Under review as a conference paper at ICLR 2026

VECTORGYM: A MULTI-TASK BENCHMARK FOR
SVG CODE GENERATION AND MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce VectorGym, a new comprehensive multi-task benchmark for eval-
uating Vision-Language Models (VLMs) on Scalable Vector Graphics (SVG)
code generation and manipulation. VectorGym addresses the critical need for
systematic evaluation across diverse SVG-related capabilities in the emerging
field of visual code generation. Our benchmark comprises four complementary
tasks: Sketch2SVG conversion, SVG editing with natural language instructions,
Text2SVG generation, and SVG captioning. It introduces Sketch2SVG and the
first dataset of complex, human-authored SVG edits, with gold-standard human
annotations across all tasks. We propose a novel automatic VLM-as-judge eval-
uation metric specifically tailored for SVG generation tasks, validated through
human correlation studies across multiple state-of-the-art models. We provide
a comprehensive evaluation of leading closed-source and open-source VLMs,
which reveals significant performance variations across tasks, highlighting both
current capabilities and critical limitations. VectorGym establishes a new stan-
dard for evaluating and advancing SVG generation capabilities, offering the re-
search community a robust framework for measuring progress in this emerging
field.

) Source SVG Code Data & Human Annotation 'Y’ VectorGym Benchmark
D

o |Vesketen () gz, [()
Sketch2SVG ... vector using SVG code.

Replace the sphere with a

VG-Edit {]
/ sVoEding |\ e > falb

@ Raw SVG Files Hand-Drawn Sketches

(SVG, Sketch Image)

Complex SVG Edits

"TRIANGLE".
@ PNG Images (Source SVG,
= mm) Edit Instruction, Target SVG) VG-Text e a"_> f
2 [Text2SVG "OPENSPHERE" _)
& Q @ Detailed SVG Captions The icon shows a stylized circle with a
@ (_)J (SVG, Text Description) VG-Cap / > subtle shadow effect, all in a gradient of
b oo) light-to-dark orange. The text
D s Y, Captioning "OPENSPHERE In blagk,s:ppemass

Figure 1: Overview of VectorGym Benchmark. VectorGym is a suite of human-annotated datasets
covering Sketch2SVG (VG-Sketch), SVG Editing (VG-Edit), Text2SVG (VG-Text), and SVG
Captioning (VG-Cap). Unlike prior benchmarks, it is built from diverse real-world SVGs sourced
from GitHub. Human experts annotate each SVG by hand-drawing sketches, creating complex edits,
and writing detailed text descriptions, which are further cleaned and adapted into instruction-style
prompts at varying levels of detail. We evaluate state-of-the-art models in VectorGym.

1 INTRODUCTION

Scalable Vector Graphics (SVG) (Ferraiolo et al., |2000; |Quint, 2003) are widely used across the
web, design tooling, and digital media. Unlike raster images (Rodriguez et al., [2023ajb; Rombach
et al., 2021), SVGs are programs: their code exposes geometry, style, and structure, enabling pre-
cise editing, scalable rendering, and semantic manipulation. Evaluating models on SVG therefore
requires not only visual understanding but also reliable, syntax-aware code generation.

Despite rapid progress in Vision-Language Models (VLMs), existing evaluations of SVG generation
remain limited. Prior datasets often target icons or basic shapes, rely on synthetic programmatic

Under review as a conference paper at ICLR 2026

Table 1: Compact comparison of key datasets. “Human” denotes fully human-authored eval super-
vision. “Test” reflects public splits when stated. See App. @ for an extended table.

Dataset Total Samples Tasks Complex Human Annotations
SVG-Bench (Rodriguez et al.;[2025b) 10k Image, Text X
VGBench (Xia et al.|[2024) 9.5k Image, Text, SVG Understanding X
SVGEditBench (Shu et al.|2025) 1.6k Edit X
UniSVG (Li et al.|[2025) 525k Image, SVG Understanding X
VectorGym (ours) 7k Sketch, Edit, Text, Captioning v

edits, rarely assess sketch-conditioned generation nor provide human gold labels (Rodriguez et al.,
2025b; (Wu et al., 2023} [Zhang et al., 2023} Xing et al., 2025} [Yang et al. [2025; Rodriguez et al.,
20254a). As a result, the field lacks a unified, realistic benchmark that stresses, visual understanding,
vector generation and structured SVG code manipulation.

We introduce VectorGym, a new comprehensive multi-task benchmark for SVG generation and ma-
nipulation spanning four tasks: (1) Sketch2SVG, converting rough sketches to clean vector code; (2)
SVG Editing, applying natural-language edits to existing SVGs; (3) Text2SVG, generating SVGs
from text; and (4) SVG Captioning, describing SVG content. VectorGym introduces Sketch2SVG
and releases the first dataset of complex, human-authored SVG edits; all tasks use gold-standard
human annotations.

Our benchmark covers in-the-wild diversity—icons, diagrams, emojis, fonts, logotypes, and com-
plex illustrations—sourced from SVG-Stack (Rodriguez et al.l 2025b)). We pair this with careful
human curation to ensure realistic task difficulty. We evaluate leading proprietary and open-source
VLMs, providing a clear view of current capabilities and gaps.

Our main contributions are:

1. We introduce a comprehensive multi-task benchmark for real-world SVG code generation
with gold-standard human annotations across all tasks;

2. We introduce the Sketch2SVG (VG-Sketch) task and release the first dataset of complex,
human-authored SVG edits (VG-Edit);

3. We introduce a novel VLM-as-judge evaluation metric tailored to sketch, text, and editing
tasks, validated through human correlation studies;

4. We provide extensive evaluation and analysis of current VLMs across diverse SVG gener-
ation scenarios.

2 RELATED WORK

Vector Graphics Generation. Classical vectorization and shape-fitting methods (Li et al., 2020;
Reddy et al., [2021) struggle with complex semantics; recent neural methods add structure via hier-
archical programs and transformers (Carlier et al.l [2020; |Cao et al.l 2023} |Lopes et al.l [2019), with
sketch abstraction (Vinker et al.,|2022) and text-conditioned icon synthesis (Wu et al., [2023)).

VLMs for SVG Generation. Modern VLMs now produce syntactic code from visual inputs;
StarVector (Rodriguez et al.l [2025b) frames SVG creation as language—to—code, motivating bench-
marks that jointly test visual understanding and program generation. Subsequent work further values
this approach (Zhang et al.}2023;|Cai et al., 2023} | Yang et al.| 2025)).

SVG Datasets and Benchmarks. Foundational corpora include DeepSVG icons (Carlier et al.,
2020), FIGR-8 (Clouatre & Demers, [2019), and SVG-Stack (Rodriguez et al., 2025b)). Closest
to our scope, UniSVG (Li et al.l [2025) unifies 525k items for understanding and generation; VG-
Bench (Xia et al., [2024) aggregates multiple sources to evaluate image—to—SVG, text—to—SVG, and
diagram code; and SVGEditBench (Shu et al., [2025)) targets instruction-based editing. In contrast,
VectorGym offers a unified multi-task evaluation spanning Sketch2SVG, SVG editing, Text2SVG,
and captioning, with human-authored supervision across all tasks and realistic, high-difficulty edits.
See figure|I] for a dataset comparison, and refer to Appendix [A]for more details.

Under review as a conference paper at ICLR 2026

3 VECTORGYM

VectorGym consists of four complementary tasks that comprehensively evaluate different aspects
of SVG understanding and generation. Each task is designed to assess specific capabilities while
contributing to a holistic understanding of visual2code generation performance.

3.1 TASK DEFINITIONS

Sketch2SVG Generation (VG-Sketch). This task evaluates the ability to convert rough, hand-
drawn sketches into clean SVG code. Given a bitmap sketch image with approximate shapes and
imperfect lines, models must generate SVG code that captures the essential geometric structure
while producing a clean, scalable vector representation. This task tests spatial reasoning, shape
recognition, and the ability to abstract from noisy visual input to structured geometric primitives.

