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ABSTRACT

We introduce VectorGym, a multi-task benchmark for evaluating Vision-
Language Models (VLMs) on Scalable Vector Graphics (SVG) code generation
and manipulation. VectorGym addresses the critical lack of challenging bench-
marks aligned with real-world design workflows, specifically requiring mastery
of complex primitives and multi-step edits. Our benchmark comprises four com-
plementary tasks: the novel Sketch2SVG (VG-Sketch) conversion; a new SVG
editing dataset (VG-Edit) involving higher-order primitives and semantic reason-
ing; and rigorous benchmarks for Text2SVG (VG-Text) and SVG captioning (VG-
Cap). VectorGym derives particular value from expert human-authored SVG an-
notations across all tasks, ensuring a rigorous challenge. VectorGym also intro-
duces a VLM-as-judge metric tailored for SVG generation, validated against hu-
man judgment. Our comprehensive evaluation of leading VLMs and our own
GRPO-trained models reveals significant performance gaps, establishing Vector-
Gym as a robust framework for advancing visual code generation.

Detailed SVG Captions
(SVG, Text Description)
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(SVG, Sketch Image)

Complex SVG Edits 
(Source SVG, 

Edit Instruction, Target SVG)
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The icon shows a stylized circle with a
subtle shadow effect, all in a gradient of
light-to-dark orange. The text
"OPENSPHERE" in black, uppercase...

VG-Text
Text2SVG

Create an SVG of a circle icon with an
orange gradient effect with the text
"OPENSPHERE".

VG-Edit
SVG Editing

Replace the sphere with a
triangle, and replace the
text "SPHERE" with
"TRIANGLE".

Figure 1: Overview of VectorGym Benchmark. VectorGym is a suite of human-annotated datasets
covering Sketch2SVG (VG-Sketch), SVG Editing (VG-Edit), Text2SVG (VG-Text), and SVG
Captioning (VG-Cap). Unlike prior benchmarks, it is built from diverse real-world SVGs sourced
from GitHub. Human experts annotate each SVG by hand-drawing sketches, creating complex edits,
and writing detailed text descriptions, which are further cleaned and adapted into instruction-style
prompts at varying levels of detail. We evaluate state-of-the-art models in VectorGym.

1 INTRODUCTION

Scalable Vector Graphics (SVG) (Ferraiolo et al., 2000; Quint, 2003) are widely used across the
web, design tooling, and digital media. Unlike raster images (Rodriguez et al., 2023b;c; Rombach
et al., 2021), SVGs are programs: their code exposes geometry, style, and structure, enabling pre-
cise editing, scalable rendering, and semantic manipulation. Evaluating models on SVG therefore
requires not only visual understanding but also reliable, syntax-aware code generation.

Despite rapid progress in Vision-Language Models (VLMs), existing evaluations of SVG generation
remain limited. Prior datasets often target icons or basic shapes, rely on synthetic programmatic
edits, rarely assess sketch-conditioned generation nor provide human gold labels (Rodriguez et al.,
2023a; Wu et al., 2023; Zhang et al., 2023; Xing et al., 2025; Yang et al., 2025; Rodriguez et al.,
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Table 1: SVG Datasets Comparison. We compare similar datasets across annotation quality, task
complexity, and data source. We report the SVG type, total samples, whether each dataset supports
multiple tasks, the level of SVG primitive coverage beyond simple paths (i.e. including higher order
primitives, like circle, text, gradients or animation logic), and whether it includes annotations for
edits and sketches, plus whether these annotations reach expert human quality with complex intent.
VectorGym is built from real SVGs collected from GitHub (in-the-wild), preserving original struc-
ture and primitive detail, and provides targets created by expert humans with the goal of producing
complex annotations that capture semantic understanding, design intent, and multi step reasoning.

Dataset SVG Type # Samples Multi-Task Primitives Edits Sketches Human
SVGBench (Rodriguez et al., 2023a) In-the-wild 10k ✗ ✓ ✗ ✗ ✗
VGBench (Zou et al., 2024) Emojis 9.5k ✓ ✗ ✗ ✗ ✗
SVGEditBench (Nishina & Matsui, 2024) Emojis 1.6k ✗ ✗ ✓ ✗ ✗
SVGEditBenchV2 (Nishina & Matsui, 2025) Emojis 1.6k ✗ ✗ ✓ ✗ ✗
UniSVG (Li et al., 2025) Icons 525k ✓ ✗ ✗ ✗ ✗
SVGenius (Chen et al., 2025) Icons 100k ✓ ✗ ✓ ✗ ✗

VectorGym (ours) In-the-wild 7k ✓ ✓ ✓ ✓ ✓

2025). As a result, the field lacks a unified, realistic benchmark that stresses, visual understanding,
vector generation and structured SVG code manipulation.

We introduce VectorGym, a new comprehensive multi-task benchmark for SVG generation and
manipulation spanning four tasks: (1) Sketch2SVG(VG-Sketch), converting rough sketches to clean
vector code; (2) SVG Editing(VG-Edit), applying natural-language edits to existing SVGs; (3)
Text2SVG (VG-text), generating SVGs from text; and (4) SVG Captioning (VG-Cap), describ-
ing SVG content. VectorGym introduces Sketch2SVG and releases the first dataset of complex,
human-authored SVG edits; all tasks use gold-standard human annotations.

Our benchmark covers in-the-wild diversity: icons, diagrams, emojis, fonts, logotypes, and complex
illustrations, sourced from SVG-Stack (Rodriguez et al., 2023a). We pair this with careful human
curation to ensure realistic task difficulty. We evaluate leading proprietary and open-source VLMs,
providing a clear view of current capabilities and gaps.

Our main contributions are:

1. We introduce a comprehensive multi-task benchmark for real-world SVG code generation
with gold-standard human annotations across all tasks;

2. We introduce the Sketch2SVG task and the first dataset of expert authored SVG edits with
complex intent, involving rich primitives and non trivial edits.

3. We design a VLM-as-judge SVG evaluation metric tailored for sketch, text, and editing
tasks, validated through human correlation studies;

4. We provide extensive evaluation and analysis of current frontier VLMs across diverse SVG
generation scenarios.

2 RELATED WORK

Vector Graphics Generation. Classical vectorization methods based on shape-fitting algo-
rithms (Li et al., 2020; Vision Cortex, 2023) struggle with complex tasks beyond image vector-
ization. Recent neural approaches introduce learning-based components, relying on latent variable
models with differentiable rendering and attention architectures (Carlier et al., 2020; Cao et al.,
2023; Lopes et al., 2019), as well as sketch abstraction (Vinker et al., 2022) and text-conditioned
SVG synthesis (Jain et al., 2023). However, these methods are still not general enough to support a
wide range of SVG tasks.

VLMs for SVG Generation. Modern VLMs (OpenAI, 2023; Comanici et al., 2025) can now pro-
duce structured code from visual inputs. StarVector (Rodriguez et al., 2023a) frames SVG creation
as a visual to code generation task, jointly testing visual understanding and program synthesis. Sub-
sequent work further supports this direction (Zhang et al., 2023; Cai et al., 2023; Yang et al., 2025).
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Figure 2: Visualization of VG-Edit Test Examples. We randomly sample 21 examples, and show
the editing instruction to perform, along with the source and target vectors.

SVG Datasets and Benchmarks. Foundational SVG datasets include DeepSVG icons (Carlier
et al., 2020), FIGR-8 (Clouâtre & Demers, 2019), and SVG-Stack (Rodriguez et al., 2023a). Several
benchmarks address different SVG related tasks. UniSVG (Li et al., 2025) unifies 525k SVGs for
understanding and generation. VGBench (Zou et al., 2024) aggregates multiple sources to evaluate
image to SVG, text to SVG, and diagram code generation. SVGEditBench (Nishina & Matsui, 2024)
and its V2 version (Nishina & Matsui, 2025) target instruction based editing using synthetic LLM
generated edits or edits derived from similar SVGs. SVGenius Chen et al. (2025) covers a wide set
of tasks, notably editing through algorithmic transform based operations.

Here we propose VectorGym, which focuses on edits created by humans following instructions that
make the edits complex and closer to the actions of real design professionals, requiring semantic
understanding. We also introduce the novel Sketch2SVG task from human drawn sketches, and we
collect human validated text captions that allow evaluation of both Text2SVG and SVG captioning
on realistic, high difficulty edits. See Figure 1 for a dataset comparison, and refer to Appendix A for
further details.

