

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VECTORGYM: A MULTI-TASK BENCHMARK FOR SVG CODE GENERATION AND MANIPULATION

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce VectorGym, a multi-task benchmark for evaluating Vision-Language Models (VLMs) on Scalable Vector Graphics (SVG) code generation and manipulation. VectorGym addresses the critical lack of challenging benchmarks aligned with real-world design workflows, specifically requiring mastery of complex primitives and multi-step edits. Our benchmark comprises four complementary tasks: the novel Sketch2SVG (VG-Sketch) conversion; a new SVG editing dataset (VG-Edit) involving higher-order primitives and semantic reasoning; and rigorous benchmarks for Text2SVG (VG-Text) and SVG captioning (VG-Cap). VectorGym derives particular value from expert human-authored SVG annotations across all tasks, ensuring a rigorous challenge. VectorGym also introduces a VLM-as-judge metric tailored for SVG generation, validated against human judgment. Our comprehensive evaluation of leading VLMs and our own GRPO-trained models reveals significant performance gaps, establishing VectorGym as a robust framework for advancing visual code generation.

Figure 1: **Overview of VectorGym Benchmark.** VectorGym is a suite of human-annotated datasets covering Sketch2SVG (**VG-Sketch**), SVG Editing (**VG-Edit**), Text2SVG (**VG-Text**), and SVG Captioning (**VG-Cap**). Unlike prior benchmarks, it is built from diverse real-world SVGs sourced from GitHub. Human experts annotate each SVG by hand-drawing sketches, creating complex edits, and writing detailed text descriptions, which are further cleaned and adapted into instruction-style prompts at varying levels of detail. We evaluate state-of-the-art models in VectorGym.

1 INTRODUCTION

Scalable Vector Graphics (SVG) (Ferraiolo et al., 2000; Quint, 2003) are widely used across the web, design tooling, and digital media. Unlike raster images (Rodriguez et al., 2023b;c; Rombach et al., 2021), SVGs are programs: their code exposes geometry, style, and structure, enabling precise editing, scalable rendering, and semantic manipulation. Evaluating models on SVG therefore requires not only visual understanding but also reliable, syntax-aware code generation.

Despite rapid progress in Vision-Language Models (VLMs), existing evaluations of SVG generation remain limited. Prior datasets often target icons or basic shapes, rely on synthetic programmatic edits, rarely assess sketch-conditioned generation nor provide human gold labels (Rodriguez et al., 2023a; Wu et al., 2023; Zhang et al., 2023; Xing et al., 2025; Yang et al., 2025; Rodriguez et al.,

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
196

Figure 2: **Visualization of VG-Edit Test Examples.** We randomly sample 21 examples, and show the editing instruction to perform, along with the source and target vectors.

SVG Datasets and Benchmarks. Foundational SVG datasets include DeepSVG icons (Carlier et al., 2020), FIGR-8 (Clouâtre & Demers, 2019), and SVG-Stack (Rodriguez et al., 2023a). Several benchmarks address different SVG related tasks. UniSVG (Li et al., 2025) unifies 525k SVGs for understanding and generation. VGBench (Zou et al., 2024) aggregates multiple sources to evaluate image to SVG, text to SVG, and diagram code generation. SVGEditBench (Nishina & Matsui, 2024) and its V2 version (Nishina & Matsui, 2025) target instruction based editing using synthetic LLM generated edits or edits derived from similar SVGs. SVGenius Chen et al. (2025) covers a wide set of tasks, notably editing through algorithmic transform based operations.

Here we propose **VectorGym**, which focuses on edits created by humans following instructions that make the edits *complex* and closer to the actions of real design professionals, requiring semantic understanding. We also introduce the novel Sketch2SVG task from human drawn sketches, and we collect human validated text captions that allow evaluation of both Text2SVG and SVG captioning on realistic, high difficulty edits. See Figure 1 for a dataset comparison, and refer to Appendix A for further details.

3 VECTORGYM BENCHMARK

VectorGym consists of four complementary tasks that comprehensively evaluate different aspects of SVG understanding and generation. Each task is designed to assess specific capabilities while contributing to a holistic understanding of visual2code generation performance.

3.1 TASK DEFINITIONS

Sketch2SVG Generation (VG-Sketch). This task evaluates the ability to convert rough, hand-drawn sketches into clean SVG code. Given a bitmap sketch image with approximate shapes and imperfect lines, models must generate SVG code that captures the essential geometric structure while producing a clean, scalable vector representation. This task tests spatial reasoning, shape recognition, and the ability to abstract from noisy visual input to structured geometric primitives.

SVG Editing (VG-Edit). In this task, models are given an SVG along with an editing instruction and must produce a new SVG with the specified edit applied. **VG-Edit** offers unprecedented *complexity* in the challenge of SVG editing. Our editing instructions include deep understanding of the SVG

162 syntax, requiring the use of complex primitives like texts, animations, or color gradients. It also
 163 requires multi-step reasoning and semantic understanding (See examples in Figures 1 (right) and 2).
 164

165 The challenge lies in correctly parsing the intent, identifying the relevant elements, and applying
 166 the transformation while preserving code validity, visual coherence, and the integrity of unmodified
 167 parts. Since instructions and targets were created by skilled human annotators, the edits are non-
 168 trivial, for example, adding new objects, modifying logo content or text, converting a pie chart to a
 169 bar chart, or changing facial expressions. This task evaluates both SVG structure understanding and
 170 the ability to follow complex editing instructions. Figure 2 shows examples from our test set. Unlike
 171 prior benchmarks Nishina & Matsui (2025); Chen et al. (2025), which focus on simple synthetic
 172 programmatic edits, *VG-Edit* introduces complex, *high-difficulty editing scenarios annotated by*
172 human experts.

173 **Text2SVG Generation (VG-Text).** Given natural language descriptions of visual content, models
 174 must generate complete SVG code that accurately represents the described objects, scenes, or ab-
 175 abstract concepts. Descriptions range from simple geometric shapes (“red circle with blue border”) to
 176 complex illustrations (“minimalist icon of a house with a tree”). This task tests creative generation
 177 capabilities and the ability to translate semantic concepts into precise geometric representations.

178 **SVG Captioning (VG-Cap).** The inverse of Text2SVG generation, this task requires models to
 179 analyze existing SVG code and generate natural language descriptions that accurately capture the
 180 visual content, style, and key characteristics. High-quality captions should describe both the semantic
 181 content (“house icon”) and relevant visual properties (“minimalist style,” “blue and white color
 182 scheme”). This task evaluates SVG code comprehension and visual understanding.

184 3.2 DATASET CONSTRUCTION

186 Our datasets are built on a carefully curated SVG collection pipeline designed to ensure diversity
 187 across content types, complexity levels, and visual styles. We source high quality and diverse SVGs
 188 from the SVG Stack dataset (Rodriguez et al., 2023a), an established collection that includes icons,
 189 diagrams, emojis, fonts, logotypes, and complex illustrations. Since the original data was extracted
 190 from GitHub, it naturally reflects in the wild SVG code, including higher order primitives such as
 191 text, gradients, polygons, and animations. This makes the dataset more representative of real design
 192 workflows and provides challenging examples for model development.

193 Our automatic curation builds on insights from prior SVG datasets (Carlier et al., 2020; Clouâtre
 194 & Demers, 2019; Nishina & Matsui, 2024; Li et al., 2025; Chen et al., 2025). We extracted 7,000
 195 candidate samples from the SVG Stack training split through multi stage filtering, including token
 196 length constraints (2k to 8k tokens to retain meaningful complexity), color entropy thresholding
 197 (normalized entropy greater than 0.55), and random subsampling followed by human visual in-
 198 spection. After filtering, the final training set contains 6.5k samples. From these, we selected 100
 199 samples to form our validation set, used for method tuning, in context learning, human evaluation,
 200 and metric design (see Section 3.3). We applied the same pipeline to produce the test split to obtain
 201 300 samples, sourced from the SVG-Stack test set.

202 **Human Annotation Process.** We partnered with two specialized data annotation vendors to pro-
 203 duce high quality annotations across sketch and editing tasks. The process involved more than 20
 204 annotators with diverse backgrounds and expertise in design, vector graphics, and coding. Annota-
 205 tors were provided with drawing tools, coding utilities, and curated SVG collections to perform edits
 206 and create sketches on different surfaces. They were specifically instructed to produce challenging
 207 edits, involving multi-step reasoning, and real design intent, and we iterated several times on these
 208 samples to validate their complexity and quality. See Appendix A.1 for full details on the annotation
 209 methodology, quality assurance procedures, and complexity requirements.

210 **Complex Annotations.** In our setup, *complex annotations* refer to human created editing instruc-
 211 tions and corresponding SVG modifications that require things like deeper understanding of the
 212 SVG syntax because they introduce higher order SVG primitives like texts, gradients or anima-
 213 tions, also edits involving semantic understanding, multi step reasoning (change many things at the
 214 same time), and design intent beyond what can be achieved through simple geometric or algo-
 215 rithmic transformations. These annotations involve operations such as adding new objects, integrating
 external SVG elements, inserting text with meaningful placement, restructuring layouts, or applying

Table 2: **VLM as a Judge and Human Correlation Analysis.** We run generation on the tasks for Claude 4.5, Gemini 3 Pro, and GPT-4o, and evaluate outputs using a range of VLMs (both closed and open, large models) to score them with the prompts presented. We also collect human ratings using the same instructions given to VLM judges, then compute Pearson correlation to identify the best VLMs as judges. The evaluation uses 100 validation samples extracted from the training set. Results show Gemini 3 Pro is generally the best judge, except for the editing task where Qwen3.VL appears to be a better choice. Sketch and text tasks show lower correlations, likely due to the more creative nature of these tasks.

