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ABSTRACT

Point cloud data plays an essential role in robotics and self-driving applica-
tions. Yet, it is time-consuming and nontrivial to annotate point cloud data
while they enable learning discriminative 3D representations that empower
downstream tasks, such as classification and segmentation. Recently, con-
trastive learning based frameworks show promising results for learning 3D
representations in a self-supervised manner. However, existing contrastive
learning methods cannot encode and associate structural features precisely
and search the higher dimensional augmentation space efficiently. In this
paper, we present CLR-GAM, a novel contrastive learning based framework
with Guided Augmentation (GA) for efficient dynamic exploration strategy
and Guided Feature Mapping (GFM) for similar structural feature associ-
ation between augmented point clouds. We empirically demonstrate that
the proposed approach achieves state-of-the-art performance on both simu-
lated and real-world 3D point cloud datasets for three different downstream
tasks, i.e., 3D point cloud classification, few-shot learning, and object part
segmentation. The code and pretrained models are made available in the
supplementary material.

1 INTRODUCTION

Scene understanding is of key importance in a wide range of applications including healthcare,
medicine, entertainment, robotics, and human-machine interaction. Identifying surround-
ing objects in the scene and their interrelations are the core research problems for any
scene understanding framework. Several 3D vision research problems (e.g., 3D point cloud
classification (Qi et al., 2017a;b; Wang et al., 2019), detection (Misra et al., 2021), and
segmentation (Qi et al., 2017b; Thomas et al., 2019; Wang et al., 2019)) have drawn much
attention recently. However, obtaining 3D point cloud representations from the raw point
clouds is challenging and often requires supervision, which causes high annotation costs.
As a result, self-supervised learning for 3D point cloud representations has witnessed much
progress and has the potential to improve sample efficiency and generalization for these scene
understanding tasks. Existing works are mainly based on generative models (Achlioptas
et al., 2018; Han et al., 2019a; Wu et al., 2016), reconstruction (Eckart et al., 2021; Han
et al., 2019b; Li et al., 2018a; Yang et al., 2018; Zhao et al., 2019), pretext task (Wang et al.,
2021; Poursaeed et al., 2020; Sauder & Sievers, 2019; Hassani & Haley, 2019; Sun et al., 2021;
Yang et al., 2021; Rao et al., 2020), and contrastive learning (Zhang & Zhu, 2019; Sanghi,
2020; Xie et al., 2020; Huang et al., 2021; Liu et al., 2021; Zhang et al., 2021; Du et al.,
2021). Much progress has been made in recent contrastive learning based methods. However,
we observe the following two limitations.

Issue 1: With augmentations like cropping and nonrigid body transformation, the shape of
an augmented object is entirely different from the original object, leading to ambiguity for
contrastive learning. For instance, if we remove the back part of a "Chair" point cloud, the
resulting point cloud could be similar in shape to a sample of the "Table" class, as shown in
Figure 1.a. It poses a challenge for contrastive learning based methods because they do not
access class labels for training.
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Figure 1: Motivation for CLR-GAM: a) motivation for Guided Feature Mapping, for better
association b) motivation for Guided Augmentations, for better exploration of augmentation
space

Issue 2: contrastive learning requires a variety of augmentations to learn discriminative 3D
point cloud representations. However, searching over these high-dimensional augmentations
is time-consuming and does not guarantee proper coverage with a dynamic limited number
of samples.

In this work, we introduce two novel modules, i.e., guided feature mapping (GFM) and
guided augmentation (GA), to overcome the above limitations. We introduce the GFM
module to associate features of the same structure between two augmented samples for
effective feature association under heavy shape deformation. The GA module is present to
efficiently explore higher-dimensional augmentation spaces with dynamically limited samples
for diverse coverage of the augmentation space. We conduct extensive experiments to validate
the effectiveness of the proposed contrastive learning framework. Specifically, we benchmark
three downstream tasks, i.e., classification, few-shot learning, and object part semantic
segmentation. We obtain state-of-the-art performance on the three tasks, and extensive
ablative studies are conducted to justify the designed choice.

Our main contributions: i) We propose Guided Augmentation (GA) and Feature Mapping
(GFM) for learning discriminative 3D point cloud representations. ii) Our proposed approach
achieves state-of-the-art performance on three downstream tasks, i.e., object classification,
few-shot learning, and part segmentation. iii) Extensive ablatives studies are presented to
justify our design choices.

2  RELATED WORKS

Contrastive Learning on Point Clouds. Following the recent success of contrastive
self-supervised learning for images, recent works (Du et al., 2021; Huang et al., 2021; Liu
et al., 2021; Sanghi, 2020; Xie et al., 2020; Zhang & Zhu, 2019; Zhang et al., 2021) explore
contrastive learning for point cloud. PointContrast (Xie et al., 2020) applies contrastive loss
for point-wise features generated from the neural network for a point cloud transformed using
two random augmentions, to learn invariant features. Zhu et al. (2021) uses feature memory
bank (He et al., 2020) for storing negatives and positives for hard sample mining. Huang et al.
(2021) propose STRL that applies spatial augmentation for temporally correlated frames in
a sequence point cloud dataset, and performs contrastive learning. Recently, Afham et al.
(2022) propose CrossPoint to learn cross-modal (image and point cloud) representations
via contrastive learning. All these methods rely on contrastive learning of encoded global
features of point clouds, ignoring the structural deformations that lead to intra-class confusion.
Recently, the authors of PointDisc (Liu et al., 2021) apply a point discrimination loss within
an object for enforcing similarity in features for points within a local vicinity. PointDisc
makes the geometric assumption of a fixed radius for obtaining positives from the encoded
features of the same point cloud. In this work, we introduce the GFM to identify structurally
similar features between two different augmentations of the same point cloud without any
geometric assumptions. We empirically demonstrate the effectiveness of the proposed GFM
for learning discriminative 3D representations for three different downstream tasks.

