bubbles, and we emphasize that our method (PESO)
is designed as a modular continual learning technique, independent of any particular application domain or
societal factors.

Reproducibility Statement. The paper provides: (1) detailed descriptions of datasets, preprocessing steps,
and evaluation protocols (Section 5.1, Appendix C.1); (2) clear definitions of baselines, the proposed method
(PESO), and its theoretical analyses (Sections 3, 4, Appendix B); and (3) hyperparameter settings, search
ranges, and sensitivity analyses (Section 5). Results are reported across multiple datasets and metrics for
robustness. Full proofs are included in Appendix B. We will release our implementation and data-processing
scripts upon publication to ensure reproducibility.
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A CONCEPTUAL MODELING OF EVOLVING USER PREFERENCES

We assume an initial model is pretrained offline on base dataD1, and then fine-tuned sequentially on chrono-
logically arriving blocksD2, . . . ,DT . Let xt−1

u denote u’s interaction history available before stage t, and let
Pt(y | xt−1

u ) be the conditional distribution of the next item y during stage t, representing user preferences.
In continual recommendation, these distributions evolve over time, which can be conceptually modeled as

Pt(y | xt−1
u ) ≈ αt Pt−1(y | xt−1

u ) + (1− αt)Qt(y | xt−1
u ), (15)

where Pt−1 captures stability (persistent long-term preferences), Qt captures plasticity (new or shifting
preferences estimated from new data), and αt ∈ [0, 1] controls the balance. The goal is to minimize expected
risk on upcoming interactions by balancing stability and plasticity.

B DETAILED THEORETICAL ANALYSIS

B.1 SETUP AND ASSUMPTIONS

Assumption 1 (Parameters and LoRA subspace). Let θ ∈ Rd denote the vectorized concatenation of all
model parameters (base LLM and LoRA). Let θ0 be the parameter vector after training on the first data
block (t=1). From t ≥ 2, restrict updates to a fixed m-dimensional LoRA subspace spanned by columns of
U ∈ Rd×m and write

θ = θ0 + Uv, v ∈ Rm,

with all non-LoRA coordinates frozen. Without loss of generality, assume U = [Im 0], i.e., the LoRA
subspace is the first m coordinates.
Assumption 2 (Linearization and tangent features.). Let s(θ, x) ∈ R be the scalar logit of the ground-truth
next item. We linearize s at v = 0 (i.e., at θ = θ0):

s(θ0 + v, x) ≈ s(θ0, x) + v⊤U⊤∇θs(θ0, x) = s0(x) + v⊤Φ(x),

with tangent features of x
Φ(x) := U⊤∇θ1:ms(θ0, x) ∈ Rm.

Assumption 3 (Data and loss.). Let (x, y) ∼ Dt be examples in block t. In recommendation, x =
(prompt, item sequence) and y ∈ V is the next-item token. Training typically uses cross-entropy on log-
its; for analysis, we use a mean-squared-error (MSE) surrogate. Define the block-t risk

LDt(v) = E(x,y)∼Dt

[
1
2

(
s(θ0 + v, x)− rt(x, y)

)2]
.

where rt(x, y) ∈ R is a calibrated target score for the ground-truth next item.

Note that under the linearization, this yields a quadratic risk with positive-semidefinite curvature. All later
proofs use only this PSD curvature, not the exact form of rt.
Assumption 4 (Quadratic form under the linearization.). Substituing s(θ0 + v, x) ≈ s0(x) + Φ(x)⊤v
gives, up to an additive constant,

LDt(v) = b⊤t v + 1
2 v

⊤Σt v, bt := EDt

[
(s0(x)− rt(x, y)) Φ(x)

]
, Σt := EDt

[
Φ(x)Φ(x)⊤

]
⪰ 0.

Define the block-t optimum
v∗t = argmin

v
LDt(v).

