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Figure 1. Raw TUMTraf-Accid3nD dataset. Accidents are recorded from roadside cameras on the A9 Test Field for Autonomous Driving in
Munich, Germany. The dataset includes scenes with high-speed traffic, collisions, and overturning vehicles. Some vehicles are catching fire.

Abstract

Even though a significant amount of work has been done to
increase the safety of transportation networks, accidents still
occur regularly. They must be understood as unavoidable
and sporadic outcomes of traffic networks. No public dataset
contains 3D annotations of real-world accidents recorded
from roadside camera and LiDAR sensors. We present the
TUM Traffic Accid3nD (TUMTraf-Accid3nD) dataset, a col-
lection of real-world highway accidents in different weather
and lighting conditions. It contains vehicle crashes at high-
speed driving with 2,634,233 labeled 2D bounding boxes,
instance masks, and 3D bounding boxes with track IDs. In
total, the dataset contains 111,945 labeled image and point
cloud frames recorded from four roadside cameras and Li-
DARs at 25 Hz. The dataset contains six object classes and is
provided in the OpenLABEL format. We propose an accident
detection model that combines a rule-based approach with
a learning-based one. Experiments and ablation studies on
our dataset show the robustness of our proposed method. The
dataset, model, and code are available on our website.
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1. Introduction

Vision Zero is a worldwide initiative to reduce road
deaths and serious injuries through innovative, data-driven
interventions. Autonomous driving (AD) and intelligent in-
frastructure play a significant role in making roads safer by
preventing accidents before they happen. Collecting data on
events that occur most rarely (long-tail events) is important
for robust machine learning of data-driven perception, plan-
ning, and control models in robotic systems [1]. In the case of
AD, however, these events are especially costly to collect [2,
3, 4]. Long-tail events such as accidents and near-misses [5]
come at great risk to human life and are otherwise difficult
to stage and capture in the natural driving environment [6,
7]. The time between an accident and the arrival of medical
assistance significantly impacts whether the passengers of
a vehicle survive an accident. Automatic accident detection
reduces this time and has the potential to save lives.

Toward the goal of Vision Zero, we propose TUMTraf-
Accid3nD, a 3D perception dataset specifically curated
for accident scenarios. We present novel labeling methods
alongside newly introduced tasks, including 3D object
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Figure 2. Accident detection pipeline. We use advanced 3D perception techniques and multi-sensor data fusion to create a real-time digital
twin of the traffic. Starting with raw camera images, the framework first performs 3D object detection using MonoDet3D to identify and
localize vehicles in three dimensions. Following detection, Poly-MOT tracking is applied to maintain continuity across frames, while sensor
data fusion combines inputs from four roadside cameras and four radars. The digital twin is then used in two accident detection modules:
1) The Rule-based Accident Detection module extracts features such as lane IDs, distance matrices, and velocities, identifying potential
accidents through predefined maneuver detection rules. 2) The Learning-based Accident Detection module employs a YOLOvVS object
detector, trained on a custom dataset, to detect accident events. The final output includes the object’s location, confidence score, class,

velocity, and detected scenario or maneuver.

detection, tracking, and accident detection. Furthermore,
we demonstrate how vision-language models can enhance
safety analysis to improve overall situational awareness. Our
dataset offers 3D accident labels with tracking information.
It supports the development of safer autonomous systems
through multiple directions: (1) the data supports improved
learning on a variety of perception-related tasks, such as de-
tection [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], tracking,
and segmentation [20]. (2) The nature of the dataset allows
for the study of methods of cooperative perception between
roadside sensors observing the same scene from different
view angles. Cooperative perception allows for a reduction
of occlusion through shared information. (3) Roadside sen-
sors allow the creation of digital twins of the traffic scene
[21, 22, 23, 24]. These digital twins expand the visibility
range beyond the egocentric view, which may be used to
provide adequate warning lead time for safe approaches and
control transitions for risky traffic events [25].

In addition to standard computer vision tasks—such as 2D
object detection, instance segmentation, 3D object detection,
sensor data fusion, tracking, trajectory prediction, and acci-
dent classification, our dataset also supports accident analy-
sis. This involves reconstructing the sequence of events to
understand how the accident occurred and what contributing
factors may have played a role. For instance, was the vehicle
speeding? Was there a traffic jam a short distance ahead? Did
the driver appear inattentive or react too late?