Guided Augmentation. Several guided augmentation approaches for image modality (Char-
alambous & Bharath, 2016; Hauberg et al., 2016; Rogez & Schmid, 2016; Peng et al., 2015;
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Dixit et al., 2017) have shown to synthesize variable realistic samples for training. It is
an important problem to generalize an algorithm to cover the unseen samples in the test
data, which is expected to have wide variations of augmentation. In the context of human
posture, Charalambous & Bharath (2016) generates synthetic videos for gait recognition and
Rogez & Schmid (2016) augments images with 2D poses using 3D MoCAP data for pose
estimation. For improving image detection, Peng et al. (2015); Su et al. (2015) renders 3D
CAD models with variable texture, background, and pose for generating synthetic images.
Hauberg et al. (2016) learn class specific transformations (diffeomorphism) from an external
data, whereas another work (Miller et al., 2000) synthesizes new images using an iterative
process. Since the existing works are for task specific and designed for supervised learning of
image modality, they require class labels during training. AGA (Dixit et al., 2017) extends
to the feature space to be class agnostic, but it requires a huge corpus of annotated datasets
with class labels to pretrain. We cannot directly adapt those approaches to self-supervised
point cloud learning approaches, so we find exploration strategies in reinforcement learning
are relevant for unsupervised guided augmentation.

Exploration of High Dimensional Spaces. Efficient exploration in high dimensional space
is a fundamental problem in reinforcement learning. Different strategies such as selecting
new state including epsilon-greedy, selecting random states with epsilon probability (Mnih
et al., 2015), upper confidence bounds (Auer, 2002), boltzmann exploration (Watkins, 1989;
Sutton, 1990) using softmax over the utility of actions and thomson sampling (Agrawal
& Goyal, 2012). The motivation or curiosity to explore new states is coined as intrinsic
motivation (Oudeyer & Kaplan, 2008), which is adapted into Bellemare et al. (2016); Haber
et al. (2018); Houthooft et al. (2016); Oh et al. (2015); Ostrovski et al. (2017); Pathak et al.
(2017); Stadie et al. (2015) as intrinsic reward to quantify how different the new state is
from already explored states. Some existing methods (Haber et al., 2018; Houthooft et al.,
2016; Oh et al., 2015; Pathak et al., 2017; Stadie et al., 2015) use error in prediction as an
intrinsic reward, while others use count-based techniques (Ostrovski et al., 2017; Bellemare
et al., 2016). However, the computation of intrinsic reward using function approximation
is slow to catch up and is not efficient enough for contrastive learning. In this work, we
introduce a guided augmentation mechanism for efficient exploration of new states using a
memory-based module motivated by Badia et al. (2020). Badia et al. construct an episodic
memory-based intrinsic reward using k-nearest neighbors over the explored states to train
the directed exploratory policies.

3 METHODOLOGY

3.1 PRELIMINARIES AND NOTATION

We denote a point cloud as P;, which consists of unordered set of points x;—1., and x; € R3,
where the parameter n is number of points, and a point x; is in 3D coordinate space. A
point cloud P; can be augmented by changing scale a§ € R, translation al € R?, rotation
af € R3, cropping akc, and jittering ai . The combined set of the above operations is denoted
as ay, where a; = [ag, af , a,’f, a{, ai]. Given a point cloud P;, we apply the order defined in
aj, to obtain an augmented point cloud PF. In the remaining of this paper, we use i, j, k as
the index of a point cloud P; € R™*3 and the corresponding encoded features F; € R"*? a
point in point cloud x; = P;(j) € R'3 and a row of the encoded features F;(j) € R*?, and
an augmentation operation aj, respectively. Note that the parameter n is the number of
points in a point cloud.

3.2 FRAMEWORK

The detailed architecture of the CLR-GAM framework, a contrastive learning based approach
with the proposed GA and GFM modules, is depicted in Figure 2. We briefly introduce
the overall contrastive learning algorithm in this section. First, a point cloud P; is trans-
formed into P! and P? by applying two augmentation operations a; and ap. We utilize a
Siamese architecture with shared weights for feature extraction. In this work, we utilize
PointNet (a MLP based method) (Qi et al., 2017a) and DGCNN (a graph convolution

based method) (Wang et al., 2019) to extract features that are invariant to the input order.
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Figure 2: The proposed CLR-GAM framework with guided augmentation (GA) and guided
feature mapping (GFM). ® is the augmentation operator, ® is the indexing operator and
S12 is the structural index mapping.