A second-order Taylor expansion of Lt at v∗t gives

LDt(v) = LDt(v∗t ) + (∇LDt)⊤(v∗t )︸ ︷︷ ︸
=0

(v − v∗t ) + 1
2 (v − v∗t )

⊤∇2LDt(v∗t )︸ ︷︷ ︸
=Σt

(v − v∗t ).
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Dropping the constant term, the centered quadratic risk used throughout is

LDt(v) = 1
2 (v − v∗t )

⊤Σt (v − v∗t ),

where Σt is the tangent-feature second-moment matrix for time stage t, capturing how much the stage-t data
supports different directions in the LoRA subspace (i.e., u⊤Σtu = EDt

[(Φ(x)⊤u)2] ∀u ∈ Rm). Also note
that we fix the linearization at θ0: s(θ0+Uv, x) ≈ s0(x)+Φ(x)⊤v with Φ(x) = U⊤∇θs(θ0, x). Although
Φ(x) is fixed across t, the Σt = EDt

[Φ(x)Φ(x)⊤] varies with the data block distribution, so drift is captured
via Σt and the shifting optimum v∗t .

Remark: relinearization per block. If desired, one may instead relinearize at θ0+Uvt−1, replacing Φ(x)
by Φt−1(x) = U⊤∇θs(θ0 + Uvt−1, x) and Σt by E[Φt−1Φ

⊤
t−1]. All propositions and closed forms carry

over with these substitutions; the only change is that the curvature reflects the anchor vt−1 of the current
block. We found fixed linearization sufficient and notationally lighter.

B.2 PROOF OF PROPOSITION 1.

Assumption 5 (Complementarity (no doubly–flat directions)). On the LoRA subspace Rm, let Σt ⪰ 0 and
H ⪰ 0 be symmetric (and fixed w.r.t. v). Assume

ker(Σt) ∩ ker(H) = {0}. (16)

Equivalently, for all x ̸= 0, x⊤Σtx > 0 or x⊤Hx > 0.

Proof. (i) Differentiate:

∇vLt(v) = Σt(v − v∗t ) + λHt−1(v − vt−1). (17)

Setting the gradient to zero gives the normal equation

(Σt + λHt−1) v = Σtv
∗
t + λHt−1vt−1. (18)

For any x ̸= 0,

x⊤(Σt + λHt−1)x = x⊤Σtx+ λx⊤Ht−1x ≥ 0. (19)

Equality forces x ∈ ker(Σt)∩ker(Ht−1), which is {0} by Assumption 5; hence Σt+λHt−1 ≻ 0. Therefore
Eq. (18) has the unique solution

v = (Σt + λHt−1)
−1

(
Σtv

∗
t + λHt−1vt−1

)
. (20)

(ii) Let (qk, ρk) be any generalized eigenpair on range(Ht−1) with q⊤i Ht−1qj = δij and Σtqk = ρkHt−1qk.
Left–multiply Eq. (18) by q⊤k and use symmetry of Σt, Ht−1:

q⊤k Σtv + λ q⊤k Ht−1v = q⊤k Σtv
∗
t + λ q⊤k Ht−1vt−1. (21)

Since Σtqk = ρkHt−1qk and ⟨u,w⟩Ht−1
= u⊤Ht−1w,

(ρk + λ) ⟨v, qk⟩Ht−1
= ρk ⟨v∗t , qk⟩Ht−1

+ λ ⟨vt−1, qk⟩Ht−1
, (22)

which yields the stated interpolation.

(iii) Note on ker(Ht−1). If Ht−1 ≻ 0, then r = m and (ii) covers all directions. If Ht−1 is singular,
the interpolation is stated on range(Ht−1); along ker(Ht−1), q⊤Ht−1(·) ≡ 0, and the complementarity
assumption rules out underdetermined (doubly–flat) directions, ensuring uniqueness.

15
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B.3 INTUITIVE EXPLANATION OF COROLLARY 2

Here, we give a more intuitive explanation of how PESO provides data-aware, direction-wise guidance.