Furthermore, this dataset can be utilized by Vision-Language
Models (VLMs) [26] to interpret complex scenes. Given an
image as input, VLMs can provide a textual description of
the scene, identifying if an accident has occurred, is actively
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unfolding, or if there are signs of an imminent collision. This
capability enhances the dataset’s potential for developing
sophisticated tools for accident detection and scene analysis
in real-world traffic environments.

Contributions. To summarize, our main contributions are:
We present the TUMTraf-Accid3nD dataset, a dataset cu-
rated specifically for rare and hazardous traffic incidents,
providing a groundbreaking resource for accident-specific
3D perception research.

TUMTraf-Accid3nD features 2,634,233 labeled 3D
boxes, instance masks, and 2D box annotations with track
IDs of real accidents across various lighting and weather
conditions. This makes it the largest dataset focused on
real-world accident scenarios captured in 3D.

We introduce an annotation method that enables highly
accurate and detailed labeling of accidents and near-miss
events. The annotation process includes precise 2D and
3D bounding boxes, instance segmentation, and tracking
of all traffic participants in the scene.

We propose a framework to detect accidents in real-time
and in different weather and lighting conditions.

We support eight tasks with our dataset: object recogni-
tion, 2D object detection, accident classification, instance
segmentation, 3D object detection, tracking, accident an-
ticipation, and trajectory prediction.

We provide baseline results for the first six tasks and open
source our dataset, detection framework, and dev kit.

2. Problem Statement

High-quality datasets focused on accident scenarios are es-
sential for advancing road safety. However, existing datasets



Table 1. Overview of publicly available accident datasets. We compare the TUMTraf-Accid3nD dataset with other available synthetic and
real accident datasets based on the following criteria: year, type (synthetic or real), perspective, number of image frames (#Img), available
point clouds (PCs), number of 2D bounding boxes (#2D BB), number of 2D instance masks (#Masks), number of 3D bounding boxes (#3D
BB), and track IDs (T). Entries with * indicate approximation based on average video frame counts reported in respective papers.

Dataset Year Type Perspect. #Img PCs #2D BB #Masks #3DBB T
o VIENAZ[28] 2019 synth vehicle 2,250,000 x X X X X
o GTACrash [29] 2019 synth vehicle 751,610 x X X X X
o MP-RAD [30] 2023 synth roadside 366,600 x X X X X
o RiskBench [31] 2024 synth vehicle N/A % X X x v
o DeepAccident (DA) Dataset [32] 2024 synth V2V & V2l 57,000 Vv 285,000 x 285,000 v
o Accident Image Analysis (AIAD) [33] 2018 real wvariable 10,480 x X X X X
o Car Accident Det. & Pred. (CADP) [34] 2018 real roadside 75,030%  x X X X X
o Causality in Traffic Accident (CTA) [35] 2020 real vehicle 342,495%  x X X X X
o Car Crash Dataset (CCD) [36] 2020 real vehicle 75,000  x X X X X
o Acc. Det. CCTV Footage (CCTVF) [37] 2020 real roadside 990  x X X X X
o Argus Dataset [38] 2021 real roadside 120,000 x X X X X
o YoutubeCrash [39] 2021 real wvehicle 7,720 X X X X X
o IITH Road Accident Dataset [40] 2022 real roadside 127,138 x X X X X
o TAD [41] 2022 real roadside 24,810  x X X X X
o Accident Detection Model (ADM) [42] 2023 real roadside 3250 x X X X X
o MM-AU Dataset [43] 2024 real vehicle 2,190,000 x 2,233,683 2,233,683 X X
o TUMTraf-Accid3nD Dataset (ours) 2025 real roadside 111,656 V 2,634,233 2,634,233 2,634,233 V

rarely cover real accident cases in sufficient detail, making
this an underrepresented but critical area of research. Most
autonomous driving datasets focus on normal driving condi-
tions to avoid the complexities of actual accident scenarios.
This limits the potential for models to effectively learn and
predict high-risk events. To improve safety in autonomous
systems, there is a pressing need for a specialized dataset
that captures the complexity of accident scenarios in diverse
conditions. Such a dataset would provide a robust foundation
for developing algorithms capable of understanding, detect-
ing, and ultimately helping to prevent accidents.