Task	Generator	Models used as Judges						
		Claude 4.5 Sonnet	Gemini 2.5 Flash	Gemini 3 Pro	GPT 5.1	Qwen2.5VL 72B	Qwen3.VL 235B	GLM4.5 355B
VG-Sketch	Ground Truth	1.00	1.00	1.00	1.00	1.00	1.00	-0.07
	Claude 4.5 Sonnet	0.63	0.73	0.72	0.62	0.57	0.69	0.67
	Gemini 3 Pro	0.79	0.82	0.80	0.78	0.76	0.79	0.72
	GPT 4o	0.66	0.70	0.74	0.61	0.59	0.72	0.64
	Average	0.77	0.81	0.81	0.75	0.73	0.80	0.49
VG-Cap	Ground Truth	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	Claude 4.5 Sonnet	0.62	0.57	0.71	0.62	0.65	0.71	0.60
	Gemini 3 Pro	0.48	0.47	0.55	0.49	0.43	0.53	0.48
	GPT 4o	0.52	0.46	0.55	0.47	0.53	0.54	0.55
	Average	0.66	0.63	0.70	0.65	0.65	0.69	0.66
VG-Edit	Ground Truth	-0.10	0.10	1.00	1.00	0.27	1.00	0.08
	Claude 4.5 Sonnet	0.29	0.30	0.49	0.53	0.28	0.45	0.48
	Gemini 3 Pro	0.49	0.47	0.54	0.57	0.04	0.61	0.56
	GPT 4o	0.59	0.61	0.61	0.69	0.29	0.64	0.62
	Average	0.32	0.37	0.66	0.70	0.22	0.67	0.43
VG-Text	Ground Truth	0.01	-0.07	-0.08	0.19	-0.19	0.15	-0.07
	Claude 4.5 Sonnet	0.16	0.43	0.58	0.21	0.15	0.23	0.08
	Gemini 3 Pro	0.37	0.42	0.44	0.48	0.24	0.37	0.32
	GPT 4o	0.50	0.71	0.63	0.58	0.25	0.66	0.55
	Average	0.26	0.38	0.40	0.37	0.11	0.35	0.22

several coordinated edits simultaneously. They reflect realistic design actions performed by human experts and cannot be reproduced by rule based procedures or low level manipulations.

3.3 DESIGNING A VLM-AS-JUDGE EVALUATION METRIC FOR SVG GENERATION

Traditional evaluation metrics for SVG generation (typically based on image reconstruction or text-image alignment) often fall short in capturing the nuanced visual and semantic qualities that determine the success of generated vector graphics (Rodriguez et al., 2023a; Li et al., 2025; Chen et al., 2025). Existing work lacks comprehensive evaluation frameworks tailored to SVG generation, particularly metrics that can jointly assess visual fidelity and semantic alignment in vector code outputs (Zou et al., 2024; Nishina & Matsui, 2025).

VLM-as-judge (VLMAJ) metrics have become popular because they provide strong supervision signals for subjective task assessments, especially in text and image generation tasks Mañas et al. (2024). *Existing VLMAJ metrics do not capture the nuances of SVG code and SVG rendering.* They are also not reliable for tasks such as sketch based generation and SVG editing, where no consistent metric previously existed. For this reason we design a metric specifically tailored to the four SVG generation tasks in our benchmark.

We generate outputs from several strong baseline models and then apply carefully designed prompts to a set of powerful VLMs, both open and closed source, to obtain scores from 0 to 5 following clear evaluation criteria (see Appendix D). We run the same evaluation setup with human raters and then compute Pearson correlations between VLM and human scores. This produces four task specific VLMAJ metrics, one for each task in our benchmark, providing a more faithful measure of instruction following, SVG structural correctness, and semantic alignment.

1. Metric Development Process. We carefully develop task-specific evaluation prompts designed to guide VLMs in assessing different aspects of SVG generation quality. For each of the four main generation tasks, we craft specialized prompts that encourage models to evaluate: (1) visual accuracy and fidelity; (2) semantic alignment with input requirements; (3) code quality and efficiency; and (4) overall aesthetic appeal.

2. Judge Model Selection. To identify the most reliable VLM judge, we conduct a systematic comparison across state-of-the-art models: Claude 4.5 Sonnet, Gemini 2.5 Flash, Gemini 3 Pro,

Figure 3: **Qualitative results on VectorGym.** We display VLM-Judge and Human scores on a scale from 0 to 5. Each task shows three validation samples alongside the strongest models in our evaluation. Human ratings tend to be stricter, while VLM judges are more permissive and often cluster around mid-range values when uncertain.

Qwen 2.5VL 72B-235B, and GLM 4.5 355B, covering closed-open source performance, and large-mid scale sizes.

3. SVG Generation and VLMAJ Evaluation. We evaluate state of the art models on the validation set (100 samples). We select Claude 4.5 Sonet, Gemini 3 Pro, and GPT4o, and run generation experiments on the four tasks. The resulting outputs are then scored by all VLM judges described above. We also compute scores for the ground truth SVGs, which should receive the highest ratings, providing a way to assess the overall dataset quality.

4. Human Evaluation. We repeat the same evaluation setup with human raters. They receive the same prompt with the specified criteria and score the generations from all models as well as the ground truth data. A total of 17 human evaluators participated, all technical engineers or AI and design experts, producing around 674 ratings used to correlate each VLM with human judgment.

5. Correlation Validation and VLMAJ Selection. We compute Pearson correlation coefficients between human judgments and each candidate VLM judge for every task and report the results in Table 2. We also include average validation scores for the three generation models in Table 6, showing both human ratings and VLM evaluations. Ground Truth acts as a reliable anchor only for VG Sketch and VG Cap, where human agreement is high due to clearer visual semantics. For VG Edit and VG Text, correlations drop even on perfect examples, indicating that these tasks contain more structural ambiguity and are inherently harder to evaluate with full consensus. This further motivates the need for robust automatic judges tailored to each task. The correlation results highlight clear preferences among VLM judges. Gemini Flash and Gemini 3 Pro provide the strongest alignment with human ratings in VG Sketch, and Gemini 3 Pro also achieves the highest correlation in VG Cap. For VG Edit, which is the most challenging task, Gemini 3 Pro and GPT 5.1 stand out as the only reliable options, with GPT 5.1 showing a slight advantage. For VG Text, Gemini Flash ranks highest, with GPT 5.1 again performing consistently. Qwen3 VL 235B emerges as the most stable open source option, performing well across VG Sketch, VG Cap, and VG Edit, with the main weakness appearing in VG Text. Based on these findings, we select Gemini 3 Pro as the primary VLMAJ judge for VG Sketch, VG Cap, and VG Text. For VG Edit, we use GPT 5.1, which shows the strongest alignment with human judgments on this task.

3.4 EVALUATION

We describe the metrics used for evaluation in VectorGym, in addition to the VLM-as-Judge metric defined above.

Visual Similarity. For tasks that require visual reproduction (Sketch2SVG, Text2SVG), we measure similarity between generated and target SVGs after rendering them to pixels. We use pixel Mean Squared Error (MSE), perceptual similarity (LPIPS), and Dino, a deep feature metric that captures alignment in learned representations (Oquab et al., 2023).

Semantic Accuracy. For Text2SVG, we evaluate whether the generated SVG captures the intended semantic meaning of the text through CLIP-based similarity and the VLM-Judge metric. For SVG

324 Editing, we rely exclusively on the VLM-Judge since CLIP does not align well with editing instruc-
 325 tions or edited outputs.

326 **SVG Captioning Metrics.** For captioning, we report ROUGE-L F1 (0 to 100, higher is better),
 327 BGE-M3 cosine similarity (0 to 100, higher is better), and an LLM-based rubric score (GPT-5
 328 mapped from 0 to 5 into 0 to 100). Metrics are computed pairwise over each reference and prediction
 329 caption, then averaged across the corpus.

330 **Human Evaluation.** A subset of outputs from the top performing models on the validation split is
 331 evaluated by expert annotators. They assess overall quality, semantic correctness, and task specific
 332 criteria (see Table 6).

333 **Overall VectorGym Score.** We define an overall score for our benchmark, intended to measure
 334 multi-task performance across SVG generation from sketches and texts, complex editing of SVGs,
 335 and SVG understanding through captioning from code. First, we compute a task-specific score
 336 S_{task} for each of the four tasks. For Sketch2SVG and SVG Editing, the score is the average of the
 337 VLM Judge, DINO, inverted MSE (100 – MSE), and inverted LPIPS (100 – LPIPS), ensuring all
 338 components contribute positively. For Text2SVG, we average the VLM Judge, CLIP, and DINO
 339 scores. For SVG Captioning, we average the VLM Judge, BGE-M3, and ROUGE scores. Finally,
 340 the overall VectorGym score is computed as the arithmetic mean of the four task-specific scores:

$$\text{VectorGym} = \frac{1}{4} \sum_{\tau \in \mathcal{T}} S_{\tau} \quad (1)$$

341 where $\mathcal{T} = \{\text{Sketch, Edit, Text, Caption}\}$. All individual metrics are scaled to a range of [0, 100]
 342 prior to aggregation.