The augmented point clouds P}, P? € R"*? are encoded into latent space F}, F2 € R"*4,
respectively. The parameter n is the number of points, and d is the feature dimension. The
augmented point clouds P!, P? could contain different structures, while both point clouds
originate from the same point cloud P;. To ensure an effective feature association between F!
and F?, we introduce the Guided Feature Mapping (GFM) module to associate the features
that belong to the same structure between two augmented point clouds. The feature F}! is
mapped to F}!? to entail similar structural features when F? is considered. The features
F12 and F? are pooled and projected into the projected latent space, resulting 2} and 27,
respectively. We perform contrastive loss to enforce that the latent representation distance
between the same point clouds (positives) features is smaller than the distance between
the features from different point clouds (negatives) in a minibatch. In addition, contrastive
learning heavily relies on the quality of augmentation. An efficient strategy for exploring the
augmentation space is indispensable. We introduce a guided augmentation search to explore
various augmentations efficiently, motivated by Badia et al. (2020).

a) Guided Augmentation: Augmentation is the key to the success of self-supervised
contrastive learning. We hypothesize that if we can efficiently identify a wide range of infor-
mative augmentations, a discriminative representation can be learned. Existing approaches
apply random sampling in augmentation spaces, which leads to ineffective augmentation and
a high computational burden. Thus, we utilize a dynamic and efficient exploration strategy
commonly used in reinforcement learning to mitigate the limitation.

The ranges of each dimension of rotation a’?; translation a’, and scaling a® are [0, 27) radians,
[—1, 1] meters, and [0.5, 1], respectively. Since the jittering and cropping operations are
point specific, we ignore them in guided augmentation for simplicity. Specifically, motivated
by Badia et al. (2020), we utilize a memory bank M to save explored augmentation samples
a,n, where m is the index of a slot. The goal is to ensure that the new sample is different
from the explored samples. It is worth noting that it is hard to obtain this behavior when
just the average of L-norm distance is used to select novel augmentations. To start, we first
randomly sample N augmentations ai—1.5 from the augmentation space a;. We compute
the distance of a new sample a; from all the explored samples in the memory bank a,,. The
design is used to evaluate the novelty of a sample. A novel augmentation aj is identified by
using equation 1.

1
\/ZmeM K(ap,a,) +c¢

(1)

aj = arg,, max
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where K(a,,,a,) = m. The distance function d between two augmentations is the
Lo-norm. The parameters c, € are small values added for numerical stability. The memory
bank is updated with the selected novel augmentation aj. The operation is applied twice
on each point cloud P; in an iteration to obtain two novel augmentations a;,as. The two
augmentations are applied to input point cloud P;, as shown in Figure 2. Note that if the
augmentations of rotation angles 27 and 0 are the same in the angular space, we utilize an
angular distance measure, i.e., dg(alt al’) = 37(0.5— | |aff —af| —0.5|), instead of using Lo
distance. To be consistent with different scales and ranges of augmentations, we normalize
each augmentation to [0, 1] before computing the total distance d as shown in equation 2,
where ar, ar,and ag are the weights for the three distances.

d(@am,a,) = oszdR(aﬁ,af) + O4T||ag - aZHQ + aSHafn - a’rSLHQ (2)

b) Guided Feature Mapping: To learn discriminative point cloud representations, it is
crucial to project features with similar structural characteristics for contrastive learning.
Existing methods may fail to identify the structural similarity between the two augmented
point clouds because certain augmentations (e.g., cropping, scaling) could lead to heavy
deformations of an augmented point cloud with a completely different shape from the original
class and similar to a different class. Based on our observation, when both the augmentations
aj,as contains crop operations, this results in very limited structural similarity between the
augmented point clouds. So we exclude the crop augmentation a§ from the augmentation
aj. In as, it uses all the augmentations, i.e., rotation, translation, scaling, cropping, and
jittering. Note that akR7 ag, af are invertible operations as they are applied on the whole
point cloud. The operation a,‘g is a point-specific operation and invertible. On the other
hand, the cropping operation akc is not invertible as the information is lost. An invertible
augmentation operation can be written as P; = (a;)~! ® P}, where P} is an augmented
point cloud, P; is the original point cloud, and ® denotes an augmentation operator. The
equation holds because the augmentation a; does not contain a cropping operation. Whereas
the augmentation inverted point cloud of P2 results in P¢ = (a3)~! ® P2, a cropped point
cloud. The crop operation is ignored in the inverse operation with as, as it is not invertible.
The order of points and their structures cannot be directly associated between these two
augmented point clouds even with the same number of points. The closest point association
mapping S12 between points of inverted point clouds of P! and P? is calculated based on
equation 3. The structural index mapping Si2 retains only the indices of the closest points

of P! to P?, for every point in P? with index j.

K2

S(j)12 = arg, min || PE () — Pi(q)|l2 3)

The operators P;(-) and F;(-) denote indexing operation to point cloud and feature set,
respectively. The guided mapped feature F'? is obtained according to F}'> = F!(S12). The
feature F}'? is projected to 2z} using the feature projection module after pooling. Feature
projection module is an MLP to reduce the dimensionality of the features. Similarly, F? is
projected to 22. The contrastive loss (Chen et al., 2020) is utilized to compute the similarity

between positives (z},2?) and negatives from the minibatch. We do not store negatives

177
over multiple iterations in a memory bank for comparability with other techniques (Afham
et al., 2022), which is commonly done for improving the performance (He et al., 2020). The
loss can be found in equation 4. The similarity measure is the cosine distance between

two features, sim(z1,22) = (2§ 22)/(||z1]|||22|). Given a minibatch, the final contrastive loss

is Lo = 55 Zf=1(Ll1,2 + L5 1). The parameter 7 is temperature 0.5, b is the index of the

feature in the minibatch of total size B.

