
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VECTORGYM: A MULTI-TASK BENCHMARK FOR
SVG CODE GENERATION AND MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce VectorGym, a multi-task benchmark for evaluating Vision-
Language Models (VLMs) on Scalable Vector Graphics (SVG) code generation
and manipulation. VectorGym addresses the critical lack of challenging bench-
marks aligned with real-world design workflows, specifically requiring mastery
of complex primitives and multi-step edits. Our benchmark comprises four com-
plementary tasks: the novel Sketch2SVG (VG-Sketch) conversion; a new SVG
editing dataset (VG-Edit) involving higher-order primitives and semantic reason-
ing; and rigorous benchmarks for Text2SVG (VG-Text) and SVG captioning (VG-
Cap). VectorGym derives particular value from expert human-authored SVG an-
notations across all tasks, ensuring a rigorous challenge. VectorGym also intro-
duces a VLM-as-judge metric tailored for SVG generation, validated against hu-
man judgment. Our comprehensive evaluation of leading VLMs and our own
GRPO-trained models reveals significant performance gaps, establishing Vector-
Gym as a robust framework for advancing visual code generation.

Detailed SVG Captions
(SVG, Text Description)

Hand-Drawn Sketches
(SVG, Sketch Image)

Complex SVG Edits
(Source SVG,

Edit Instruction, Target SVG)

Human Annotation VectorGym BenchmarkSource SVG Code Data
VG-Sketch
Sketch2SVG

Convert this hand drawn
sketch into a colored
vector using SVG code.

Raw SVG Files

PNG Images

VG-Cap
Captioning

The icon shows a stylized circle with a
subtle shadow effect, all in a gradient of
light-to-dark orange. The text
"OPENSPHERE" in black, uppercase...

VG-Text
Text2SVG

Create an SVG of a circle icon with an
orange gradient effect with the text
"OPENSPHERE".

VG-Edit
SVG Editing

Replace the sphere with a
triangle, and replace the
text "SPHERE" with
"TRIANGLE".

Figure 1: Overview of VectorGym Benchmark. VectorGym is a suite of human-annotated datasets
covering Sketch2SVG (VG-Sketch), SVG Editing (VG-Edit), Text2SVG (VG-Text), and SVG
Captioning (VG-Cap). Unlike prior benchmarks, it is built from diverse real-world SVGs sourced
from GitHub. Human experts annotate each SVG by hand-drawing sketches, creating complex edits,
and writing detailed text descriptions, which are further cleaned and adapted into instruction-style
prompts at varying levels of detail. We evaluate state-of-the-art models in VectorGym.

1 INTRODUCTION

Scalable Vector Graphics (SVG) (Ferraiolo et al., 2000; Quint, 2003) are widely used across the
web, design tooling, and digital media. Unlike raster images (Rodriguez et al., 2023b;c; Rombach
et al., 2021), SVGs are programs: their code exposes geometry, style, and structure, enabling pre-
cise editing, scalable rendering, and semantic manipulation. Evaluating models on SVG therefore
requires not only visual understanding but also reliable, syntax-aware code generation.

Despite rapid progress in Vision-Language Models (VLMs), existing evaluations of SVG generation
remain limited. Prior datasets often target icons or basic shapes, rely on synthetic programmatic
edits, rarely assess sketch-conditioned generation nor provide human gold labels (Rodriguez et al.,
2023a; Wu et al., 2023; Zhang et al., 2023; Xing et al., 2025; Yang et al., 2025; Rodriguez et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: SVG Datasets Comparison. We compare similar datasets across annotation quality, task
complexity, and data source. We report the SVG type, total samples, whether each dataset supports
multiple tasks, the level of SVG primitive coverage beyond simple paths (i.e. including higher order
primitives, like circle, text, gradients or animation logic), and whether it includes annotations for
edits and sketches, plus whether these annotations reach expert human quality with complex intent.
VectorGym is built from real SVGs collected from GitHub (in-the-wild), preserving original struc-
ture and primitive detail, and provides targets created by expert humans with the goal of producing
complex annotations that capture semantic understanding, design intent, and multi step reasoning.

Dataset SVG Type # Samples Multi-Task Primitives Edits Sketches Human
SVGBench (Rodriguez et al., 2023a) In-the-wild 10k ✗ ✓ ✗ ✗ ✗
VGBench (Zou et al., 2024) Emojis 9.5k ✓ ✗ ✗ ✗ ✗
SVGEditBench (Nishina & Matsui, 2024) Emojis 1.6k ✗ ✗ ✓ ✗ ✗
SVGEditBenchV2 (Nishina & Matsui, 2025) Emojis 1.6k ✗ ✗ ✓ ✗ ✗
UniSVG (Li et al., 2025) Icons 525k ✓ ✗ ✗ ✗ ✗
SVGenius (Chen et al., 2025) Icons 100k ✓ ✗ ✓ ✗ ✗

VectorGym (ours) In-the-wild 7k ✓ ✓ ✓ ✓ ✓

2025). As a result, the field lacks a unified, realistic benchmark that stresses, visual understanding,
vector generation and structured SVG code manipulation.

We introduce VectorGym, a new comprehensive multi-task benchmark for SVG generation and
manipulation spanning four tasks: (1) Sketch2SVG(VG-Sketch), converting rough sketches to clean
vector code; (2) SVG Editing(VG-Edit), applying natural-language edits to existing SVGs; (3)
Text2SVG (VG-text), generating SVGs from text; and (4) SVG Captioning (VG-Cap), describ-
ing SVG content. VectorGym introduces Sketch2SVG and releases the first dataset of complex,
human-authored SVG edits; all tasks use gold-standard human annotations.

Our benchmark covers in-the-wild diversity: icons, diagrams, emojis, fonts, logotypes, and complex
illustrations, sourced from SVG-Stack (Rodriguez et al., 2023a). We pair this with careful human
curation to ensure realistic task difficulty. We evaluate leading proprietary and open-source VLMs,
providing a clear view of current capabilities and gaps.

Our main contributions are:

1. We introduce a comprehensive multi-task benchmark for real-world SVG code generation
with gold-standard human annotations across all tasks;

2. We introduce the Sketch2SVG task and the first dataset of expert authored SVG edits with
complex intent, involving rich primitives and non trivial edits.

3. We design a VLM-as-judge SVG evaluation metric tailored for sketch, text, and editing
tasks, validated through human correlation studies;

4. We provide extensive evaluation and analysis of current frontier VLMs across diverse SVG
generation scenarios.

2 RELATED WORK

Vector Graphics Generation. Classical vectorization methods based on shape-fitting algo-
rithms (Li et al., 2020; Vision Cortex, 2023) struggle with complex tasks beyond image vector-
ization. Recent neural approaches introduce learning-based components, relying on latent variable
models with differentiable rendering and attention architectures (Carlier et al., 2020; Cao et al.,
2023; Lopes et al., 2019), as well as sketch abstraction (Vinker et al., 2022) and text-conditioned
SVG synthesis (Jain et al., 2023). However, these methods are still not general enough to support a
wide range of SVG tasks.

VLMs for SVG Generation. Modern VLMs (OpenAI, 2023; Comanici et al., 2025) can now pro-
duce structured code from visual inputs. StarVector (Rodriguez et al., 2023a) frames SVG creation
as a visual to code generation task, jointly testing visual understanding and program synthesis. Sub-
sequent work further supports this direction (Zhang et al., 2023; Cai et al., 2023; Yang et al., 2025).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Visualization of VG-Edit Test Examples. We randomly sample 21 examples, and show
the editing instruction to perform, along with the source and target vectors.

SVG Datasets and Benchmarks. Foundational SVG datasets include DeepSVG icons (Carlier
et al., 2020), FIGR-8 (Clouâtre & Demers, 2019), and SVG-Stack (Rodriguez et al., 2023a). Several
benchmarks address different SVG related tasks. UniSVG (Li et al., 2025) unifies 525k SVGs for
understanding and generation. VGBench (Zou et al., 2024) aggregates multiple sources to evaluate
image to SVG, text to SVG, and diagram code generation. SVGEditBench (Nishina & Matsui, 2024)
and its V2 version (Nishina & Matsui, 2025) target instruction based editing using synthetic LLM
generated edits or edits derived from similar SVGs. SVGenius Chen et al. (2025) covers a wide set
of tasks, notably editing through algorithmic transform based operations.

Here we propose VectorGym, which focuses on edits created by humans following instructions that
make the edits complex and closer to the actions of real design professionals, requiring semantic
understanding. We also introduce the novel Sketch2SVG task from human drawn sketches, and we
collect human validated text captions that allow evaluation of both Text2SVG and SVG captioning
on realistic, high difficulty edits. See Figure 1 for a dataset comparison, and refer to Appendix A for
further details.