343 4 EXPERIMENTS

344 We conduct comprehensive evaluation across all four VectorGym tasks using state-of-the-art VLMs.
 345 Our experimental setup is designed to provide fair comparison while highlighting the unique chal-
 346 lenges of SVG code generation.

347 4.1 METHODS AND BASELINES

348 We conduct a comprehensive evaluation using all available state-of-the-art VLMs that support code
 349 generation capabilities. Our baseline selection follows a systematic approach to ensure comprehen-
 350 sive coverage of the current landscape.

351 **In-Context Learning Experiments.** First we evaluate the capabilities of frontier trained models
 352 capanilites at this tasks with in-context learning giving a strong prompt to descrinbe the task to
 353 perform. We include open and closed source models wioht the prompts specifgied in Appendix D.

354 *A. Closed-Source Models.* We evaluate leading commercial VLMs that demonstrate strong perfor-
 355 mance on visual understanding and code generation tasks: Gemini 2.5 Flash, **Gemini 3 Pro**, GPT4o,
 356 GPT-5.1, and Claude Sonet 4.5. These models represent the current state-of-the-art in multimodal
 357 understanding and have shown exceptional capabilities in various vision-language and code genera-
 358 tion benchmarks.

359 *B. Open-Source Models.* To ensure comprehensive coverage and reproducible research, we in-
 360 clude leading open-source alternatives: Qwen2.5VL 32B-72B Instruct, Qwen3VL 8B-235B, and
 361 GLM4.5V 108B. We made best efforts to identify and include all available VLM models with pub-
 362 lic code implementations that could be executed on our tasks.

363 **RL Training Experiments.** We also train a Qwen3VL 8B Instruct model using the RLRF (Rein-
 364 forcement Learning from Rendering Feedback) framework (Rodriguez et al., 2025), which applies
 365 GRPO (Shao et al., 2024) together with rendered SVG outputs to compute rewards. The model is
 366 trained on the VectorGym train split across all four tasks simultaneously. Further details on this
 367 approach are provided in Appendix C.

(a) **VG-Sketch Qualitative Results.** The leftmost column displays the input raster sketch, followed by the outputs from top-performing models. Gemini 3 Pro demonstrates superior fidelity in preserving topological structure compared to GPT-5.1 and others.

(b) **VG-Edit Qualitative Results.** Left to right: natural language edit instruction, input SVG, and model outputs. Gemini 3 Pro, Claude 4.5 Sonnet, and GPT5.1 effectively execute complex semantic modifications, whereas our trained models struggle to follow some multi-step edits.

Figure 4: Qualitative comparison of model performance on Sketch2SVG and SVG Editing tasks.

5 RESULTS

We present a comprehensive evaluation of state-of-the-art VLMs across the four VectorGym tasks. Our analysis reveals significant performance variance across different modalities of SVG generation and manipulation, highlighting distinct capability gaps between proprietary and open-source models.

Table 3: **Sketch2SVG and SVG Editing Performance.** Metrics are reported such that higher values indicate better performance (\uparrow) or lower values indicate better performance (\downarrow). To compute the unified **Score**, MSE and LPIPS are inverted ($100 - x$) and averaged with VLM Judge and DINO, all scaled to $[0, 100]$. **Overall** represents the arithmetic mean of scores across all four tasks. The best results in each category are marked in **bold**.

Model	Sketch2SVG					SVG Editing					Overall	
	VLM J \uparrow	MSE \downarrow	DINO \uparrow	LPIPS \downarrow	Score \uparrow	VLM J \uparrow	MSE \downarrow	DINO \uparrow	LPIPS \downarrow	Score \uparrow		
<i>Open-source Models</i>												
Qwen2.5VL 72B Instruct	12.80	16.43	69.87	43.95	55.57	16.60	18.68	70.35	38.21	57.52	44.27	
Qwen2.5VL 32B Instruct	17.80	15.15	71.63	42.65	57.91	20.20	17.04	72.31	37.05	59.61	49.16	
GLM4.5V	33.80	14.14	78.61	41.35	64.23	37.60	13.39	80.90	31.76	68.34	57.02	
Qwen3VL 8B Instruct	33.00	13.76	81.01	40.97	64.82	57.40	11.01	90.44	25.27	77.89	58.74	
Qwen3VL 235B Instruct	40.00	13.37	83.69	40.23	67.52	60.40	9.02	91.17	22.11	80.11	62.32	
Qwen3VL 8B Gym (Ours)	46.00	11.99	88.25	39.37	70.72	67.00	8.36	93.94	21.34	82.81	66.05	
<i>Proprietary Models</i>												
Gemini 2.5 Flash	36.80	13.67	79.13	40.45	65.45	65.80	9.98	90.54	21.16	81.30	61.42	
GPT-4o	46.00	13.17	85.11	39.74	69.55	66.80	8.43	92.27	21.24	82.35	64.93	
Claude Sonnet 4.5	58.80	12.54	88.42	39.29	73.85	79.40	6.29	95.61	16.46	88.07	70.31	
GPT-5.1	64.00	12.28	89.47	38.42	75.69	78.00	5.92	95.59	16.83	87.71	71.36	
Gemini 3 Pro	72.20	11.31	89.78	36.43	78.56	81.20	5.89	95.55	16.01	88.71	73.17	

5.1 SKETCH2SVG GENERATION

The Sketch2SVG task evaluates the model’s ability to infer vector geometry from raster sketches, a problem characterized by high ambiguity and visual abstraction. As shown in Table 3, **Gemini 3 Pro achieves the highest performance**, obtaining a Score of 78.56 and a VLM Judge score of 72.20. This indicates a superior capability in mapping pixel-level visual features to precise SVG path commands. GPT-5.1 follows with a Score of 75.69.

432 Table 4: **Text2SVG and SVG Captioning Performance.** Higher values indicate better performance
 433 (\uparrow). DINO scores for Text2SVG are scaled to [0, 100]. The **Score** column represents the unweighted
 434 average of metrics within each task.

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485		436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485				436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485			
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	VLM J \uparrow	CLIP \uparrow	DINO \uparrow	Score \uparrow	VLM J \uparrow	BGE-M3 \uparrow	ROUGE \uparrow	Score \uparrow	
Open-source Models									
Qwen2.5-VL-72B-Instruct	25.80	25.78	71.00	40.86	9.60	52.08	7.70	23.13	
Qwen3-VL-8B-Instruct	55.20	29.48	81.71	55.46	25.20	66.27	18.87	36.78	
GLM-4.5V	59.40	28.91	80.44	56.25	38.00	62.85	16.86	39.24	
Qwen3-VL-32B-Instruct	22.60	24.95	68.96	38.84	38.40	66.10	16.35	40.28	
Qwen3-VL-235B-Instruct	66.80	29.60	82.63	59.68	40.40	67.14	18.33	41.96	
Qwen3-VL-8B-Gym (Ours)	72.80	30.55	87.46	63.60	35.80	79.76	25.58	47.05	
Proprietary Models									
GPT-4o	74.60	30.43	84.23	63.09	46.00	66.82	21.33	44.72	
Gemini 2.5 Flash	54.00	27.67	77.65	53.11	45.80	69.24	22.45	45.83	
Claude Sonnet 4.5	89.00	30.91	87.66	69.19	59.20	70.17	21.08	50.15	
GPT-5.1	93.00	30.83	88.20	70.68	62.20	70.45	21.49	51.38	
Gemini 3 Pro	89.80	30.87	89.09	69.92	70.40	72.27	23.83	55.50	

452 Notably, the performance gap between the top model and the open-source baseline is significant.
 453 However, our proposed Qwen3VL 8B Gym model achieves a Score of **70.72**, surpassing both
 454 **GPT-4o (69.55)** and the much larger Qwen3VL 235B (67.52). The Gym model’s VLM Judge
 455 score (46.00) represents a substantial improvement over the base Qwen3VL 8B Instruct (33.00),
 456 validating the efficacy of curriculum learning for structural visual alignment.

5.2 SVG EDITING

460 SVG Editing requires disjoint reasoning capabilities: parsing the existing code structure and manip-
 461 ulating it according to natural language instructions. **Gemini 3 Pro again leads this task with a**
 462 **Score of 88.71**, closely followed by Claude Sonnet 4.5 (88.07). Claude Sonnet 4.5 notably achieves
 463 the highest DINO score (95.61) and lowest MSE (6.29), suggesting it generates visually faithful
 464 edits even if the structural implementation differs slightly from the ground truth.

465 **Our Qwen3VL 8B Gym demonstrates remarkable competitiveness in this domain**, achieving a
 466 Score of 82.81. This performance exceeds that of GPT-4o (82.35) and approaches the proprietary
 467 frontier. The low MSE (8.36) of the Gym model compared to the base 8B model (11.01) indi-
 468 cates that fine-tuning on edit trajectories significantly enhances the model’s precision in coordinate
 469 manipulation.