3 VECTORGYM BENCHMARK

VectorGym consists of four complementary tasks that comprehensively evaluate different aspects
of SVG understanding and generation. Each task is designed to assess specific capabilities while
contributing to a holistic understanding of visual2code generation performance.

3.1 TASK DEFINITIONS

Sketch2SVG Generation (VG-Sketch). This task evaluates the ability to convert rough, hand-
drawn sketches into clean SVG code. Given a bitmap sketch image with approximate shapes and
imperfect lines, models must generate SVG code that captures the essential geometric structure
while producing a clean, scalable vector representation. This task tests spatial reasoning, shape
recognition, and the ability to abstract from noisy visual input to structured geometric primitives.

SVG Editing (VG-Edit). In this task, models are given an SVG along with an editing instruction and
must produce a new SVG with the specified edit applied. VG-Edit offers unprecedented complexity
in the challenge of SVG editing. Our editing instructions include deep understanding of the SVG
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syntax, requiring the use of complex primitives like texts, animations, or color gradients. It also
requires multi-step reasoning and semantic understanding (See examples in Figures 1 (right) and 2).

The challenge lies in correctly parsing the intent, identifying the relevant elements, and applying
the transformation while preserving code validity, visual coherence, and the integrity of unmodified
parts. Since instructions and targets were created by skilled human annotators, the edits are non-
trivial, for example, adding new objects, modifying logo content or text, converting a pie chart to a
bar chart, or changing facial expressions. This task evaluates both SVG structure understanding and
the ability to follow complex editing instructions. Figure 2 shows examples from our test set. Unlike
prior benchmarks Nishina & Matsui (2025); Chen et al. (2025), which focus on simple synthetic
programmatic edits, VG-Edit introduces complex, high-difficulty editing scenarios annotated by
human experts.

Text2SVG Generation (VG-Text). Given natural language descriptions of visual content, models
must generate complete SVG code that accurately represents the described objects, scenes, or ab-
stract concepts. Descriptions range from simple geometric shapes (“red circle with blue border”) to
complex illustrations (“minimalist icon of a house with a tree”). This task tests creative generation
capabilities and the ability to translate semantic concepts into precise geometric representations.

SVG Captioning (VG-Cap). The inverse of Text2SVG generation, this task requires models to
analyze existing SVG code and generate natural language descriptions that accurately capture the
visual content, style, and key characteristics. High-quality captions should describe both the seman-
tic content (“house icon”) and relevant visual properties (“minimalist style,” “blue and white color
scheme”). This task evaluates SVG code comprehension and visual understanding.

3.2 DATASET CONSTRUCTION

Our datasets are built on a carefully curated SVG collection pipeline designed to ensure diversity
across content types, complexity levels, and visual styles. We source high quality and diverse SVGs
from the SVG Stack dataset (Rodriguez et al., 2023a), an established collection that includes icons,
diagrams, emojis, fonts, logotypes, and complex illustrations. Since the original data was extracted
from GitHub, it naturally reflects in the wild SVG code, including higher order primitives such as
text, gradients, polygons, and animations. This makes the dataset more representative of real design
workflows and provides challenging examples for model development.

Our automatic curation builds on insights from prior SVG datasets (Carlier et al., 2020; Clouâtre
& Demers, 2019; Nishina & Matsui, 2024; Li et al., 2025; Chen et al., 2025). We extracted 7,000
candidate samples from the SVG Stack training split through multi stage filtering, including token
length constraints (2k to 8k tokens to retain meaningful complexity), color entropy thresholding
(normalized entropy greater than 0.55), and random subsampling followed by human visual in-
spection. After filtering, the final training set contains 6.5k samples. From these, we selected 100
samples to form our validation set, used for method tuning, in context learning, human evaluation,
and metric design (see Section 3.3). We applied the same pipeline to produce the test split to obtain
300 samples, sourced from the SVG-Stack test set.

Human Annotation Process. We partnered with two specialized data annotation vendors to pro-
duce high quality annotations across sketch and editing tasks. The process involved more than 20
annotators with diverse backgrounds and expertise in design, vector graphics, and coding. Annota-
tors were provided with drawing tools, coding utilities, and curated SVG collections to perform edits
and create sketches on different surfaces. They were specifically instructed to produce challenging
edits, involving multi-step reasoning, and real design intent, and we iterated several times on these
samples to validate their complexity and quality. See Appendix A.1 for full details on the annotation
methodology, quality assurance procedures, and complexity requirements.

Complex Annotations. In our setup, complex annotations refer to human created editing instruc-
tions and corresponding SVG modifications that require things like deeper understanding of the
SVG syntax because they introduce hiuigher order SVG primitives like texts, gradients or anima-
tions, also edits involving semantic understanding, multi step reasoning (change many things at the
same time), and design intent beyond what can be achieved through simple geometric or algorith-
mic transformations. These annotations involve operations such as adding new objects, integrating
external SVG elements, inserting text with meaningful placement, restructuring layouts, or applying
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Table 2: VLM as a Judge and Human Correlation Analysis. We run generation on the tasks for
Claude 4.5, Gemini 3 Pro, and GPT-4o, and evaluate outputs using a range of VLMs (both closed
and open, large models) to score them with the prompts presented. We also collect human ratings
using the same instructions given to VLM judges, then compute Pearson correlation to identify the
best VLMs as judges. The evaluation uses 100 validation samples extracted from the training set.
Results show Gemini 3 Pro is generally the best judge, except for the editing task where Qwen3.VL
appears to be a better choice. Sketch and text tasks show lower correlations, likely due to the more
creative nature of these tasks.

Task Generator Models used as Judges

Claude 4.5 Sonnet Gemini 2.5 Flash Gemini 3 Pro GPT 5.1 Qwen2.5VL 72B Qwen3.VL 235B GLM4.5 355B

V
G

-S
ke

tc
h Ground Truth 1.00 1.00 1.00 1.00 1.00 1.00 -0.07

Claude 4.5 Sonnet 0.63 0.73 0.72 0.62 0.57 0.69 0.67
Gemini 3 Pro 0.79 0.82 0.80 0.78 0.76 0.79 0.72
GPT 4o 0.66 0.70 0.74 0.61 0.59 0.72 0.64
Average 0.77 0.81 0.81 0.75 0.73 0.80 0.49

V
G

-C
ap

Ground Truth 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Claude 4.5 Sonnet 0.62 0.57 0.71 0.62 0.65 0.71 0.60
Gemini 3 Pro 0.48 0.47 0.55 0.49 0.43 0.53 0.48
GPT 4o 0.52 0.46 0.55 0.47 0.53 0.54 0.55
Average 0.66 0.63 0.70 0.65 0.65 0.69 0.66

V
G

-E
di

t Ground Truth -0.10 0.10 1.00 1.00 0.27 1.00 0.08
Claude 4.5 Sonnet 0.29 0.30 0.49 0.53 0.28 0.45 0.48
Gemini 3 Pro 0.49 0.47 0.54 0.57 0.04 0.61 0.56
GPT 4o 0.59 0.61 0.61 0.69 0.29 0.64 0.62
Average 0.32 0.37 0.66 0.70 0.22 0.67 0.43

V
G

-T
ex

t Ground Truth 0.01 -0.07 -0.08 0.19 -0.19 0.15 -0.07
Claude 4.5 Sonnet 0.16 0.43 0.58 0.21 0.15 0.23 0.08
Gemini 3 Pro 0.37 0.42 0.44 0.48 0.24 0.37 0.32
GPT 4o 0.50 0.71 0.63 0.58 0.25 0.66 0.55
Average 0.26 0.38 0.40 0.37 0.11 0.35 0.22

several coordinated edits simultaneously. They reflect realistic design actions performed by human
experts and cannot be reproduced by rule based procedures or low level manipulations.

3.3 DESIGNING A VLM-AS-JUDGE EVALUATION METRIC FOR SVG GENERATION

Traditional evaluation metrics for SVG generation (typically based on image reconstruction or
text–image alignment) often fall short in capturing the nuanced visual and semantic qualities that
determine the success of generated vector graphics (Rodriguez et al., 2023a; Li et al., 2025; Chen
et al., 2025). Existing work lacks comprehensive evaluation frameworks tailored to SVG genera-
tion, particularly metrics that can jointly assess visual fidelity and semantic alignment in vector code
outputs (Zou et al., 2024; Nishina & Matsui, 2025).