N B
i exp(sim(z}, 27) /7
Li o = —log—5 (sim( )/7) (4)

. B .
Zb:l,byﬁi exp(sim(z}, 24)/7) + 32,2, exp(sim(z}, 27)/7)

4 EXPERIMENTS

4.1 QUANTITATIVE RESULTS

a) 3D Object Classification: For this task, we utilize the ModelNet-40 (synthetic) and
ScanObjectNN (real-world) datasets. The ModelNet-40 dataset consists of a wide range
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Approach Method ModelNet-40

point cloud 3D-GAN (Wu et al., 2016) 83.3
Latent-GAN (Achlioptas et al., 2018) 85.7
SO-Net (Li et al., 2018a) 87.3
FoldingNet (Yang et al., 2018) 88.4
MRTNet (Gadelha et al., 2018) 86.4
3D-PCapsNet (Zhao et al., 2019) 88.9
ClusterNet (Zhang & Zhu, 2019) 86.8
VIP-GAN (Han et al., 2019a) 90.2

+ Image Modality DepthContrast (Zhang et al., 2021) 85.4

PNet DGOCNN

point cloud Multi-Task (Hassani & Haley, 2019) - 89.1
self-contrast Du et al. (2021) - 89.6
Jigsaw (Sauder & Sievers, 2019) 87.3 90.6
STRL (Huang et al., 2021) 88.3 90.9
Rotation (Poursaeed et al., 2020) 88.6 90.8
OcCo (Wang et al., 2021) 88.7 89.2
CLR-GAM (ours) 88.9  91.3

+ Image Modality ~CrossPoint (Afham et al., 2022) 89.1 91.2

Table 1: We pretrained using the proposed contrastive self-supervised learning framework on
ShapeNet. We evaluate on the test split of ModelNet-40 by fitting a linear SVM classifier.
The reported results are the overall accuracy. Upper subtable uses custom backbone and
training strategies.

of 3D objects” CAD models. The dataset contains 12,331 objects that are categorized into
40 classes. We use 9,843 for training and 2,468 for testing. The ScanObjectNN dataset is
challenging because data is collected in cluttered environments, so objects could be partially
observable due to occlusions. It consists of 15 classes totaling 2,880 objects (2,304 for training
and 576 for testing).

We follow the same evaluation strategy as in the existing works (Huang et al., 2021; Afham
et al., 2022; Wang et al., 2021). Specifically, we freeze the pretrained point cloud feature
extractor pretrained on the ShapeNet dataset. We randomly sample 1024 points from
each object for testing classification accuracy on ModelNet-40 and ScanObjectNN. We fit a
linear SVM (Cortes & Vapnik, 1995) on the extracted features. The results on the testing
set of ModelNet-40 and ScanObjectNN can be found in Table 1 and Table 2, respectively.
Additionally, we also conduct experiments using two different backbones, i.e., PNet (Qi
et al., 2017a) and DGCNN (Wang et al., 2019), on the two datasets. We demonstrate
state-of-the-art performance on the ModelNet-40 dataset using both backbone architectures
compared to point cloud pretrained approaches in the bottom sub-table, as shown in Table 1.
With the DGCNN backbone, the proposed approach performs better than CrossPoint and
DepthContrast. It is worth noting that both methods utilize extra image modality for
pretraining, while the proposed contrastive self-supervised learning framework only uses
point cloud. Compared to previous SOTA on a single modality (OcCo), the accuracy is
improved by 2.35% (with DGCNN).

The results conducted on ScanObjectNN further justify the effectiveness of the proposed
framework, as shown in Table 2. State-of-the-art performance is present compared to both
point cloud and multimodal pretrained approaches using both backbone architectures. No-
ticeably, compared to previous SOTA on a single modality (OcCo), the accuracy is improved
by 4.8% (with DGCNN). In addition to satisfactory results, we empirically demonstrate that
the proposed approach has better generalization capability in a real-world setting under
severe occlusions than other methods.

b) Few Shot Object Classification: Few Shot Learning (FSL) is a learning paradigm
that aims to train a model that generalizes with limited data. In this experiment, we conduct
experiments on N-way K-shot learning, which means that a model is trained on N classes
and K samples in each class. The test/query set for each of the N classes consists of 20
unseen samples for all these experiments. We use ModelNet-40 and ScanObjectNN for these
experiments. The same pretrained model is used for both classification and FSL tasks with
respective backbones. Similar to the classification task, we fit a linear SVM classifier for
testing the FSL task. A similar protocol is used in earlier works (Afham et al., 2022; Sharma
& Kaul, 2020). We report the results in Tables 3, 4. As there is no a standard benchmark
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Method PNet | DGCNN
Jigsaw (Sauder & Sievers, 2019) | 55.2 59.5
OcCo (Wang et al., 2021) 69.5 78.3
STRL (Huang et al., 2021) 74.2 77.9
CLR-GAM (ours) 75.7 82.1
CrossPoint (Afham et al., 2022) | 75.6 81.7

Table 2: 3D Object classification on ScanObjectNN. We pretrained using the proposed
contrastive self-supervised learning framework on ShapeNet. We evaluate on test split of
ScanObjectNN by fitting a linear SVM classifier. The reported results are the overall accuracy
on the test split.

test set, we follow the setting used in Afham et al. (2022); Sharma & Kaul (2020); Wang
et al. (2021). Specifically, we report mean and standard deviation over 10 runs.