SVG Editing (VG-Edit). In this task, models are given an SVG along with a natural language
editing instruction and must produce a new SVG with the specified edit applied. The challenge lies in
correctly parsing the intent, identifying the relevant elements, and applying the transformation while
preserving code validity, visual coherence, and the integrity of unmodified parts. Since instructions
and targets were created by skilled human annotators, the edits are non-trivial—for example, adding
new objects, modifying logo content or text, converting a pie chart to a bar chart, or changing facial
expressions. This task evaluates both SVG structure understanding and the ability to follow complex
editing instructions. Figure 3]shows examples from our test set. Unlike prior benchmarks [Shu et al.
(2025), which focus on simple synthetic programmatic edits, VG-Edit introduces realistic, high-
difficulty editing scenarios.

Text2SVG Generation (VG-Text). Given natural language descriptions of visual content, models
must generate complete SVG code that accurately represents the described objects, scenes, or ab-
stract concepts. Descriptions range from simple geometric shapes (“red circle with blue border”) to
complex illustrations (“minimalist icon of a house with a tree”). This task tests creative generation
capabilities and the ability to translate semantic concepts into precise geometric representations.

SVG Captioning (VG-Cap). The inverse of text2SVG generation, this task requires models to
analyze existing SVG code and generate natural language descriptions that accurately capture the
visual content, style, and key characteristics. High-quality captions should describe both the seman-
tic content (“house icon”) and relevant visual properties (“minimalist style,” “blue and white color
scheme”). This task evaluates SVG code comprehension and visual understanding.

3.2 DATASET CONSTRUCTION

Our datasets are built upon carefully curated SVG collections, ensuring diversity across content
types, complexity levels, and visual styles. We source high-quality SVGs from the SVG-Stack
dataset (Rodriguez et al., 2025b) and established SVG collections, encompassing icons, diagrams,
emojis, fonts, logotypes, and complex illustrations. Our curation process builds upon insights from
existing SVG datasets including DeepSVG (Carlier et al.,[2020) and FIGR-8-SVG variants (Clouatre
& Demers|, [2019)).

Human Annotation Process. We partnered with two specialized data annotation vendors to ensure
high-quality annotations across all tasks. We extracted 7,000 high-quality samples from SVG-Stack
through multi-stage filtering: visual quality assessment, token length filtering (2k-8k tokens for
meaningful complexity), color entropy thresholding, and random sampling. From these, 300 sam-
ples were reserved for testing. Our annotation process employed over 20 annotators with diverse
demographics and specialized skills in design, vector graphics, and coding. See Appendix [A.T] for
comprehensive details on the annotation methodology, quality assurance procedures, and complexity
requirements.

4 EXPERIMENTS

We conduct comprehensive evaluation across all four VectorGym tasks using state-of-the-art VLMs.
Our experimental setup is designed to provide fair comparison while highlighting the unique chal-
lenges of SVG code generation.

Under review as a conference paper at ICLR 2026

4.1 BASELINE MODELS

We conduct a comprehensive evaluation using all available state-of-the-art VLMs that support code
generation capabilities. Our baseline selection follows a systematic approach to ensure comprehen-
sive coverage of the current landscape.

Closed-Source Models. We evaluate leading commercial VLMs that demonstrate strong per-
formance on visual understanding and code generation tasks: GPT-40, GPT-5, CLAUDE-3.5,
CLAUDE-3.7, CLAUDE-4, GEMINI-2.5-PRO, and GEMINI-2.5-FLASH. These models represent
the current state-of-the-art in multimodal understanding and have shown exceptional capabilities in
various visual2text and code generation benchmarks.

Open-Source Models. To ensure comprehensive coverage and reproducible research, we include
leading open-source alternatives: QWEN-2.5-VL-3B, QWEN-2.5-VL-7B, QWEN-2.5-VL-32B,
QWEN-2.5-vL-72B, GLM-4.1-VvL-9B, and GLM-4.5-vL-106B-A12B. We made best efforts to
identify and include all available VLM models with public code implementations that could be exe-
cuted on our tasks.

Inference. All models are evaluated using their standard inference configurations with temperature
settings optimized for code generation tasks. Given the stochastic nature of VLMs, we employ a
best-of-n sampling strategy with n=5 generations per input, selecting the best sample based on the
target metric for each task using a VLM-as-judge approach. This methodology ensures that we
capture the models’ peak performance capabilities while maintaining evaluation consistency.

4.2 EVALUATION METRICS

SVG Validity. We first assess whether generated SVG code is syntactically correct and can be
successfully parsed by standard SVG parsers. This fundamental metric ensures that outputs are
usable in real-world applications.

Visual Similarity. For tasks involving visual reproduction (Sketch2SVG, Text2SVG), we measure
visual similarity between generated and target SVGs using perceptual metrics including structural
similarity index (SSIM) and learned perceptual image patch similarity (LPIPS) applied to rendered
images.

Semantic Accuracy. We evaluate whether generated content captures the intended semantic mean-
ing through both automated metrics (using CLIP-based similarity) and human evaluation protocols.
For editing tasks, we verify that instructions are correctly interpreted and applied.

Code Quality. Beyond correctness, we assess code quality through metrics including element effi-
ciency (minimizing unnecessary elements), readability, and adherence to SVG best practices. These
metrics evaluate whether models generate maintainable and efficient code.

Human Evaluation. A subset of outputs undergoes human evaluation by expert annotators who
assess overall quality, semantic correctness, and task-specific criteria. Human evaluation provides
crucial insights into aspects that automated metrics may miss.

SVG Captioning Metrics. For captioning, we report corpus BLEU (0-100, higher better), chrF++
(0-100, higher better), ROUGE-L F1 (0-100, higher better), BERTScore F1 (0-100, higher better),
BGE-M3 cosine similarity (0—100, higher better), and an LLM-based rubric score (GPT-5; 0—100,
higher better via 0—5 mapped to 0—-100). All metrics are computed pairwise over aligned (reference,
prediction) captions and averaged across the corpus.

4.2.1 VLM-AS-JUDGE EVALUATION METRIC

Traditional evaluation metrics for SVG generation (typically based on image reconstruction or
text-image alignment) often fall short in capturing the nuanced visual and semantic qualities that
determine the success of generated vector graphics. Existing work lacks comprehensive evaluation
frameworks tailored to SVG generation, particularly metrics that can jointly assess visual fidelity
and semantic alignment in vector code outputs (Xia et al., 2024; Shu et al., 2025; |Li et al.| [2025)).

To address this gap, we introduce a novel VLM-as-judge evaluation metric designed specifically for
the four SVG generation tasks presented in this paper. In particular, prior approaches proved insuf-

Under review as a conference paper at ICLR 2026

ficient for tasks such as sketch editing, where no reliable metric existed. Our method leverages the
multimodal reasoning capabilities of state-of-the-art VLMs to produce holistic quality assessment
scores (ranging from O to 10) for generated SVGs. In this section, we design four tailored VLM-
judge metrics, one for each of our benchmark tasks, enabling a more faithful evaluation of both
structural accuracy and semantic alignment.

Metric Development Process. We develop task-specific evaluation prompts designed to guide
VLMs in assessing different aspects of SVG generation quality. For each of the four main gen-
eration tasks, we craft specialized prompts that encourage models to evaluate: (1) visual accuracy
and fidelity; (2) semantic alignment with input requirements; (3) code quality and efficiency; and
(4) overall aesthetic appeal.

Judge Model Selection. To identify the most reliable VLM judge, we conduct a systematic com-
parison across four state-of-the-art models: GPT-40, GPT-4.5, Gemini-2.5-Flash, and Claude-3.5-
Sonnet. We evaluate each model’s performance as a judge using a held-out validation set of 50
samples per task, comprising 25 ground truth examples and 25 model-generated outputs represent-
ing varying quality levels.

Human Correlation Validation. We validate our VLM-as-judge metric through extensive human
evaluation studies. Expert human annotators independently evaluate the same 50 samples using
identical scoring criteria (0-10 scale). We compute Pearson correlation coefficients between hu-
man judgments and each candidate VLM judge to identify the model that best aligns with human
perception of SVG generation quality.