VLM-as-judge (VLMAJ) metrics have become popular because they provide strong supervision
signals for subjective task assessments, especially in text and image generation tasks Mañas et al.
(2024). Existing VLMAJ metrics do not capture the nuances of SVG code and SVG rendering. They
are also not reliable for tasks such as sketch based generation and SVG editing, where no consistent
metric previously existed. For this reason we design a metric specifically tailored to the four SVG
generation tasks in our benchmark.

We generate outputs from several strong baseline models and then apply carefully designed prompts
to a set of powerful VLMs, both open and closed source, to obtain scores from 0 to 5 following
clear evaluation criteria (see Appendix D). We run the same evaluation setup with human raters
and then compute Pearson correlations between VLM and human scores. This produces four task
specific VLMAJ metrics, one for each task in our benchmark, providing a more faithful measure of
instruction following, SVG structural correctness, and semantic alignment.

1. Metric Development Process. We carefully develop task-specific evaluation prompts designed
to guide VLMs in assessing different aspects of SVG generation quality. For each of the four main
generation tasks, we craft specialized prompts that encourage models to evaluate: (1) visual accuracy
and fidelity; (2) semantic alignment with input requirements; (3) code quality and efficiency; and
(4) overall aesthetic appeal.

2. Judge Model Selection. To identify the most reliable VLM judge, we conduct a systematic
comparison across state-of-the-art models: Claude 4.5 Sonnet, Gemini 2.5 Flash, Gemini 3 Pro,
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VG-Sketch
Input Gemini 3 Claude 4 GPT-4o

VG-Edit
Input Gemini 3 Claude 4 GPT-4o

VG-Text
Input Gemini 3 Claude 4 GPT-4o

Figure 3: Qualitative results on VectorGym. We display VLM-Judge and Human scores on a
scale from 0 to 5. Each task shows three validation samples alongside the strongest models in our
evaluation. Human ratings tend to be stricter, while VLM judges are more permissive and often
cluster around mid-range values when uncertain.

Qwen 2.5VL 72B-235B, and GLM 4.5 355B, covering closed-open source performance, and large-
mid scale sizes.

3. SVG Generation and VLMAJ Evaluation. We evaluate state of the art models on the validation
set (100 samples). We select Claude 4.5 Sonet, Gemini 3 Pro, and GPT4o, and run generation
experiments on the four tasks. The resulting outputs are then scored by all VLM judges described
above. We also compute scores for the ground truth SVGs, which should receive the highest ratings,
providing a way to assess the overall dataset quality.

4. Human Evaluation. We repeat the same evaluation setup with human raters. They receive the
same prompt with the specified criteria and score the generations from all models as well as the
ground truth data. A total of 17 human evaluators participated, all technical engineers or AI and
design experts, producing around 674 ratings used to correlate each VLM with human judgment.

5. Correlation Validation and VLMAJ Selection. We compute Pearson correlation coefficients
between human judgments and each candidate VLM judge for every task and report the results in
Table 2. We also include average validation scores for the three generation models in Table 6, show-
ing both human ratings and VLM evaluations. Ground Truth acts as a reliable anchor only for VG
Sketch and VG Cap, where human agreement is high due to clearer visual semantics. For VG Edit
and VG Text, correlations drop even on perfect examples, indicating that these tasks contain more
structural ambiguity and are inherently harder to evaluate with full consensus. This further moti-
vates the need for robust automatic judges tailored to each task. The correlation results highlight
clear preferences among VLM judges. Gemini Flash and Gemini 3 Pro provide the strongest align-
ment with human ratings in VG Sketch, and Gemini 3 Pro also achieves the highest correlation in
VG Cap. For VG Edit, which is the most challenging task, Gemini 3 Pro and GPT 5.1 stand out
as the only reliable options, with GPT 5.1 showing a slight advantage. For VG Text, Gemini Flash
ranks highest, with GPT 5.1 again performing consistently. Qwen3 VL 235B emerges as the most
stable open source option, performing well across VG Sketch, VG Cap, and VG Edit, with the main
weakness appearing in VG Text. Based on these findings, we select Gemini 3 Pro as the primary
VLMAJ judge for VG Sketch, VG Cap, and VG Text. For VG Edit, we use GPT 5.1, which shows
the strongest alignment with human judgments on this task.

3.4 EVALUATION

We describe the metrics used for evaluation in VectorGym, in addition to the VLM-as-Judge metric
defined above.

Visual Similarity. For tasks that require visual reproduction (Sketch2SVG, Text2SVG), we measure
similarity between generated and target SVGs after rendering them to pixels. We use pixel Mean
Squared Error (MSE), perceptual similarity (LPIPS), and Dino, a deep feature metric that captures
alignment in learned representations (Oquab et al., 2023).

Semantic Accuracy. For Text2SVG, we evaluate whether the generated SVG captures the intended
semantic meaning of the text through CLIP-based similarity and the VLM-Judge metric. For SVG

6
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Editing, we rely exclusively on the VLM-Judge since CLIP does not align well with editing instruc-
tions or edited outputs.

SVG Captioning Metrics. For captioning, we report ROUGE-L F1 (0 to 100, higher is better),
BGE-M3 cosine similarity (0 to 100, higher is better), and an LLM-based rubric score (GPT-5
mapped from 0 to 5 into 0 to 100). Metrics are computed pairwise over each reference and prediction
caption, then averaged across the corpus.

Human Evaluation. A subset of outputs from the top performing models on the validation split is
evaluated by expert annotators. They assess overall quality, semantic correctness, and task specific
criteria (see Table 6).

Overall VectorGym Score. We define an overall score for our benchmark, intended to measure
multi-task performance across SVG generation from sketches and texts, complex editing of SVGs,
and SVG understanding through captioning from code. First, we compute a task-specific score
Stask for each of the four tasks. For Sketch2SVG and SVG Editing, the score is the average of the
VLM Judge, DINO, inverted MSE (100 − MSE), and inverted LPIPS (100 − LPIPS), ensuring all
components contribute positively. For Text2SVG, we average the VLM Judge, CLIP, and DINO
scores. For SVG Captioning, we average the VLM Judge, BGE-M3, and ROUGE scores. Finally,
the overall VectorGym score is computed as the arithmetic mean of the four task-specific scores:

VectorGym =
1

4

∑
τ∈T

Sτ (1)

where T = {Sketch,Edit,Text,Caption}. All individual metrics are scaled to a range of [0, 100]
prior to aggregation.

4 EXPERIMENTS

We conduct comprehensive evaluation across all four VectorGym tasks using state-of-the-art VLMs.
Our experimental setup is designed to provide fair comparison while highlighting the unique chal-
lenges of SVG code generation.

4.1 METHODS AND BASELINES

We conduct a comprehensive evaluation using all available state-of-the-art VLMs that support code
generation capabilities. Our baseline selection follows a systematic approach to ensure comprehen-
sive coverage of the current landscape.

In-Context Learning Experiments. First we evaluate the capabilities of frontier trained models
capanilities at this tasks with in-context learning giving a strong prompt to descrinbe the task to
perform. We include open and closed source models wioht the prompts specifgied in Appendix D.

A. Closed-Source Models. We evaluate leading commercial VLMs that demonstrate strong perfor-
mance on visual understanding and code generation tasks: Gemini 2.5 Flash, Gemini 3 Pro, GPT4o,
GPT-5.1, and Claude Sonet 4.5. These models represent the current state-of-the-art in multimodal
understanding and have shown exceptional capabilities in various vision-language and code genera-
tion benchmarks.

B. Open-Source Models. To ensure comprehensive coverage and reproducible research, we in-
clude leading open-source alternatives: Qwen2.5VL 32B-72B Instruct, Qwen3VL 8B-235B, and
GLM4.5V 108B. We made best efforts to identify and include all available VLM models with pub-
lic code implementations that could be executed on our tasks.