As shown in Table 3, we observe that the CLR-GAM with DGCNN achieves SOTA compared
to all other approaches in the challenging 5-way setting. In the 10-way setting, CLR-
GAM performs on-par with CrossPoint (multimodal pretrained) and Occo (single modal
pretrained). The results show the same trend as in 1. The few-shot object classification results

5-way 10-way

Method 10-shot 20-shot 10-shot 20-shot
FoldingNet (Yang et al., 2018) 33.4%+4.1 35.8+5.8 18.6+1.8 15.4+2.2
Latent GAN (Achlioptas et al., 2018) 41.6+5.3 46.24+6.2 32.9+2.9 25.54+3.2
3D-PointCapsNet (Zhao et al., 2019) 42.3+5.5 53.0£5.9 38.0+£4.5 27.244.7
PointNet++ (Qi et al., 2017b) 38.5+4.4 42.4+4.5 23.1£2.2 18.8+1.7
PointCNN (Li et al., 2018b) 65.4+2.8 68.6+2.2 46.6+1.5 50.0+2.3
RSCNN (Liu et al., 2019) 65.4+8.9 68.6+7.0 46.6+4.8 50.0+7.2

PNet DGCNN PNet DGCNN PNet DGCNN PNet DGCNN
Rand 52.0+£3.8  31.6+2.8 57.844.9 40.8+4.6 | 46.6+4.3 19.9+2.1 352+4.8 16.9%£15
Jigsaw (Sauder & Sievers, 2019) 66.5+2.5  34.3£1.3  69.242.4 422435 | 56.9+2.5  26.0£2.4  66.5+1.4  29.94+2.6
cTree (Sharma & Kaul, 2020) 63.24+3.4 60.0£2.8 68.943.0 65.7+£2.6 49.24+1.9 48.5+1.8 50.1+1.6 53.0£1.3
OcCo (Wang et al., 2021) 89.7+1.9 90.6+2.8 92.4+1.6 92.5+1.9 83.9£1.8 82.9+1.3 89.7+1.5 86.5+2.2
CLR-GAM (ours) 91.842.6 93.7+1.2 94.8+2.4 96.0+2.6 | 84.6+2.2 87.9+2.7 89.1+2.0 91.1+1.9
CrossPoint (Afham et al., 2022) 90.9+4.8  92.5+3.0 93.5+4.4  94.9+2.1 | 84.6+4.7 83.6£5.3  90.2+2.2  87.9+4.2

Table 3: Few shot object classification on ModelNet-40. A linear SVM is fit on the training
set of ModelNet-40 using the pretrained model learned from ShapeNet. Compared with
existing methods, the proposed CLR-GAM achieves state-of-the-art performance under
different few shot settings. The results are the overall accuracy.

on ScanObjectNN is reported in Table 4. CLR-GAM with DGCNN and PointNet performs
SOTA compared to both point cloud and multimodal pretrained approaches. Specifically, on
ScanNet we show a large margin improvement (more than 11%) using DGCNN on all sets,
and more than 8% improvement with PNET (5 way-20 shot, 10 way-10 shot, 10 way-20 shot).
There is a 24% improvement with both DGCNN and PNET backbones in 10 way-20shot. The
results further testify that CLR-GAM learns discriminative 3D point cloud representations,
and the representations can generalize to challenging real-world setting.

‘ 5-way ‘ 10-way
Method | 10-shot 20-shot | 10-shot 20-shot
PNet DGCNN PNet DGCNN PNet DGCNN PNet DGCNN
Rand 57.6£2.5 62.0£5.6  61.4+2.4 67.8£5.1 41.3£1.3 37.8+4.3 43.8£1.9 41.842.4

Jigsaw (Sauder & Sievers, 2019) | 58.6+1.9  65.243.8  67.6+2.1  72.242.7 | 53.6+£1.7 45.6+£3.1 48.1+1.9  48.2+238
cTree (Sharma & Kaul, 2020) 59.6+2.3  68.4+34  61.4+1.4  T71.6+£29 | 53.0£1.9 424427  50.9£2.1  43.0+3.0
OcCo (Wang et al., 2021) 70.4+3.3  724+14 72.243.0 77.2+£14 | 54.841.3 57.0£1.3 61.841.2 61.6+1.2
CLR-GAM (ours) 71.842.8 80.6+1.9 78.4+3.2 86.31+2.3 | 63.8+2.6 67.24+1.5 69.4+2.8 76.4+2.7
CrossPoint (Afham et al., 2022) | 68.2£1.8  74.8+1.5 73.3£2.9 79.0£1.2 | 58.7£1.8 62.9£1.7 64.6£1.2 73.9£2.2

Table 4: Few shot object classification on ScanObjectNN. A linear SVM is fit on the training
set of ModelNet-40 using the pretrained model learned from ShapeNet. Compared with
existing methods, the proposed CLR-GAM outperforms state-of-the-art method Wang et al.
(2021) with a large margin. Reported results are the overall accuracy.

¢) 3D Object Part Segmentation: ShapeNet-part dataset (Yi et al., 2016), which
contains 50 different parts from 16 distinct object categories with a total of 16,881 3D
objects, is used for 3D part object segmentation. We use the same pretrained model for
both classification and FSL tasks with respective backbones. To be consistent with the
evaluation for part segmentation, we finetune the pretrained model using 2048 points sampled
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Category Method Mean 10U
Supervised PointNet (Qi et al., 2017a) 83.7
PointNet++ (Qi et al., 2017b) 85.1
DGCNN (Wang et al., 2019) 85.1
Self-Supervised Self-Contrast Du et al. (2021) 82.3
Jigsaw (Sauder & Sievers, 2019) 85.3
OcCo (Wang et al., 2021) 85.0
PointContrast (Xie et al., 2020) 85.1
PointDisc (Liu et al., 2021) 85.3
CLR-GAM (ours) 85.5
t Image Modality | CrossPoint (Afham et al., 2022) 85.5

Table 5: We report the mean 10U results for 3D object part segmentation on the ShapeNet-
part dataset. Supervised methods are trained with randomly initialized weights, whereas
self-supervised methods are initialized with pretrained weights learned from ShapeNet.

from point clouds. We observe that the performance of CLR-GAM is better than the other
point cloud contrastive learning-based approaches and on-par with CrossPoint (multimodal
pretrained). The reported results in Table 5 are average of intersection over union (IOU)
computed for each part.