Final Judge Selection. Based on the correlation analysis in Table [2} we select the VLM with the
highest agreement with human evaluators as our primary judge. This choice ensures that automated
evaluation aligns closely with human perception of SVG quality, enabling a reliable and scalable as-
sessment at large scale. Concretely, we adopt GPT-40 as the primary VLM-as-judge, as it achieves
consistently high correlations across all tasks for both generated and ground-truth outputs. While
GPT-5 and Gemini also perform well, their higher latency and cost make them less practical. Thus,
GPT-40 offers the best balance of accuracy and efficiency.

Table 2: Pearson correlation between VLLM-as-judge scores and human ratings across SVG genera-
tion tasks. The left block reports correlations on Generated Samples, and the right block on Ground
Truth Samples (GT). Columns correspond to different VLM judges (GPT-40, Claude 3.5 Sonnet,
GPT-5, and Gemini 2.5 Flash), while rows indicate the model being evaluated. Overall, GPT-40
shows the strongest and most consistent alignment with human judgments across both generated
and ground-truth samples, making it a good and cost-effective choice as primary judge. The GPT-40
columns are highlighted in orange to indicate our selection.

Generated Samples Ground Truth Samples
Task Generator GPT-40 Claude GPT-5 Gemini GPT-40 Claude GPT-5 Gemini
Text2SVG

Claude-4-Sonnet ~ 0.695 0.050 0.401 0.794 0.592 0255 0.334 0410
Gemini 2.5 Flash ~ 0.823 0.638 0.748 0.770 0.655 0.350 0.344 0477
GPT-40 0.695 0.050 0401 0.794 0.592 0.255 0.334 0410

Sketch2SVG

Claude-4-Sonnet ~ 0.312 0.097 -0.237 0.289 0.382 -0.137 0.126 -0.079
Gemini 2.5 Flash 0452 0.381 0.316 0.590 -0.171 0.156 -0.101 0.020
GPT-40 0.328 0.293 0.036 0.062 -0.343 0.043 0.170 0.006

SVG Edit

Claude-4-Sonnet ~ 0.815 0.729 0.684 0.814 -0.049 0.664 0.594 0.666
Gemini 2.5 Flash ~ 0.789 0.657 0.857 0.869 0.000 0.740 0.624 0.773
GPT-40 0815 0.729 0.684 0.814 -0.049 0.664 0.594 0.666

SVG Captioning

Claude-4-Sonnet ~ 0.812 0.603 0.714 0.820 0.678 0441 0.512 0.662
Gemini 2.5 Flash ~ 0.835 0.620 0.709 0.846 0.701 0.452 0521 0.745
GPT-40 0.848 0.639 0.720 0.842 0.732 0.468 0.544 0.726

Under review as a conference paper at ICLR 2026

(a) VG-Sketch Results. The left panel shows the (b) VG-Edit Results. From left to right: the edit in-

colored sketch given to the model, followed by the struction, the input vector, the ground-truth edited vec-

ground-truth image and outputs from top-performing tor, and outputs from top-performing models. Both

models. GPT-5 achieves the best results. GPT-5 and Claude perform well, with Claude showing
stronger results overall.

Experimental Setup We evaluate all baseline models on our test sets without task-specific train-
ing. This establishes the inherent SVG generation capabilities of current VLMs. We limit our
evaluation to inference and we do not train any models on our training dataset. We do this due to
limited GPU resources for training.

5 RESULTS

We present comprehensive evaluation results across all four VectorGym tasks. Our results demon-
strate significant variation in model performance across different SVG generation and manipulation
capabilities, revealing both strengths and limitations of current VLMs.

5.1 TEXT2SVG GENERATION

Table [3] presents our Text2SVG generation results, revealing clear performance hierarchies and in-
teresting patterns. Among proprietary models, GPT-5 achieves the highest VLM Judge score of
8.95, followed closely by Claude-4 (8.81) and Claude-3.7 (8.79). This establishes GPT-5 as the cur-
rent state-of-the-art for text-to-SVG generation. Notably, the top proprietary models cluster within
a narrow range (8.79-8.95), suggesting we may be approaching performance saturation for this task
with current architectures.

The open-source landscape shows GLM-4.5 leading with 7.84, demonstrating that open-source
models can achieve competitive performance, though still trailing the best proprietary models by
approximately 1.1 points. Interestingly, GLM-4.5 also achieves the highest CLIP score (25.07)
among all models, indicating strong visual-semantic alignment despite lower judge scores.

Speed-performance trade-offs are particularly evident: Gemini-2.5-Flash achieves the fastest in-
ference (2.87s) while maintaining reasonable quality (8.22), making it attractive for production sce-

narios. Conversely, GPT-5’s superior performance comes at the cost of significantly longer inference
times (63.44s).

5.2 SVG EDITING

SVG Editing represents one of the most challenging tasks in our benchmark, requiring models to
understand natural language instructions, parse existing SVG structures, and apply precise modifi-
cations. Table |§| reveals that GPT-5 leads with a VLM Judge score of 7.92, followed by Claude-4
(7.68) and GPT-40 (7.43). Notably, the performance gap between top proprietary and open-source
models is smallest in this task, with GLM-4.5 achieving 7.57—only 0.35 points behind GPT-5.

Under review as a conference paper at ICLR 2026

Table 3: Text2SVG and SVG Captioning Performance. Higher values are better for CLIP Score,
VLM Judge (Text2SVG), BLEU, CHRF++, BGE-M3, ROUGE, and LLM-as-Judge. Lower values
are better for Time.

Text2SVG SVG Captioning

Model VLM J 1 CLIP 1 Time (s) | BLEU{ CHRF++1 BGE-M3 1 ROUGE T LLM J 1
Open-source Models

QWEN-2.5-vL-7B 4.02 2451 10.54 3.84 24.46 63.03 16.33 22.87
QWEN-2.5-VL-32B 6.87 24.66 22.00 1.94 18.96 57.77 8.42 2191
QWEN-2.5-VL-72B 6.95 24.62 12.54 5.37 31.24 67.03 20.04 33.58
GLM-4.1-vL-9B 6.74 2503 30.70 6.55 26.47 68.70 20.55 39.78
GLM-4.5-vL-106B-A12B 7.84 25.07 39.27 5.32 28.10 69.99 21.19 45.60
Proprietary Models

GPT-40 8.00 24.45 377 4.7243 30.67 68.04 20.23 40.82
GPT-5 8.95 2441 63.44 3.21 24.90 69.72 21.40 53.65
CLAUDE-3.5 8.48 24.41 10.12 6.36 31.22 71.03 21.25 47.37
CLAUDE-3.7 8.79 2433 11.03 4.93 30.56 69.89 20.77 45.73
CLAUDE-4 8.81 24.42 7.04 5.32 31.05 70.70 21.29 46.82
GEMINI-2.5-PRO 798 2451 47.55 5.64 27.78 71.13 23.96 49.83
GEMINI-2.5-FLASH 822 24.67 2.87 4.90 28.49 68.46 21.38 39.32

This task shows the most promise for open-source competitiveness. GLM-4.1 demonstrates par-
ticularly strong performance across visual similarity metrics, achieving the best MSE (0.10) and
DINO scores (0.89) while maintaining competitive LPIPS (0.26). This suggests that open-source
models may be developing sophisticated understanding of SVG structure modification.

Interestingly, Claude models show mixed performance: while Claude-4 ranks second overall,
Claude-3.5 and Claude-3.7 perform surprisingly poorly (6.49 and 6.51 respectively), despite ex-
celling in other tasks. This inconsistency suggests that SVG editing requires specific capabilities
that aren’t uniformly developed across model versions.

The task also reveals clear speed advantages for certain models: Gemini-2.5-Flash achieves the
fastest inference (2.77s) while maintaining reasonable quality (6.43), making it practical for inter-
active editing applications.

Table 4: SVG Editing Performance. Higher values are better for VLM Judge, SSIM, and DINO.
Lower values are better for MSE, LPIPS, and Time.