• Semantics of Directions (qk) (Decoupled Preference Axes): Mathematically, the eigenvectors qk of
the gradient covariance Σt represent principal directions of variation in the parameter space. Intu-
itively, these act as independent, latent axes of user preference (e.g., one axis might capture ”Sci-Fi
affinity,” another ”Price Sensitivity”). Because eigenvectors are orthogonal, PESO effectively de-
couples these preferences, allowing the model to update one specific behavior (e.g., learning a new
interest) without interfering with unrelated long-term knowledge.

• The Mechanism (σ2
k) (Signal Strength as a Gate): The eigenvalue σ2

k measures the ”loudness”
or salience of each preference axis in the current data stream. PESO uses this to dynamically
interpolate between the previous state and the new data:

– High Plasticity for Strong Signals (Large σ2
k): When the current data contains strong evidence

for a specific pattern (e.g., the user is binge-watching Mystery), the gradient variance along
that axis is high. PESO detects this ”loud” signal and allows the parameters to move freely
toward the new optimum v∗t , ensuring rapid adaptation to short-term shifts.

– High Stability for Weak Signals (Small σ2
k): When a preference axis is irrelevant to the cur-

rent context (e.g., the user loves Acoustic Guitars, but hasn’t interacted with them recently),
the gradient variance is near zero (noise). PESO interprets this silence not as a negation of
preference, but as a lack of data. It essentially ”locks” these parameters to the previous state
vt−1, protecting long-term interests from being overwritten by noise.

B.4 PROOF OF PROPOSITION 3

To prove Proposition 3, we first establish the following proposition for arbitrary vt and vt−1, and then extend
it to the blockwise case.
Proposition 5 (Local quadratic form of softmax-KL proximal). Let p := softmax(vt−1) ∈ Rd and ∆ :=
vt − vt−1. Define

K(∆) := DKL

(
softmax(vt−1 +∆) ∥ softmax(vt−1)

)
. (23)

Then K(0) = 0, ∇K(0) = 0, and the second-order Taylor expansion at ∆ = 0 is

K(∆) = 1
2 ∆

⊤(diag(p)− pp⊤
)
∆ + o(∥∆∥2). (24)

Equivalently,

K(∆) = 1
2

( d∑
i=1

pi (∆i − µ)2
)

︸ ︷︷ ︸
Varp(∆)

+ o(∥∆∥2), µ :=

d∑
i=1

pi ∆i. (25)

Proof. Write r(∆) := softmax(vt−1 +∆) ∈ Rd and p := r(0) = softmax(vt−1). By definition,

K(∆) =

d∑
i=1

ri(∆) log
ri(∆)

pi
. (26)

(i) At ∆ = 0 we have r(0) = p, so

K(0) =
∑
i

pi log(pi/pi) = 0. (27)
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For the gradient, differentiate using the scalar identity d
dx [x log(x/c)] = log(x/c) + 1:

∂K
∂∆a

=

d∑
i=1

∂ri
∂∆a

(
log

ri
pi

+ 1
)
. (28)

Evaluating at ∆ = 0 gives log(ri/pi) = 0 and hence[
∇K(0)

]
a
=

d∑
i=1

[ ∂ri
∂∆a

]
∆=0

=
∂

∂∆a

( d∑
i=1

ri(∆)
)∣∣∣

∆=0
=

∂

∂∆a
(1) = 0, (29)

since softmax outputs sum to one for all ∆.