5.3 TEXT2SVG GENERATION

473 Table 4 presents our Text2SVG generation results, revealing clear performance hierarchies and in-
 474 teresting patterns. Among proprietary models, **GPT-5.1 achieves state-of-the-art performance**
 475 with a VLM Judge score of 93.00 and an overall Score of 70.68. The proprietary models exhibit
 476 a relatively narrow performance band, with Gemini 3 Pro (69.92) and Claude Sonnet 4.5 (69.19)
 477 performing comparably.

478 Among open-source models, **our fine-tuned Qwen3VL 8B Gym outperforms the larger**
 479 **Qwen3VL 235B baseline** (Score: 63.60 vs. 59.68) and achieves parity with GPT-4o (63.09). This
 480 result emphasizes that for well-defined generation tasks, specialized smaller models can effectively
 481 compete with general-purpose frontier models.

5.4 SVG CAPTIONING

483 The SVG Captioning results in Table 4 reveal interesting patterns distinct from the generation tasks.

486 **Gemini 3 Pro dominates the VLM Judge metric (70.40)**, significantly outperforming other mod-
 487 els, which aligns with its robust ability to map code structure back to high-level semantic descrip-
 488 tions. However, the traditional NLP metrics show different rankings: our Qwen3VL 8B Gym
 489 achieves the highest BGE-M3 (79.76) and ROUGE scores (25.58) across the entire benchmark.

490 **Qwen3VL 8B Gym outperforms all proprietary models in keyword-based metrics.** This dis-
 491 crepancy between its state-of-the-art retrieval scores and its lower VLM Judge score (35.80 com-
 492 pared to 40.40 for the Qwen3VL 235B baseline) suggests that while the Gym model captures salient
 493 semantic details, it may lack the conversational fluency or formatting preference favored by the
 494 VLM Judge.

496 5.5 CROSS-TASK ANALYSIS

498 Our comprehensive evaluation across Text2SVG, SVG Editing, and Sketch2SVG reveals several
 499 critical insights about current VLM capabilities in vector graphics generation.

501 **Overall Performance Hierarchy.** Aggregating across all tasks, Gemini 3 Pro achieves the highest
 502 VectorGym score of 73.17, followed by GPT-5.1 (71.36). This establishes Gemini 3 Pro as the most
 503 capable model for multimodal code-visual reasoning tasks.

504 **Effectiveness of Specialized Fine-Tuning.** The Qwen3VL 8B Gym model achieves an overall
 505 score of 66.05, surpassing GPT-4o (64.93) and substantially outperforming its larger counterpart,
 506 Qwen3VL 235B (62.32). This finding validates the hypothesis that the limitations of smaller param-
 507 eter counts can be effectively offset by high-quality, task-specific curriculum learning in the SVG
 508 domain.

509 **Task Complexity.** The results establish a clear difficulty hierarchy: Text2SVG (easiest, GPT-5.1:
 510 93.00) > SVG Editing (intermediate, Gemini 3 Pro: 81.20) > Sketch2SVG (Gemini 3 Pro: 72.20) >
 511 SVG Captioning (hardest, Gemini 3 Pro: 70.40). This ranking aligns with intuitive expectations: text
 512 descriptions provide explicit semantic guidance, editing requires understanding existing structures,
 513 sketches demand interpretation of imprecise visual input, while captioning requires the rigorous
 514 abstraction of high-level semantics from low-level geometric code.

516 6 CONCLUSION

518 We introduced VectorGym, a new comprehensive multi-task benchmark for SVG code generation
 519 that encompasses Sketch2SVG, SVG editing, Text2SVG, and SVG captioning. VectorGym in-
 520 troduces Sketch2SVG and releases the first dataset of complex, human-authored SVG edits, with
 521 gold-standard human annotations across all tasks. Our 7,000-sample evaluation and novel VLM-
 522 as-judge metrics reveal significant performance gaps between proprietary and open-source models,
 523 with open-source alternatives showing competitive results in editing and captioning. VectorGym
 524 establishes a new evaluation standard for visual code generation and provides robust benchmarks to
 525 advance SVG generation capabilities.

527 **Use of LLMs** We leveraged large language models (LLMs) to support different aspects of this
 528 work. They assisted with coding tasks needed to build the datasets and run experiments. Models
 529 such as GPT-4o, GPT-5, and Claude-4-Sonnet were also used to help with related work exploration
 530 and to ensure a comprehensive literature review. In addition, we employed LLMs for rephrasing and
 531 refinement while writing this paper, with the goal of improving flow, clarity, and correcting spelling
 532 errors. Importantly, we followed strict rules to preserve the accuracy and details of our contributions,
 533 and all generated content was carefully reviewed, manipulated, and edited by the authors.

535 **Limitations** VectorGym expands the range of capabilities that can be evaluated and optimized for
 536 fine grained control of state of the art SVG models. We tested several leading models in a zero
 537 shot setting, and we also ran RL training experiments that produced strong results. Still, we do not
 538 fully explore the space of training strategies for these tasks. Future research can focus on improving
 539 how models tackle sketch based generation and complex editing, potentially with more efficient and
 more accurate approaches tailored to these settings.

540 **Ethics Statement** The models evaluated in this benchmark may exhibit biases inherited from their
 541 training data, potentially affecting the fairness and representation of generated SVG content across
 542 different demographics, cultures, and artistic styles. We have performed extensive filtering and
 543 human curation to ensure VectorGym does not include such instances.
 544

545 **REFERENCES**
 546

547 Mu Cai, Zeyi Huang, Yuheng Li, Haohan Wang, and Yong Jae Lee. Leveraging large language mod-
 548 els for scalable vector graphics-driven image understanding. *arXiv preprint arXiv:2306.06094*,
 549 2023.

550 Defu Cao, Zhaowen Wang, Jose Echevarria, and Yan Liu. Svgformer: Representation learning for
 551 continuous vector graphics using transformers. In *Proceedings of the IEEE/CVF Conference on*
 552 *Computer Vision and Pattern Recognition*, pp. 10093–10102, 2023.

553 Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. Deepsvg:
 554 A hierarchical generative network for vector graphics animation. In *NeurIPS*,
 555 2020. URL <https://proceedings.neurips.cc/paper/2020/file/bcf9d6bd14a2095866ce8c950b702341-Paper.pdf>.

556 Siqi Chen, Xinyu Dong, Haolei Xu, Xingyu Wu, Fei Tang, Hang Zhang, Yuchen Yan, Linjuan Wu,
 557 Wenqi Zhang, Guiyang Hou, et al. Svgenius: Benchmarking llms in svg understanding, editing
 558 and generation. In *Proceedings of the 33rd ACM International Conference on Multimedia*, pp.
 559 13289–13296, 2025.

560 Louis Clouâtre and Marc Demers. Figr: Few-shot image generation with reptile. *arXiv:1901.02199*,
 561 2019. URL <https://arxiv.org/abs/1901.02199>.

562 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 563 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 564 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 565 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

566 Jon Ferraiolo, Fujisawa Jun, and Dean Jackson. *Scalable vector graphics (SVG) 1.0 specification*.
 567 iuniverse Bloomington, 2000.

568 Ajay Jain, Amber Xie, and Pieter Abbeel. Vectorfusion: Text-to-svg by abstracting pixel-based
 569 diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 570 *Recognition*, pp. 1911–1920, 2023.

571 Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferran-
 572 dis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb of
 573 permissively licensed source code. *arXiv preprint arXiv:2211.15533*, 2022.

574 Jinke Li, Jiarui Yu, Chenxing Wei, Hande Dong, Qiang Lin, Liangjing Yang, Zhicai Wang, and
 575 Yanbin Hao. Unisvg: A unified dataset for vector graphic understanding and generation with
 576 multimodal large language models. *arXiv preprint arXiv:2508.07766*, 2025.

577 Tzu-Mao Li, Michal Lukáč, Michaël Gharbi, and Jonathan Ragan-Kelley. Differentiable vector
 578 graphics rasterization for editing and learning. *ACM TOG (SIGGRAPH Asia)*, 2020. URL
 579 <https://people.csail.mit.edu/tzumao/difvg/>.

580 Zihe Liu, Jiashun Liu, Yancheng He, Weixun Wang, Jiaheng Liu, Ling Pan, Xinyu Hu, Shaopan
 581 Xiong, Ju Huang, Jian Hu, et al. Part i: Tricks or traps? a deep dive into rl for llm reasoning.
 582 *arXiv preprint arXiv:2508.08221*, 2025.

583 Raphael Gontijo Lopes, David Ha, Douglas Eck, and Jonathon Shlens. A learned representation for
 584 scalable vector graphics. In *Proceedings of the IEEE/CVF International Conference on Computer*
 585 *Vision*, pp. 7930–7939, 2019.

586 Oscar Mañas, Benno Krojer, and Aishwarya Agrawal. Improving automatic vqa evaluation using
 587 large language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol-
 588 ume 38, pp. 4171–4179, 2024.