3 VECTORGYM BENCHMARK

VectorGym consists of four complementary tasks that comprehensively evaluate different aspects
of SVG understanding and generation. Each task is designed to assess specific capabilities while
contributing to a holistic understanding of visual2code generation performance.

3.1 TASK DEFINITIONS

Sketch2SVG Generation (VG-Sketch). This task evaluates the ability to convert rough, hand-
drawn sketches into clean SVG code. Given a bitmap sketch image with approximate shapes and
imperfect lines, models must generate SVG code that captures the essential geometric structure
while producing a clean, scalable vector representation. This task tests spatial reasoning, shape
recognition, and the ability to abstract from noisy visual input to structured geometric primitives.

SVG Editing (VG-Edit). In this task, models are given an SVG along with an editing instruction and
must produce a new SVG with the specified edit applied. VG-Edit offers unprecedented complexity
in the challenge of SVG editing. Our editing instructions include deep understanding of the SVG

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

syntax, requiring the use of complex primitives like texts, animations, or color gradients. It also
requires multi-step reasoning and semantic understanding (See examples in Figures 1 (right) and 2).

The challenge lies in correctly parsing the intent, identifying the relevant elements, and applying
the transformation while preserving code validity, visual coherence, and the integrity of unmodified
parts. Since instructions and targets were created by skilled human annotators, the edits are non-
trivial, for example, adding new objects, modifying logo content or text, converting a pie chart to a
bar chart, or changing facial expressions. This task evaluates both SVG structure understanding and
the ability to follow complex editing instructions. Figure 2 shows examples from our test set. Unlike
prior benchmarks Nishina & Matsui (2025); Chen et al. (2025), which focus on simple synthetic
programmatic edits, VG-Edit introduces complex, high-difficulty editing scenarios annotated by
human experts.

Text2SVG Generation (VG-Text). Given natural language descriptions of visual content, models
must generate complete SVG code that accurately represents the described objects, scenes, or ab-
stract concepts. Descriptions range from simple geometric shapes (“red circle with blue border”) to
complex illustrations (“minimalist icon of a house with a tree”). This task tests creative generation
capabilities and the ability to translate semantic concepts into precise geometric representations.

SVG Captioning (VG-Cap). The inverse of Text2SVG generation, this task requires models to
analyze existing SVG code and generate natural language descriptions that accurately capture the
visual content, style, and key characteristics. High-quality captions should describe both the seman-
tic content (“house icon”) and relevant visual properties (“minimalist style,” “blue and white color
scheme”). This task evaluates SVG code comprehension and visual understanding.

3.2 DATASET CONSTRUCTION

Our datasets are built on a carefully curated SVG collection pipeline designed to ensure diversity
across content types, complexity levels, and visual styles. We source high quality and diverse SVGs
from the SVG Stack dataset (Rodriguez et al., 2023a), an established collection that includes icons,
diagrams, emojis, fonts, logotypes, and complex illustrations. Since the original data was extracted
from GitHub, it naturally reflects in the wild SVG code, including higher order primitives such as
text, gradients, polygons, and animations. This makes the dataset more representative of real design
workflows and provides challenging examples for model development.

Our automatic curation builds on insights from prior SVG datasets (Carlier et al., 2020; Clouâtre
& Demers, 2019; Nishina & Matsui, 2024; Li et al., 2025; Chen et al., 2025). We extracted 7,000
candidate samples from the SVG Stack training split through multi stage filtering, including token
length constraints (2k to 8k tokens to retain meaningful complexity), color entropy thresholding
(normalized entropy greater than 0.55), and random subsampling followed by human visual in-
spection. After filtering, the final training set contains 6.5k samples. From these, we selected 100
samples to form our validation set, used for method tuning, in context learning, human evaluation,
and metric design (see Section 3.3). We applied the same pipeline to produce the test split to obtain
300 samples, sourced from the SVG-Stack test set.

Human Annotation Process. We partnered with two specialized data annotation vendors to pro-
duce high quality annotations across sketch and editing tasks. The process involved more than 20
annotators with diverse backgrounds and expertise in design, vector graphics, and coding. Annota-
tors were provided with drawing tools, coding utilities, and curated SVG collections to perform edits
and create sketches on different surfaces. They were specifically instructed to produce challenging
edits, involving multi-step reasoning, and real design intent, and we iterated several times on these
samples to validate their complexity and quality. See Appendix A.1 for full details on the annotation
methodology, quality assurance procedures, and complexity requirements.

Complex Annotations. In our setup, complex annotations refer to human created editing instruc-
tions and corresponding SVG modifications that require things like deeper understanding of the
SVG syntax because they introduce hiuigher order SVG primitives like texts, gradients or anima-
tions, also edits involving semantic understanding, multi step reasoning (change many things at the
same time), and design intent beyond what can be achieved through simple geometric or algorith-
mic transformations. These annotations involve operations such as adding new objects, integrating
external SVG elements, inserting text with meaningful placement, restructuring layouts, or applying

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: VLM as a Judge and Human Correlation Analysis. We run generation on the tasks for
Claude 4.5, Gemini 3 Pro, and GPT-4o, and evaluate outputs using a range of VLMs (both closed
and open, large models) to score them with the prompts presented. We also collect human ratings
using the same instructions given to VLM judges, then compute Pearson correlation to identify the
best VLMs as judges. The evaluation uses 100 validation samples extracted from the training set.
Results show Gemini 3 Pro is generally the best judge, except for the editing task where Qwen3.VL
appears to be a better choice. Sketch and text tasks show lower correlations, likely due to the more
creative nature of these tasks.

Task Generator Models used as Judges

Claude 4.5 Sonnet Gemini 2.5 Flash Gemini 3 Pro GPT 5.1 Qwen2.5VL 72B Qwen3.VL 235B GLM4.5 355B

V
G

-S
ke

tc
h Ground Truth 1.00 1.00 1.00 1.00 1.00 1.00 -0.07

Claude 4.5 Sonnet 0.63 0.73 0.72 0.62 0.57 0.69 0.67
Gemini 3 Pro 0.79 0.82 0.80 0.78 0.76 0.79 0.72
GPT 4o 0.66 0.70 0.74 0.61 0.59 0.72 0.64
Average 0.77 0.81 0.81 0.75 0.73 0.80 0.49

V
G

-C
ap

Ground Truth 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Claude 4.5 Sonnet 0.62 0.57 0.71 0.62 0.65 0.71 0.60
Gemini 3 Pro 0.48 0.47 0.55 0.49 0.43 0.53 0.48
GPT 4o 0.52 0.46 0.55 0.47 0.53 0.54 0.55
Average 0.66 0.63 0.70 0.65 0.65 0.69 0.66

V
G

-E
di

t Ground Truth -0.10 0.10 1.00 1.00 0.27 1.00 0.08
Claude 4.5 Sonnet 0.29 0.30 0.49 0.53 0.28 0.45 0.48
Gemini 3 Pro 0.49 0.47 0.54 0.57 0.04 0.61 0.56
GPT 4o 0.59 0.61 0.61 0.69 0.29 0.64 0.62
Average 0.32 0.37 0.66 0.70 0.22 0.67 0.43

V
G

-T
ex

t Ground Truth 0.01 -0.07 -0.08 0.19 -0.19 0.15 -0.07
Claude 4.5 Sonnet 0.16 0.43 0.58 0.21 0.15 0.23 0.08
Gemini 3 Pro 0.37 0.42 0.44 0.48 0.24 0.37 0.32
GPT 4o 0.50 0.71 0.63 0.58 0.25 0.66 0.55
Average 0.26 0.38 0.40 0.37 0.11 0.35 0.22

several coordinated edits simultaneously. They reflect realistic design actions performed by human
experts and cannot be reproduced by rule based procedures or low level manipulations.

3.3 DESIGNING A VLM-AS-JUDGE EVALUATION METRIC FOR SVG GENERATION

Traditional evaluation metrics for SVG generation (typically based on image reconstruction or
text–image alignment) often fall short in capturing the nuanced visual and semantic qualities that
determine the success of generated vector graphics (Rodriguez et al., 2023a; Li et al., 2025; Chen
et al., 2025). Existing work lacks comprehensive evaluation frameworks tailored to SVG genera-
tion, particularly metrics that can jointly assess visual fidelity and semantic alignment in vector code
outputs (Zou et al., 2024; Nishina & Matsui, 2025).