(ii) Differentiate the gradient once more:

∂2K
∂∆a ∂∆b

=

d∑
i=1

∂2ri
∂∆a ∂∆b

(
log

ri
pi

+ 1
)

+

d∑
i=1

∂ri
∂∆a

1

ri

∂ri
∂∆b

. (30)

At ∆ = 0, the first sum becomes
∑

i ∂
2ri/∂∆a∂∆b (since log(ri/pi) = 0), which is zero because∑

i ri(∆) ≡ 1 for all ∆. Thus,[
∇2K(0)

]
ab

=

d∑
i=1

1

pi

[ ∂ri
∂∆a

]
∆=0

[ ∂ri
∂∆b

]
∆=0

. (31)

It remains to compute the Jacobian of softmax at vt−1:

Jia :=
[ ∂ri
∂∆a

]
∆=0

=
∂

∂va

( evi∑
j e

vj

)∣∣∣
v=vt−1

= pi (1{i = a} − pa). (32)

Therefore, [
∇2K(0)

]
ab

=

d∑
i=1

1

pi
Jia Jib =

d∑
i=1

pi (1{i = a} − pa)(1{i = b} − pb). (33)

Expanding the sum gives∑
i

pi 1{i = a}1{i = b} − pb
∑
i

pi 1{i = a} − pa
∑
i

pi 1{i = b}+ papb
∑
i

pi. (34)

Since
∑

i pi = 1 and
∑

i pi 1{i = a} = pa, this equals

δab pa − papb − papb + papb = δab pa − papb, (35)

i.e.

∇2K(0) = diag(p) − pp⊤. (36)

(iii) By Taylor’s theorem,

K(∆) = 1
2 ∆

⊤(diag(p)− pp⊤
)
∆ + o(∥∆∥2). (37)

Finally, note the algebraic identity (weighted variance):

∆⊤(diag(p)− pp⊤
)
∆ =

d∑
i=1

pi∆
2
i −

( d∑
i=1

pi∆i

)2

=

d∑
i=1

pi (∆i − µ)2, µ :=

d∑
i=1

pi∆i. (38)
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Table 4: Dataset statistics.

Total Users New Users Total Items New Items Total Interactions Avg Seq Len Sparsity

Instruments

D1 17,046 17,046 40,471 40,471 141,788 8.32 0.9998
D2 1,772 1,183 8,346 2,900 13,197 7.45 0.9991
D3 1,821 1,265 8,325 2,909 13,334 7.32 0.9991
D4 2,289 1,684 9,617 3,864 18,811 8.22 0.9991
D5 2,238 1,699 9,131 3,365 17,573 7.85 0.9991
D1:5 22,877 NA 53,509 NA 204,703 NA NA

Movies & TVs

D1 17,928 17,928 39,228 39,228 190,411 10.62 0.9997
D2 1,866 1,141 11,612 1,479 17,665 9.47 0.9992
D3 2,106 1,200 12,658 1,926 19,874 9.44 0.9993
D4 2,284 1,357 13,788 1,882 22,929 10.04 0.9993
D5 2,332 1,552 13,491 1,559 22,225 9.53 0.9993
D1:5 23,178 NA 46,074 NA 273,104 NA NA

Books

D1 15,406 15,406 35,984 35,984 164,858 10.7 0.9997
D2 1,807 618 7,155 2,711 13,918 7.7 0.9989
D3 1,672 619 6,484 2,278 12,395 7.41 0.9989
D4 1,948 650 7,154 2,657 14,824 7.61 0.9989
D5 1,652 1,025 5,913 2,274 11,990 7.26 0.9988
D1:5 18,318 NA 45,904 NA 217,985 NA NA

Now we prove Proposition 3. Since the blockwise softmax-KL regularizer acts independently on each group
g,

Kblk(∆) =

G∑
g=1

DKL

(
softmax(v

(g)
t−1 +∆(g)) ∥ softmax(v

(g)
t−1)

)
, (39)

with K(g) defined on group g. Applying Proposition 5 to each group yields block Hessians

H(g) = diag(p(g))− p(g)(p(g))⊤, (40)

which assemble into the block-diagonal

H = blockdiag(H(1), . . . ,H(G)). (41)

The variance identity holds within each group.