Model VLM Judget MSE| SSIM{T DINO{1 LPIPS| Time (s)]
Open-source Models

QWEN-2.5-VL-7B 6.94 0.14 0.70 0.85 0.32 22.04
QWEN-2.5-VL-32B 7.01 0.12 0.73 0.87 0.29 55.95
QWEN-2.5-VL-72B 7.18 0.11 0.73 0.87 0.28 74.23
GLM-4.1-vL-9B 7.07 0.10 0.76 0.89 0.26 30.12
GLM-4.5-vL-106B-A12B 7.57 0.11 0.77 0.86 0.26 49.03
Proprietary Models

GPT-40 7.43 0.09 0.78 0.91 0.23 24.85
CLAUDE-3.5 6.49 0.08 0.79 0.94 0.20 10.89
CLAUDE-3.7 6.51 0.09 0.78 0.91 0.23 13.83
GEMINI-2.5-PRO 7.04 0.13 0.74 0.79 0.30 61.75
GEMINI-2.5-FLASH 6.43 0.10 0.76 0.89 0.26 2.77
CLAUDE-4 7.68 0.07 0.83 0.96 0.17 27.68
GPT-5 7.92 0.06 0.83 0.96 0.16 79.42

Under review as a conference paper at ICLR 2026

5.3 SKETCH2SVG

Sketch2SVG emerges as the most challenging task in our benchmark, requiring models to interpret
rough hand-drawn sketches and translate them into clean, scalable vector representations. Table E]
shows that even the best-performing model, GPT-5, achieves only 8.01—the lowest top score across
all tasks, indicating the inherent difficulty of sketch-to-vector conversion.

The task reveals a clear performance hierarchy: GPT-5 (8.01) ; Claude-4 (7.30) ;, GPT-40 (6.75),
with substantial gaps between tiers. Notably, GLM-4.5 leads open-source models with 7.00, demon-
strating competitive performance despite the task’s complexity.

Visual similarity metrics provide additional insights: GPT-5 and Claude-4 achieve the best DINO
scores (0.84 and 0.82 respectively), indicating superior semantic understanding of sketch content.
However, GLM-4.1 and GLM-4.5 achieve the lowest MSE scores (0.18), suggesting they excel at
pixel-level reconstruction even if semantic understanding lags.

The task shows interesting speed-performance relationships: while Gemini-2.5-Flash maintains
its speed advantage (2.68s), the performance penalty is more pronounced here (6.62 vs 8.01 for
GPT-5). This suggests that sketch interpretation may require more computational resources than
other SVG generation tasks.

Table 5: Sketch2SVG Performance. Higher values are better for VLM Judge, SSIM, and DINO.
Lower values are better for MSE, LPIPS, and Time.

Model VLM JudgetT MSE|] SSIM1T DINO{T LPIPS| Time(s)/|
Open-source Models

QWEN-2.5-VL-7B 4.50 0.19 0.61 0.74 0.46 16.94
QWEN-2.5-VL-32B 5.49 0.19 0.58 0.78 0.45 29.28
GLM-4.1-vL-9B 5.63 0.18 0.65 0.74 0.44 37.03
QWEN-2.5-VL-72B 6.21 0.20 0.58 0.77 0.44 17.63
GLM-4.5-vL-106B-A12B 7.00 0.18 0.62 0.79 0.43 49.24
Proprietary Models

GEMINI-2.5-FLASH 6.62 0.16 0.64 0.82 0.42 2.68
GPT-40 6.75 0.16 0.65 0.79 0.42 7.61
CLAUDE-3.5 6.95 0.16 0.66 0.79 0.42 3.04
GEMINI-2.5-PRO 6.97 0.17 0.64 0.79 0.42 73.69
CLAUDE-4 7.30 0.15 0.63 0.82 0.43 10.41
GPT-5 8.01 0.17 0.62 0.84 0.43 59.24

5.4 CROSS-TASK ANALYSIS AND KEY INSIGHTS

Our comprehensive evaluation across Text2SVG, SVG Editing, and Sketch2SVG reveals several
critical insights about current VLM capabilities in vector graphics generation.

Task Difficulty Ranking. The results establish a clear difficulty hierarchy: Text2SVG (easiest,
GPT-5: 8.95) > SVG Editing (intermediate, GPT-5: 7.92) > Sketch2SVG (hardest, GPT-5: 8.01).
This ranking aligns with intuitive expectations: text descriptions provide explicit semantic guidance,
editing requires understanding existing structures, while sketches demand interpretation of imprecise
visual input.

Model Consistency Across Tasks. GPT-5 demonstrates remarkable consistency, leading in all three
tasks with scores of 8.95, 7.92, and 8.01. Claude-4 consistently ranks second (8.81, 7.68, 7.30),
while GPT-40 maintains third place (8.00, 7.43, 6.75). This consistency suggests these models have
developed robust, generalizable SVG generation capabilities rather than task-specific optimizations.

Open-Source Competitiveness Varies by Task. The proprietary-open source gap is most pro-
nounced in Text2SVG (1.11 points) and Sketch2SVG (1.01 points), but narrows significantly in
SVG Editing (0.35 points). This suggests that SVG editing may be the most promising area for
open-source models to achieve parity with proprietary alternatives.

Under review as a conference paper at ICLR 2026

Speed-Performance Trade-offs Are Task-Dependent. While Gemini-2.5-Flash consistently offers
the fastest inference (2.68-2.87s), the performance penalty varies: minimal in Text2SVG (8.22 vs
8.95), moderate in Sketch2SVG (6.62 vs 8.01), and more substantial in SVG Editing (6.43 vs 7.92).
This suggests editing tasks may be less amenable to speed optimizations.

5.5 SVG CAPTIONING

The SVG Captioning results in Table [3|reveal interesting patterns distinct from the generation tasks.

GPT-5 dominates the LLM Judge metric (53.65), significantly outperforming other models,
which aligns with its strong generation capabilities. However, the traditional NLP metrics show
different rankings: Claude-3.5 leads in BLEU (6.36) and chrF++ (31.22), while Gemini-2.5-Pro
achieves the highest BGE-M3 (71.13) and ROUGE scores (23.96).

Notably, open-source models show competitive performance in captioning: GLM-4.1 achieves
the highest BLEU score (6.55) among all models, and GLM-4.5 performs well across multiple
metrics. This suggests that caption generation may be less challenging than SVG generation tasks,
allowing open-source models to close the performance gap.

6 CONCLUSION

We introduced VectorGym, a new comprehensive multi-task benchmark for SVG code generation
that encompasses Sketch2SVG, SVG editing, Text2SVG, and SVG captioning. VectorGym in-
troduces Sketch2SVG and releases the first dataset of complex, human-authored SVG edits, with
gold-standard human annotations across all tasks. Our 7,000-sample evaluation and novel VLM-
as-judge metrics reveal significant performance gaps between proprietary and open-source models,
with open-source alternatives showing competitive results in editing and captioning. VectorGym
establishes a new evaluation standard for visual code generation and provides robust benchmarks to
advance SVG generation capabilities.

Use of LLMs We leveraged large language models (LLMs) to support different aspects of this
work. They assisted with coding tasks needed to build the datasets and run experiments. Models
such as GPT-40, GPT-5, and Claude-4-Sonnet were also used to help with related work exploration
and to ensure a comprehensive literature review. In addition, we employed LLMs for rephrasing and
refinement while writing this paper, with the goal of improving flow, clarity, and correcting spelling
errors. Importantly, we followed strict rules to preserve the accuracy and details of our contributions,
and all generated content was carefully reviewed, manipulated, and edited by the authors.

Limitations VectorGym advances the capabilities that can be evaluated and optimized for more
fine-grained control of current state-of-the-art SVG models. However, several limitations should
be acknowledged. Our evaluation focuses on zero-shot and few-shot performance without training
models specifically on our dataset, which was constrained by available GPU resources. Future
work should focus on optimizing models for these specific tasks beyond zero-shot performance.
Additionally, the evaluated models may contain inherent biases from their training data that could
affect SVG generation quality and fairness across different visual styles and cultural representations.