VLM-as-judge (VLMAJ) metrics have become popular because they provide strong supervision
signals for subjective task assessments, especially in text and image generation tasks Mañas et al.
(2024). Existing VLMAJ metrics do not capture the nuances of SVG code and SVG rendering. They
are also not reliable for tasks such as sketch based generation and SVG editing, where no consistent
metric previously existed. For this reason we design a metric specifically tailored to the four SVG
generation tasks in our benchmark.

We generate outputs from several strong baseline models and then apply carefully designed prompts
to a set of powerful VLMs, both open and closed source, to obtain scores from 0 to 5 following
clear evaluation criteria (see Appendix D). We run the same evaluation setup with human raters
and then compute Pearson correlations between VLM and human scores. This produces four task
specific VLMAJ metrics, one for each task in our benchmark, providing a more faithful measure of
instruction following, SVG structural correctness, and semantic alignment.

1. Metric Development Process. We carefully develop task-specific evaluation prompts designed
to guide VLMs in assessing different aspects of SVG generation quality. For each of the four main
generation tasks, we craft specialized prompts that encourage models to evaluate: (1) visual accuracy
and fidelity; (2) semantic alignment with input requirements; (3) code quality and efficiency; and
(4) overall aesthetic appeal.

2. Judge Model Selection. To identify the most reliable VLM judge, we conduct a systematic
comparison across state-of-the-art models: Claude 4.5 Sonnet, Gemini 2.5 Flash, Gemini 3 Pro,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

VG-Sketch
Input Gemini 3 Claude 4 GPT-4o

VG-Edit
Input Gemini 3 Claude 4 GPT-4o

VG-Text
Input Gemini 3 Claude 4 GPT-4o

Figure 3: Qualitative results on VectorGym. We display VLM-Judge and Human scores on a
scale from 0 to 5. Each task shows three validation samples alongside the strongest models in our
evaluation. Human ratings tend to be stricter, while VLM judges are more permissive and often
cluster around mid-range values when uncertain.

Qwen 2.5VL 72B-235B, and GLM 4.5 355B, covering closed-open source performance, and large-
mid scale sizes.

3. SVG Generation and VLMAJ Evaluation. We evaluate state of the art models on the validation
set (100 samples). We select Claude 4.5 Sonet, Gemini 3 Pro, and GPT4o, and run generation
experiments on the four tasks. The resulting outputs are then scored by all VLM judges described
above. We also compute scores for the ground truth SVGs, which should receive the highest ratings,
providing a way to assess the overall dataset quality.

4. Human Evaluation. We repeat the same evaluation setup with human raters. They receive the
same prompt with the specified criteria and score the generations from all models as well as the
ground truth data. A total of 17 human evaluators participated, all technical engineers or AI and
design experts, producing around 674 ratings used to correlate each VLM with human judgment.

5. Correlation Validation and VLMAJ Selection. We compute Pearson correlation coefficients
between human judgments and each candidate VLM judge for every task and report the results in
Table 2. We also include average validation scores for the three generation models in Table 6, show-
ing both human ratings and VLM evaluations. Ground Truth acts as a reliable anchor only for VG
Sketch and VG Cap, where human agreement is high due to clearer visual semantics. For VG Edit
and VG Text, correlations drop even on perfect examples, indicating that these tasks contain more
structural ambiguity and are inherently harder to evaluate with full consensus. This further moti-
vates the need for robust automatic judges tailored to each task. The correlation results highlight
clear preferences among VLM judges. Gemini Flash and Gemini 3 Pro provide the strongest align-
ment with human ratings in VG Sketch, and Gemini 3 Pro also achieves the highest correlation in
VG Cap. For VG Edit, which is the most challenging task, Gemini 3 Pro and GPT 5.1 stand out
as the only reliable options, with GPT 5.1 showing a slight advantage. For VG Text, Gemini Flash
ranks highest, with GPT 5.1 again performing consistently. Qwen3 VL 235B emerges as the most
stable open source option, performing well across VG Sketch, VG Cap, and VG Edit, with the main
weakness appearing in VG Text. Based on these findings, we select Gemini 3 Pro as the primary
VLMAJ judge for VG Sketch, VG Cap, and VG Text. For VG Edit, we use GPT 5.1, which shows
the strongest alignment with human judgments on this task.

3.4 EVALUATION

We describe the metrics used for evaluation in VectorGym, in addition to the VLM-as-Judge metric
defined above.

Visual Similarity. For tasks that require visual reproduction (Sketch2SVG, Text2SVG), we measure
similarity between generated and target SVGs after rendering them to pixels. We use pixel Mean
Squared Error (MSE), perceptual similarity (LPIPS), and Dino, a deep feature metric that captures
alignment in learned representations (Oquab et al., 2023).

Semantic Accuracy. For Text2SVG, we evaluate whether the generated SVG captures the intended
semantic meaning of the text through CLIP-based similarity and the VLM-Judge metric. For SVG

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Editing, we rely exclusively on the VLM-Judge since CLIP does not align well with editing instruc-
tions or edited outputs.

SVG Captioning Metrics. For captioning, we report ROUGE-L F1 (0 to 100, higher is better),
BGE-M3 cosine similarity (0 to 100, higher is better), and an LLM-based rubric score (GPT-5
mapped from 0 to 5 into 0 to 100). Metrics are computed pairwise over each reference and prediction
caption, then averaged across the corpus.

Human Evaluation. A subset of outputs from the top performing models on the validation split is
evaluated by expert annotators. They assess overall quality, semantic correctness, and task specific
criteria (see Table 6).

Overall VectorGym Score. We define an overall score for our benchmark, intended to measure
multi-task performance across SVG generation from sketches and texts, complex editing of SVGs,
and SVG understanding through captioning from code. First, we compute a task-specific score
Stask for each of the four tasks. For Sketch2SVG and SVG Editing, the score is the average of the
VLM Judge, DINO, inverted MSE (100 − MSE), and inverted LPIPS (100 − LPIPS), ensuring all
components contribute positively. For Text2SVG, we average the VLM Judge, CLIP, and DINO
scores. For SVG Captioning, we average the VLM Judge, BGE-M3, and ROUGE scores. Finally,
the overall VectorGym score is computed as the arithmetic mean of the four task-specific scores:

VectorGym =
1

4

∑
τ∈T

Sτ (1)

where T = {Sketch,Edit,Text,Caption}. All individual metrics are scaled to a range of [0, 100]
prior to aggregation.

4 EXPERIMENTS

We conduct comprehensive evaluation across all four VectorGym tasks using state-of-the-art VLMs.
Our experimental setup is designed to provide fair comparison while highlighting the unique chal-
lenges of SVG code generation.

4.1 METHODS AND BASELINES

We conduct a comprehensive evaluation using all available state-of-the-art VLMs that support code
generation capabilities. Our baseline selection follows a systematic approach to ensure comprehen-
sive coverage of the current landscape.

In-Context Learning Experiments. First we evaluate the capabilities of frontier trained models
capanilities at this tasks with in-context learning giving a strong prompt to descrinbe the task to
perform. We include open and closed source models wioht the prompts specifgied in Appendix D.

A. Closed-Source Models. We evaluate leading commercial VLMs that demonstrate strong perfor-
mance on visual understanding and code generation tasks: Gemini 2.5 Flash, Gemini 3 Pro, GPT4o,
GPT-5.1, and Claude Sonet 4.5. These models represent the current state-of-the-art in multimodal
understanding and have shown exceptional capabilities in various vision-language and code genera-
tion benchmarks.

B. Open-Source Models. To ensure comprehensive coverage and reproducible research, we in-
clude leading open-source alternatives: Qwen2.5VL 32B-72B Instruct, Qwen3VL 8B-235B, and
GLM4.5V 108B. We made best efforts to identify and include all available VLM models with pub-
lic code implementations that could be executed on our tasks.

RL Training Experiments. We also train a Qwen3VL 8B Instruct model using the RLRF (Rein-
forcement Learning from Rendering Feedback) framework (Rodriguez et al., 2025), which applies
GRPO (Shao et al., 2024) together with rendered SVG outputs to compute rewards. The model is
trained on the VectorGym train split across all four tasks simultaneously. Further details on this
approach are provided in Appendix C.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Input Sketch Gemini 3 Pro GPT-5.1 Claude 4.5 Ours (8B) GPT-4o

(a) VG-Sketch Qualitative Results. The leftmost col-
umn displays the input raster sketch, followed by the
outputs from top-performing models. Gemini 3 Pro
demonstrates superior fidelity in preserving topologi-
cal structure compared to GPT-5.1 and others.

Change the letter "M" to "N", and
change the color of its container

to green.

Input
Gemini 3 Pro Claude 4.5 GPT-5.1 Ours (8B) Ours (8B)

Remove the blue circular
background, change the color of the

stars and moon to black and flip
the whole icon horizontally.