C EXPERIMENTS

C.1 EXPERIMENTAL SETUP

Datasets. We use the real-world temporal Amazon Review dataset, which contains user reviews (treated as
implicit interactions) on Amazon products over time.2 We focus on three categories: Musical Instruments,
Movies & TV, and Books. For Instruments and Movies & TV, we use data from 2019–2023; for Books,
we use 2022–2023. We take 60% of the data as pretraining D1 and split the remaining 40% into four
equal incremental stages, D2, ...,D5. For each incremental stage, we filter out users with fewer than five
interactions. This ensures leave-one-out evaluation is feasible and makes incremental data even smaller
than pretraining data, simulating real-world scenarios. Table 4 summarizes dataset statistics, including the
number of users, items, and interactions at each stage, average sequence length, and sparsity.

2https://amazon-reviews-2023.github.io/
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Figure 4: Impact of the learning rate for continual data on model performance.

Evaluation. For eachDt, we apply leave-one-out per user: the second-to-last item is used for validation and
the last item is reserved for testing. Following prior work (Wang et al., 2024; Bao et al., 2025), we construct
multiple training pairs (xu, yu) per user u using a sliding window of size 20. The LLM trained onD1 serves
as the pretrained model for all compared methods. At each stage t = 2, . . . , 5, after fine-tuning, the LLM
autoregressively generates 10 items given the user history in the test pair. Generation uses constrained beam
search restricted to valid item tokens, making it efficient and widely adopted in prior work (Wang et al.,
2024; Rajput et al., 2023). With these 10 items, we evaluate against the ground-truth item and report Hit@5,
Hit@10, NDCG@5, and NDCG@10, averaged over D2, . . . ,D4.

Metrics. Hit@k measures whether the ground-truth item appears among the k generated items. For a user
u with ground-truth item yu and a ranked list of predictions Ru,

Hit@k(u) =

{
1 if yu ∈ Ru[1 : k],

0 otherwise.

NDCG@k (Normalized Discounted Cumulative Gain) additionally accounts for the position of the ground-
truth item, giving higher credit when it appears closer to the top:

NDCG@k(u) =

{
1

log2(rank(yu)+1) if yu ∈ Ru[1 : k],

0 otherwise,

Hit@k captures whether the correct item is recommended at all, while NDCG@k rewards ranking it higher
in the list. We report averages of Hit@k and NDCG@k across all users, with k ∈ 5, 10.

C.2 LEARNING RATE ON CONTINUAL STAGE

Incremental datasets are much smaller than the pretraining set D1 (see Appendix C.1), making performance
sensitive to learning rate. Figure 4 shows results for single evolving LoRA with varying learning rates on
incremental data. Using the pretraining rate (0.0002; lr*=1.0) performs worse than not learning new data,
likely due to overfitting. The best performance occurs with lr*=0.05–0.1, which aligns with the relative
block size |Dt|/|D1| ≈ 0.1. This suggests that learning rates for incremental blocks should be scaled with
respect to data size.

C.3 COMPARISON WITH TRADITIONAL CONTINUAL RECOMMENDER SYSTEMS

We compare our LLM-based methods (pretrain, single evolving LoRA, and PESO) against two-tower meth-
ods with LightGCN (He et al., 2020) as backbone, including Pretrain, Fine-tuning, Contrastive (Wang et al.,
2021), Contrastive+PIW (Wang et al., 2023b), and PISA (Yoo et al., 2025). Two-tower models use explicit
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Table 5: Comparison of LLM-based and traditional methods in continual recommendation.

Instruments Movies & TVs Books

Traditional two-tower

Pretrain 0.0153 0.0028 0.0041
Fine-tuning 0.0180 0.0114 0.0218
Contrastive 0.0177 0.0101 0.0272

Contrastive + PIW 0.0193 0.0113 0.0243
PISA 0.0194 0.0106 0.0301

LLM-based
Pretrain 0.0157 0.0160 0.0235

Fine-tuning (w/ LoRA) 0.0178 0.0169 0.0414
PESO 0.0190 0.0173 0.0422

user and item embeddings, and their continual methods mitigate forgetting by regularizing user embeddings
against past versions: Contrastive maximizes mutual information between past and current embeddings,
Contrastive+PIW further adapts the regularization weights per user, and PISA combines stability and plas-
ticity regularization.