Ethics Statement The VectorGym dataset is sourced from SVG-Stack, which aggregates content
under appropriate licenses, and has been carefully filtered and curated to ensure quality and appro-
priateness. However, the models evaluated in this benchmark may exhibit biases inherited from
their training data, potentially affecting the fairness and representation of generated SVG content
across different demographics, cultures, and artistic styles. We encourage researchers to be mindful
of these potential biases when using this benchmark and to consider fairness implications in future
model development.

REFERENCES

Mu Cai, Zeyi Huang, Yuheng Li, Haohan Wang, and Yong Jae Lee. Leveraging large language mod-
els for scalable vector graphics-driven image understanding. arXiv preprint arXiv:2306.06094,
2023.

Under review as a conference paper at ICLR 2026

Defu Cao, Zhaowen Wang, Jose Echevarria, and Yan Liu. Svgformer: Representa-
tion learning for continuous vector graphics using transformers. In CVPR, 2023.
URL https://openaccess.thecvf.com/content/CVPR2023/papers/

Cao_SVGformer_Representation_Learning_for_Continuous_Vector_
Graphics_Using Transformers_ CVPR_2023_paper.pdf.

Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. Deepsvg:
A hierarchical generative network for vector graphics animation. In NeurIPS,
2020. URL |https://proceedings.neurips.cc/paper/2020/file/
bcf9d6bd14a2095866ce8c950b702341-Paper.pdf.

Louis Clouéatre and Marc Demers. Figr: Few-shot image generation with reptile. arXiv:1901.02199,
2019. URL https://arxiv.org/abs/1901.021909.

Jon Ferraiolo, Fujisawa Jun, and Dean Jackson. Scalable vector graphics (SVG) 1.0 specification.
iuniverse Bloomington, 2000.

Jinke Li, Jiarui Yu, Chenxing Wei, Hande Dong, Qiang Lin, Liangjing Yang, Zhicai Wang, and
Yanbin Hao. Unisvg: A unified dataset for vector graphic understanding and generation with
multimodal large language models. arXiv preprint arXiv:2508.07766, 2025.

Tzu-Mao Li, Michal Luka¢, Michaél Gharbi, and Jonathan Ragan-Kelley. Differentiable vector
graphics rasterization for editing and learning. ACM TOG (SIGGRAPH Asia), 2020. URL
https://people.csail.mit.edu/tzumao/diffvg/.

Raphael Gontijo Lopes, David Ha, Douglas Eck, and Jonathon Shlens. A learned representation
for scalable vector graphics. In ICCV, 2019. URL https://openaccess.thecvf.
com/content_ICCV_2019/papers/Lopes_A_Learned_Representation_for_
Scalable_Vector_Graphics_ICCV_2019_paper.pdf.

Antoine Quint. Scalable vector graphics. IEEE MultiMedia, 10(3):99-102, 2003.

Pradyumna Reddy et al. Im2vec: Synthesizing vector graphics without vector supervision.
In CVPR, 2021. URL https://openaccess.thecvf.com/content/CVPR2021/
papers/Reddy_Im2Vec_Synthesizing Vector_Graphics_Without_Vector_
Supervision_CVPR_2021_paper.pdfl

Juan A Rodriguez, David Vazquez, Issam Laradji, Marco Pedersoli, and Pau Rodriguez. Figgen:
Text to scientific figure generation. arXiv preprint arXiv:2306.00800, 2023a.

Juan A Rodriguez, David Vazquez, Issam Laradji, Marco Pedersoli, and Pau Rodriguez. Ocr-vqgan:
Taming text-within-image generation. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 3689-3698, 2023b.

Juan A Rodriguez, Haotian Zhang, Abhay Puri, Aarash Feizi, Rishav Pramanik, Pascal Wichmann,
Arnab Mondal, Mohammad Reza Samsami, Rabiul Awal, Perouz Taslakian, et al. Rendering-
aware reinforcement learning for vector graphics generation. arXiv preprint arXiv:2505.20793,
2025a.

Juan A. Rodriguez et al. Starvector: Generating scalable vector graphics code from images and text.
In CVPR, 2025b. URL https://openaccess.thecvf.com/content/CVPR2025/
papers/Rodriguez_StarVector Generating_Scalable_Vector_ Graphics_
Code_from_Images_and Text_ CVPR_2025_paper.pdf.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models, 2021.

Changyue Shu et al. Svgeditbench v2: Instruction-based editing for vector graphics.
arXiv:2504.15547,2025. URL https://arxiv.org/abs/2504.15547.

Yael Vinker, Ehsan Pajouheshgar, Jessica Y Bo, Roman Christian Bachmann, Amit Haim Bermano,
Daniel Cohen-Or, Amir Zamir, and Ariel Shamir. Clipasso: Semantically-aware object sketching.
ACM Transactions on Graphics (TOG), 41(4):1-11, 2022.

10

https://openaccess.thecvf.com/content/CVPR2023/papers/Cao_SVGformer_Representation_Learning_for_Continuous_Vector_Graphics_Using_Transformers_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Cao_SVGformer_Representation_Learning_for_Continuous_Vector_Graphics_Using_Transformers_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Cao_SVGformer_Representation_Learning_for_Continuous_Vector_Graphics_Using_Transformers_CVPR_2023_paper.pdf
https://proceedings.neurips.cc/paper/2020/file/bcf9d6bd14a2095866ce8c950b702341-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/bcf9d6bd14a2095866ce8c950b702341-Paper.pdf
https://arxiv.org/abs/1901.02199
https://people.csail.mit.edu/tzumao/diffvg/
https://openaccess.thecvf.com/content_ICCV_2019/papers/Lopes_A_Learned_Representation_for_Scalable_Vector_Graphics_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Lopes_A_Learned_Representation_for_Scalable_Vector_Graphics_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Lopes_A_Learned_Representation_for_Scalable_Vector_Graphics_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Reddy_Im2Vec_Synthesizing_Vector_Graphics_Without_Vector_Supervision_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Reddy_Im2Vec_Synthesizing_Vector_Graphics_Without_Vector_Supervision_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Reddy_Im2Vec_Synthesizing_Vector_Graphics_Without_Vector_Supervision_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2025/papers/Rodriguez_StarVector_Generating_Scalable_Vector_Graphics_Code_from_Images_and_Text_CVPR_2025_paper.pdf
https://openaccess.thecvf.com/content/CVPR2025/papers/Rodriguez_StarVector_Generating_Scalable_Vector_Graphics_Code_from_Images_and_Text_CVPR_2025_paper.pdf
https://openaccess.thecvf.com/content/CVPR2025/papers/Rodriguez_StarVector_Generating_Scalable_Vector_Graphics_Code_from_Images_and_Text_CVPR_2025_paper.pdf
https://arxiv.org/abs/2504.15547

Under review as a conference paper at ICLR 2026

Ronghuan Wu, Wanchao Su, Kede Ma, and Jing Liao. Iconshop: Text-based vector icon synthesis
with autoregressive transformers. arXiv preprint arXiv:2304.14400, 2023.

Yingxue Xia et al. Vgbench: A comprehensive benchmark for vector graphics generation. In
EMNLP,2024. URL https://aclanthology.org/2024.findings—emnlp.1132/.

Ximing Xing, Juncheng Hu, Guotao Liang, Jing Zhang, Dong Xu, and Qian Yu. Empowering llms
to understand and generate complex vector graphics. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 19487-19497, 2025.

Yiying Yang, Wei Cheng, Sijin Chen, Xianfang Zeng, Fukun Yin, Jiaxu Zhang, Liao Wang, Gang
Yu, Xingjun Ma, and Yu-Gang Jiang. Omnisvg: A unified scalable vector graphics generation
model. arXiv preprint arXiv:2504.06263, 2025.

Tong Zhang, Haoyang Liu, Peiyan Zhang, Yuxuan Cheng, and Haohan Wang. Beyond pixels:
Exploring human-readable svg generation for simple images with vision language models, 2023.
URLhttps://arxiv.org/abs/2311.15543.