594 Kunato Nishina and Yusuke Matsui. Svgeditbench: A benchmark dataset for quantitative assessment
 595 of llm's svg editing capabilities. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 596 and *Pattern Recognition*, pp. 8142–8147, 2024.

597

598 Kunato Nishina and Yusuke Matsui. Svgeditbench v2: A benchmark for instruction-based svg
 599 editing. *arXiv preprint arXiv:2502.19453*, 2025.

600 OpenAI. Gpt-4 technical report, 2023.

601

602 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 603 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 604 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

605 Antoine Quint. Scalable vector graphics. *IEEE MultiMedia*, 10(3):99–102, 2003.

606

607 Juan A Rodriguez, Shubham Agarwal, Issam H Laradji, Pau Rodriguez, David Vazquez, Christopher
 608 Pal, and Marco Pedersoli. Starvector: Generating scalable vector graphics code from images.
 609 *arXiv preprint arXiv:2312.11556*, 2023a.

610 Juan A Rodriguez, David Vazquez, Issam Laradji, Marco Pedersoli, and Pau Rodriguez. Figgen:
 611 Text to scientific figure generation. *arXiv preprint arXiv:2306.00800*, 2023b.

612

613 Juan A Rodriguez, David Vazquez, Issam Laradji, Marco Pedersoli, and Pau Rodriguez. Ocr-vqgan:
 614 Taming text-within-image generation. In *Proceedings of the IEEE/CVF Winter Conference on*
 615 *Applications of Computer Vision*, pp. 3689–3698, 2023c.

616 Juan A Rodriguez, Haotian Zhang, Abhay Puri, Aarash Feizi, Rishav Pramanik, Pascal Wichmann,
 617 Arnab Mondal, Mohammad Reza Samsami, Rabiul Awal, Perouz Taslakian, et al. Rendering-
 618 aware reinforcement learning for vector graphics generation. *arXiv preprint arXiv:2505.20793*,
 619 2025.

620 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 621 resolution image synthesis with latent diffusion models, 2021.

622

623 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 624 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 625 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

626 Yael Vinker, Ehsan Pajouheshgar, Jessica Y Bo, Roman Christian Bachmann, Amit Haim Bermano,
 627 Daniel Cohen-Or, Amir Zamir, and Ariel Shamir. Clipasso: Semantically-aware object sketching.
 628 *ACM Transactions on Graphics (TOG)*, 41(4):1–11, 2022.

629

630 Vision Cortex. VTracer. <https://www.visioncortex.org/vtracer-docs>, 2023.

631

632 Ronghuan Wu, Wanchao Su, Kede Ma, and Jing Liao. Iconshop: Text-based vector icon synthesis
 633 with autoregressive transformers. *arXiv preprint arXiv:2304.14400*, 2023.

634

635 Ximing Xing, Juncheng Hu, Guotao Liang, Jing Zhang, Dong Xu, and Qian Yu. Empowering llms
 636 to understand and generate complex vector graphics. In *Proceedings of the Computer Vision and*
 637 *Pattern Recognition Conference*, pp. 19487–19497, 2025.

638

639 Yiyi Yang, Wei Cheng, Sijin Chen, Xianfang Zeng, Fukun Yin, Jiaxu Zhang, Liao Wang, Gang
 640 Yu, Xingjun Ma, and Yu-Gang Jiang. Omnisvg: A unified scalable vector graphics generation
 641 model. *arXiv preprint arXiv:2504.06263*, 2025.

642

643 Tong Zhang, Haoyang Liu, Peiyan Zhang, Yuxuan Cheng, and Haohan Wang. Beyond pixels:
 644 Exploring human-readable svg generation for simple images with vision language models, 2023.
 645 URL <https://arxiv.org/abs/2311.15543>.

646

647 Bocheng Zou, Mu Cai, Jianrui Zhang, and Yong Jae Lee. Vgbench: Evaluating large language
 648 models on vector graphics understanding and generation. *arXiv preprint arXiv:2407.10972*, 2024.

648 A VECTORGYM DATA CREATION
649
650651 Here we provide additional details on the VectorGym datasets. Figures 2 and 5 illustrate test sam-
652 ples for the Sketch2SVG (VG-Sketch) and SVG Editing (VG-Edit) tasks. We further describe the
653 annotation methodology, data creation and sampling process, annotation details, and task definitions.
654
655656 A.1 ANNOTATION METHODOLOGY
657658 A.1.1 DATA CURATION AND SAMPLING
659661 We extracted 7,000 high-quality samples from the SVG-Stack dataset through a rigorous multi-stage
662 filtering process:663 **Visual Quality Assessment:** Human experts manually reviewed SVG samples to identify visually
664 appealing and well-formed graphics, filtering out corrupted, overly simplistic, or poorly designed
665 samples.667 **Token Length Filtering:** We applied token length constraints (2,000-8,000 tokens) to ensure mean-
668 ingful complexity while maintaining computational feasibility. This range captures rich, detailed
669 SVGs without exceeding practical processing limits for current VLMs.670 **Color Entropy Thresholding:** We computed color entropy for each SVG to ensure visual diversity,
671 filtering samples with insufficient color variation or monotonic palettes.672 **Random Sampling:** Final samples were randomly selected to avoid systematic biases in content
673 distribution.675 From the curated set of 7,000 samples, we kept the 300 items that originally belonged to the SVG
676 Stack test split as our test set to avoid any train and test contamination. We also selected 100 samples
677 from the training split for validation, which we used during development for method tuning, and
678 for the human evaluation and correlation study used to design our VLM as a judge metric (see
679 Section 3.3).680
681 A.1.2 ANNOTATION VENDOR PARTNERSHIP
682

684 We partnered with two specialized data annotation vendors to ensure task-specific expertise:

685 **Vendor 1 - Sketch and Caption Generation:** Specialized in visual content creation, responsible
686 for sketch generation and text descriptions. Annotators were equipped with professional drawing
687 tools (digital tablets, cameras for hand-drawn sketches) and trained on SVG visual analysis.688 **Vendor 2 - SVG Editing:** Focused on technical SVG manipulation, staffed with annotators having
689 design and vector graphics backgrounds. We developed custom SVG editing tools specifically for
690 this project to enable precise modifications.694 A.1.3 ANNOTATOR DEMOGRAPHICS AND TRAINING
695696 Our annotation team comprised over 20 annotators with diverse demographics and gender represen-
697 tation. All annotators underwent specialized training:698 **Technical Requirements:** Background in design, vector graphics, or coding. Annotators were
699 tested on SVG understanding and tool proficiency before assignment.700 **Equipment and Tools:** Professional cameras for photographing hand-drawn sketches, digital draw-
701 ing tablets, custom SVG editing software, and standardized annotation interfaces.

Figure 5: **Visualization of VG-Sketch Test Examples.** We randomly sample 30 examples, and show the sketch and the target vector.

A.1.4 TASK-SPECIFIC ANNOTATION PROCEDURES

Sketch2SVG Generation: Annotators were provided with SVG images and asked to create corresponding sketches in two variants:

- **Hand-drawn:** Using pen or pencil on paper, photographed with standardized lighting and resolution
- **Digital:** Created using drawing tablets and stylus input for consistent digital sketches

Both variants included colored and black-and-white versions to test model robustness across different input modalities.

SVG Editing - Ensuring Complexity: We implemented strict complexity requirements to avoid trivial edits that could be synthetically generated:

Prohibited Simple Edits: Rotation, color changes, scaling, basic shape removal - operations easily automated by current LLMs.

Required Complex Edits: Path modifications, primitive additions, parameter adjustments, conceptual additions requiring semantic understanding. For example:

- Adding elements from other SVGs in the database (e.g., incorporating a needle shape into a hammer SVG)
- Modifying facial expressions in character illustrations
- Converting chart types (pie to bar charts)
- Structural modifications requiring new geometric primitives

Caption Generation: We implemented a comprehensive multi-stage process for generating high-quality text descriptions:

1. **Detailed Visual Description:** Annotators created comprehensive descriptions of vector graphics, with particular emphasis on color specification. To ensure color accuracy, annotators were required to include hexadecimal color codes in parentheses alongside natural language color descriptions (e.g., "red (#FF0000)").

756 2. **Cross-validation with VLM:** All human-generated descriptions were processed and cross-
757 validated using Qwen2-VL-32B to ensure consistency and completeness of visual descrip-
758 tions.
759
760
761
762
763
764

765 3. **Instruction Reformatting:** Captions were systematically reformatted from descriptive
766 statements into instruction-style prompts suitable for the Text2SVG generation task. This
767 process generated two distinct variants:
768
769
770
771
772
773

774 • **Hexadecimal Color Version:** Instructions containing precise hexadecimal color
775 specifications, which empirically demonstrate superior SVG generation accuracy
776
777

778 • **Natural Language Color Version:** Instructions using standard color names for
779 broader accessibility
780
781
782
783
784
785

786 4. **Quality Validation:** Final consistency checks and inter-annotator agreement measurement
787 across all caption variants
788
789
790
791
792

793 **Quality Assurance:** All annotations underwent rigorous quality control including automated SVG
794 syntax validation, human verification of task requirements, and consistency checks across related
795 task pairs.
796
797
798
799
800
801
802

803 B ADDITIONAL QUALITATIVE RESULTS 804 805 806 807 808

809 We provide additional figures (Figures 6–10) showing qualitative results of the models on the pre-
810 sented tasks.

Figure 6: Visualization of test performance on the Sketch2SVG task. When the input sketch lacks color, models tend not to introduce new colors. In contrast, when color is present in the sketch, models successfully reproduce it in the generated SVG.