RL Training Experiments. We also train a Qwen3VL 8B Instruct model using the RLRF (Rein-
forcement Learning from Rendering Feedback) framework (Rodriguez et al., 2025), which applies
GRPO (Shao et al., 2024) together with rendered SVG outputs to compute rewards. The model is
trained on the VectorGym train split across all four tasks simultaneously. Further details on this
approach are provided in Appendix C.
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Input Sketch Gemini 3 Pro GPT-5.1 Claude 4.5 Ours (8B) GPT-4o

(a) VG-Sketch Qualitative Results. The leftmost col-
umn displays the input raster sketch, followed by the
outputs from top-performing models. Gemini 3 Pro
demonstrates superior fidelity in preserving topologi-
cal structure compared to GPT-5.1 and others.

Change the letter "M" to "N", and
change the color of its container

to green.

Input
Gemini 3 Pro Claude 4.5 GPT-5.1 Ours (8B) Ours (8B)

Remove the blue circular
background, change the color of the

stars and moon to black and flip
the whole icon horizontally.

Write text "BLIXOR" at the center
of font size 135px, font family
Aclonica, and fill it with deep

pink.

Bring small a to the front, and
change its color to a green

gradient.

Remove the outline from the moon
and stars. Remove the star on the

left side of the image and the
larger star on the right side.

Color the moon and the remaining
star white and set...

(b) VG-Edit Qualitative Results. Left to right: natu-
ral language edit instruction, input SVG, and model
outputs. Gemini 3 Pro, Claude 4.5 Sonnet, and
GPT5.1 effectively execute complex semantic modifi-
cations, whereas our trained models struggle to follow
some multi-step edits.

Figure 4: Qualitative comparison of model performance on Sketch2SVG and SVG Editing tasks.

5 RESULTS

We present a comprehensive evaluation of state-of-the-art VLMs across the four VectorGym tasks.
Our analysis reveals significant performance variance across different modalities of SVG generation
and manipulation, highlighting distinct capability gaps between proprietary and open-source models.

Table 3: Sketch2SVG and SVG Editing Performance. Metrics are reported such that higher
values indicate better performance (↑) or lower values indicate better performance (↓). To compute
the unified Score, MSE and LPIPS are inverted (100−x) and averaged with VLM Judge and DINO,
all scaled to [0, 100]. Overall represents the arithmetic mean of scores across all four tasks. The
best results in each category are marked in bold.

Sketch2SVG SVG Editing Overall
Model VLM J ↑ MSE ↓ DINO ↑ LPIPS ↓ Score ↑ VLM J ↑ MSE ↓ DINO ↑ LPIPS ↓ Score ↑ VectorGym ↑
Open-source Models
Qwen2.5VL 72B Instruct 12.80 16.43 69.87 43.95 55.57 16.60 18.68 70.35 38.21 57.52 44.27
Qwen2.5VL 32B Instruct 17.80 15.15 71.63 42.65 57.91 20.20 17.04 72.31 37.05 59.61 49.16
GLM4.5V 33.80 14.14 78.61 41.35 64.23 37.60 13.39 80.90 31.76 68.34 57.02
Qwen3VL 8B Instruct 33.00 13.76 81.01 40.97 64.82 57.40 11.01 90.44 25.27 77.89 58.74
Qwen3VL 235B Instruct 40.00 13.37 83.69 40.23 67.52 60.40 9.02 91.17 22.11 80.11 62.32

Qwen3VL 8B Gym (Ours) 46.00 11.99 88.25 39.37 70.72 67.00 8.36 93.94 21.34 82.81 66.05
Proprietary Models
Gemini 2.5 Flash 36.80 13.67 79.13 40.45 65.45 65.80 9.98 90.54 21.16 81.30 61.42
GPT-4o 46.00 13.17 85.11 39.74 69.55 66.80 8.43 92.27 21.24 82.35 64.93
Claude Sonnet 4.5 58.80 12.54 88.42 39.29 73.85 79.40 6.29 95.61 16.46 88.07 70.31
GPT-5.1 64.00 12.28 89.47 38.42 75.69 78.00 5.92 95.59 16.83 87.71 71.36
Gemini 3 Pro 72.20 11.31 89.78 36.43 78.56 81.20 5.89 95.55 16.01 88.71 73.17

5.1 SKETCH2SVG GENERATION

The Sketch2SVG task evaluates the model’s ability to infer vector geometry from raster sketches,
a problem characterized by high ambiguity and visual abstraction. As shown in Table 3, Gemini
3 Pro achieves the highest performance, obtaining a Score of 78.56 and a VLM Judge score of
72.20. This indicates a superior capability in mapping pixel-level visual features to precise SVG
path commands. GPT-5.1 follows with a Score of 75.69.
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Table 4: Text2SVG and SVG Captioning Performance. Higher values indicate better performance
(↑). DINO scores for Text2SVG are scaled to [0, 100]. The Score column represents the unweighted
average of metrics within each task.

Text2SVG SVG Captioning
Model VLM J ↑ CLIP ↑ DINO ↑ Score ↑ VLM J ↑ BGE-M3 ↑ ROUGE ↑ Score ↑
Open-source Models
Qwen2.5-VL-72B-Instruct 25.80 25.78 71.00 40.86 9.60 52.08 7.70 23.13
Qwen3-VL-8B-Instruct 55.20 29.48 81.71 55.46 25.20 66.27 18.87 36.78
GLM-4.5V 59.40 28.91 80.44 56.25 38.00 62.85 16.86 39.24
Qwen3-VL-32B-Instruct 22.60 24.95 68.96 38.84 38.40 66.10 16.35 40.28
Qwen3-VL-235B-Instruct 66.80 29.60 82.63 59.68 40.40 67.14 18.33 41.96
Qwen3-VL-8B-Gym (Ours) 72.80 30.55 87.46 63.60 35.80 79.76 25.58 47.05
Proprietary Models
GPT-4o 74.60 30.43 84.23 63.09 46.00 66.82 21.33 44.72
Gemini 2.5 Flash 54.00 27.67 77.65 53.11 45.80 69.24 22.45 45.83
Claude Sonnet 4.5 89.00 30.91 87.66 69.19 59.20 70.17 21.08 50.15
GPT-5.1 93.00 30.83 88.20 70.68 62.20 70.45 21.49 51.38
Gemini 3 Pro 89.80 30.87 89.09 69.92 70.40 72.27 23.83 55.50

Notably, the performance gap between the top model and the open-source baseline is significant.
However, our proposed Qwen3VL 8B Gym model achieves a Score of 70.72, surpassing both
GPT-4o (69.55) and the much larger Qwen3VL 235B (67.52). The Gym model’s VLM Judge
score (46.00) represents a substantial improvement over the base Qwen3VL 8B Instruct (33.00),
validating the efficacy of curriculum learning for structural visual alignment.

5.2 SVG EDITING

SVG Editing requires disjoint reasoning capabilities: parsing the existing code structure and manip-
ulating it according to natural language instructions. Gemini 3 Pro again leads this task with a
Score of 88.71, closely followed by Claude Sonnet 4.5 (88.07). Claude Sonnet 4.5 notably achieves
the highest DINO score (95.61) and lowest MSE (6.29), suggesting it generates visually faithful
edits even if the structural implementation differs slightly from the ground truth.

Our Qwen3VL 8B Gym demonstrates remarkable competitiveness in this domain, achieving a
Score of 82.81. This performance exceeds that of GPT-4o (82.35) and approaches the proprietary
frontier. The low MSE (8.36) of the Gym model compared to the base 8B model (11.01) indi-
cates that fine-tuning on edit trajectories significantly enhances the model’s precision in coordinate
manipulation.

5.3 TEXT2SVG GENERATION

Table 4 presents our Text2SVG generation results, revealing clear performance hierarchies and in-
teresting patterns. Among proprietary models, GPT-5.1 achieves state-of-the-art performance
with a VLM Judge score of 93.00 and an overall Score of 70.68. The proprietary models exhibit
a relatively narrow performance band, with Gemini 3 Pro (69.92) and Claude Sonnet 4.5 (69.19)
performing comparably.

Among open-source models, our fine-tuned Qwen3VL 8B Gym outperforms the larger
Qwen3VL 235B baseline (Score: 63.60 vs. 59.68) and achieves parity with GPT-4o (63.09). This
result emphasizes that for well-defined generation tasks, specialized smaller models can effectively
compete with general-purpose frontier models.