3. Related Work

Existing accident detection methods have never been tested
on real roadside traffic data of an ITS test stretch. Real
accident datasets are rare and do not contain enough data to
train deep learning models [27], as shown in Table 1.

3.1. Accident Datasets

Several accident datasets [28, 29, 32, 33, 34, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45] have recently been released.
However, most are limited to 2D annotations, lacking realis-
tic 3D labeling needed for comprehensive accident analysis.
Although some 3D datasets exist, they are synthetic and not
representative of real-world conditions.

The DeepAccident [32] dataset contains 691 synthetic acci-
dent scenarios in the CARLA simulator. These accidents
were generated based on crash reports published by the
National Highway Traffic Safety Administration (NHTSA).
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The dataset contains labeled data from four vehicles and one
roadside infrastructure camera. One limitation of this work is
that all accidents are generated in a simulation environment
and do not represent realistic crash scenes. Hence, the sim-
to-real gap must be addressed to improve the generalization
capabilities of the perception models.

MM-AU [43] is a dataset for multi-modal accident under-
standing in videos. It contains 11,727 ego-view accident
videos and 2.23 million 2D object boxes but lacks 3D box
annotations, instance masks, and track IDs. Our dataset ad-
dresses this by providing high-quality 3D labeled real-world
accident data in high-speed highway scenarios.

3.2. Accident Detection

Accident detection aims to identify the time and location
of accidents within video frames, which is challenging due
to rapid object motions, visual occlusions, and viewpoint
changes caused by camera movements during crashes [46].
Early detection methods [47] primarily rely on frame-
level appearance changes or simple motion cues to identify
accidents, but these approaches struggled in complex envi-
ronments. More recent methods emphasize spatiotemporal
modeling, capturing motion consistency and scene evolution
across frame sequences to improve robustness [43, 48]. Su-
pervised methods train deep networks to classify accident vs.
non-accident frames, while unsupervised techniques, such as
DoTA [49], detect abnormal motion patterns by predicting
future trajectories and flagging deviations between predicted
and actual motions. Despite these advancements, most exist-
ing approaches rely on monocular 2D video data [50], losing



Figure 3. Visualization of the labeled TUMTraf-Accid3nD dataset with 3D box annotations, instance masks, track IDs, and trajectories.
Accidents are recorded from roadside cameras on a test bed for autonomous driving. The dataset includes scenes with collisions and
overturning vehicles, with some vehicles even catching fire.

important depth and spatial cues. This limits their ability
to estimate object distances and collision risk accurately,
reinforcing the need for real-world 3D accident datasets to
enhance detection performance and generalizability.

3.3. Accident Anticipation

Accident anticipation aims to predict accidents before they
occur, providing early warnings based on evolving scene
dynamics. These methods typically process sequential video
frames and estimate future accident likelihood using recur-
rent or temporal convolutional networks. To improve inter-
pretability, models like DSA-RNN [51] introduce attention
mechanisms that dynamically focus on critical objects and
regions contributing to accident risk. Later works further
enhance these attention mechanisms by incorporating driver
behavior, such as gaze direction or steering patterns, to
capture human reactions to emerging hazards. Methods like
DRIVE [52] explicitly model interactions between traffic
participants using spatiotemporal graphs, improving antici-
pation through relational reasoning among vehicles, pedes-
trians, and infrastructure. However, existing approaches rely
heavily on annotated accident time windows, which are
expensive to obtain and prone to ambiguity. Moreover, the
absence of large-scale, realistic 3D accident datasets hinders
generalization across diverse driving scenarios, emphasizing
the urgent need for diverse 3D benchmarks to enable robust
and transferable anticipation systems.

4. The TUM Traffic Accid3nD Dataset

This section presents the TUM Traffic Accid3nD (TUMTraf-
Accid3nD) dataset, a real-world dataset of rare, hazardous
traffic incidents for accident-specific 3D perception tasks.
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4.1. Sensor Suite