4.2 QUALITATIVE RESULTS

We visualize feature representations (learned from the proposed CLR-GAM) of each
point/node in an unseen object’s point cloud selected from test sets of ShapeNet and
ModelNet-40 in Figure 3. We compute the cosine distance between the feature of a randomly
selected point (colored in red) to other points’ features in the same point cloud. The color
scale is Yellow-Green-Blue. The closest feature in the feature space is yellow, and the farthest
is blue.

Our approach learns similar representations for the whole planar region for simple planar
structures such as stool (a) and table (b). Moreover, in the case of a chair (f), a complicated
planar structure, the proposed model can learn similar features for the back part of a seat.
For monitor (k), the plane is assigned with closer/similar features, whereas the features at
the corners (structural irregularities) are dissimilar to the center. Similar observation can
be found in the case of a knife (e), i.e., the handle and sharp edge have different features.
For a curved object like a bathtub (g), the whole tub has similar features except for the
legs. Similarly, for the cone (h), the whole curved region has similar features except for the
edges. In the case of lamp (i), the curved stand has similar features, separating the stem.
For irregular-shaped objects, e.g., flowerpot (c), all leaves have similar features, and different
features are learned for pot and stem. For airplane (d), all turbines have similar features
since it is relatively small and curved, and the other sharply curved front and back regions
of the airplane have similar features.
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Figure 3: Feature visualization of unseen objects selected from the test sets of ShapeNet and
ModelNet-40. For more qualitative results please check the Appendix.
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augmentations | novel modules |  dataset
jitter | translation [ rotation | scaling | crops | GFM [ GA | Modelnet-40
v v v v 84.8
v v v v v 89.7
v v v v v v 90.7
v v v v v v 90.4
v v v v v v v 91.3

Table 6: Ablation Study of CLR-GAM: Trained on ShapeNet using self-supervised method
and evaluated ModelNet-40 using Linear-SVM. Reported results are overall accuracy

4.3 ABLATION STUDY

We conduct an ablation study on ModelNet-40 dataset to understand the contribution of
GFM, GA, and augmentation. The results are shown in Table 6. Contrastive learning without
cropping achieves around 84.8% in the overall accuracy. With cropping, a large improvement
of 4.9% is observed. The result is similar to the performance of CrossPoint (Afham et al.,
2022) without multimodal training (i.e., only Intra Modal Instance Discrimination, IMID).
We treat the model as the vanilla baseline, i.e., the second row in Table 6. With GFM, we
observe a performance improvement by 1.1% compared to the vanilla baseline. A 0.77%
improvement is observed when GA is added. When both novel modules are introduced, we
observe 1.78% improvement compared to vanilla baseline. The ablative studies demonstrate
the effectiveness of the proposed GA and GFM.

We depict all features generated from our CLR-GAM approach on unseen samples of
ModelNet-10 test dataset using the DGCNN backbone in Figure 4. To generate t-SNE plots,
we use a perplexity of 30. In the vanilla contrastive learning approach, except monitor class,
all the other classes have a wider spread making the classes closer. With the proposed GFM,
we observe the improvement in nightstand toilet classes, but with a similar overlap of bed
bathtub classes as vanilla. With added GA, our proposed approach CLR-GAM, we observe
further improvement in toilet class separation from nightstand, and more concentrated class
clusters. In all cases, the dresser and night stand had more confusion because of the similarity
in shape.

40
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bed
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night_stand
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e table
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ry
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and feature mapping

-20 0 20 20 40
a) vanilla contrastive

Figure 4: t-SNE plots: visualization of features from three different approaches, generated
from unseen samples of ModelNet-10 test dataset.

5 CONCLUSION

In this paper, we present a contrastive learning framework (CLR-GAM) with guided aug-
mentation (GA) to search augmentation parameters efficiently and guided feature mapping
(GFM) to associate structural features precisely. The former is realized by adapting the
inverse Dirac delta function with a memory bank, and the latter is fulfilled by associating
structural features between two augmented point clouds. Both these processes help boost the
contrastive learning of point cloud data. We benchmark on three different downstream tasks
and show that our method performs state-of-the-art compared to other methods trained
on single modality point cloud data. It also performs similar to or better than a recent
multimodal trained approach CrossPoint.
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6 ETHICS STATEMENT

This paper focuses on contrastive learning for point cloud, a crucial sensory data for a wide
range of applications in robotics and intelligent driving systems. Discriminative 3D point
cloud representations learned in a self-supervised manner are attractive because it improves
sample efficiency (as we present in Section 4.1.b) for training downstream tasks. While
promising potentials across various applications are expected, it could potentially have an
adverse effect on annotators and annotating companies that rely on annotating point cloud
datasets.