5.4 SVG CAPTIONING

The SVG Captioning results in Table 4 reveal interesting patterns distinct from the generation tasks.
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Gemini 3 Pro dominates the VLM Judge metric (70.40), significantly outperforming other mod-
els, which aligns with its robust ability to map code structure back to high-level semantic descrip-
tions. However, the traditional NLP metrics show different rankings: our Qwen3VL 8B Gym
achieves the highest BGE-M3 (79.76) and ROUGE scores (25.58) across the entire benchmark.

Qwen3VL 8B Gym outperforms all proprietary models in keyword-based metrics. This dis-
crepancy between its state-of-the-art retrieval scores and its lower VLM Judge score (35.80 com-
pared to 40.40 for the Qwen3VL 235B baseline) suggests that while the Gym model captures salient
semantic details, it may lack the conversational fluency or formatting preference favored by the
VLM Judge.

5.5 CROSS-TASK ANALYSIS

Our comprehensive evaluation across Text2SVG, SVG Editing, and Sketch2SVG reveals several
critical insights about current VLM capabilities in vector graphics generation.

Overall Performance Hierarchy. Aggregating across all tasks, Gemini 3 Pro achieves the highest
VectorGym score of 73.17, followed by GPT-5.1 (71.36). This establishes Gemini 3 Pro as the most
capable model for multimodal code-visual reasoning tasks.

Effectiveness of Specialized Fine-Tuning. The Qwen3VL 8B Gym model achieves an overall
score of 66.05, surpassing GPT-4o (64.93) and substantially outperforming its larger counterpart,
Qwen3VL 235B (62.32). This finding validates the hypothesis that the limitations of smaller param-
eter counts can be effectively offset by high-quality, task-specific curriculum learning in the SVG
domain.

Task Complexity. The results establish a clear difficulty hierarchy: Text2SVG (easiest, GPT-5.1:
93.00) > SVG Editing (intermediate, Gemini 3 Pro: 81.20) > Sketch2SVG (Gemini 3 Pro: 72.20) >
SVG Captioning (hardest, Gemini 3 Pro: 70.40). This ranking aligns with intuitive expectations: text
descriptions provide explicit semantic guidance, editing requires understanding existing structures,
sketches demand interpretation of imprecise visual input, while captioning requires the rigorous
abstraction of high-level semantics from low-level geometric code.

6 CONCLUSION

We introduced VectorGym, a new comprehensive multi-task benchmark for SVG code generation
that encompasses Sketch2SVG, SVG editing, Text2SVG, and SVG captioning. VectorGym in-
troduces Sketch2SVG and releases the first dataset of complex, human-authored SVG edits, with
gold-standard human annotations across all tasks. Our 7,000-sample evaluation and novel VLM-
as-judge metrics reveal significant performance gaps between proprietary and open-source models,
with open-source alternatives showing competitive results in editing and captioning. VectorGym
establishes a new evaluation standard for visual code generation and provides robust benchmarks to
advance SVG generation capabilities.

Use of LLMs We leveraged large language models (LLMs) to support different aspects of this
work. They assisted with coding tasks needed to build the datasets and run experiments. Models
such as GPT-4o, GPT-5, and Claude-4-Sonnet were also used to help with related work exploration
and to ensure a comprehensive literature review. In addition, we employed LLMs for rephrasing and
refinement while writing this paper, with the goal of improving flow, clarity, and correcting spelling
errors. Importantly, we followed strict rules to preserve the accuracy and details of our contributions,
and all generated content was carefully reviewed, manipulated, and edited by the authors.

Limitations VectorGym expands the range of capabilities that can be evaluated and optimized for
fine grained control of state of the art SVG models. We tested several leading models in a zero
shot setting, and we also ran RL training experiments that produced strong results. Still, we do not
fully explore the space of training strategies for these tasks. Future research can focus on improving
how models tackle sketch based generation and complex editing, potentially with more efficient and
more accurate approaches tailored to these settings.
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Ethics Statement The models evaluated in this benchmark may exhibit biases inherited from their
training data, potentially affecting the fairness and representation of generated SVG content across
different demographics, cultures, and artistic styles. We have performed extensive filtering and
human curation to ensure VectorGym does not include such instances.
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A VECTORGYM DATA CREATION

Here we provide additional details on the VectorGym datasets. Figures 2 and 5 illustrate test sam-
ples for the Sketch2SVG (VG-Sketch) and SVG Editing (VG-Edit) tasks. We further describe the
annotation methodology, data creation and sampling process, annotation details, and task definitions.

A.1 ANNOTATION METHODOLOGY

A.1.1 DATA CURATION AND SAMPLING

We extracted 7,000 high-quality samples from the SVG-Stack dataset through a rigorous multi-stage
filtering process:

Visual Quality Assessment: Human experts manually reviewed SVG samples to identify visually
appealing and well-formed graphics, filtering out corrupted, overly simplistic, or poorly designed
samples.

Token Length Filtering: We applied token length constraints (2,000-8,000 tokens) to ensure mean-
ingful complexity while maintaining computational feasibility. This range captures rich, detailed
SVGs without exceeding practical processing limits for current VLMs.

Color Entropy Thresholding: We computed color entropy for each SVG to ensure visual diversity,
filtering samples with insufficient color variation or monotonic palettes.

Random Sampling: Final samples were randomly selected to avoid systematic biases in content
distribution.

From the curated set of 7,000 samples, we kept the 300 items that originally belonged to the SVG
Stack test split as our test set to avoid any train and test contamination. We also selected 100 samples
from the training split for validation, which we used during development for method tuning, and
for the human evaluation and correlation study used to design our VLM as a judge metric (see
Section 3.3).

A.1.2 ANNOTATION VENDOR PARTNERSHIP

We partnered with two specialized data annotation vendors to ensure task-specific expertise:

Vendor 1 - Sketch and Caption Generation: Specialized in visual content creation, responsible
for sketch generation and text descriptions. Annotators were equipped with professional drawing
tools (digital tablets, cameras for hand-drawn sketches) and trained on SVG visual analysis.

Vendor 2 - SVG Editing: Focused on technical SVG manipulation, staffed with annotators having
design and vector graphics backgrounds. We developed custom SVG editing tools specifically for
this project to enable precise modifications.

A.1.3 ANNOTATOR DEMOGRAPHICS AND TRAINING

Our annotation team comprised over 20 annotators with diverse demographics and gender represen-
tation. All annotators underwent specialized training:

Technical Requirements: Background in design, vector graphics, or coding. Annotators were
tested on SVG understanding and tool proficiency before assignment.

Equipment and Tools: Professional cameras for photographing hand-drawn sketches, digital draw-
ing tablets, custom SVG editing software, and standardized annotation interfaces.
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Figure 5: Visualization of VG-Sketch Test Examples. We randomly sample 30 examples, and
show the sketch and the target vector.

A.1.4 TASK-SPECIFIC ANNOTATION PROCEDURES

Sketch2SVG Generation: Annotators were provided with SVG images and asked to create corre-
sponding sketches in two variants:

• Hand-drawn: Using pen or pencil on paper, photographed with standardized lighting and
resolution

• Digital: Created using drawing tablets and stylus input for consistent digital sketches

Both variants included colored and black-and-white versions to test model robustness across differ-
ent input modalities.

SVG Editing - Ensuring Complexity: We implemented strict complexity requirements to avoid
trivial edits that could be synthetically generated:

Prohibited Simple Edits: Rotation, color changes, scaling, basic shape removal - operations easily
automated by current LLMs.

Required Complex Edits: Path modifications, primitive additions, parameter adjustments, concep-
tual additions requiring semantic understanding. For example:

• Adding elements from other SVGs in the database (e.g., incorporating a needle shape into
a hammer SVG)

• Modifying facial expressions in character illustrations

• Converting chart types (pie to bar charts)

• Structural modifications requiring new geometric primitives

Caption Generation: We implemented a comprehensive multi-stage process for generating high-
quality text descriptions:

1. Detailed Visual Description: Annotators created comprehensive descriptions of vector
graphics, with particular emphasis on color specification. To ensure color accuracy, anno-
tators were required to include hexadecimal color codes in parentheses alongside natural
language color descriptions (e.g., ”red (#FF0000)”).
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2. Cross-validation with VLM: All human-generated descriptions were processed and cross-
validated using Qwen2-VL-32B to ensure consistency and completeness of visual descrip-
tions.