The roadside infrastructure sensor setup is designed to con-
tinuously monitor traffic flow and detect accident scenarios
using a diverse suite of sensors. Positioned at strategic
locations, the sensor suite used for the dataset includes nine
sensors: four high-definition cameras, four radars, and one
LiDAR. These sensors are mounted on two sensor stations,
such as the one shown in Fig. 4, to capture real-time traffic
data from multiple perspectives. Each sensor type con-
tributes uniquely to a multi-modal data fusion framework.
The cameras provide high-resolution visual information,
enabling object detection, tracking, and scene interpretation.
Radars add velocity and range information, capturing the
motion dynamics of vehicles, even in challenging weather
conditions like fog or heavy rain. The LiDAR offers precise
3D spatial data, creating a detailed map of object positions
and surroundings. Together, these sensors deliver a rich,
fused dataset that enhances the accuracy of accident detec-
tion and analysis by combining visual, motion, and depth
information. Through careful calibration, the data from each
sensor is aligned in a common coordinate system to ensure
a reliable multi-modal fusion. This setup enables scene un-
derstanding in various lighting and weather conditions and
supports advanced applications like trajectory prediction,
cooperative perception, and accident anticipation.

4.2. Data Collection Process

The data collection process includes several key stages: data
recording, extraction, and anonymization. We capture high-
quality data and ensure privacy and usability.

Data Recording. Data is continuously captured from
roadside cameras, LiDAR, and radar sensors to monitor
traffic flow and detect accident events during the day and
night. Each sensor records data at 25 FPS to provide details
for high-speed accident analysis. The recorded data is com-
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Figure 4. Visualization of the sensor setup. We show one of the
two gantry bridges used to record the highway data with accidents.

pressed and saved in rosbag files on secure servers in real-
time. Each sensor stream is time-synchronized, ensuring that
data across cameras, LIDAR, and radar align accurately.

Data Selection. Our data selection system uses a rule-
based accident detection framework to prioritize capturing
accident and near-miss events. By monitoring indicators
like lane deviations, sudden speed changes, and unusual ve-
hicle interactions, the system flags high-priority events and
focuses on relevant accident scenarios. The selected data is
then extracted into individual frames or point cloud scans.

Data Anonymization. To protect privacy, all data un-
dergoes an anonymization process. License plates and
personally identifiable information like faces are blurred. A
YOLOVS [53] network was trained on local license plates to
detect them in real-time.

The dataset development kit, which includes pipelines for
processing, loading, and managing data, enables researchers
to efficiently access, preprocess, and work with the dataset.

4.3. Labeling Process

We use 3D BAT [54], an automatic 3D bounding box
annotation toolbox, to annotate our dataset. It includes a
detection and tracking step and a manual quality check to
enhance accuracy. This tool automates the labeling process
by first applying a custom 2D object detector [14] (based on
YOLOvV7 [55]) and a 3D object detector (MonoDet3D [14]).
The objects are tracked with the PolyMOT [56] tracker and
fused using a late fusion approach [14]. Each labeled traffic
participant contains a 2D box, a corresponding instance
mask, and 3D box information (position, dimensions, and
rotations) with a track ID and speed value. To ensure high
labeling quality, we manually inspect the generated annota-
tions in the labeling tool, adjust them accordingly, and finally
export them in the OpenLABEL [57] standard.

4.4. Coverage and Scenario Diversity

Our dataset features 111,945 labeled camera and LiDAR
frames with over 2.6 million 2D and 3D box annotations,
each accompanied by track IDs, trajectory data, and classifi-
cation across six different instance types: cars, trucks, buses,
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Figure 5. Heatmap visualization of traffic participant locations.
The left lane on the highway towards the north direction indicates
a high traffic volume.

pedestrians, motorcycles, and bicycles. It captures a diverse
range of accident scenarios, including high-speed lane
changes leading to rear-end collisions, vehicle overturning
upon impact, and vehicles catching fire. Additionally, it in-
cludes instances involving emergency response vehicles and
near-miss events. Example cases are illustrated in Figure 1.
The dataset serves as an essential resource for developing
and validating Al-based detection, tracking, data fusion, and
trajectory prediction algorithms, as well as understanding
the occurrence and after-effects of naturally occurring high-
speed crash incidents and other accidents on highways.

4.5. Annotation Schema

Our annotation schema is based on the OpenLABEL [57]
standard, structured to store 3D labels with detailed track-
ing information, event data, and attributes that document
accident scenarios. Each 3D label includes tracking IDs to
uniquely identify objects across frames and to capture the
trajectories of road users over time. Each annotation holds
attributes that mark the sensor ID, track history, speed, and
number of 3D points inside the 3D box. This schema ensures
an accurate, multi-dimensional representation of accidents
and enables detailed analysis of incident sequences and indi-
vidual participant behavior throughout each event.