11

https://aclanthology.org/2024.findings-emnlp.1132/
https://arxiv.org/abs/2311.15543

Under review as a conference paper at ICLR 2026

A VECTORGYM DATASETS

Here we provide additional details on the VectorGym datasets. Figures [3and []illustrate test sam-
ples for the Sketch2SVG (VG-Sketch) and SVG Editing (VG-Edit) tasks. We further describe the
annotation methodology, data creation and sampling process, annotation details, and task definitions.

A.1 ANNOTATION METHODOLOGY

A.1.1 DATA CURATION AND SAMPLING

We extracted 7,000 high-quality samples from the SVG-Stack dataset through a rigorous multi-stage
filtering process:

Visual Quality Assessment: Human experts manually reviewed SVG samples to identify visually
appealing and well-formed graphics, filtering out corrupted, overly simplistic, or poorly designed
samples.

Token Length Filtering: We applied token length constraints (2,000-8,000 tokens) to ensure mean-
ingful complexity while maintaining computational feasibility. This range captures rich, detailed
SVGs without exceeding practical processing limits for current VLMs.

Color Entropy Thresholding: We computed color entropy for each SVG to ensure visual diversity,
filtering samples with insufficient color variation or monotonic palettes.

Random Sampling: Final samples were randomly selected to avoid systematic biases in content
distribution.

From the curated 7,000 samples, we reserved 300 for testing across all tasks, with the remainder
used for training and validation splits.

A.1.2 ANNOTATION VENDOR PARTNERSHIP

We partnered with two specialized data annotation vendors to ensure task-specific expertise:

Vendor 1 - Sketch and Caption Generation: Specialized in visual content creation, responsible
for sketch generation and text descriptions. Annotators were equipped with professional drawing
tools (digital tablets, cameras for hand-drawn sketches) and trained on SVG visual analysis.

Vendor 2 - SVG Editing: Focused on technical SVG manipulation, staffed with annotators having
design and vector graphics backgrounds. We developed custom SVG editing tools specifically for
this project to enable precise modifications.

A.1.3 ANNOTATOR DEMOGRAPHICS AND TRAINING

Our annotation team comprised over 20 annotators with diverse demographics and gender represen-
tation. All annotators underwent specialized training:

Technical Requirements: Background in design, vector graphics, or coding. Annotators were
tested on SVG understanding and tool proficiency before assignment.

Equipment and Tools: Professional cameras for photographing hand-drawn sketches, digital draw-
ing tablets, custom SVG editing software, and standardized annotation interfaces.

12

Under review as a conference paper at ICLR 2026

Figure 3: Visualization of VG-Edit Test Examples. We randomly sample 21 examples, and show
the editing instruction to perform, along with the source and target vectors.

Skotch

Sketch

Figure 4: Visualization of VG-Sketch Test Examples. We randomly sample 30 examples, and
show the sketch and the target vector.

A.1.4 TASK-SPECIFIC ANNOTATION PROCEDURES

Sketch2SVG Generation: Annotators were provided with SVG images and asked to create corre-
sponding sketches in two variants:

* Hand-drawn: Using pen or pencil on paper, photographed with standardized lighting and
resolution

* Digital: Created using drawing tablets and stylus input for consistent digital sketches

13

Under review as a conference paper at ICLR 2026

Both variants included colored and black-and-white versions to test model robustness across differ-
ent input modalities.

SVG Editing - Ensuring Complexity: We implemented strict complexity requirements to avoid
trivial edits that could be synthetically generated:

Prohibited Simple Edits: Rotation, color changes, scaling, basic shape removal - operations easily
automated by current LLMs.

Required Complex Edits: Path modifications, primitive additions, parameter adjustments, concep-
tual additions requiring semantic understanding. For example:

* Adding elements from other SVGs in the database (e.g., incorporating a needle shape into
a hammer SVG)

* Modifying facial expressions in character illustrations
» Converting chart types (pie to bar charts)
e Structural modifications requiring new geometric primitives

Caption Generation: We implemented a comprehensive multi-stage process for generating high-
quality text descriptions:

1. Detailed Visual Description: Annotators created comprehensive descriptions of vector
graphics, with particular emphasis on color specification. To ensure color accuracy, anno-
tators were required to include hexadecimal color codes in parentheses alongside natural
language color descriptions (e.g., ’red (#FF0000)”).

2. Cross-validation with VLM: All human-generated descriptions were processed and cross-
validated using Qwen2-VL-32B to ensure consistency and completeness of visual descrip-
tions.

3. Instruction Reformatting: Captions were systematically reformatted from descriptive
statements into instruction-style prompts suitable for the Text2SVG generation task. This
process generated two distinct variants:

* Hexadecimal Color Version: Instructions containing precise hexadecimal color
specifications, which empirically demonstrate superior SVG generation accuracy

* Natural Language Color Version: Instructions using standard color names for
broader accessibility

4. Quality Validation: Final consistency checks and inter-annotator agreement measurement
across all caption variants

Quality Assurance: All annotations underwent rigorous quality control including automated SVG
syntax validation, human verification of task requirements, and consistency checks across related
task pairs.

B ADDITIONAL QUALITATIVE RESULTS

We provide additional figures (Figures [5H9) showing qualitative results of the models on the pre-
sented tasks.

14

Under review as a conference paper at ICLR 2026

Ground Truth Gpts Claude Sonnet 4 Claude 3.5 Sonnet Gemini 2.5 Pro
Input Sketch

0
O
O

ooo 000 ooo ood

—
ValiaN @ © © oo
N———

N

= .
BT (O[]

/

(

\

/
A

S E. o () de (I
IH
T

T
<STOCKSEQUENCE
Persist VIEWs

Vi

T
Mcrosof ExecteSQLTasks
Persist CuteniDate

-

Figure 5: Visualization of test performance on the Sketch2SVG task. When the input sketch lacks
color, models tend not to introduce new colors. In contrast, when color is present in the sketch,
models successfully reproduce it in the generated SVG.

15

Under review as a conference paper at ICLR 2026

Text2Svg - Qualitative Analysis

Sample 1
ca5fb240...

Input Text Ground Truth Claude 3.5 Sonnet Claude 3.7 Sonnet Gemini 2.5 Flash

INPUT TEXT

nicon of a square. Itis colored with a red-
to-whitish red gradient from the top to
bottom. Itis outlined with a thick-bold
black (#000000) outline.

Sample 2
7de6000a...

he logo depicts a radio within a rounded-

edged rectangle that extends slightly at the
Tower parts on both sides, filled with dark
grey (#38434D). At each of the four corners,
there are small circles containing a plus
sign in black inside, Near the center bottom,
there s a larger rounded rectangle witha
wider end at the base, illed with dark navy
blue-grey (#293844). This shape also features
atiny circle with a plus sign at its top
center, and beneath it, a small grey
(#38434D) triangle pointing to the right, On
elther side of this rectangle, a circle and a

Sample 3
e044ab39...

rounded square, both in white (£FFFFFF), are
positioned, with the squares set higher than
nicon of a 3D cardboard box is depicted. The
top part of the box is a light brows
(#FICIBF) shade with a white (#FFFFFF) strip
running along the top, extending partially

nd dividing the top into two
flaps. The back of the box is a darker brown
(#DBAOG6) shade, also featuring an extended
white (#FFFFFF) strip coming from the bottom.
‘The front part of the box is brown (#DCAB78)
and includes a white (#FFFFFF) rectangle

ape in the lower left corer, which

consists of three horizontal brown (#DCABTS)
lines.

Sample 4
36112182...

INPUT TEXT

he logotype comprises a black (#282A36)
square with rounded edges, a Dracula emoji
with two eyes, and an open mouth with two
fangs colored are colored lavender (#BD93F9)
in the middle.