Write text "BLIXOR" at the center
of font size 135px, font family
Aclonica, and fill it with deep

pink.

Bring small a to the front, and
change its color to a green

gradient.

Remove the outline from the moon
and stars. Remove the star on the

left side of the image and the
larger star on the right side.

Color the moon and the remaining
star white and set...

(b) VG-Edit Qualitative Results. Left to right: natu-
ral language edit instruction, input SVG, and model
outputs. Gemini 3 Pro, Claude 4.5 Sonnet, and
GPT5.1 effectively execute complex semantic modifi-
cations, whereas our trained models struggle to follow
some multi-step edits.

Figure 4: Qualitative comparison of model performance on Sketch2SVG and SVG Editing tasks.

5 RESULTS

We present a comprehensive evaluation of state-of-the-art VLMs across the four VectorGym tasks.
Our analysis reveals significant performance variance across different modalities of SVG generation
and manipulation, highlighting distinct capability gaps between proprietary and open-source models.

Table 3: Sketch2SVG and SVG Editing Performance. Metrics are reported such that higher
values indicate better performance (↑) or lower values indicate better performance (↓). To compute
the unified Score, MSE and LPIPS are inverted (100−x) and averaged with VLM Judge and DINO,
all scaled to [0, 100]. Overall represents the arithmetic mean of scores across all four tasks. The
best results in each category are marked in bold.

Sketch2SVG SVG Editing Overall
Model VLM J ↑ MSE ↓ DINO ↑ LPIPS ↓ Score ↑ VLM J ↑ MSE ↓ DINO ↑ LPIPS ↓ Score ↑ VectorGym ↑
Open-source Models
Qwen2.5VL 72B Instruct 12.80 16.43 69.87 43.95 55.57 16.60 18.68 70.35 38.21 57.52 44.27
Qwen2.5VL 32B Instruct 17.80 15.15 71.63 42.65 57.91 20.20 17.04 72.31 37.05 59.61 49.16
GLM4.5V 33.80 14.14 78.61 41.35 64.23 37.60 13.39 80.90 31.76 68.34 57.02
Qwen3VL 8B Instruct 33.00 13.76 81.01 40.97 64.82 57.40 11.01 90.44 25.27 77.89 58.74
Qwen3VL 235B Instruct 40.00 13.37 83.69 40.23 67.52 60.40 9.02 91.17 22.11 80.11 62.32

Qwen3VL 8B Gym (Ours) 46.00 11.99 88.25 39.37 70.72 67.00 8.36 93.94 21.34 82.81 66.05
Proprietary Models
Gemini 2.5 Flash 36.80 13.67 79.13 40.45 65.45 65.80 9.98 90.54 21.16 81.30 61.42
GPT-4o 46.00 13.17 85.11 39.74 69.55 66.80 8.43 92.27 21.24 82.35 64.93
Claude Sonnet 4.5 58.80 12.54 88.42 39.29 73.85 79.40 6.29 95.61 16.46 88.07 70.31
GPT-5.1 64.00 12.28 89.47 38.42 75.69 78.00 5.92 95.59 16.83 87.71 71.36
Gemini 3 Pro 72.20 11.31 89.78 36.43 78.56 81.20 5.89 95.55 16.01 88.71 73.17

5.1 SKETCH2SVG GENERATION

The Sketch2SVG task evaluates the model’s ability to infer vector geometry from raster sketches,
a problem characterized by high ambiguity and visual abstraction. As shown in Table 3, Gemini
3 Pro achieves the highest performance, obtaining a Score of 78.56 and a VLM Judge score of
72.20. This indicates a superior capability in mapping pixel-level visual features to precise SVG
path commands. GPT-5.1 follows with a Score of 75.69.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Text2SVG and SVG Captioning Performance. Higher values indicate better performance
(↑). DINO scores for Text2SVG are scaled to [0, 100]. The Score column represents the unweighted
average of metrics within each task.

Text2SVG SVG Captioning
Model VLM J ↑ CLIP ↑ DINO ↑ Score ↑ VLM J ↑ BGE-M3 ↑ ROUGE ↑ Score ↑
Open-source Models
Qwen2.5-VL-72B-Instruct 25.80 25.78 71.00 40.86 9.60 52.08 7.70 23.13
Qwen3-VL-8B-Instruct 55.20 29.48 81.71 55.46 25.20 66.27 18.87 36.78
GLM-4.5V 59.40 28.91 80.44 56.25 38.00 62.85 16.86 39.24
Qwen3-VL-32B-Instruct 22.60 24.95 68.96 38.84 38.40 66.10 16.35 40.28
Qwen3-VL-235B-Instruct 66.80 29.60 82.63 59.68 40.40 67.14 18.33 41.96
Qwen3-VL-8B-Gym (Ours) 72.80 30.55 87.46 63.60 35.80 79.76 25.58 47.05
Proprietary Models
GPT-4o 74.60 30.43 84.23 63.09 46.00 66.82 21.33 44.72
Gemini 2.5 Flash 54.00 27.67 77.65 53.11 45.80 69.24 22.45 45.83
Claude Sonnet 4.5 89.00 30.91 87.66 69.19 59.20 70.17 21.08 50.15
GPT-5.1 93.00 30.83 88.20 70.68 62.20 70.45 21.49 51.38
Gemini 3 Pro 89.80 30.87 89.09 69.92 70.40 72.27 23.83 55.50

Notably, the performance gap between the top model and the open-source baseline is significant.
However, our proposed Qwen3VL 8B Gym model achieves a Score of 70.72, surpassing both
GPT-4o (69.55) and the much larger Qwen3VL 235B (67.52). The Gym model’s VLM Judge
score (46.00) represents a substantial improvement over the base Qwen3VL 8B Instruct (33.00),
validating the efficacy of curriculum learning for structural visual alignment.

5.2 SVG EDITING

SVG Editing requires disjoint reasoning capabilities: parsing the existing code structure and manip-
ulating it according to natural language instructions. Gemini 3 Pro again leads this task with a
Score of 88.71, closely followed by Claude Sonnet 4.5 (88.07). Claude Sonnet 4.5 notably achieves
the highest DINO score (95.61) and lowest MSE (6.29), suggesting it generates visually faithful
edits even if the structural implementation differs slightly from the ground truth.

Our Qwen3VL 8B Gym demonstrates remarkable competitiveness in this domain, achieving a
Score of 82.81. This performance exceeds that of GPT-4o (82.35) and approaches the proprietary
frontier. The low MSE (8.36) of the Gym model compared to the base 8B model (11.01) indi-
cates that fine-tuning on edit trajectories significantly enhances the model’s precision in coordinate
manipulation.

5.3 TEXT2SVG GENERATION

Table 4 presents our Text2SVG generation results, revealing clear performance hierarchies and in-
teresting patterns. Among proprietary models, GPT-5.1 achieves state-of-the-art performance
with a VLM Judge score of 93.00 and an overall Score of 70.68. The proprietary models exhibit
a relatively narrow performance band, with Gemini 3 Pro (69.92) and Claude Sonnet 4.5 (69.19)
performing comparably.

Among open-source models, our fine-tuned Qwen3VL 8B Gym outperforms the larger
Qwen3VL 235B baseline (Score: 63.60 vs. 59.68) and achieves parity with GPT-4o (63.09). This
result emphasizes that for well-defined generation tasks, specialized smaller models can effectively
compete with general-purpose frontier models.

5.4 SVG CAPTIONING

The SVG Captioning results in Table 4 reveal interesting patterns distinct from the generation tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Gemini 3 Pro dominates the VLM Judge metric (70.40), significantly outperforming other mod-
els, which aligns with its robust ability to map code structure back to high-level semantic descrip-
tions. However, the traditional NLP metrics show different rankings: our Qwen3VL 8B Gym
achieves the highest BGE-M3 (79.76) and ROUGE scores (25.58) across the entire benchmark.

Qwen3VL 8B Gym outperforms all proprietary models in keyword-based metrics. This dis-
crepancy between its state-of-the-art retrieval scores and its lower VLM Judge score (35.80 com-
pared to 40.40 for the Qwen3VL 235B baseline) suggests that while the Gym model captures salient
semantic details, it may lack the conversational fluency or formatting preference favored by the
VLM Judge.

5.5 CROSS-TASK ANALYSIS

Our comprehensive evaluation across Text2SVG, SVG Editing, and Sketch2SVG reveals several
critical insights about current VLM capabilities in vector graphics generation.