4.6. Dataset Statistics

Our dataset provides a large collection of annotated accident
events and diverse object types across 111,945 camera
and LiDAR frames, with over 2.6 million 3D box annota-
tions with track IDs. This large-scale dataset includes six
object classes: cars, trucks, buses, motorcycles, bicycles,
and pedestrians. The occurrence of labeled accident events
allows for the evaluation of detection models under realistic,
high-speed highway scenarios.

Figs. 5,6,7,8,9, 10, and 11 provide a detailed statistical
overview: Fig. 5 illustrates a heatmap of traffic participants
to highlight busy lanes with a high traffic density. The left
lane contains a high traffic volume because of a van that has
a breakdown on that lane. Figure 6 presents the distribution
of object classes. Cars and trucks are the most commonly
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labeled objects in the dataset. Fig. 7 shows average and
maximum track lengths. Track lengths vary, with most up
to 200 meters (see Fig. 10) and one truck reaching a 2,114-
meter-long track. The total accumulated track length of all
labeled objects is 1887.89 km on the highway. Fig. 8 shows
the distribution of the labeling distances. On average, objects
are 245 meters away from the sensor. Fig. 9 illustrated the
histogram of the number of 3D box labels. Most frames con-
tain 1545 labeled objects, with up to 52 objects in a single
frame and an average of 24 objects per image frame. The
lane distribution analysis in Fig. 11 shows that the majority
of labeled objects are in the southbound lanes, particularly in
lane —2. The highway has 12 lanes in total, six lanes heading
north and six lanes heading south.

4.7. Comparative Analysis

Unlike most 3D perception datasets, which typically focus
on general traffic and non-accident scenarios, our dataset is
dedicated to real-world accidents and near-miss events. This
emphasis on critical situations allows for detailed modeling
and analysis of incidents, setting it apart from popular 3D
perception datasets like KITTI [58, 59], nuScenes [60], and
Waymo Open Dataset [61]. While these datasets capture
diverse traffic objects and scenes, they include no labeled ac-
cident events, limiting their use in the development of safety-
focused AVs. Our dataset’s unique strengths include its rich
3D annotations of accidents, detailed tracking information,
and a variety of accident types such as high-speed collisions,
multi-vehicle pile-ups, and emergency responses. The inclu-

Figure 10. Histogram of the track lengths.
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Figure 11. Lane distribution of all labeled ob-
jects on the highway.

sion of labeled multi-sensor data enables robust multi-modal
data fusion for scene understanding. We provide long tracks,
capturing trajectories across multiple frames and supporting
applications in trajectory prediction and risk assessment,
which are essential for accident anticipation. This dataset
offers a great resource for advancing research in safety-
critical situations, filling a gap in the field with data curated
specifically for accident detection and prevention.

5. Methodology for Accident Detection

Our framework consists of two modules, the detection and
tracking module and the accident detection module. Fig. 2
visualizes the process from detecting objects in raw images
to finally detecting accident events.

5.1. 3D Object Detection and Tracking

Our framework uses 3D perception techniques and multi-
sensor data fusion to create a real-time digital twin of the
traffic. Starting with raw camera images, the framework
first performs 3D object detection using MonoDet3D [14] to
identify and localize vehicles in three dimensions. Following
detection, PolyMOT tracking [56] is applied to maintain
continuity across frames, while sensor data fusion combines
inputs from four roadside cameras and four radars, leading
to generated trajectories and track histories.



Table 2. Evaluation of two object detection methods on our test set.

Table 4. Evaluation of the PolyMOT 3D tracker on our test set.

Model mAP@[.5] mAP@)][.5:.95] mloU FPS
> YOLOv7x-seg 78.50 53.40 85.72 22
° YOLOv8x-seg 80.10 +1.60 58.50 5.10 88.50 12.78 62

Table 3. Maneuver detection rules for the rule-based approach.

Model
PolyMOT 1313 657 20 58 50

FN FP MT PT ML IDS FRAG HOTA MOTA MOTP
19 50 045 0.18 1.63

Table 5. 3D detection results of MonoDet3D on our test set.