3. Instruction Reformatting: Captions were systematically reformatted from descriptive
statements into instruction-style prompts suitable for the Text2SVG generation task. This
process generated two distinct variants:

• Hexadecimal Color Version: Instructions containing precise hexadecimal color
specifications, which empirically demonstrate superior SVG generation accuracy

• Natural Language Color Version: Instructions using standard color names for
broader accessibility

4. Quality Validation: Final consistency checks and inter-annotator agreement measurement
across all caption variants

Quality Assurance: All annotations underwent rigorous quality control including automated SVG
syntax validation, human verification of task requirements, and consistency checks across related
task pairs.

B ADDITIONAL QUALITATIVE RESULTS

We provide additional figures (Figures 6–10) showing qualitative results of the models on the pre-
sented tasks.
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Figure 6: Visualization of test performance on the Sketch2SVG task. When the input sketch lacks
color, models tend not to introduce new colors. In contrast, when color is present in the sketch,
models successfully reproduce it in the generated SVG.
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Input Text Ground Truth Claude 3.5 Sonnet Claude 3.7 Sonnet Gemini 2.5 Flash

Text2Svg - Qualitative Analysis

Sample 1
ca5fb240...

Sample 2
7de6000a...

Sample 3
e044ab39...

Sample 4
36112182...

Sample 5
958189ce...

Sample 6
d294c92c...

Sample 7
9171124b...

Sample 8
45ef7128...

Sample 9
15ccb57c...

Sample 10
9f209741...

Figure 7: Qualitative analysis of Text2SVG generation results. The figure shows examples of
text2SVG generation across different model performances. Examples demonstrate successful gener-
ations with accurate semantic understanding and geometric representation, as well as common fail-
ure modes including incorrect primitive usage, semantic misunderstanding, and incomplete shape
representations.
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Edit Instruction Original Ground Truth

Claude 3.5 Sonnet Claude 3.7 Sonnet Gemini 2.5 Flash

Svg Editing - Qualitative Analysis

Sample 1
e2d6ee4f...

Sample 2
76c59f08...

Sample 3
f5ede4c9...

Sample 4
38f55c95...

Sample 5
89a6dbf0...

Sample 6
dc8af4d2...

Sample 7
9cb5d86c...

Sample 8
9ef2df46...

Sample 9
329ff207...

Sample 10
fc70a53b...

Figure 8: Qualitative analysis of SVG editing with natural language instructions. The fig-
ure demonstrates model performance on various editing tasks including color changes, geometric
transformations, and structural modifications. Examples show input SVG (left), editing instruction
(center), and generated output (right). Successful cases highlight accurate instruction parsing and
precise SVG manipulation, while failure cases reveal challenges in understanding complex instruc-
tions and maintaining visual coherence.
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Input Sketch Ground Truth Claude 3.5 Sonnet Claude 3.7 Sonnet Gemini 2.5 Flash Gpt 4O

Sketch2Svg - Qualitative Analysis

Sample 1
df270590...

Sample 2
ee87d859...

Sample 3
93f9c2d0...

Sample 4
82c3df34...

Sample 5
25b5244b...

Sample 6
89dfbabd...

Sample 7
b00b76e5...

Sample 8
40c85541...

Sample 9
89a6dbf0...

Sample 10
3e1285fc...

Figure 9: Qualitative analysis of Sketch2SVG generation results. The figure illustrates model per-
formance in converting hand-drawn sketches to clean SVG code. Examples display input sketches
(left), ground truth SVG (second column), and model-generated SVGs (rest of the columns).
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Table 5: Comparison of SVG datasets and benchmarks. VectorGym (Ours) is the only benchmark
combining multi-task evaluation with human-verified quality. Note: Size is reported in number of
SVG samples.

Dataset Year Size Content Types Tasks Annotation
VG-Sketch (Ours) 2025 6.5k Icons, Fonts, Diagrams, Emojis Sketch-to-SVG Human
VG-Text2SVG (Ours) 2025 6.5k Icons, Diagrams, Emojis, Fonts Text-to-SVG Human
VG-Edit (Ours) 2025 6.5k Diverse SVG Editing Human

SVG-Stack 2025 2.3M Diverse (Icons, Logos, Diagrams) SVG Corpus Unlabeled
Text2SVG-Stack 2025 2.2M Diverse (Paired Texts and SVGs) Text-to-SVG Synthetic Captions
SVG-Fonts 2025 1.9M Fonts, Glyphs SVG Corpus Unlabeled
SVG-Icons 2025 89k Icons SVG Corpus Unlabeled
SVG-Emoji 2025 10k Emojis SVG Corpus Unlabeled

MMSVG-2M 2025 2.0M Icons, Illustrations, Characters Image/Text-to-SVG Mixed (Web + Syn.)
UniSVG 2025 525k Unified Multi-domain Gen. & Understanding Mixed
SVGX-SFT-1M 2025 1.0M Diverse (Instr.↔SVG) Instruction Following Synthetic (LLM)
SVG-1M (SVGen) 2025 1.0M Icons Image/Text-to-SVG Synthetic (LLM)
FIGR-SVG 2025 1.3M Icons Text/Image-to-SVG Converted + Syn.
DeepSVG Dataset 2020 100k Icons SVG Generation Curated

SVGenius 2025 2.4k Diverse Understanding & Editing Human-verified
VGBench 2024 10k Multi-format (SVG, TikZ, Graphviz) Understanding & Gen. Synthetic + Verified
SVGEditBench v2 2025 1.7k Emojis, Icons SVG Editing Synthetic Prompts
VectorEdits 2025 270k Diverse SVG Editing (Guided) Synthetic (VLM)

Quick Draw! 2017 50M Sketches Sketch Recognition Human
IconDesc 2024 1.4k UI Icons Captioning (Alt-text) Human

Figure 10: Qualitative analysis of Text2SVG generation results.
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C RLRF EXPERIMENTS

We fine-tune a Qwen3-VL 8B Instruct model using Reinforcement Learning from Rendering Feed-
back (RLRF) to jointly learn all four VectorGym tasks. For the Text-to-SVG, SVG Editing, and
Sketch-to-SVG tasks, the model outputs SVG code. To compute rewards, we render both the pre-
dicted and ground-truth SVGs into raster images and evaluate them using a combination of per-
ceptual similarity metrics and pixel-space distances. For the SVG Captioning task, where both the
prediction and ground truth are textual descriptions of the SVG, the reward is defined as the embed-
ding similarity between the two texts, using BGE-M3 as the embedding model.

We train the 8B model on all four tasks simultaneously within a unified RL framework. Our opti-
mization procedure primarily follows GRPO Shao et al. (2024), with modifications inspired by Liu
et al. (2025). Standard GRPO computes the advantage for each prompt by normalizing rewards
within the group of K sampled responses. Given a prompt x with reward set {rk}Kk=1, the GRPO
group-level advantage is

Agroup
k =

rk −mean
(
{rj}Kj=1

)
std

(
{rj}Kj=1

) . (2)

In contrast, our variant normalizes the centered rewards using the batch-level standard deviation
computed over all N ×K samples in the minibatch:

Abatch
i =

ri −mean
(
{rj}Kj=1

)
std

(
{rj}N×K

j=1

) . (3)

We use a rollout batch size of 168 samples per step. For each sample, the model generates 8 sampled
rollouts, producing 1,344 rollouts per iteration. We train the model for 600 iterations on a single
compute node with 8 × H200 GPUs, and the full run finishes in about two days. We set the learning
rate to 3 × 10−6, the KL coefficient to 0.01, and the sampling temperature to 1.0. Each iteration
performs exactly one policy update on its rollout batch, so neither gradient clipping nor PPO-style
ratio clipping is ever triggered during optimization.

To improve training stability, we also apply curriculum learning. We treat the length of an response
as a proxy for its difficulty and therefore sort the samples by response lengths. Because our dataset
mixes four different tasks, we sort samples within each task according to response length and then
draw tasks proportionally to their dataset frequencies to construct each minibatch. This strategy
allows the model to progress from shorter and simpler examples toward longer and more complex
ones, while maintaining task balance throughout training.

D PROMPTS

In this section we present all the prompts used throughout the paper. We designed task specific
prompts for SVG generation across the four main tasks, and we also crafted evaluation prompts that
guide models to score outputs in a way that captures the semantic quality of the SVG rather than
focusing on pixel based visual features. We validated the effectiveness of these evaluation prompts
through a correlation analysis, shown in table 2.