Sample 5

958189ce... Drive Connector Drive Connector

his is a pie chart made with three different Drive Connector Drive Conpactar
sectors and three different colors. SATA SwTh (57.4%)
(5.7.4%) Color: blue (#3465A4) i the largest o
sector of the pie and is also slightly NVMe (35.2%)
separated from the rest of the sectors. The
remaining sectors are NVMe (35.2%) Calor: e 35.2
green (#4E9A06) and SAS (7.4%) Color: red oo (e
(#CC0000). Each sector s indicated with a '
black (#000000) line with two circles on both
‘ends. Above the pie, “Drive Connector” is
written in thick black (#2E3436) strokes with
uppercase and lowercase letters.
SATA (57.4%

INPUT TEXT
Sample 6

d294c92c... | helogo consists of two overlapping pages of
light gray (#FOEFF1) color, with folds at the —
top right edge and a thick dark gray
(#424242) border. The attached pages have a
circular cut at the bottom right part where a
red (#E51400) circle with a white (#FFFFFF)
solid "X letter is written in capitals
depicting an error message. The circle and
the pages have a white (#F6F6F6) outline. @

200 €

Figure 6: Qualitative analysis of Text2SVG generation results. The figure shows examples of
text2SVG generation across different model performances. Examples demonstrate successful gener-
ations with accurate semantic understanding and geometric representation, as well as common fail-
ure modes including incorrect primitive usage, semantic misunderstanding, and incomplete shape
representations.

ni th a vibrant aqua green
Sample 7 | (432BEAG) circle. In the middle of the
9171128b.... | circle, a man s drawn with black
eyes, hair, a van dyke beard, and
ear-s he left ear, The right half
of the face is in color light pink (FBC3C8),
and the left half o the face is in color
light pink (#FBD7D7). The right half o the
neckis light pink (#F78484), and the left
half of the neck is light pink (#FBCBCE). A
small yellow (#FBE158) thunderbolt is drawn
in the middle of the tshirt,

3E3F)

16

Under review as a conference paper at ICLR 2026

Sample 1
e2doeadt...

Sample 2
76€39108...

Sample 4
38135c95...

sample 5
8926dbf0...

sample 6
deBaradz...

Sample 7
Schdasc...

Edit Instruction

WUt T

Karound o purple and replace
e wit Bisck-colored fong

emove the glasses and change this emil into
aTaughing emel.

Original Ground Truth

\ A J
-

¥

~
N

e
CF

.
D)
)

Claude 3.5 Sonnet

N

afenfle
S

Claude 3.7 Sonnet Gemini 2.5 Flash

Figure 7: Qualitative analysis of SVG editing with natural language instructions. The fig-
ure demonstrates model performance on various editing tasks including color changes, geometric
transformations, and structural modifications. Examples show input SVG (left), editing instruction
(center), and generated output (right). Successful cases highlight accurate instruction parsing and
precise SVG manipulation, while failure cases reveal challenges in understanding complex instruc-
tions and maintaining visual coherence.

17

Under review as a conference paper at ICLR 2026

Sketch2Svg - Qualitative Analysis

ssssss
...........

Claude 3.5 Sonnet Claude 3.7 Sonnet Gemini 2.5 Flash Gpt 40

Input Sketch Ground Truth

ooo

%)
I
>
o

—
X
]

o ‘ﬂ& 7] NICs
E- Fewn AW T

Figure 8: Qualitative analysis of Sketch2SVG generation results. The figure illustrates model per-
formance in converting hand-drawn sketches to clean SVG code. Examples display input sketches
(left), ground truth SVG (second column), and model-generated SVGs (rest of the columns).

18

Under review as

a conference paper at ICLR 2026

Ground Truth GPT5 Claude Sonnet4 Claude 3.5 Sonnet Gemini 2.5 Pro

e - —

Create an SVG of
disposable coffee cup in
light gray (#EBEAE9). Add
a lid with two distinct
colors: the upper portion
in navy blue (#344ASE)
and the bottom portion in
a duller shade of navy
blue (#415A68B). Place a
thick red (#F05540) label
around the middle of the

m | ¢ = a 0

[Weorioa

Create an SVG of a logo
featuring a circular
background in a light
blue color (#D4EOFA).
Inside the circle, draw a

(oloved (#FFCOB1) with
fine lines in a

the top of the logo,

hand sanitizing s
e hand should be pesch-

arker
peach shade (#FFB1A7). At|

[Weorrea

Create an SVG of a
stylized logo or emblem
with a layered design.
Start by drawing a dark
blue (#00267f),
irreqular, rounded
outline to form the outer
boundary. Inside, add a
yellow (#ffc726) curved
vertical stripe running
from top to bottom. At

10000

INPUT TEXT

Create an SVG of

dark teal (nss!sl)
rectangle with rounded
corners. Add a wide

vertical bright lime
yellow (#E4FF55) line on
the left side. At the

top, draw a small dark
teal (#255E61) rectangle
with thick strokes, an
include three small white

it =
%

[Weorrec

Create an SVG of a wave
icon, starting with a
deep violet (xsdsasn
color on the left ai
transitioning smoomly o
mid-violet (#6d5a91) in
the middle, then to light

flow horizontally from
left to right,

B i ™ T T

C VLM AS

Figure 9: Qualitative analysis of Text2SVG generation results.

A JUDGE

We present the exact prompts used in our experiments—both for VLM-as-a-judge and for genera-
tion, color-coded by task.

Prompt 1:

job is to

is

You are an expert evaluator for text-to-SVG generation tasks. Your

description.
Evaluation Instructions: Please evaluate how well the generated
image matches the text description using the following criteria:

1. Visual Accuracy: Does the image accurately represent what

2. Completeness: Are all elements mentioned in the text
present in the image?
3. Quality: Is the image clear, visually appealing, and
well-formed?
Text Description: {caption}
Scoring Rubric (1--10):
* 1--3 (Poor): Mostly unrelated to the text, major
inaccuracies or missing elements, poor quality.
* 4——6 (Fair): Partially related to the text, some missing or
incomplete elements, moderate quality.

Used for VLM-as—-a-Judge Score (Text2Svg)

assess how well a generated image matches a given text

described in the text?

19

Under review as a conference paper at ICLR 2026

Table 6: Comparison of SVG datasets and benchmarks across scale, task coverage, and annotation
quality. VectorGym uniquely combines multi-task evaluation with human-verified quality across
diverse SVG content types. Existing datasets either focus on single tasks, rely on synthetic annota-
tions, or lack comprehensive evaluation frameworks.

Dataset Year Size Content types Tasks Annotation
VG-Sketch (ours) 2025 6,500 icons, fonts, dia- Sketch—to-SVG human
grams, emojis
VG-Text2SVG (ours) 2025 6,500 icons, diagrams, Text-to-SVG human
emojis, fonts
VG-Edit (ours) 2025 6,500 diverse SVG editing human
SVG-Stack 2025 2,283,875 diverse (icons, SVG corpus unlabeled
logos, diagrams)
Text2SVG-Stack 2025 2,180,000 diverse (paired Text-to—-SVG synthetic cap-
text—SVG) tions
SVG-Fonts 2025 1,928,271 fonts, glyphs SVG corpus unlabeled
SVG-Icons 2025 89,376 icons SVG corpus unlabeled
SVG-Emoji 2025 10,043 emojis SVG corpus unlabeled
MMSVG-2M 2025 2,000,000 icons, illustra- Image—to-SVG, mixed (web +
tions, characters Text-to—SVG, synthesized)
UniSVG 2025 525,000 unified Image—to-SVG, mixed
multi-domain Text-to-SVG, Un-
derstanding
SVGX-SFT-1M 2025 1,000,000+ diverse instruction—following synthetic
(instruction<>SVG) (LLM)
SVG-1M (SVGen) 2025 1,000,000 icons Image—to-SVG, synthetic
Text—to-SVG, (LLM)
FIGR-SVG (from FIGR-8) 2025 1,330,000 icons Text/Image-to—-SVG converted +
synthetic text
DeepSVG dataset (SVG-Icons8) 2020 100,000 icons SVG generation curated
SVGenius 2025 2,377 diverse understanding; edit- human—verified
ing
VGBench 2024 4,279 +5,845 multi-format understanding; gen- synthetic + ver-
(SVG, TikZ, eration ified
Graphviz)
SVGEditBench v2 2025 1,683 triplets emojis, icons SVG editing synthetic
prompts
VectorEdits 2025 270,000+ diverse SVG editing (in- synthetic
str.—guided) (VLM)
Quick Draw! 2017 50,000,000+ sketches sketch recognition human
IconDesc (UI icons) 2024 “1,400 Ul icons captioning (alt-text) human

¢ 7—--9 (Good) :

Output format:

score:
explanation:

Mostly accurate and complete,

detail or quality, clear and visually appealing.