Table 5 reports results averaged across time stages and metrics. First, LLM-based recommenders (both
pretrain and continual) generally outperform traditional methods, highlighting the generalization ability and
knowledge transfer benefits of LLMs. On Instruments, however, the performance gap is smaller, suggesting
that explicit dual modeling of users and items still provides benefits for capturing collaborative signals. It is
worth noting that there also remains considerable headroom for LLM-based models if larger beam sizes are
used during generation.

Second, While PESO outperforms traditional continual methods in absolute terms, the relative gains of
continual techniques over their respective pretraining baselines are larger in traditional settings. This is
likely because two-tower methods explicitly capture preference shifts through user embeddings, supporting
our view that modeling user preference drift is crucial in continual recommendation. At the same time,
it underscores the difficulty of capturing such dynamics in LLM-based methods, pointing to an important
direction for future research.

C.4 QUANTIFICATION OF DISTRIBUTION SHIFT

To validate the realism of our continual learning formulation, we explicitly quantified the user preference
drift between data blocks on the Instruments dataset. We employed a domain discrimination approach:

1. We embed user interaction sequences into fixed-dimensional vectors using pretrained codebooks.

2. For each pair of blocks (t− 1) and (t), we train a binary logistic regression classifier to distinguish
samples from the two blocks.

3. We compute the Drift Score δ(t − 1, t) = 2(AUC − 0.5) ∈ [0, 1], where 0 implies identical
distributions and 1 implies completely separable distributions.

Table 6 reports both the step-wise drift δ(t− 1, t) and the cumulative drift from the base block δ(0, t). The
results show non-trivial step-wise drift and, crucially, a steady increase in cumulative drift (reaching 0.457
at t = 4). This confirms that user preferences structurally evolve away from the initial state, validating our
experimental setup.
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Table 6: Quantification of distribution shift (Drift Score) on the Instruments dataset.

Measure t = 1 t = 2 t = 3 t = 4

Step-wise δ(t− 1, t) 0.200 0.060 0.240 0.090
Cumulative δ(0, t) 0.200 0.311 0.342 0.457

C.5 COMPARISON WITH ADDITIONAL BASELINES

C.5.1 COMPARISON WITH STANDARD TRAINING PARADIGMS (FULL FINE-TUNING &
RETRAINING)

To validate the effectiveness of our LoRA-based sequential fine-tuning approach, we compared it against
two traditional training paradigms:

1. Full-Parameter Fine-Tuning: Updating all model parameters sequentially on new data blocks.

2. Full Retraining: Retraining the model from scratch on the cumulative dataset (D0 ∪ · · · ∪Dt) at
each stage.

As shown in Table 7, Single Evolving LoRA consistently outperforms both approaches.

• vs. Full Fine-Tuning: Full-parameter updates suffer from a dilemma: high learning rates (2e−5)
lead to catastrophic forgetting, while low rates (2e−6) result in insufficient adaptation. LoRA acts
as a structural regularizer, mitigating forgetting while enabling effective adaptation.

• vs. Full Retraining: While full retraining outperforms static pretraining, it underperforms sequen-
tial fine-tuning. This aligns with prior work (Yoo et al., 2025), suggesting that sequential updates
naturally prioritize recent preference signals, whereas full retraining treats old and new data equally,
diluting the signal of evolving interests.

Table 7: Comparison with Standard Training Paradigms (Full Fine-Tuning and Full Retraining).