Overall Performance Hierarchy. Aggregating across all tasks, Gemini 3 Pro achieves the highest
VectorGym score of 73.17, followed by GPT-5.1 (71.36). This establishes Gemini 3 Pro as the most
capable model for multimodal code-visual reasoning tasks.

Effectiveness of Specialized Fine-Tuning. The Qwen3VL 8B Gym model achieves an overall
score of 66.05, surpassing GPT-4o (64.93) and substantially outperforming its larger counterpart,
Qwen3VL 235B (62.32). This finding validates the hypothesis that the limitations of smaller param-
eter counts can be effectively offset by high-quality, task-specific curriculum learning in the SVG
domain.

Task Complexity. The results establish a clear difficulty hierarchy: Text2SVG (easiest, GPT-5.1:
93.00) > SVG Editing (intermediate, Gemini 3 Pro: 81.20) > Sketch2SVG (Gemini 3 Pro: 72.20) >
SVG Captioning (hardest, Gemini 3 Pro: 70.40). This ranking aligns with intuitive expectations: text
descriptions provide explicit semantic guidance, editing requires understanding existing structures,
sketches demand interpretation of imprecise visual input, while captioning requires the rigorous
abstraction of high-level semantics from low-level geometric code.

6 CONCLUSION

We introduced VectorGym, a new comprehensive multi-task benchmark for SVG code generation
that encompasses Sketch2SVG, SVG editing, Text2SVG, and SVG captioning. VectorGym in-
troduces Sketch2SVG and releases the first dataset of complex, human-authored SVG edits, with
gold-standard human annotations across all tasks. Our 7,000-sample evaluation and novel VLM-
as-judge metrics reveal significant performance gaps between proprietary and open-source models,
with open-source alternatives showing competitive results in editing and captioning. VectorGym
establishes a new evaluation standard for visual code generation and provides robust benchmarks to
advance SVG generation capabilities.

Use of LLMs We leveraged large language models (LLMs) to support different aspects of this
work. They assisted with coding tasks needed to build the datasets and run experiments. Models
such as GPT-4o, GPT-5, and Claude-4-Sonnet were also used to help with related work exploration
and to ensure a comprehensive literature review. In addition, we employed LLMs for rephrasing and
refinement while writing this paper, with the goal of improving flow, clarity, and correcting spelling
errors. Importantly, we followed strict rules to preserve the accuracy and details of our contributions,
and all generated content was carefully reviewed, manipulated, and edited by the authors.

Limitations VectorGym expands the range of capabilities that can be evaluated and optimized for
fine grained control of state of the art SVG models. We tested several leading models in a zero
shot setting, and we also ran RL training experiments that produced strong results. Still, we do not
fully explore the space of training strategies for these tasks. Future research can focus on improving
how models tackle sketch based generation and complex editing, potentially with more efficient and
more accurate approaches tailored to these settings.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ethics Statement The models evaluated in this benchmark may exhibit biases inherited from their
training data, potentially affecting the fairness and representation of generated SVG content across
different demographics, cultures, and artistic styles. We have performed extensive filtering and
human curation to ensure VectorGym does not include such instances.

REFERENCES

Mu Cai, Zeyi Huang, Yuheng Li, Haohan Wang, and Yong Jae Lee. Leveraging large language mod-
els for scalable vector graphics-driven image understanding. arXiv preprint arXiv:2306.06094,
2023.

Defu Cao, Zhaowen Wang, Jose Echevarria, and Yan Liu. Svgformer: Representation learning for
continuous vector graphics using transformers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10093–10102, 2023.

Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. Deepsvg:
A hierarchical generative network for vector graphics animation. In NeurIPS,
2020. URL https://proceedings.neurips.cc/paper/2020/file/
bcf9d6bd14a2095866ce8c950b702341-Paper.pdf.

Siqi Chen, Xinyu Dong, Haolei Xu, Xingyu Wu, Fei Tang, Hang Zhang, Yuchen Yan, Linjuan Wu,
Wenqi Zhang, Guiyang Hou, et al. Svgenius: Benchmarking llms in svg understanding, editing
and generation. In Proceedings of the 33rd ACM International Conference on Multimedia, pp.
13289–13296, 2025.

Louis Clouâtre and Marc Demers. Figr: Few-shot image generation with reptile. arXiv:1901.02199,
2019. URL https://arxiv.org/abs/1901.02199.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Jon Ferraiolo, Fujisawa Jun, and Dean Jackson. Scalable vector graphics (SVG) 1.0 specification.
iuniverse Bloomington, 2000.

Ajay Jain, Amber Xie, and Pieter Abbeel. Vectorfusion: Text-to-svg by abstracting pixel-based
diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1911–1920, 2023.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferran-
dis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb of
permissively licensed source code. arXiv preprint arXiv:2211.15533, 2022.

Jinke Li, Jiarui Yu, Chenxing Wei, Hande Dong, Qiang Lin, Liangjing Yang, Zhicai Wang, and
Yanbin Hao. Unisvg: A unified dataset for vector graphic understanding and generation with
multimodal large language models. arXiv preprint arXiv:2508.07766, 2025.

Tzu-Mao Li, Michal Lukáč, Michaël Gharbi, and Jonathan Ragan-Kelley. Differentiable vector
graphics rasterization for editing and learning. ACM TOG (SIGGRAPH Asia), 2020. URL
https://people.csail.mit.edu/tzumao/diffvg/.

Zihe Liu, Jiashun Liu, Yancheng He, Weixun Wang, Jiaheng Liu, Ling Pan, Xinyu Hu, Shaopan
Xiong, Ju Huang, Jian Hu, et al. Part i: Tricks or traps? a deep dive into rl for llm reasoning.
arXiv preprint arXiv:2508.08221, 2025.

Raphael Gontijo Lopes, David Ha, Douglas Eck, and Jonathon Shlens. A learned representation for
scalable vector graphics. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 7930–7939, 2019.

Oscar Mañas, Benno Krojer, and Aishwarya Agrawal. Improving automatic vqa evaluation using
large language models. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 38, pp. 4171–4179, 2024.

11

https://proceedings.neurips.cc/paper/2020/file/bcf9d6bd14a2095866ce8c950b702341-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/bcf9d6bd14a2095866ce8c950b702341-Paper.pdf
https://arxiv.org/abs/1901.02199
https://people.csail.mit.edu/tzumao/diffvg/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kunato Nishina and Yusuke Matsui. Svgeditbench: A benchmark dataset for quantitative assessment
of llm’s svg editing capabilities. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8142–8147, 2024.

Kunato Nishina and Yusuke Matsui. Svgeditbench v2: A benchmark for instruction-based svg
editing. arXiv preprint arXiv:2502.19453, 2025.

OpenAI. Gpt-4 technical report, 2023.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Antoine Quint. Scalable vector graphics. IEEE MultiMedia, 10(3):99–102, 2003.

Juan A Rodriguez, Shubham Agarwal, Issam H Laradji, Pau Rodriguez, David Vazquez, Christopher
Pal, and Marco Pedersoli. Starvector: Generating scalable vector graphics code from images.
arXiv preprint arXiv:2312.11556, 2023a.

Juan A Rodriguez, David Vazquez, Issam Laradji, Marco Pedersoli, and Pau Rodriguez. Figgen:
Text to scientific figure generation. arXiv preprint arXiv:2306.00800, 2023b.

Juan A Rodriguez, David Vazquez, Issam Laradji, Marco Pedersoli, and Pau Rodriguez. Ocr-vqgan:
Taming text-within-image generation. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 3689–3698, 2023c.

Juan A Rodriguez, Haotian Zhang, Abhay Puri, Aarash Feizi, Rishav Pramanik, Pascal Wichmann,
Arnab Mondal, Mohammad Reza Samsami, Rabiul Awal, Perouz Taslakian, et al. Rendering-
aware reinforcement learning for vector graphics generation. arXiv preprint arXiv:2505.20793,
2025.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2021.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Yael Vinker, Ehsan Pajouheshgar, Jessica Y Bo, Roman Christian Bachmann, Amit Haim Bermano,
Daniel Cohen-Or, Amir Zamir, and Ariel Shamir. Clipasso: Semantically-aware object sketching.
ACM Transactions on Graphics (TOG), 41(4):1–11, 2022.

Vision Cortex. VTracer. https://www.visioncortex.org/vtracer-docs, 2023.

Ronghuan Wu, Wanchao Su, Kede Ma, and Jing Liao. Iconshop: Text-based vector icon synthesis
with autoregressive transformers. arXiv preprint arXiv:2304.14400, 2023.

Ximing Xing, Juncheng Hu, Guotao Liang, Jing Zhang, Dong Xu, and Qian Yu. Empowering llms
to understand and generate complex vector graphics. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 19487–19497, 2025.