Model 3D mAP@|.1]

v; > 12/ Vel. of vehicle (i) > MonoDet3D + YOLOV7 (baseline) 15.20
v, > Vlead.i Ulead,i: Vel. of lead vehicle o MonoDet3D + YOLOvV7 + PO]yMOT 16.23 +1.03
v; >v; Vi<j<N dq, Distance to lead vehicle ° MonoDet3D + YOLOVS 17.77 257

J ' . > MonoDet3D + YOLOVS + PolyMOT 18.24 +3.04
dicad,i = Ainresh ) @ipresn: Predef. distance threshold
d < (YT eadis TTCnq - Time-to-Coll. lead veh. .

i < (“0) feadi 6. Experimental Results

TTCepa; < TTCthreshTTCthreSh: Time-to-Coll. threshold

5.2. Accident Detection Pipeline

Our accident detection pipeline combines rule-based and
learning-based methods to detect and classify accidents
in real-time using roadside infrastructure data. This dual-
module approach uses raw images and the trajectories of
the digital twins that were produced with 3D perception,
tracking, and fusion modules to find accident events.

Rule-Based Accident Detection. This module analyzes
tracked object trajectories, which are generated by the
MonoDet3D and PolyMOT frameworks, as outlined in
the previous section. It extracts features like lane IDs, dis-
tance matrices, and object velocities, identifying potential
accidents through predefined maneuver detection rules (see
Table 3). If all six rules apply simultaneously, the corre-
sponding traffic participant is classified as an accident event.
For example, sudden changes in speed or trajectory angle,
unsafe lane changes, and close proximity situations are
flagged as potential incidents. These rule-based detections
provide immediate alerts and enable rapid incident response.

Learning-Based Accident Detection. To enhance accu-
racy, the pipeline also includes a learning-based YOLOVS
object detector trained on our custom accident dataset.
When the rule-based module signals a potential accident,
the learning-based detector validates the event by analyzing
the camera feed. YOLOVS is fine-tuned to detect accident-
specific cues such as collisions, overturned vehicles, and
vehicle fires, producing classifications with associated con-
fidence scores, object locations, and velocities. Detected
incidents must appear in at least three consecutive frames
with a confidence score above 0.8 to minimize false posi-
tives. Additionally, results from all available cameras in a
scene are fused to enhance robustness. The output of this
integrated accident detection pipeline includes a real-time
accident classification for each detected vehicle, along with
its location and other critical metadata. This pipeline, illus-
trated in Fig. 2, supports both training data preparation and
live accident monitoring on highways.
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First, we outline the benchmark tasks and establish baseline
performance metrics for 3D object detection, 3D tracking,
and 3D accident detection on our dataset. Baseline perfor-
mance metrics include 3D mean average precision (mAP;p)
for 3D detection, Multi-Object Tracking Accuracy (MOTA)
for tracking, and F1 score values for accident classification.

6.1. Object Detection and Tracking Performance

Moreover, we evaluate two 2D detection and segmentation
models on our test set using an input size of 1280? px and
TensorRT acceleration on an NVIDIA RTX 3090 GPU (see
Table 2). The YOLOv8x-seg performs best in all metrics. We
further evaluate the PolyMOT [56] 3D tracker on our test set
and report the results in Table 4.

Ablation Study. We provide an ablation study on our test
set for multiple 3D object detection baselines of MonoDet3D
[14] in combination with different YOLO models and track-
ers. In Table 5 we can see that MonoDet3D performs best
when employing the YOLOvVS model and PolyMOT tracker.

6.2. Accident Classification Evaluation

We recorded camera images and the fused perception results
for 128 days, stored them in rosbag files, and processed these
recordings. The automatic accident analysis was executed on
12,290 15-minute videos. Figure 12 shows the quantitative
evaluation results. In total, 831,969 unique vehicles were
identified (5,547 per day). 26.08% of vehicles were driving
faster than the allowed speed limit of 120 km/h in the south
direction. We found that outbound (north) traffic is often
driving faster than inbound (south). The maximum detected
speed was 264 km/h in the north direction of the highway
where no speed limit is set. We detected 3,748 (0.45%)
standing vehicles in a driving lane, 138 standing vehicles in a
shoulder lane, and 120 breakdown events. Qualitative results
of the rule-based accident detection are shown in Figure 13.