7 REPRODUCIBILITY STATEMENT

The code and pretrained models are made available in the supplementary material. The
uncertainty error bars are made available in Appendix and in Table-3,4. For classification
and segmentation the reported values are average of 5 runs. For Few shot learning the
reported results are average of 10 runs as mentioned in Section 4.1.b.
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A PRETRAINING

We pretrain on the Shapenet dataset (Chang et al., 2015) using the proposed contrastive
self-supervised approach, similar to other reported benchmarks (Afham et al., 2022; Sauder
& Sievers, 2019; Huang et al., 2021). The dataset has 55 different classes with a total of
57,386 CAD models. We sample 2048 points before performing augmentation and 1024
after applying all augmentations as mentioned in section 3.2.b. The pretrained model is
benchmarked on three downstream tasks.

B IMPLEMENTATION DETAILS

For all of the experiments, we use cyclic learning rates (Smith, 2017) for 3 cycles with each
cycle for 100 epochs and a cosine annealing based learning scheduler. We employ Adam
optimizer with a learning rate of 10~2 and a weight decay of 10~%4. PNet (Qi et al., 2017a) and
DGCNN (Wang et al., 2019) are utilized for point cloud encoding. We apply augmentation
ranges for translation, rotation, and scaling as mentioned in section 3.2.a. For jittering, we
apply Gaussian noise of lcm standard deviation. For cropping, we randomly select a point
and crop 30% of the points that are closer to the selected point. Three downstream tasks are
benchmarked in this paper, i.e., classification, few-shot learning, and object part semantic
segmentation. For training, we use two NVIDIA RTX 6000 GPUs with a batch size B of 32.
For Equation 2 in the main manuscript, we use ag = 1,ar = 1,ag = 1.

C GUIDED AUGMENTATION SAMPLING VS RANDOM SAMPLING

We visualize the convergence in performance over 40 epochs for two different sampling
techniques in Figure 5. During self-supervised training on the ShapeNet dataset, the
performance (accuracy) is evaluated on the validation set of ModelNet-40 after every epoch.

The standard deviation for Guided Augmentation from Table 6 under multiple runs (5) is
+/-0.12, compared to the random selection process +/-0.37

0.90 4 —— random sampling
Guided Augmentation sampling

o

oo

[¥s]
1

0.86

val accuracy using linear-svm

0.85

T T T
0 5 10 15 20 25 30 35 40
epochs (during training)

Figure 5: Validation Accuracy on ModelNet-40 using LinearSVM, during self-supervised
training with random and guided augmentation sampling.
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D LIMITATIONS

The proposed GA module uses a very effective memory mechanism, but it might not be
memory efficient with many augmentation samples. It takes 3 minutes and 30 seconds for
35000 augmentations (around the sample size of shapenet dataset), without any advanced
libraries (only using the NumPy library with naive implementation) and the storage memory
footprint is 2.52 MB (with 8 bytes per element in the array). Please note that we train
linear-SVM on the features on tasks (classification/few-sot learning) for both datasets
(ModelNet-40/ScanNet), because of this the memory limitation only applies to the pretrained
dataset.

E DISCUSSIONS

E.1 MEMORY SIZE ON DIFFERENT DATASETS

We trained only one dataset for self-supervised learning (ShapeNet dataset) even though
there are different tasks/datasets that are tested using Linear-SVM. So in our experiments,
it doesn’t change with tasks/datasets that are tested on. But without memory, there is a
performance degradation of 0.8%, as seen in Table 6. We chose memory based on the size of
the dataset it is pretrained on.

E.2 WHY GUIDED FEATURE MAPPING WHEN THERE IS A POOLING OPERATION?

The pooling operation is performed on the encoded features and before latent feature
projection. But because of cropping the same point cloud can resemble being coming from
two different classes, as mentioned in the Introduction section. So we hypothesize that only
pooling features that have similar structural similarities will result in an effective contrastive
learning, which is also observed in our empirical results. To study the effectiveness of the
Latent features, in the main manuscript we also show t-SNE plots in Figure 4.

E.3 EXTENSION TO OTHER SENSOR MODALITIES

This is an interesting future direction that can be explored. Based on our understanding,
our approach can be applied to such works, as crosspoint. To ensure efficient cross-modal
embedding, we also need to search for the right approaches for images. That is not the focus
of this paper, so we leave it to future work.

F QuALITATIVE REsuLts (KITTI)

In order to understand the generalization of the proposed unsupervised approach to real
world application or datasets, we perform feature visualization of two driving scenarios from
KITTI dataset (Geiger et al., 2013) in Figure 6. The full scene contains 80 meters on all
directions to the ego-vehicle (160m x 160m) is show in (a) as a top down image. In (a)
the gray color is used for ground and red color is used for non-ground or obstacles. The
separation is done using -1.5 meters in height axis of the pointcloud data or velodyne sensor.
Blue box is the region of interest which is zoomed in subfigure (b), which is 20m x 20m
region. This is subsampled to around 4000 points using voxel based sampling with 0.3 meter
voxel length in all three axes. 1024 points are randomly selected and passed to feature
encoder. The features are visualized in subfigure (c). The color scale is same as Figure 6 in
main manuscript, Yellow-Green-Blue. The closest feature in the feature space is yellow, and
the farthest is blue with respect to a randomly selected point (colored in red).