864

865

866
Sample 1
ca5fb240...

867

868
Input Text
869

INPUT TEXT
a icon of a square. It is colored with a red-to-black gradient from the top to bottom. It is outlined with a thick solid black (#000000) outline.

870
Sample 2
7de6000s...

871

872

873

874

875

876

877

878

879

Sample 3
e044ab39...

880

881

882

883

884

885

Sample 4
36112182...

886

887

888

889

890

891

Sample 5
958189ce...

892

893

894

895

896

897

Sample 6
0294c92c...

898

899

900

901

902

903

Sample 7
9171124b...

904

905

906

907

908

909

Text2Svg - Qualitative Analysis

Ground Truth

Claude 3.5 Sonnet

Claude 3.7 Sonnet

Gemini 2.5 Flash

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

Svg Editing - Qualitative Analysis

Sample 2
76c909...

Edit Instruction

INPUT TEXT:
Remove the white bubble from the face of the emoji, and change the mouth to a "O" shape by removing "O" shaped mouth, and add black-colored tongue to the emoji.

Original

Ground Truth

Claude 3.5 Sonnet

Claude 3.7 Sonnet

Gemini 2.5 Flash

Sample 2
76c909...

INPUT TEXT:
Change the background to purple and replace the pink-colored hair with black-colored long hair.

Sample 3
5e0449...

INPUT TEXT:
Replace the text "XCF" with "JPG", and change the shape color to jungle green.

Sample 4
3e1a39...

INPUT TEXT:
Add black-colored symbols to the eyes of the chat icons, centered within the eye shapes. Implement the following changes: for instance in over the chat icons, the symbols for the eyes are centered in the middle of the eye shapes, and the symbols are tilted toward the right side of the image.

Sample 5
89460fb...

INPUT TEXT:
Replace the red small square on the left top corner with a green circle and add lines on the lower page.

Sample 6
dc8a442...

INPUT TEXT:
Remove the glasses and change this emoji into a laughing emoji.

Sample 7
9cb5d86...

INPUT TEXT:
Change the color of both colors to the same grey shade, then add a black border and a white border to make it look like a building.

Figure 9: **Qualitative analysis of Sketch2SVG generation results.** The figure illustrates model performance in converting hand-drawn sketches to clean SVG code. Examples display input sketches (left), ground truth SVG (second column), and model-generated SVGs (rest of the columns).

1026 Table 5: Comparison of SVG datasets and benchmarks. **VectorGym (Ours)** is the only benchmark
 1027 combining multi-task evaluation with human-verified quality. Note: Size is reported in number of
 1028 SVG samples.

1030 Dataset	1031 Year	1032 Size	1033 Content Types	1034 Tasks	1035 Annotation
1031 VG-Sketch (Ours)	1032 2025	1033 6.5k	1034 Icons, Fonts, Diagrams, Emojis	1035 Sketch-to-SVG	1036 Human
1032 VG-Text2SVG (Ours)	1033 2025	1034 6.5k	1035 Icons, Diagrams, Emojis, Fonts	1036 Text-to-SVG	1037 Human
1033 VG-Edit (Ours)	1034 2025	1035 6.5k	1036 Diverse	1037 SVG Editing	1038 Human
1034 SVG-Stack	1035 2025	1036 2.3M	1037 Diverse (Icons, Logos, Diagrams)	1038 SVG Corpus	1039 Unlabeled
1035 Text2SVG-Stack	1036 2025	1037 2.2M	1038 Diverse (Paired Texts and SVGs)	1039 Text-to-SVG	1040 Synthetic Captions
1036 SVG-Fonts	1037 2025	1038 1.9M	1039 Fonts, Glyphs	1040 SVG Corpus	1041 Unlabeled
1037 SVG-Icons	1038 2025	1039 89k	1040 Icons	1041 SVG Corpus	1042 Unlabeled
1038 SVG-Emoji	1039 2025	1040 10k	1041 Emojis	1042 SVG Corpus	1043 Unlabeled
1039 MMSVG-2M	1040 2025	1041 2.0M	1042 Icons, Illustrations, Characters	1043 Image/Text-to-SVG	1044 Mixed (Web + Syn.)
1040 UniSVG	1041 2025	1042 525k	1043 Unified Multi-domain	1044 Gen. & Understanding	1045 Mixed
1041 SVGX-SFT-1M	1042 2025	1043 1.0M	1044 Diverse (Instr.↔SVG)	1045 Instruction Following	1046 Synthetic (LLM)
1042 SVG-1M (SVGen)	1043 2025	1044 1.0M	1045 Icons	1046 Image/Text-to-SVG	1047 Synthetic (LLM)
1043 FIGR-SVG	1044 2025	1045 1.3M	1046 Icons	1047 Text/Image-to-SVG	1048 Converted + Syn.
1044 DeepSVG Dataset	1045 2020	1046 100k	1047 Icons	1048 SVG Generation	1049 Curated
1045 SVGenius	1046 2025	1047 2.4k	1048 Diverse	1049 Understanding & Editing	1050 Human-verified
1046 VGBench	1047 2024	1048 10k	1049 Multi-format (SVG, TikZ, Graphviz)	1050 Understanding & Gen.	1051 Synthetic + Verified
1047 SVGEditionBench v2	1048 2025	1049 1.7k	1050 Emojis, Icons	1051 SVG Editing	1052 Synthetic Prompts
1048 VectorEdits	1049 2025	1050 270k	1051 Diverse	1052 SVG Editing (Guided)	1053 Synthetic (VLM)
1049 Quick Draw!	1050 2017	1051 50M	1052 Sketches	1053 Sketch Recognition	1054 Human
1050 IconDesc	1051 2024	1052 1.4k	1053 UI Icons	1054 Captioning (Alt-text)	1055 Human

Figure 10: Qualitative analysis of Text2SVG generation results.

1080 **C RLRF EXPERIMENTS**
10811082 We fine-tune a **Qwen3-VL 8B Instruct** model using Reinforcement Learning from Rendering Feed-
1083 back (RLRF) to jointly learn all four VectorGym tasks. For the *Text-to-SVG*, *SVG Editing*, and
1084 *Sketch-to-SVG* tasks, the model outputs SVG code. To compute rewards, we render both the pre-
1085 dicted and ground-truth SVGs into raster images and evaluate them using a combination of per-
1086 ceptual similarity metrics and pixel-space distances. For the *SVG Captioning* task, where both the
1087 prediction and ground truth are textual descriptions of the SVG, the reward is defined as the embed-
1088 ding similarity between the two texts, using BGE-M3 as the embedding model.1089 We train the 8B model on all four tasks simultaneously within a unified RL framework. Our opti-
1090 mization procedure primarily follows GRPO Shao et al. (2024), with modifications inspired by Liu
1091 et al. (2025). Standard GRPO computes the advantage for each prompt by normalizing rewards
1092 *within* the group of K sampled responses. Given a prompt x with reward set $\{r_k\}_{k=1}^K$, the GRPO
1093 group-level advantage is

1094
$$A_k^{\text{group}} = \frac{r_k - \text{mean}(\{r_j\}_{j=1}^K)}{\text{std}(\{r_j\}_{j=1}^K)}. \quad (2)$$

1095
1096

1097 In contrast, our variant normalizes the centered rewards using the *batch-level* standard deviation
1098 computed over all $N \times K$ samples in the minibatch:

1099
$$A_i^{\text{batch}} = \frac{r_i - \text{mean}(\{r_j\}_{j=1}^K)}{\text{std}(\{r_j\}_{j=1}^{N \times K})}. \quad (3)$$

1100
1101

1102 We use a rollout batch size of 168 samples per step. For each sample, the model generates 8 sampled
1103 rollouts, producing 1,344 rollouts per iteration. We train the model for 600 iterations on a single
1104 compute node with $8 \times$ H200 GPUs, and the full run finishes in about two days. We set the learning
1105 rate to 3×10^{-6} , the KL coefficient to 0.01, and the sampling temperature to 1.0. Each iteration
1106 performs exactly one policy update on its rollout batch, so neither gradient clipping nor PPO-style
1107 ratio clipping is ever triggered during optimization.1108 To improve training stability, we also apply curriculum learning. We treat the length of a response
1109 as a proxy for its difficulty and therefore sort the samples by response lengths. Because our dataset
1110 mixes four different tasks, we sort samples within each task according to response length and then
1111 draw tasks proportionally to their dataset frequencies to construct each minibatch. This strategy
1112 allows the model to progress from shorter and simpler examples toward longer and more complex
1113 ones, while maintaining task balance throughout training.1115 **D PROMPTS**
11161117 In this section we present all the prompts used throughout the paper. We designed task specific
1118 prompts for SVG generation across the four main tasks, and we also crafted evaluation prompts that
1119 guide models to score outputs in a way that captures the semantic quality of the SVG rather than
1120 focusing on pixel based visual features. We validated the effectiveness of these evaluation prompts
1121 through a correlation analysis, shown in table 2.1123 **D.1 VLM-AS-A-JUDGE PROMPTS**
11241125 **Prompt 1: Used for VLM-as-a-Judge Score (Text2Svg)**
11261127 You are a concise evaluator of text-to-SVG faithfulness. Judge how
1128 well a generated SVG image matches its textual description. Focus
1129 primarily on semantic content (what is shown), not exact wording
1130 or artistic style. Do not use world knowledge; base your judgment
1131 only on what the text states and what is visible.1132 **Evaluation Instructions:** Compare the generated image to the TEXT
1133 description. Judge semantic/visual meaning, not exact wording.1134 **Rules:**

1134 **Table 6: Scores for human evaluation and VLMAJ.** We show average scores by generator model
 1135 and VLM judge across different tasks.