Classification evaluation. We first evaluate the accuracy
and runtime performance of both accident classification
models on our TUMTraf-Accid3nD dataset (see Table 06).
The rule-based approach was able to detect 120 breakdown



Table 6. Accident classification results and runtime evaluation of
the RBA and LBA approach.

Table 7. Runtime comparison. We compare our rule-based and
learning-based accident detection based on the runtime.

Approach Accuracy T Runtime | [s] Sequence Runtime | [s]
F1-Score 1 2 cam. 4 cam. Rule-based Learning-based
Rule-based Approach (RBA) 0.667 0.086  0.127 Sequence SO1, part I 8.63 484.69
Learning-based Approach (LBA) 0.889 4.072 7.995 Sequence SO1, part I 6.60 474.69
Sequence S13, part | 5.02 240.43
Sequence S13, part 11 5.33 248.16
184k Avg. (with 2 cameras) 5.17 244.30

49k 47K 72k .

Avg. (with 4 cameras) 7.61 479.69
3886 Average (overall) 6.39 361.99
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Figure 12. Quantitative results of the RBA accident detection
module over a 128-day monitoring period. The statistics include
the detected vehicles, maneuvers, scenarios, and accident events.

events. Four were false positives due to inaccurate object
detections. This leads to a precision rate of 96.67%. On the
other hand, the learning-based accident detection approach
achieves a precision rate of 75.00%, which is limited by
the relatively small training dataset, which consists of 3,725
images and 2,216 labeled accident events.

Runtime evaluation. The rule-based approach (RBA)
runs at 95.05 FPS (10.41 ms per frame) on an NVIDIA RTX
3090 GPU. The total runtime for a 15-minute rosbag file
with 22,500 ROS messages recorded at 25 FPS is 234.25
seconds. This includes the extraction of the lane ID, the
distance calculation between all vehicles, and the scenario
classification. In Table 7 we compare our two approaches
based on the runtime. On average the RBA approach is about
57 times faster than our learning-based approach (LBA).

7. Conclusion and Future Work

Traffic accidents remain a leading cause of death worldwide,
and the ability to rapidly detect accidents via roadside infra-
structure sensors holds the potential to accelerate emergency
response times and save lives. In this work, we introduced
the TUMTraf-Accid3nD dataset, a resource focused on
accident detection, and evaluated two detection methods
on real-world data. Our dataset, detection framework, and
dev kit are available as open-source tools on our project
website to encourage widespread research and collaboration
across academia and industry. By establishing TUMTraf-
Accid3nD as a benchmark for accident detection, we aim to
foster advancements in accident anticipation and detection,
ultimately supporting the Vision Zero goal of eliminating
traffic fatalities by 2050.
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Figure 13. Qualitative results of our accident detection frame-
work on the TUMTraf-Accid3nD test set. Left: The rule-based
approach detected a rear-end collision. Right: The learning-based
approach detected a car crash with a confidence score of 0.8.

Future Directions. We will expand our dataset to include
more accident events under varied lighting and weather con-
ditions, enhancing its applicability to complex real-world
scenarios. We also plan to incorporate additional types of
accidents in diverse environments, particularly urban areas
where high-risk intersections often involve vulnerable road
users (VRUs). By capturing events where VRUs are at
risk due to behaviors like crossing against traffic signals or
smartphone distraction, we aim to support additional safety
applications. To increase the dataset’s variety, we intend to
expand the number of accidents recorded by five sensors to
include data from 12 cameras on highways and another 12 in
urban settings. Our design allows for integration with VLMs
(see supplementary) to enable the interpretation and analysis
of critical events, thereby supporting advancements in AV
safety and intelligent traffic management. Finally, we will
explore accident video diffusion methods [62] for generating
realistic accident scenarios [63].

Impact on AD Safety. The TUMTraf-Accid3nD dataset
and our detection framework will contribute to autonomous
driving safety by enabling more accurate detection and pre-
diction of accident scenarios. The availability of this dataset
supports the development of robust algorithms aimed at
reducing accident rates, improving system responses, and
ultimately enhancing the safety of AVs on the road.

Limitations. Our RBA module currently focuses on rear-
end collisions. We plan to address that by expanding the
detection framework to capture additional accident types.
Future improvements will enhance the adaptability to detect
a broader range of accidents, further strengthening its value
as a resource for autonomous safety research.
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