D.1 VLM-AS-A-JUDGE PROMPTS

Prompt 1: Used for VLM-as-a-Judge Score (Text2Svg)

You are a concise evaluator of text-to-SVG faithfulness. Judge how
well a generated SVG image matches its textual description. Focus
primarily on semantic content (what is shown), not exact wording
or artistic style. Do not use world knowledge; base your judgment
only on what the text states and what is visible.
Evaluation Instructions: Compare the generated image to the TEXT
description. Judge semantic/visual meaning, not exact wording.
Rules:
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Table 6: Scores for human evaluation and VLMAJ. We show average scores by generator model
and VLM judge across different tasks.

Task Generator Human Models used as Judges

Claude 4.5 Sonnet Gemini 2.5 Flash Gemini 3 Pro GPT 5.1 Qwen2.5VL 72B Qwen3.VL 235B GLM4.5 355B

V
G

-S
ke

tc
h GPT 4o 2.57 2.79 2.46 2.43 3.16 3.10 2.79 2.05

Claude 4.5 Sonnet 2.88 3.22 2.91 2.81 3.57 3.70 3.34 2.46
Gemini 3 Pro 3.63 3.55 3.41 3.49 3.72 3.91 3.74 2.75
Ground Truth 4.79 5.00 5.00 5.00 5.00 5.00 5.00 4.97

V
G

-C
ap

GPT 4o 2.90 2.15 0.84 2.26 2.21 1.27 1.74 1.20
Claude 4.5 Sonnet 3.67 2.60 1.43 2.86 2.87 1.80 2.19 1.87
Gemini 3 Pro 3.95 2.73 1.69 3.20 3.12 1.81 2.35 2.03
Ground Truth 4.67 5.00 5.00 5.00 5.00 5.00 5.00 5.00

V
G

-E
di

t GPT 4o 2.22 2.17 2.19 2.62 2.78 2.32 3.01 2.30
Claude 4.5 Sonnet 3.35 3.15 3.23 3.45 3.79 2.89 3.88 3.16
Gemini 3 Pro 4.07 3.46 3.54 3.78 4.11 3.16 4.12 3.45
Ground Truth 4.41 4.18 4.46 5.00 5.00 4.18 5.00 4.70

V
G

-T
ex

t GPT 4o 2.19 3.23 2.69 3.40 3.52 2.72 3.14 3.28
Claude 4.5 Sonnet 2.73 4.11 3.52 4.36 4.33 3.20 3.90 4.22
Gemini 3 Pro 3.33 4.10 3.58 4.55 4.24 3.27 4.04 4.17
Ground Truth 4.66 4.18 3.78 4.87 4.56 3.49 4.24 4.23

sketch2svg svg_captioning svg_editing text2svg
Task
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1
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VLM Judge Score by Task and Model
gemini-3-pro-preview
gpt-5.1
claude-sonnet-4.5
Qwen3-VL-32B-Gym (Ours)
gpt-4o
Qwen3-VL-8B-Gym (Ours)
qwen3-vl-235b-a22b-instruct
gemini-2.5-flash
Qwen3-VL-8B-Instruct
qwen3-vl-8b-instruct
glm-4.5v
Qwen3-VL-32B-Instruct
qwen2.5-vl-72b-instruct
Qwen3-VL-8B-Thinking
qwen3-vl-32b-instruct

Figure 11: VLM-as-judge scores for different tasks and models.

• Focus on the presence and configuration of the main objects,
their attributes (shape, rough size, main color), spatial
relations, and overall layout.

• Accept paraphrases and synonyms; do not require exact
wording.

• Numbers, counts, colors, attributes, and relations
are important: penalize clear mismatches, but do not
over-penalize small deviations when the overall scene
clearly matches the text.

• Penalize unsupported or clearly contradictory visual details
(hallucinations) more than omissions.

• Consider image quality, clarity, and coherence as a
secondary factor: when semantic match is similar, prefer
clearer and better-formed SVGs.

• Ignore minor stylistic differences (line style, thickness,
minor artifacts), casing, and punctuation.
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• Do not use world knowledge; compare only what the TEXT
states and what is visible.

Text Description: {caption}
Scoring Rubric (0--5):

• 5: Very strong match; main objects, layout, and key
attributes align with the text; only small local details
differ; no strong contradictions.

• 4: Good match; overall scene corresponds to the text with
only minor issues.

• 3: Partial match; several core elements align, but some
important detail is missing, wrong, or extra.

• 2: Weak match; topic is similar but multiple important
errors, omissions, or hallucinated details.

• 1: Minimal overlap; only a very generic aspect matches.

• 0: Unrelated or contradicts core facts.

Output ONLY the integer score (0--5). No words, no JSON, no
explanations.
Output format:

<0-5>

Prompt 2: Used for VLM-as-a-Judge Score (Sketch2Svg)

You are a concise evaluator of sketch-to-image similarity. Judge
how well the generated image preserves the semantic content and
structure of the input sketch.
Evaluation Instructions: Compare the PREDICTION image directly to
the GROUND-TRUTH image. Judge semantic similarity and preservation
of visual content, not artistic style.
Rules:

• Focus on the main objects, their presence or absence,
shapes, sizes, colors, and spatial relations.

• Treat numbers, counts, colors, attributes, and relative
positions as important; penalize clear mismatches.

• Penalize added elements that are not present in the
ground-truth image (hallucinations) more than small
omissions.

• Penalize missing or significantly altered key elements more
than minor stylistic or rendering differences.

• Ignore small artifacts, minor shading/texture differences,
or slight geometric deviations if the overall content
clearly matches.

• Do not use world knowledge; compare only what is visible in
the GROUND-TRUTH and PREDICTION images.

Inputs:

• GROUND-TRUTH image: the target image.

• PREDICTION image: the model-generated image to be
evaluated.

Scoring Rubric (0--5):

• 5: Very strong match; all main objects and key attributes
align; only small local or stylistic differences.

• 4: Good match; overall scene clearly corresponds, with one
or a few noticeable but non-critical differences.
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• 3: Partial match; several core elements align, but some
important details are missing, wrong, or extra.

• 2: Weak match; topic is similar, but multiple important
elements are missing, incorrect, or hallucinated.

• 1: Minimal overlap; only very generic aspects (e.g., rough
layout or general type of scene) match.

• 0: Unrelated or clearly contradicts the ground-truth (wrong
main objects, layout, or overall scene).

Output ONLY the integer score (0--5). No words, no JSON, no
explanations.
Output format:

<0-5>

Prompt 3: Used for VLM-as-a-Judge Score (Svg-Editing)

You are a concise evaluator for image editing results. Judge how
well a PREDICTION image matches a GROUND-TRUTH image. Do not
use world knowledge; rely only on the visible content of the two
images.
Evaluation Instructions: Compare the PREDICTION image directly to
the GROUND-TRUTH image. Judge semantic similarity and preservation
of visual content, not artistic style.
Rules:

• Focus on the main objects, their presence or absence,
shapes, sizes, colors, and spatial relations.

• Treat numbers, counts, colors, attributes, and relative
positions as important; penalize clear mismatches.

• Penalize added elements that are not present in the
ground-truth image (hallucinations) more than small
omissions.

• Penalize missing or significantly altered key elements more
than minor stylistic or rendering differences.

• Ignore small artifacts, minor shading/texture differences,
or slight geometric deviations if the overall content
clearly matches.

• Do not use world knowledge; compare only what is visible in
the GROUND-TRUTH and PREDICTION images.

Inputs:

• GROUND-TRUTH image: the target image.

• PREDICTION image: the model-generated image to be
evaluated.

Scoring Rubric (0--5):

• 5: Very strong match; all main objects and key attributes
align; only small local or stylistic differences.

• 4: Good match; overall scene clearly corresponds, with one
or a few noticeable but non-critical differences.

• 3: Partial match; several core elements align, but some
important details are missing, wrong, or extra.

• 2: Weak match; topic is similar, but multiple important
elements are missing, incorrect, or hallucinated.

• 1: Minimal overlap; only very generic aspects (e.g., rough
layout or general type of scene) match.
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• 0: Unrelated or clearly contradicts the ground-truth (wrong
main objects, layout, or overall scene).