Method Hit@5 Hit@10 NDCG@5 NDCG@10

Pretrain (Static) 0.0166 0.0216 0.0115 0.0131
Full Retraining (Cumulative Data) 0.0170 0.0231 0.0121 0.0141

Full Fine-Tuning (lr = 2e−5) 0.0142 0.0228 0.0099 0.0127
Full Fine-Tuning (lr = 2e−6) 0.0171 0.0254 0.0122 0.0149

Single Evolving LoRA (LoRA Fine-Tuning) 0.0181 0.0253 0.0127 0.0150

C.5.2 COMPARISON WITH ADDITIONAL CONTINUAL LORA METHODS

We compared PESO against O-LoRA (Wang et al., 2023a), AM-LoRA (Liu et al., 2024), and LSAT (Shi
et al., 2024) on the Instrument dataset. O-LoRA and AM-LoRA belong to the cumulative family but use
orthogonality or attention mechanisms to combine adapters, while LSAT utilizes adapter interpolation. As
shown in Table 8, PESO consistently outperforms all of them. This supports our claim that explicitly
maintaining discrete adapters is less effective for gradual preference drift than our proximal regularization
approach.
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Table 8: Comparison with recent Continual PEFT methods on Instruments.

Method Hit@5 Hit@10 NDCG@5 NDCG@10

Single Evolving LoRA 0.0181 0.0253 0.0127 0.0150
Cumulative LoRA 0.0182 0.0260 0.0129 0.0154

O-LoRA 0.0191 0.0259 0.0134 0.0156
AM-LoRA 0.0182 0.0240 0.0125 0.0144
LSAT 0.0164 0.0250 0.0117 0.0144
LSAT (+ Param Inheritance) 0.0183 0.0254 0.0130 0.0153

PESO 0.0193 0.0268 0.0138 0.0162

C.6 PERFORMANCE ON LC-REC BACKBONE

To demonstrate robustness across architectures, we evaluated PESO using the LC-REC backbone (Zheng
et al., 2024). As shown in Table 9, PESO maintains its superiority over baselines.

Table 9: Performance comparison using the LC-REC backbone.

Method Hit@5 Hit@10 NDCG@5 NDCG@10

Single Evolving LoRA 0.0164 0.0249 0.0119 0.0146
Cumulative LoRA 0.0178 0.0249 0.0122 0.0145
SD-LoRA 0.0185 0.0256 0.0127 0.0150
PESO 0.0179 0.0266 0.0130 0.0158

C.7 STABILITY-PLASTICITY ANALYSIS VIA USER GROUPS

To examine how PESO balances long-term interests with current evolved preferences, we analyzed the final
model’s performance on three distinct user groups in the Instruments dataset, acting as proxies for different
drift patterns:

1. Continuous Users (Linear Drift): Users present in all blocks.
2. Dormant Users (Non-linear/Cyclical Drift): Users active in the past, absent in intermediate

blocks, and returning in D4. This tests stability (retrieval of long-term preferences).
3. New Users (Sudden Shift): Users appearing only in D4. This tests plasticity (adaptation to new

signals).

Table 10 illustrates the trade-off. Single Evolving LoRA excels at New Users (Plasticity) but fails on Dor-
mant Users due to forgetting. Cumulative LoRA preserves stability but fails to adapt to New Users. PESO
achieves the best performance on both Dormant and New users, demonstrating an optimal dynamic balance.

C.8 PERFORMANCE ON NON-E-COMMERCE DATASET (YELP)

To further explore non-e-commerce domains, we evaluated PESO on the Yelp dataset, where interactions
correspond to user check-ins at locations, using the same data-splitting strategy as in our main experiments.
As shown in Table 11, PESO consistently outperforms strong competitors, including Single Evolving LoRA
and SD-LoRA.
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Table 10: Performance (NDCG@5) across different user groups representing stability and plasticity tests.