In scenario 1 the single vehicle has distinct features from the road, which is highlighted in
pink box. Similarly in scenario 2 the two vehicles have similar features distinct from the
ground, which are highlighted in pink boxes.
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Figure 6: Feature visualization of unseen driving scene selected from the KITTI dataset.
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G  QUALITATIVE RESuLTS (MODELNET40)

We visualize feature representations (learned from the proposed CLR-GAM) of each
point/node in an unseen object’s point cloud selected from test sets of ModelNet-40 in
Figure 3. The color scale is same as Figure 3 in main manuscript, Yellow-Green-Blue. The
closest feature in the feature space is yellow, and the farthest is blue with respect to a selected
point (colored in red). Some qualitative results and discussions of the airplane, bathtub, bed,
guitar, person, vase and lamp are shown below.

G.1 AIRPLANE

In the Figure 7(a-d) we visualize four different airplanes pointcloud features. In (a,b,d) the
selected points (red dot) for the three different planes are on the wings. Except the sharper
wings ends or tail ends or engines or mouth of the airplane, the whole body of the plane has
similar features. Similarly, in (c) when selected sharper wing end (red dot), tail wings are
more closer in the feature space, along with engines and mouth of the airplane.

0 ;' % %
B *oee
‘a"-l"é-. . L :" -msated Posty o e
¥ Y"' ° ’?
[ ]
R T R

a b
e Nt
® gy, o
. > ®
- -~
w
c d

Figure 7: Feature visualization of unseen (airplane) objects selected from the test sets of
ModelNet-40.
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G.2 BATHTUB

In the Figure 8(e,f) we visualize two different bathtub pointcloud features. In (e,f) we
selected points shown in red dot are on the tub. In (e) the whole symmetrical tub shape
has similar features excluding the legs and top edge handle. Similarly in (f) the tap/handle,
separate object and sharp corners has different features from the rest of the bath tub.
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Figure 8: Feature visualization of unseen (bathtub) objects selected from the test sets of
ModelNet-40.

G.3 BED

In the Figure 9(g,h) we visualize two different bed pointcloud features. In (g) the selected
point (red dot) is on box spring, the whole part has similar features excluding legs and head
board . In (h) the selected point is close to foot board, since there is no separate foot board
in this pointcloud the whole box spring has similar features excluding legs and head board.
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Figure 9: Feature visualization of unseen (bed) objects selected from the test sets of
ModelNet-40.
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G.4 GUITAR

In the Figure 10(i,j) we visualize two different guitar pointcloud features. In (i) the selected
point (red dot) is on the nut, the whole finger board and head stock has same features
excluding the body (since the head stock doesn’t have any varied design as shown in (j)). In
(j) the selected point is on head stock, only head stock and nut has similar features, finger
board and body have different features.
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Figure 10: Feature visualization of unseen (guitar) objects selected from the test sets of
ModelNet-40.

G.5 PERSON

In the Figure 11(k,1) we visualize two different person pointcloud features. In (k) the selected
point (red dot) is on the leg, both the legs have same features excluding the feet and the
upper body. Similary in (1) the selected point is on the ball and the person is catching the
ball in this pointcloud. The person’s head and the ball have same features because they are
round in shape.
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Figure 11: Feature visualization of unseen (person) objects selected from the test sets of
ModelNet-40.
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G.6 VASE

In the Figure 12(m,n) we visualize two different vase pointcloud features. In (m) the selected
point (red dot) is on the body of the vase, the whole body has similar features excluding
the lip, foot and neck. In (n) the selected point is also on the body. Even though the body
shape is complicated the whole body has similar features, excluding the lip.
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Figure 12: Feature visualization of unseen (vase) objects selected from the test sets of
ModelNet-40.

G.7 LAMP

In the Figure 13(o,p) we visualize two different lamp pointcloud features. In both cases the
selected point (red dot) is on the shade. In (o) the complete shade has same features, even
tough the bulb and tube are closer they have different features. In case of (p) the shade and
bridge arm have same features, excluding the base and tube.
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Figure 13: Feature visualization of unseen (lamp) objects selected from the test sets of
ModelNet-40.
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H NOTATIONS

Augmentations
a set of all augmentations
a’® scaling
a’ translation
alt rotation
a’ jitter
a® crop
a randomly sampled augmentation
a* novel augmentation
a! inverse augmentation
PointCloud, Features, Memory

P pointcloud
X points in pointcloud
n number of points in the pointcloud
R real numbers
z projected latent feature
N number of randomly sampled augmentations
M memory bank
m index of the memory slot in memory bank
K dirac delta kernal function
d total distance measure
dr angular distance measure
c, € small values for numerical stability
S structural index mapping
® augmentation operator
® indexing operator
B size of mini-batch
b index of the feature in mini-batch

Indexing
P sample ¢ of pointcloud from the dataset
F; feature set corresponding to the sample 4 of pointcloud
X; jth point in the pointcloud
F(j) feature corresponding to the jth point in the pointcloud
ay kth augmentation
Pk pointcloud augmented with augmentation with index &
FFk features of pointcloud with augmentation with index k
S structural index mapping from pointcloud 1 to 2

23



	Introduction
	Related Works
	Methodology
	Preliminaries and Notation
	Framework

	Experiments
	Quantitative Results
	Qualitative Results
	Ablation Study

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Pretraining
	Implementation Details
	Guided Augmentation sampling vs Random sampling
	Limitations
	Discussions
	Memory size on different datasets
	Why Guided Feature Mapping when there is a pooling operation?
	Extension to other sensor modalities

	Qualitative Results (KITTI)
	Qualitative Results (ModelNet40)
	airplane
	bathtub
	bed
	guitar
	person
	vase
	lamp

	Notations