Output ONLY the integer score (0--5). No words, no JSON, no
explanations.
Output format:

<0-5>

Prompt 4: Used for VLM-as-a-Judge Score (Svg-Captioning)

You are a concise evaluator of caption similarity. Compare a
PREDICTION caption to a GROUND-TRUTH caption (no image). Judge
semantic meaning, not exact wording.
Rules:

• Accept paraphrases and synonyms.

• Treat numbers, counts, colors, attributes, relations, and
negation as strict.

• Penalize unsupported or contradictory details
(hallucinations) more than omissions.

• Ignore casing and punctuation (except negation words like
‘‘no/not/without’’).

• Do not use world knowledge; compare only what the texts
state.

Scoring (return a single integer 0--5):

• 5: Semantically equivalent or near-paraphrase; all key
facts align; no contradictions.

• 4: Very close; only a minor detail missing/different; no
contradictions.

• 3: Partially correct; several core elements match but some
important detail is missing.

• 2: Weak overlap; multiple important errors or added
unsupported specifics.

• 1: Minimal overlap; only a very generic element matches.

• 0: Unrelated or contradicts core facts (e.g., negation
flip, wrong main objects/actions).

Output ONLY the integer score (0--5). No words, no JSON, no
explanations.
Output format:

<0-5>

D.2 SVG GENERATION PROMPTS

Prompt 5: Used for Text2SVG Generation

You are an expert in generating SVG representations of textual
descriptions.
Follow these steps carefully:

1. Analyze the given text input and identify the key visual
elements it describes.

2. Convert the description into a minimal and clear SVG
representation using basic SVG shapes such as <rect>,
<circle>, <line>, and <path>.
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3. Ensure the SVG design is simple, scalable, and directly
represents the input text.

4. Do not include any additional text, explanations, comments,
or formatting---only output valid SVG code.

5. The output must be a complete SVG document, starting with
<svg> and ending with </svg>.

*** textual descriptions***
-- textual descriptions
*** REASONING***
Let’s think step by step then output the svg. First, wrap your
detailed reasoning process in <think> and </think> tags. In your
reasoning, describe your approach in natural language WITHOUT
showing code examples. Then, output the complete SVG code directly
after the closing </think> tag (NO markdown wrapper, NO ‘‘‘xml or
‘‘‘svg tags). Your reasoning should consider: concept sketching,
canvas planning, shape decomposition, coordinate calculation,
styling and color, symbolism or metaphor, and final assembly.
IMPORTANT: After </think>, output ONLY the raw SVG starting with
<svg and ending with </svg>. Do NOT use markdown code blocks or
wrap in ‘‘‘xml or ‘‘‘svg.

Prompt 6: Used for Sketch2SVG Generation

You are an expert in generating SVG from a hand-drawn sketch plus a
brief description.
*** GOALS ***

• Semantic match: faithfully reflect the sketch, using the
description to clarify ambiguous parts; include all and only
the intended elements, attributes, and relationships.

• Validity + code quality: produce a parsable SVG with
concise primitives and a tidy, readable structure.

• Visual fidelity: preserve essential contours, proportions,
and layout; if gradients, shadows, or outlines are
mentioned, implement them minimally.

*** PROCEDURE ***
1. Examine the sketch to identify primary shapes, contours, and

alignment; use the description to resolve labels, counts,
and styling cues.

2. Decompose the scene into basic SVG shapes (<rect>,
<circle>, <ellipse>, <line>, <polygon>, <polyline>, <path>),
simplifying strokes and curves where appropriate.

3. Translate relative placements and sizes from the sketch
into a coherent coordinate system and consistent stroke/fill
attributes.

4. Apply only the necessary styling (strokes, fills, minimal
effects) specified or implied by the sketch and description.

5. Output only valid SVG code as a complete document enclosed
by <svg> and </svg>.

*** SVG Description ***
-- svg description
*** REASONING***
Let’s think step by step then output the svg. First, wrap your
detailed reasoning process in <think> and </think> tags. In your
reasoning, describe your approach in natural language WITHOUT
showing code examples. Then, output the complete SVG code directly
after the closing </think> tag (NO markdown wrapper, NO ‘‘‘xml or
‘‘‘svg tags). Your reasoning should consider: concept sketching,
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canvas planning, shape decomposition, coordinate calculation,
styling and color, symbolism or metaphor, and final assembly.
IMPORTANT: After </think>, output ONLY the raw SVG starting with
<svg and ending with </svg>. Do NOT use markdown code blocks or
wrap in ‘‘‘xml or ‘‘‘svg.

Prompt 7: Used for SVG Editing Generation

You are an expert in editing SVG images based on text instructions.
Follow these steps carefully:

1. Analyze the original SVG and the editing instruction.

2. Apply the requested modifications while preserving the
overall structure.

3. Ensure the edited SVG is valid and well-formed.

4. Do not include any additional text, explanations, comments,
or formatting---only output valid SVG code.

5. The output must be a complete SVG document, starting with
<svg> and ending with </svg>.

Original SVG:
-- svg code
Editing Instruction:

Reduce the image size and add a kite string extending
from the bottom-right corner to make it look like a
kite.

*** REASONING***
Let’s think step by step then output the edited svg. First, wrap
your detailed reasoning process in <think> and </think> tags. In
your reasoning, describe your approach in natural language WITHOUT
showing code examples. Then, output the complete SVG code directly
after the closing </think> tag (NO markdown wrapper, NO ‘‘‘xml
or ‘‘‘svg tags). Your reasoning should consider: parsing the
instruction, identifying target elements, determining minimal
required changes, preserving unmodified elements, and validating
the result.
IMPORTANT: After </think>, output ONLY the raw SVG starting with
<svg and ending with </svg>. Do NOT use markdown code blocks or
wrap in ‘‘‘xml or ‘‘‘svg.

Prompt 8: Used for SVG Captioning Generation

You are an expert at describing SVG images. Given an SVG, provide
a clear and concise caption that describes the visual elements,
their colors, positions, and any notable features. Focus on what
someone would see when looking at the rendered SVG.
SVG: {svg}
Caption:

E CAPTIONING METRICS

We compute captioning metrics pairwise over aligned (reference, prediction) captions and average
across the corpus.

• BLEU (corpus BLEU): n-gram precision with brevity penalty; 0–100 (higher is better).

• CHRF++ (CHRF): Character n-gram F-score (word order=2); 0–100 (higher is better).

• ROUGE-L (F1): Longest common subsequence overlap (F1); 0–100 (higher is better).
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Table 7: VectorGym SVG Editing qualitative examples. Results from models on the test set.

• BERTScore (F1): Semantic similarity via contextual embeddings; 0–100 (higher is better).
rescale with baseline=False.

• BGE-M3 Similarity: Average cosine similarity of BAAI/bge-m3 sentence embeddings;
0–100 (higher is better).

• GPT-5 Rubric Similarity: LLM-judged semantic agreement on a 0–5 rubric mapped to
0–100; higher is better.

F DATA LICENSING

All SVG data used in this work originate from the SVG Stack (Rodriguez et al., 2023a) dataset.
SVG Stack is not an independent crawl of the web. It is a direct extraction of SVG files from
The Stack (Kocetkov et al., 2022), the dataset maintained by the BigCode project. The Stack is
a curated collection of source code repositories that have passed a strict license filtering pipeline.
Only repositories under permissive licenses such as MIT, Apache, BSD, and CC0 are included, and
repositories with non permissive or non redistributable licenses are excluded during collection.

The Stack also includes an opt out protocol that allows developers to request removal of their content.
These removals are propagated automatically to all derived datasets. Since SVG Stack retains the
original file paths and license identifiers from The Stack, it inherits the same governance and reflects
all removals applied by BigCode.

Our work uses SVG Stack exactly as distributed, without adding external sources. All files therefore
fall under permissive open source licenses that allow redistribution and research use. We intend to
release the specific processed subset used in our experiments, which remains fully compatible with
the original licensing terms.
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Table 8: VectorGym Sketch-to-SVG qualitative examples. Results from models on the test set.

Table 9: VectorGym Text-to-SVG qualitative examples. Results from GPT4o on the test set.
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Table 10: VectorGym SVG-Captioning qualitative examples. Results from models on the test set.
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