Yiying Yang, Wei Cheng, Sijin Chen, Xianfang Zeng, Fukun Yin, Jiaxu Zhang, Liao Wang, Gang
Yu, Xingjun Ma, and Yu-Gang Jiang. Omnisvg: A unified scalable vector graphics generation
model. arXiv preprint arXiv:2504.06263, 2025.

Tong Zhang, Haoyang Liu, Peiyan Zhang, Yuxuan Cheng, and Haohan Wang. Beyond pixels:
Exploring human-readable svg generation for simple images with vision language models, 2023.
URL https://arxiv.org/abs/2311.15543.

Bocheng Zou, Mu Cai, Jianrui Zhang, and Yong Jae Lee. Vgbench: Evaluating large language
models on vector graphics understanding and generation. arXiv preprint arXiv:2407.10972, 2024.

12

https://www.visioncortex.org/vtracer-docs
https://arxiv.org/abs/2311.15543

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A VECTORGYM DATA CREATION

Here we provide additional details on the VectorGym datasets. Figures 2 and 5 illustrate test sam-
ples for the Sketch2SVG (VG-Sketch) and SVG Editing (VG-Edit) tasks. We further describe the
annotation methodology, data creation and sampling process, annotation details, and task definitions.

A.1 ANNOTATION METHODOLOGY

A.1.1 DATA CURATION AND SAMPLING

We extracted 7,000 high-quality samples from the SVG-Stack dataset through a rigorous multi-stage
filtering process:

Visual Quality Assessment: Human experts manually reviewed SVG samples to identify visually
appealing and well-formed graphics, filtering out corrupted, overly simplistic, or poorly designed
samples.

Token Length Filtering: We applied token length constraints (2,000-8,000 tokens) to ensure mean-
ingful complexity while maintaining computational feasibility. This range captures rich, detailed
SVGs without exceeding practical processing limits for current VLMs.

Color Entropy Thresholding: We computed color entropy for each SVG to ensure visual diversity,
filtering samples with insufficient color variation or monotonic palettes.

Random Sampling: Final samples were randomly selected to avoid systematic biases in content
distribution.

From the curated set of 7,000 samples, we kept the 300 items that originally belonged to the SVG
Stack test split as our test set to avoid any train and test contamination. We also selected 100 samples
from the training split for validation, which we used during development for method tuning, and
for the human evaluation and correlation study used to design our VLM as a judge metric (see
Section 3.3).

A.1.2 ANNOTATION VENDOR PARTNERSHIP

We partnered with two specialized data annotation vendors to ensure task-specific expertise:

Vendor 1 - Sketch and Caption Generation: Specialized in visual content creation, responsible
for sketch generation and text descriptions. Annotators were equipped with professional drawing
tools (digital tablets, cameras for hand-drawn sketches) and trained on SVG visual analysis.

Vendor 2 - SVG Editing: Focused on technical SVG manipulation, staffed with annotators having
design and vector graphics backgrounds. We developed custom SVG editing tools specifically for
this project to enable precise modifications.

A.1.3 ANNOTATOR DEMOGRAPHICS AND TRAINING

Our annotation team comprised over 20 annotators with diverse demographics and gender represen-
tation. All annotators underwent specialized training:

Technical Requirements: Background in design, vector graphics, or coding. Annotators were
tested on SVG understanding and tool proficiency before assignment.

Equipment and Tools: Professional cameras for photographing hand-drawn sketches, digital draw-
ing tablets, custom SVG editing software, and standardized annotation interfaces.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 5: Visualization of VG-Sketch Test Examples. We randomly sample 30 examples, and
show the sketch and the target vector.

A.1.4 TASK-SPECIFIC ANNOTATION PROCEDURES

Sketch2SVG Generation: Annotators were provided with SVG images and asked to create corre-
sponding sketches in two variants:

• Hand-drawn: Using pen or pencil on paper, photographed with standardized lighting and
resolution

• Digital: Created using drawing tablets and stylus input for consistent digital sketches

Both variants included colored and black-and-white versions to test model robustness across differ-
ent input modalities.

SVG Editing - Ensuring Complexity: We implemented strict complexity requirements to avoid
trivial edits that could be synthetically generated:

Prohibited Simple Edits: Rotation, color changes, scaling, basic shape removal - operations easily
automated by current LLMs.

Required Complex Edits: Path modifications, primitive additions, parameter adjustments, concep-
tual additions requiring semantic understanding. For example:

• Adding elements from other SVGs in the database (e.g., incorporating a needle shape into
a hammer SVG)

• Modifying facial expressions in character illustrations

• Converting chart types (pie to bar charts)

• Structural modifications requiring new geometric primitives

Caption Generation: We implemented a comprehensive multi-stage process for generating high-
quality text descriptions:

1. Detailed Visual Description: Annotators created comprehensive descriptions of vector
graphics, with particular emphasis on color specification. To ensure color accuracy, anno-
tators were required to include hexadecimal color codes in parentheses alongside natural
language color descriptions (e.g., ”red (#FF0000)”).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

2. Cross-validation with VLM: All human-generated descriptions were processed and cross-
validated using Qwen2-VL-32B to ensure consistency and completeness of visual descrip-
tions.

3. Instruction Reformatting: Captions were systematically reformatted from descriptive
statements into instruction-style prompts suitable for the Text2SVG generation task. This
process generated two distinct variants:

• Hexadecimal Color Version: Instructions containing precise hexadecimal color
specifications, which empirically demonstrate superior SVG generation accuracy

• Natural Language Color Version: Instructions using standard color names for
broader accessibility

4. Quality Validation: Final consistency checks and inter-annotator agreement measurement
across all caption variants

Quality Assurance: All annotations underwent rigorous quality control including automated SVG
syntax validation, human verification of task requirements, and consistency checks across related
task pairs.

B ADDITIONAL QUALITATIVE RESULTS

We provide additional figures (Figures 6–10) showing qualitative results of the models on the pre-
sented tasks.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 6: Visualization of test performance on the Sketch2SVG task. When the input sketch lacks
color, models tend not to introduce new colors. In contrast, when color is present in the sketch,
models successfully reproduce it in the generated SVG.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Input Text Ground Truth Claude 3.5 Sonnet Claude 3.7 Sonnet Gemini 2.5 Flash

Text2Svg - Qualitative Analysis

Sample 1
ca5fb240...

Sample 2
7de6000a...

Sample 3
e044ab39...

Sample 4
36112182...

Sample 5
958189ce...

Sample 6
d294c92c...

Sample 7
9171124b...

Sample 8
45ef7128...

Sample 9
15ccb57c...

Sample 10
9f209741...

Figure 7: Qualitative analysis of Text2SVG generation results. The figure shows examples of
text2SVG generation across different model performances. Examples demonstrate successful gener-
ations with accurate semantic understanding and geometric representation, as well as common fail-
ure modes including incorrect primitive usage, semantic misunderstanding, and incomplete shape
representations.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Edit Instruction Original Ground Truth

Claude 3.5 Sonnet Claude 3.7 Sonnet Gemini 2.5 Flash

Svg Editing - Qualitative Analysis

Sample 1
e2d6ee4f...

Sample 2
76c59f08...

Sample 3
f5ede4c9...

Sample 4
38f55c95...

Sample 5
89a6dbf0...

Sample 6
dc8af4d2...

Sample 7
9cb5d86c...

Sample 8
9ef2df46...

Sample 9
329ff207...

Sample 10
fc70a53b...

Figure 8: Qualitative analysis of SVG editing with natural language instructions. The fig-
ure demonstrates model performance on various editing tasks including color changes, geometric
transformations, and structural modifications. Examples show input SVG (left), editing instruction
(center), and generated output (right). Successful cases highlight accurate instruction parsing and
precise SVG manipulation, while failure cases reveal challenges in understanding complex instruc-
tions and maintaining visual coherence.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Input Sketch Ground Truth Claude 3.5 Sonnet Claude 3.7 Sonnet Gemini 2.5 Flash Gpt 4O

Sketch2Svg - Qualitative Analysis

Sample 1
df270590...

Sample 2
ee87d859...

Sample 3
93f9c2d0...

Sample 4
82c3df34...

Sample 5
25b5244b...

Sample 6
89dfbabd...

Sample 7
b00b76e5...

Sample 8
40c85541...

Sample 9
89a6dbf0...

Sample 10
3e1285fc...

Figure 9: Qualitative analysis of Sketch2SVG generation results. The figure illustrates model per-
formance in converting hand-drawn sketches to clean SVG code. Examples display input sketches
(left), ground truth SVG (second column), and model-generated SVGs (rest of the columns).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Comparison of SVG datasets and benchmarks. VectorGym (Ours) is the only benchmark
combining multi-task evaluation with human-verified quality. Note: Size is reported in number of
SVG samples.