Method Continuous Users Dormant Users New Users

Single Evolving LoRA (Plasticity-focused) 0.0480 0.0154 0.0116
Cumulative LoRA (Stability-focused) 0.0493 0.0164 0.0101
PESO (Balanced) 0.0480 0.0170 0.0122

This result is particularly notable given that, unlike Amazon products which feature detailed textual descrip-
tions, Yelp locations often lack deep semantic content (consisting primarily of names like “Pizza Hut” or
coarse categories like “Pizza” or “Restaurant”). This demonstrates the robustness of our method, showing it
remains highly effective even in settings with limited semantic richness.

Table 11: Performance comparison on the Yelp dataset.

Methods Hit@5 Hit@10 NDCG@5 NDCG@10

Pretrain 0.0201 0.0309 0.0126 0.0161
Single Evolving LoRA 0.0290 0.0442 0.0190 0.0239
SD-LoRA 0.0279 0.0432 0.0168 0.0230
PESO 0.0302 0.0454 0.0199 0.0248

C.9 EXPLICIT MEASUREMENT OF FORGETTING

We measured the performance drop on past blocks to analyze forgetting behavior. Table 12 shows the
difference between the final model’s performance on Dt and its initial performance at time t. While PESO
shows selective forgetting on intermediate blocks (allowing it to shed obsolete trends), it achieves the highest
overall performance and best retrieval for dormant users, indicating that this forgetting is benign and adaptive
rather than catastrophic.

Table 12: Performance drop on past blocks (lower is strictly less forgetting, but may imply rigidity).

Method Drop on D0 Drop on D1 Drop on D2 Drop on D3

Single Evolving LoRA 0.0062 0.0087 0.0042 0.0031
Cumulative LoRA 0.0060 0.0062 0.0035 0.0060
PESO 0.0062 0.0107 0.0048 0.0045

D EFFICIENCY ANALYSIS

PESO introduces negligible overhead compared to baselines:

• Storage Complexity: PESO stores only one previous LoRA adapter, resulting in O(1) storage
complexity relative to the number of stages. In contrast, Cumulative LoRA grows linearly O(T ) as
it must store all past adapters.
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• Computational Complexity: PESO adds only a lightweight quadratic/KL penalty to the loss.
This requires no additional forward passes. In practice, we observed no measurable slowdown in
training time compared to standard Single LoRA fine-tuning.

E DISCUSSION ON PROMPT TUNING VS. LORA

Prompt-tuning–based PEFT methods typically learn a prompt pool and dynamically retrieve the most rele-
vant prompts for each input, inserting them into the input or intermediate representations without updating
backbone weights (Wang et al., 2022) This introduces inference overhead because the model must com-
pute query features and perform similarity matching over a growing prompt pool at inference time. The
inference-inefficiency is even more severe in our generative recommendation setting: autoregressive gen-
eration requires many forward passes per prediction, and each step would need repeated prompt retrieval.
Recent studies in vision (Wu et al., 2025; Liang & Li, 2024) also report that LoRA-based methods generally
outperform prompt-based approaches in large-scale tasks, making LoRA the preferred PEFT technique.

F PROMPT

We show below the template used in all experiments. Notably, <a [i1]><b [j1]><c [k1]><d [l1]>
represents one user–item interaction encoded as four semantic-ID tokens. For instance,
<a 144><b 72><c 103><d 217> is one such tuple describing a single interacted item (Rajput
et al., 2023; Wang et al., 2024).

Below is an instruction that describes a task.
Write a response that appropriately completes the request.\n\n

### Instruction:\n
Based on the items that the user has interacted with:
<a_[i1]><b_[j1]><c_[k1]><d_[l1]>,
<a_[i2]><b_[j2]><c_[k2]><d_[l2]>,
...,
<a_[iN]><b_[jN]><c_[kN]><d_[lN]>,
can you determine what item would be recommended to the user next?\n\n
### Response:

G USE OF LARGE LANGUAGE MODELS

LLMs were used only for writing polish (grammar and clarity). All content was reviewed and approved by
the authors. LLMs did not contribute to research ideation, algorithm design, implementation, or analysis.
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