* 10 (Excellent):
elements accurate,

<number 1-10>
<brief explanation>

Perfect match to the text description,
excellent quality.

minor issues in

all

sketch.

the sketch?

Evaluation Instructions:

1. Shape Fidelity:

Please evaluate how well the generated
image matches the input sketch using the following criteria:

Prompt 2: Used for VLM-as—a-Judge Score (Sketch2Svg)

You are an expert evaluator for sketch-to-SVG generation tasks.
Your job is to assess how well a generated image matches an input

20

Do the shapes in the generated image match

Under review as a conference paper at ICLR 2026

2. Structure Preservation: Is the overall structure and layout
maintained?

3. Detail Accuracy: Are important details from the sketch
captured?

4. Quality: Is the generated image clear, visually appealing,
and well-formed?

Scoring Rubric (1--10):

¢ 1--3 (Poor): Significant deviations in shape or structure,
poor quality.

* 4——6 (Fair): Partial match with noticeable inaccuracies,
moderate quality.

¢ 7--9 (Good): Closely matches the sketch with minor issues,
clear and appealing.

* 10 (Excellent): Perfectly matches the sketch, all details
accurate, excellent quality.

Output format:

score: <number 1-10>
explanation: <brief explanation>

Prompt 3: Used for VLM-as—a-Judge Score (Svg—-Editing)

You are an expert evaluator for SVG editing tasks. Your job is
to assess how well a generated image follows editing instructions
applied to an original image.

Evaluation Instructions: Please evaluate how well the generated
image follows the editing instructions applied to the original
image using the following criteria:

1. Instruction Compliance: Does the generated image follow the
editing instructions?

2. Original Preservation: Are unmodified parts of the original
image preserved?

3. Coherence: Does the edited image look natural and coherent?

4. Quality: Is the edited image clear, visually appealing, and
well-formed?

Editing Instructions: {caption}
Scoring Rubric (1--10):

¢ 1--3 (Poor): Instructions not followed, major quality or
coherence issues.

e 4——6 (Fair): Partial compliance, noticeable issues in
preservation or quality.

¢ 7--9 (Good): Mostly compliant with minor issues, clear and
appealing.

* 10 (Excellent): Perfectly follows instructions, preserves

original, excellent quality.
Output format:

score: <number 1-10>
explanation: <brief explanation>

Prompt 4: Unified VLM-as—a-Judge (All Tasks)

You are an expert evaluator for SVG-related tasks (Text-to-SVG,
Sketch-to-SVG, and SVG Editing). Assess the quality of a candidate

21

Under review as a conference paper at ICLR 2026

SVG output given the corresponding input (text prompt, sketch image
description, or original SVG plus edit instruction).

Please score on a 0--10 scale and provide a brief explanation. Use
the following criteria where applicable:

1) Visual Accuracy and Fidelity: How well does the generated SVG
match the intended content and structure? 2) Semantic Alignment:
Does it satisfy the input requirements (text description, sketch
content, or editing instruction)? 3) Code Quality and Efficiency:
Is the SVG valid, reasonably compact, and using appropriate

primitives and attributes? 4) Aesthetics and Clarity: Is the
result clean, legible, and stylistically coherent?
Output format: score: <0-10> explanation: <one or two sentences>

Prompt 5: Used for Text2SVG Generation

You are an expert in generating SVG representations of textual
descriptions. Follow these steps carefully:

1. Analyze the given text input and identify the key visual
elements it describes.

2. Convert the description into a minimal and clear SVG
representation using basic SVG shapes such as <rect>, <circle>,
<line>, and <path>.

3. Ensure the SVG design is simple, scalable, and directly
represents the input text.

4. Do not include any additional text, explanations, comments, or
formatting|only output valid SVG code.

5. The output must be a complete SVG document, starting with
’<svg>’ and ending with ’</svg>’.

Prompt 6: Used for Sketch2SVG Generation

You are an expert in converting images into vector-based SVG
representations. Follow these steps carefully:

1. Analyze the input image and extract its key shapes, contours,
and structural features.

2. Convert these features into an SVG format using appropriate
primitives such as <path>, <circle>, <rect>, and <line>.

3. Optimize the SVG output by simplifying paths and reducing
unnecessary complexity while maintaining accuracy.

4. Do not include any additional text, explanations, comments, or
formattinglonly output valid SVG code.

5. The output must be a complete SVG document, starting with
"<svg>’ and ending with ’</svg>’.

Prompt 7: Used for SVG Editing Generation

You are an expert in editing SVG images based on text instructions.
Follow these steps carefully:

1. Analyze the original SVG and the editing instruction.

2. Apply the requested modifications while preserving the overall

structure.
3. Ensure the edited SVG is wvalid and well-formed.
4. Do not include any additional text, explanations, comments, or

formatting|only output valid SVG code.
5. The output must be a complete SVG document, starting with
"<svg>' and ending with ’</svg>’.

Under review as a conference paper at ICLR 2026

- 3

You are a concise evaluator of caption similarity.
Compare a PREDICTION caption to a GROUND-TRUTH caption
Judge semantic meaning, not exact wording.

(no image) .

Rules:

— Accept paraphrases and synonyms.

- Treat numbers, counts, colors, attributes, relations,
- Penalize unsupported or contradictory details (hallucinations)
— Ignore casing and punctuation (except negation words like
— Do not use world knowledge; compare only what the texts state.

Scoring (return a single integer 0-5):
= Semantically equivalent or near-paraphrase; all key facts align;
= Very close; only a minor detail missing/different;
= Partially correct;
= Weak overlap;
= Minimal overlap; only a very generic element matches.

= Unrelated or contradicts core facts (e.g., negation flip,

ORNWNOU
|

Output ONLY the integer score (0-5). No words, no JSON,
GROUND-TRUTH:
PREDICTION:

Score 0-5.

{ground_truth_caption}
{prediction_caption}

and negation a
more
"no/not/wi

n

no contradictio
several core elements match but some important
topic similar but multiple important errors or added

wrong ma

no explanation

5 strict (penalize mi
fhan omissions.
thout") .

b contradictions.

ns.

etail is missing or
unsupported specific

in objects/actions) .

D CAPTIONING METRICS

We compute captioning metrics pairwise over aligned (reference, prediction) captions and average

across the corpus.

* BLEU (corpus BLEU): n-gram precision with brevity penalty; 0—100 (higher is better).

* chrF++ (CHRF): Character n-gram F-score (word order=2); 0-100 (higher is better).

* ROUGE-L (F1): Longest common subsequence overlap (F1); 0-100 (higher is better).

¢ BERTScore (F1): Semantic similarity via contextual embeddings; 0—100 (higher is better).

rescale_with baseline=False.

* BGE-M3 Similarity: Average cosine similarity of BAAI /bge—-m3 sentence embeddings;

0-100 (higher is better).

* GPT-5 Rubric Similarity: LLM-judged semantic agreement on a 05 rubric mapped to

0-100; higher is better.

23

	Introduction
	Related Work
	VectorGym
	Task Definitions
	Dataset Construction

	Experiments
	Baseline Models
	Evaluation Metrics
	VLM-as-Judge Evaluation Metric

	Results
	Text2SVG Generation
	SVG Editing
	Sketch2SVG
	Cross-Task Analysis and Key Insights
	SVG Captioning

	Conclusion
	VectorGym Datasets
	Annotation Methodology
	Data Curation and Sampling
	Annotation Vendor Partnership
	Annotator Demographics and Training
	Task-Specific Annotation Procedures

	Additional Qualitative Results
	VLM as a Judge
	Captioning Metrics