Dataset Year Size Content Types Tasks Annotation
VG-Sketch (Ours) 2025 6.5k Icons, Fonts, Diagrams, Emojis Sketch-to-SVG Human
VG-Text2SVG (Ours) 2025 6.5k Icons, Diagrams, Emojis, Fonts Text-to-SVG Human
VG-Edit (Ours) 2025 6.5k Diverse SVG Editing Human

SVG-Stack 2025 2.3M Diverse (Icons, Logos, Diagrams) SVG Corpus Unlabeled
Text2SVG-Stack 2025 2.2M Diverse (Paired Texts and SVGs) Text-to-SVG Synthetic Captions
SVG-Fonts 2025 1.9M Fonts, Glyphs SVG Corpus Unlabeled
SVG-Icons 2025 89k Icons SVG Corpus Unlabeled
SVG-Emoji 2025 10k Emojis SVG Corpus Unlabeled

MMSVG-2M 2025 2.0M Icons, Illustrations, Characters Image/Text-to-SVG Mixed (Web + Syn.)
UniSVG 2025 525k Unified Multi-domain Gen. & Understanding Mixed
SVGX-SFT-1M 2025 1.0M Diverse (Instr.↔SVG) Instruction Following Synthetic (LLM)
SVG-1M (SVGen) 2025 1.0M Icons Image/Text-to-SVG Synthetic (LLM)
FIGR-SVG 2025 1.3M Icons Text/Image-to-SVG Converted + Syn.
DeepSVG Dataset 2020 100k Icons SVG Generation Curated

SVGenius 2025 2.4k Diverse Understanding & Editing Human-verified
VGBench 2024 10k Multi-format (SVG, TikZ, Graphviz) Understanding & Gen. Synthetic + Verified
SVGEditBench v2 2025 1.7k Emojis, Icons SVG Editing Synthetic Prompts
VectorEdits 2025 270k Diverse SVG Editing (Guided) Synthetic (VLM)

Quick Draw! 2017 50M Sketches Sketch Recognition Human
IconDesc 2024 1.4k UI Icons Captioning (Alt-text) Human

Figure 10: Qualitative analysis of Text2SVG generation results.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C RLRF EXPERIMENTS

We fine-tune a Qwen3-VL 8B Instruct model using Reinforcement Learning from Rendering Feed-
back (RLRF) to jointly learn all four VectorGym tasks. For the Text-to-SVG, SVG Editing, and
Sketch-to-SVG tasks, the model outputs SVG code. To compute rewards, we render both the pre-
dicted and ground-truth SVGs into raster images and evaluate them using a combination of per-
ceptual similarity metrics and pixel-space distances. For the SVG Captioning task, where both the
prediction and ground truth are textual descriptions of the SVG, the reward is defined as the embed-
ding similarity between the two texts, using BGE-M3 as the embedding model.

We train the 8B model on all four tasks simultaneously within a unified RL framework. Our opti-
mization procedure primarily follows GRPO Shao et al. (2024), with modifications inspired by Liu
et al. (2025). Standard GRPO computes the advantage for each prompt by normalizing rewards
within the group of K sampled responses. Given a prompt x with reward set {rk}Kk=1, the GRPO
group-level advantage is

Agroup
k =

rk −mean
(
{rj}Kj=1

)
std

(
{rj}Kj=1

) . (2)

In contrast, our variant normalizes the centered rewards using the batch-level standard deviation
computed over all N ×K samples in the minibatch:

Abatch
i =

ri −mean
(
{rj}Kj=1

)
std

(
{rj}N×K

j=1

) . (3)

We use a rollout batch size of 168 samples per step. For each sample, the model generates 8 sampled
rollouts, producing 1,344 rollouts per iteration. We train the model for 600 iterations on a single
compute node with 8 × H200 GPUs, and the full run finishes in about two days. We set the learning
rate to 3 × 10−6, the KL coefficient to 0.01, and the sampling temperature to 1.0. Each iteration
performs exactly one policy update on its rollout batch, so neither gradient clipping nor PPO-style
ratio clipping is ever triggered during optimization.

To improve training stability, we also apply curriculum learning. We treat the length of an response
as a proxy for its difficulty and therefore sort the samples by response lengths. Because our dataset
mixes four different tasks, we sort samples within each task according to response length and then
draw tasks proportionally to their dataset frequencies to construct each minibatch. This strategy
allows the model to progress from shorter and simpler examples toward longer and more complex
ones, while maintaining task balance throughout training.

D PROMPTS

In this section we present all the prompts used throughout the paper. We designed task specific
prompts for SVG generation across the four main tasks, and we also crafted evaluation prompts that
guide models to score outputs in a way that captures the semantic quality of the SVG rather than
focusing on pixel based visual features. We validated the effectiveness of these evaluation prompts
through a correlation analysis, shown in table 2.

D.1 VLM-AS-A-JUDGE PROMPTS

Prompt 1: Used for VLM-as-a-Judge Score (Text2Svg)

You are a concise evaluator of text-to-SVG faithfulness. Judge how
well a generated SVG image matches its textual description. Focus
primarily on semantic content (what is shown), not exact wording
or artistic style. Do not use world knowledge; base your judgment
only on what the text states and what is visible.
Evaluation Instructions: Compare the generated image to the TEXT
description. Judge semantic/visual meaning, not exact wording.
Rules:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 6: Scores for human evaluation and VLMAJ. We show average scores by generator model
and VLM judge across different tasks.

Task Generator Human Models used as Judges

Claude 4.5 Sonnet Gemini 2.5 Flash Gemini 3 Pro GPT 5.1 Qwen2.5VL 72B Qwen3.VL 235B GLM4.5 355B

V
G

-S
ke

tc
h GPT 4o 2.57 2.79 2.46 2.43 3.16 3.10 2.79 2.05

Claude 4.5 Sonnet 2.88 3.22 2.91 2.81 3.57 3.70 3.34 2.46
Gemini 3 Pro 3.63 3.55 3.41 3.49 3.72 3.91 3.74 2.75
Ground Truth 4.79 5.00 5.00 5.00 5.00 5.00 5.00 4.97

V
G

-C
ap

GPT 4o 2.90 2.15 0.84 2.26 2.21 1.27 1.74 1.20
Claude 4.5 Sonnet 3.67 2.60 1.43 2.86 2.87 1.80 2.19 1.87
Gemini 3 Pro 3.95 2.73 1.69 3.20 3.12 1.81 2.35 2.03
Ground Truth 4.67 5.00 5.00 5.00 5.00 5.00 5.00 5.00

V
G

-E
di

t GPT 4o 2.22 2.17 2.19 2.62 2.78 2.32 3.01 2.30
Claude 4.5 Sonnet 3.35 3.15 3.23 3.45 3.79 2.89 3.88 3.16
Gemini 3 Pro 4.07 3.46 3.54 3.78 4.11 3.16 4.12 3.45
Ground Truth 4.41 4.18 4.46 5.00 5.00 4.18 5.00 4.70

V
G

-T
ex

t GPT 4o 2.19 3.23 2.69 3.40 3.52 2.72 3.14 3.28
Claude 4.5 Sonnet 2.73 4.11 3.52 4.36 4.33 3.20 3.90 4.22
Gemini 3 Pro 3.33 4.10 3.58 4.55 4.24 3.27 4.04 4.17
Ground Truth 4.66 4.18 3.78 4.87 4.56 3.49 4.24 4.23

sketch2svg svg_captioning svg_editing text2svg
Task

0

1

2

3

4

Av
er

ag
e

Sc
or

e

VLM Judge Score by Task and Model
gemini-3-pro-preview
gpt-5.1
claude-sonnet-4.5
Qwen3-VL-32B-Gym (Ours)
gpt-4o
Qwen3-VL-8B-Gym (Ours)
qwen3-vl-235b-a22b-instruct
gemini-2.5-flash
Qwen3-VL-8B-Instruct
qwen3-vl-8b-instruct
glm-4.5v
Qwen3-VL-32B-Instruct
qwen2.5-vl-72b-instruct
Qwen3-VL-8B-Thinking
qwen3-vl-32b-instruct

Figure 11: VLM-as-judge scores for different tasks and models.

• Focus on the presence and configuration of the main objects,
their attributes (shape, rough size, main color), spatial
relations, and overall layout.

• Accept paraphrases and synonyms; do not require exact
wording.

• Numbers, counts, colors, attributes, and relations
are important: penalize clear mismatches, but do not
over-penalize small deviations when the overall scene
clearly matches the text.