1137 Task	1138 Generator	1139 Human	1140 Models used as Judges					
			1141 Claude 4.5 Sonnet	1142 Gemini 2.5 Flash	1143 Gemini 3 Pro	1144 GPT 5.1	1145 Qwen2.5VL 72B	1146 Qwen3.VL 235B
1147 VG-Sketch	GPT 4o	2.57	2.79	2.46	2.43	3.16	3.10	2.79
	Claude 4.5 Sonnet	2.88	3.22	2.91	2.81	3.57	3.70	3.34
	Gemini 3 Pro	3.63	3.55	3.41	3.49	3.72	3.91	3.74
	Ground Truth	4.79	5.00	5.00	5.00	5.00	5.00	4.97
1148 VG-Cap	GPT 4o	2.90	2.15	0.84	2.26	2.21	1.27	1.74
	Claude 4.5 Sonnet	3.67	2.60	1.43	2.86	2.87	1.80	2.19
	Gemini 3 Pro	3.95	2.73	1.69	3.20	3.12	1.81	2.35
	Ground Truth	4.67	5.00	5.00	5.00	5.00	5.00	5.00
1149 VG-Edit	GPT 4o	2.22	2.17	2.19	2.62	2.78	2.32	3.01
	Claude 4.5 Sonnet	3.35	3.15	3.23	3.45	3.79	2.89	3.88
	Gemini 3 Pro	4.07	3.46	3.54	3.78	4.11	3.16	4.12
	Ground Truth	4.41	4.18	4.46	5.00	5.00	4.18	5.00
1150 VG-Text	GPT 4o	2.19	3.23	2.69	3.40	3.52	2.72	3.14
	Claude 4.5 Sonnet	2.73	4.11	3.52	4.36	4.33	3.20	3.90
	Gemini 3 Pro	3.33	4.10	3.58	4.55	4.24	3.27	4.04
	Ground Truth	4.66	4.18	3.78	4.87	4.56	3.49	4.24

- Focus on the presence and configuration of the main objects, their attributes (shape, rough size, main color), spatial relations, and overall layout.
- Accept paraphrases and synonyms; do not require exact wording.
- Numbers, counts, colors, attributes, and relations are important: penalize clear mismatches, but do not over-penalize small deviations when the overall scene clearly matches the text.
- Penalize unsupported or clearly contradictory visual details (hallucinations) more than omissions.
- Consider image quality, clarity, and coherence as a secondary factor: when semantic match is similar, prefer clearer and better-formed SVGs.
- Ignore minor stylistic differences (line style, thickness, minor artifacts), casing, and punctuation.

1188
 1189 • Do not use world knowledge; compare only what the TEXT
 1190 states and what is visible.
 1191 **Text Description:** {caption}
 1192 **Scoring Rubric (0--5):**
 1193 • **5:** Very strong match; main objects, layout, and key
 1194 attributes align with the text; only small local details
 1195 differ; no strong contradictions.
 1196 • **4:** Good match; overall scene corresponds to the text with
 1197 only minor issues.
 1198 • **3:** Partial match; several core elements align, but some
 1199 important detail is missing, wrong, or extra.
 1200 • **2:** Weak match; topic is similar but multiple important
 1201 errors, omissions, or hallucinated details.
 1202 • **1:** Minimal overlap; only a very generic aspect matches.
 1203 • **0:** Unrelated or contradicts core facts.
 1204 Output ONLY the integer score (0--5). No words, no JSON, no
 1205 explanations.
 1206 **Output format:**
 1207 <0-5>

1210 **Prompt 2: Used for VLM-as-a-Judge Score (Sketch2Svg)**

1211
 1212 You are a concise evaluator of sketch-to-image similarity. Judge
 1213 how well the generated image preserves the semantic content and
 1214 structure of the input sketch.
 1215 **Evaluation Instructions:** Compare the PREDICTION image directly to
 1216 the GROUND-TRUTH image. Judge semantic similarity and preservation
 1217 of visual content, not artistic style.
 1218 **Rules:**
 1219 • Focus on the main objects, their presence or absence,
 1220 shapes, sizes, colors, and spatial relations.
 1221 • Treat numbers, counts, colors, attributes, and relative
 1222 positions as important; penalize clear mismatches.
 1223 • Penalize added elements that are not present in the
 1224 ground-truth image (hallucinations) more than small
 1225 omissions.
 1226 • Penalize missing or significantly altered key elements more
 1227 than minor stylistic or rendering differences.
 1228 • Ignore small artifacts, minor shading/texture differences,
 1229 or slight geometric deviations if the overall content
 1230 clearly matches.
 1231 • Do not use world knowledge; compare only what is visible in
 1232 the GROUND-TRUTH and PREDICTION images.
 1233 **Inputs:**
 1234 • **GROUND-TRUTH image:** the target image.
 1235 • **PREDICTION image:** the model-generated image to be
 1236 evaluated.
 1237 **Scoring Rubric (0--5):**
 1238 • **5:** Very strong match; all main objects and key attributes
 1239 align; only small local or stylistic differences.
 1240 • **4:** Good match; overall scene clearly corresponds, with one
 1241 or a few noticeable but non-critical differences.

1242

1243 • **3:** Partial match; several core elements align, but some
1244 important details are missing, wrong, or extra.

1245 • **2:** Weak match; topic is similar, but multiple important
1246 elements are missing, incorrect, or hallucinated.

1247 • **1:** Minimal overlap; only very generic aspects (e.g., rough
1248 layout or general type of scene) match.

1249 • **0:** Unrelated or clearly contradicts the ground-truth (wrong
1250 main objects, layout, or overall scene).

1251 Output ONLY the integer score (0--5). No words, no JSON, no
1252 explanations.

1253 **Output format:**

1254 <0-5>

1255

1256

1257 **Prompt 3: Used for VLM-as-a-Judge Score (Svg-Editing)**

1258

1259 You are a concise evaluator for image editing results. Judge how
1260 well a PREDICTION image matches a GROUND-TRUTH image. Do not
1261 use world knowledge; rely only on the visible content of the two
1262 images.

1263 **Evaluation Instructions:** Compare the PREDICTION image directly to
1264 the GROUND-TRUTH image. Judge semantic similarity and preservation
1265 of visual content, not artistic style.

1266 **Rules:**

- 1267 • Focus on the main objects, their presence or absence,
1268 shapes, sizes, colors, and spatial relations.
- 1269 • Treat numbers, counts, colors, attributes, and relative
1270 positions as important; penalize clear mismatches.
- 1271 • Penalize added elements that are not present in the
1272 ground-truth image (hallucinations) more than small
1273 omissions.
- 1274 • Penalize missing or significantly altered key elements more
1275 than minor stylistic or rendering differences.
- 1276 • Ignore small artifacts, minor shading/texture differences,
1277 or slight geometric deviations if the overall content
1278 clearly matches.
- 1279 • Do not use world knowledge; compare only what is visible in
1280 the GROUND-TRUTH and PREDICTION images.

1281 **Inputs:**

- 1282 • **GROUND-TRUTH image:** the target image.
- 1283 • **PREDICTION image:** the model-generated image to be
1284 evaluated.

1285 **Scoring Rubric (0--5):**

- 1286 • **5:** Very strong match; all main objects and key attributes
1287 align; only small local or stylistic differences.
- 1288 • **4:** Good match; overall scene clearly corresponds, with one
1289 or a few noticeable but non-critical differences.
- 1290 • **3:** Partial match; several core elements align, but some
1291 important details are missing, wrong, or extra.
- 1292 • **2:** Weak match; topic is similar, but multiple important
1293 elements are missing, incorrect, or hallucinated.
- 1294 • **1:** Minimal overlap; only very generic aspects (e.g., rough
1295 layout or general type of scene) match.

1296
 1297 • **0:** Unrelated or clearly contradicts the ground-truth (wrong
 1298 main objects, layout, or overall scene).
 1299 Output ONLY the integer score (0--5). No words, no JSON, no
 1300 explanations.
 1301 **Output format:**
 1302 <0-5>
 1303
 1304

Prompt 4: Used for VLM-as-a-Judge Score (Svg-Captioning)

1305
 1306 You are a concise evaluator of caption similarity. Compare a
 1307 PREDICTION caption to a GROUND-TRUTH caption (no image). Judge
 1308 semantic meaning, not exact wording.
 1309 **Rules:**
 1310 • Accept paraphrases and synonyms.
 1311 • Treat numbers, counts, colors, attributes, relations, and
 1312 negation as strict.
 1313 • Penalize unsupported or contradictory details
 1314 (hallucinations) more than omissions.
 1315 • Ignore casing and punctuation (except negation words like
 1316 `'no/not/without'').
 1317 • Do not use world knowledge; compare only what the texts
 1318 state.
 1319 **Scoring (return a single integer 0--5):**
 1320 • **5:** Semantically equivalent or near-paraphrase; all key
 1321 facts align; no contradictions.
 1322 • **4:** Very close; only a minor detail missing/different; no
 1323 contradictions.
 1324 • **3:** Partially correct; several core elements match but some
 1325 important detail is missing.
 1326 • **2:** Weak overlap; multiple important errors or added
 1327 unsupported specifics.
 1328 • **1:** Minimal overlap; only a very generic element matches.
 1329 • **0:** Unrelated or contradicts core facts (e.g., negation
 1330 flip, wrong main objects/actions).
 1331 Output ONLY the integer score (0--5). No words, no JSON, no
 1332 explanations.
 1333 **Output format:**
 1334 <0-5>
 1335
 1336
 1337

D.2 SVG GENERATION PROMPTS

Prompt 5: Used for Text2SVG Generation

1338
 1339 You are an expert in generating SVG representations of textual
 1340 descriptions.
 1341 Follow these steps carefully:
 1342 1. Analyze the given text input and identify the key visual
 1343 elements it describes.
 1344 2. Convert the description into a minimal and clear SVG
 1345 representation using basic SVG shapes such as <rect>,
 1346 <circle>, <line>, and <path>.
 1347
 1348
 1349

1350
 1351 3. Ensure the SVG design is simple, scalable, and directly
 1352 represents the input text.
 1353 4. Do not include any additional text, explanations, comments,
 1354 or formatting---only output valid SVG code.
 1355 5. The output must be a complete SVG document, starting with
 1356 <svg> and ending with </svg>.
 1357 ***** textual descriptions*****
 1358 -- textual descriptions
 1359 ***** REASONING*****
 1360 Let's think step by step then output the svg. First, wrap your
 1361 detailed reasoning process in <think> and </think> tags. In your
 1362 reasoning, describe your approach in natural language WITHOUT
 1363 showing code examples. Then, output the complete SVG code directly
 1364 after the closing </think> tag (NO markdown wrapper, NO '''xml or
 1365 '''svg tags). Your reasoning should consider: concept sketching,
 1366 canvas planning, shape decomposition, coordinate calculation,
 1367 styling and color, symbolism or metaphor, and final assembly.
 1368 IMPORTANT: After </think>, output ONLY the raw SVG starting with
 1369 <svg> and ending with </svg>. Do NOT use markdown code blocks or
 1370 wrap in '''xml or '''svg.
 1371

Prompt 6: Used for Sketch2SVG Generation

1370
 1371
 1372 You are an expert in generating SVG from a hand-drawn sketch plus a
 1373 brief description.
 1374 ***** GOALS *****
 1375 • **Semantic match:** faithfully reflect the sketch, using the
 1376 description to clarify ambiguous parts; include all and only
 1377 the intended elements, attributes, and relationships.
 1378 • **Validity + code quality:** produce a parsable SVG with
 1379 concise primitives and a tidy, readable structure.
 1380 • **Visual fidelity:** preserve essential contours, proportions,
 1381 and layout; if gradients, shadows, or outlines are
 1382 mentioned, implement them minimally.
 1383 ***** PROCEDURE *****
 1384 1. Examine the sketch to identify primary shapes, contours, and
 1385 alignment; use the description to resolve labels, counts,
 1386 and styling cues.
 1387 2. Decompose the scene into basic SVG shapes (<rect>,
 1388 <circle>, <ellipse>, <line>, <polygon>, <polyline>, <path>),
 1389 simplifying strokes and curves where appropriate.
 1390 3. Translate relative placements and sizes from the sketch
 1391 into a coherent coordinate system and consistent stroke/fill
 1392 attributes.
 1393 4. Apply only the necessary styling (strokes, fills, minimal
 1394 effects) specified or implied by the sketch and description.
 1395 5. Output only valid SVG code as a complete document enclosed
 1396 by <svg> and </svg>.
 1397 ***** SVG Description *****
 1398 -- svg description
 1399 ***** REASONING*****
 1400 Let's think step by step then output the svg. First, wrap your
 1401 detailed reasoning process in <think> and </think> tags. In your
 1402 reasoning, describe your approach in natural language WITHOUT
 1403 showing code examples. Then, output the complete SVG code directly
 1404 after the closing </think> tag (NO markdown wrapper, NO '''xml or
 1405 '''svg tags). Your reasoning should consider: concept sketching,

1404
 1405 canvas planning, shape decomposition, coordinate calculation,
 1406 styling and color, symbolism or metaphor, and final assembly.
 1407 IMPORTANT: After </think>, output ONLY the raw SVG starting with
 1408 <svg> and ending with </svg>. Do NOT use markdown code blocks or
 1409 wrap in ```xml or ```svg.

1410

1411 **Prompt 7: Used for SVG Editing Generation**

1412 You are an expert in editing SVG images based on text instructions.
 1413 Follow these steps carefully:

1414 1. Analyze the original SVG and the editing instruction.
 1415 2. Apply the requested modifications while preserving the
 1416 overall structure.
 1417 3. Ensure the edited SVG is valid and well-formed.
 1418 4. Do not include any additional text, explanations, comments,
 1419 or formatting---only output valid SVG code.
 1420 5. The output must be a complete SVG document, starting with
 1421 <svg> and ending with </svg>.

1423 **Original SVG:**

1424 -- svg code

1425 **Editing Instruction:**

1426 Reduce the image size and add a kite string extending
 1427 from the bottom-right corner to make it look like a
 1428 kite.

1429 ***** REASONING*****

1430 Let's think step by step then output the edited svg. First, wrap
 1431 your detailed reasoning process in <think> and </think> tags. In
 1432 your reasoning, describe your approach in natural language WITHOUT
 1433 showing code examples. Then, output the complete SVG code directly
 1434 after the closing </think> tag (NO markdown wrapper, NO ```xml
 1435 or ```svg tags). Your reasoning should consider: parsing the
 1436 instruction, identifying target elements, determining minimal
 1437 required changes, preserving unmodified elements, and validating
 1438 the result.

1439 IMPORTANT: After </think>, output ONLY the raw SVG starting with
 1440 <svg> and ending with </svg>. Do NOT use markdown code blocks or
 1441 wrap in ```xml or ```svg.

1442

1443 **Prompt 8: Used for SVG Captioning Generation**

1444 You are an expert at describing SVG images. Given an SVG, provide
 1445 a clear and concise caption that describes the visual elements,
 1446 their colors, positions, and any notable features. Focus on what
 1447 someone would see when looking at the rendered SVG.

1448 **SVG:** {svg}

1449 **Caption:**

1450 **E CAPTIONING METRICS**

1451
 1452 We compute captioning metrics pairwise over aligned (reference, prediction) captions and average
 1453 across the corpus.

1454

- **BLEU (corpus BLEU):** n-gram precision with brevity penalty; 0–100 (higher is better).
- **CHRF++ (CHRF):** Character n-gram F-score (word order=2); 0–100 (higher is better).
- **ROUGE-L (F1):** Longest common subsequence overlap (F1); 0–100 (higher is better).

1458 **Table 7: VectorGym SVG Editing qualitative examples.** Results from models on the test set.
1459

- **BERTScore (F1):** Semantic similarity via contextual embeddings; 0–100 (higher is better). `rescale_with_baseline=False`.
- **BGE-M3 Similarity:** Average cosine similarity of BAAI / bge-m3 sentence embeddings; 0–100 (higher is better).
- **GPT-5 Rubric Similarity:** LLM-judged semantic agreement on a 0–5 rubric mapped to 0–100; higher is better.

F DATA LICENSING

All SVG data used in this work originate from the SVG Stack (Rodriguez et al., 2023a) dataset. SVG Stack is not an independent crawl of the web. It is a direct extraction of SVG files from The Stack (Kocetkov et al., 2022), the dataset maintained by the BigCode project. The Stack is a curated collection of source code repositories that have passed a strict license filtering pipeline. Only repositories under permissive licenses such as MIT, Apache, BSD, and CC0 are included, and repositories with non permissive or non redistributable licenses are excluded during collection.

The Stack also includes an opt out protocol that allows developers to request removal of their content. These removals are propagated automatically to all derived datasets. Since SVG Stack retains the original file paths and license identifiers from The Stack, it inherits the same governance and reflects all removals applied by BigCode.

Our work uses SVG Stack exactly as distributed, without adding external sources. All files therefore fall under permissive open source licenses that allow redistribution and research use. We intend to release the specific processed subset used in our experiments, which remains fully compatible with the original licensing terms.

1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512

1513

1514

1515

Table 8: **VectorGym Sketch-to-SVG** qualitative examples. Results from models on the test set.

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

Table 9: **VectorGym Text-to-SVG** qualitative examples. Results from GPT4o on the test set.

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584

Table 10: **VectorGym SVG-Captioning qualitative examples.** Results from models on the test set.

1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619