• Penalize unsupported or clearly contradictory visual details
(hallucinations) more than omissions.

• Consider image quality, clarity, and coherence as a
secondary factor: when semantic match is similar, prefer
clearer and better-formed SVGs.

• Ignore minor stylistic differences (line style, thickness,
minor artifacts), casing, and punctuation.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

• Do not use world knowledge; compare only what the TEXT
states and what is visible.

Text Description: {caption}
Scoring Rubric (0--5):

• 5: Very strong match; main objects, layout, and key
attributes align with the text; only small local details
differ; no strong contradictions.

• 4: Good match; overall scene corresponds to the text with
only minor issues.

• 3: Partial match; several core elements align, but some
important detail is missing, wrong, or extra.

• 2: Weak match; topic is similar but multiple important
errors, omissions, or hallucinated details.

• 1: Minimal overlap; only a very generic aspect matches.

• 0: Unrelated or contradicts core facts.

Output ONLY the integer score (0--5). No words, no JSON, no
explanations.
Output format:

<0-5>

Prompt 2: Used for VLM-as-a-Judge Score (Sketch2Svg)

You are a concise evaluator of sketch-to-image similarity. Judge
how well the generated image preserves the semantic content and
structure of the input sketch.
Evaluation Instructions: Compare the PREDICTION image directly to
the GROUND-TRUTH image. Judge semantic similarity and preservation
of visual content, not artistic style.
Rules:

• Focus on the main objects, their presence or absence,
shapes, sizes, colors, and spatial relations.

• Treat numbers, counts, colors, attributes, and relative
positions as important; penalize clear mismatches.

• Penalize added elements that are not present in the
ground-truth image (hallucinations) more than small
omissions.

• Penalize missing or significantly altered key elements more
than minor stylistic or rendering differences.

• Ignore small artifacts, minor shading/texture differences,
or slight geometric deviations if the overall content
clearly matches.

• Do not use world knowledge; compare only what is visible in
the GROUND-TRUTH and PREDICTION images.

Inputs:

• GROUND-TRUTH image: the target image.

• PREDICTION image: the model-generated image to be
evaluated.

Scoring Rubric (0--5):

• 5: Very strong match; all main objects and key attributes
align; only small local or stylistic differences.

• 4: Good match; overall scene clearly corresponds, with one
or a few noticeable but non-critical differences.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

• 3: Partial match; several core elements align, but some
important details are missing, wrong, or extra.

• 2: Weak match; topic is similar, but multiple important
elements are missing, incorrect, or hallucinated.

• 1: Minimal overlap; only very generic aspects (e.g., rough
layout or general type of scene) match.

• 0: Unrelated or clearly contradicts the ground-truth (wrong
main objects, layout, or overall scene).

Output ONLY the integer score (0--5). No words, no JSON, no
explanations.
Output format:

<0-5>

Prompt 3: Used for VLM-as-a-Judge Score (Svg-Editing)

You are a concise evaluator for image editing results. Judge how
well a PREDICTION image matches a GROUND-TRUTH image. Do not
use world knowledge; rely only on the visible content of the two
images.
Evaluation Instructions: Compare the PREDICTION image directly to
the GROUND-TRUTH image. Judge semantic similarity and preservation
of visual content, not artistic style.
Rules:

• Focus on the main objects, their presence or absence,
shapes, sizes, colors, and spatial relations.

• Treat numbers, counts, colors, attributes, and relative
positions as important; penalize clear mismatches.

• Penalize added elements that are not present in the
ground-truth image (hallucinations) more than small
omissions.

• Penalize missing or significantly altered key elements more
than minor stylistic or rendering differences.

• Ignore small artifacts, minor shading/texture differences,
or slight geometric deviations if the overall content
clearly matches.

• Do not use world knowledge; compare only what is visible in
the GROUND-TRUTH and PREDICTION images.

Inputs:

• GROUND-TRUTH image: the target image.

• PREDICTION image: the model-generated image to be
evaluated.

Scoring Rubric (0--5):

• 5: Very strong match; all main objects and key attributes
align; only small local or stylistic differences.

• 4: Good match; overall scene clearly corresponds, with one
or a few noticeable but non-critical differences.

• 3: Partial match; several core elements align, but some
important details are missing, wrong, or extra.

• 2: Weak match; topic is similar, but multiple important
elements are missing, incorrect, or hallucinated.

• 1: Minimal overlap; only very generic aspects (e.g., rough
layout or general type of scene) match.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• 0: Unrelated or clearly contradicts the ground-truth (wrong
main objects, layout, or overall scene).

Output ONLY the integer score (0--5). No words, no JSON, no
explanations.
Output format:

<0-5>

Prompt 4: Used for VLM-as-a-Judge Score (Svg-Captioning)

You are a concise evaluator of caption similarity. Compare a
PREDICTION caption to a GROUND-TRUTH caption (no image). Judge
semantic meaning, not exact wording.
Rules:

• Accept paraphrases and synonyms.

• Treat numbers, counts, colors, attributes, relations, and
negation as strict.

• Penalize unsupported or contradictory details
(hallucinations) more than omissions.

• Ignore casing and punctuation (except negation words like
‘‘no/not/without’’).

• Do not use world knowledge; compare only what the texts
state.

Scoring (return a single integer 0--5):

• 5: Semantically equivalent or near-paraphrase; all key
facts align; no contradictions.

• 4: Very close; only a minor detail missing/different; no
contradictions.

• 3: Partially correct; several core elements match but some
important detail is missing.

• 2: Weak overlap; multiple important errors or added
unsupported specifics.

• 1: Minimal overlap; only a very generic element matches.

• 0: Unrelated or contradicts core facts (e.g., negation
flip, wrong main objects/actions).

Output ONLY the integer score (0--5). No words, no JSON, no
explanations.
Output format:

<0-5>

D.2 SVG GENERATION PROMPTS

Prompt 5: Used for Text2SVG Generation

You are an expert in generating SVG representations of textual
descriptions.
Follow these steps carefully:

1. Analyze the given text input and identify the key visual
elements it describes.

2. Convert the description into a minimal and clear SVG
representation using basic SVG shapes such as <rect>,
<circle>, <line>, and <path>.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

3. Ensure the SVG design is simple, scalable, and directly
represents the input text.

4. Do not include any additional text, explanations, comments,
or formatting---only output valid SVG code.

5. The output must be a complete SVG document, starting with
<svg> and ending with </svg>.

*** textual descriptions***
-- textual descriptions
*** REASONING***
Let’s think step by step then output the svg. First, wrap your
detailed reasoning process in <think> and </think> tags. In your
reasoning, describe your approach in natural language WITHOUT
showing code examples. Then, output the complete SVG code directly
after the closing </think> tag (NO markdown wrapper, NO ‘‘‘xml or
‘‘‘svg tags). Your reasoning should consider: concept sketching,
canvas planning, shape decomposition, coordinate calculation,
styling and color, symbolism or metaphor, and final assembly.
IMPORTANT: After </think>, output ONLY the raw SVG starting with
<svg and ending with </svg>. Do NOT use markdown code blocks or
wrap in ‘‘‘xml or ‘‘‘svg.

Prompt 6: Used for Sketch2SVG Generation

You are an expert in generating SVG from a hand-drawn sketch plus a
brief description.
*** GOALS ***

• Semantic match: faithfully reflect the sketch, using the
description to clarify ambiguous parts; include all and only
the intended elements, attributes, and relationships.

• Validity + code quality: produce a parsable SVG with
concise primitives and a tidy, readable structure.

• Visual fidelity: preserve essential contours, proportions,
and layout; if gradients, shadows, or outlines are
mentioned, implement them minimally.

*** PROCEDURE ***
1. Examine the sketch to identify primary shapes, contours, and

alignment; use the description to resolve labels, counts,
and styling cues.

2. Decompose the scene into basic SVG shapes (<rect>,
<circle>, <ellipse>, <line>, <polygon>, <polyline>, <path>),
simplifying strokes and curves where appropriate.

3. Translate relative placements and sizes from the sketch
into a coherent coordinate system and consistent stroke/fill
attributes.

4. Apply only the necessary styling (strokes, fills, minimal
effects) specified or implied by the sketch and description.

5. Output only valid SVG code as a complete document enclosed
by <svg> and </svg>.

*** SVG Description ***
-- svg description
*** REASONING***
Let’s think step by step then output the svg. First, wrap your
detailed reasoning process in <think> and </think> tags. In your
reasoning, describe your approach in natural language WITHOUT
showing code examples. Then, output the complete SVG code directly
after the closing </think> tag (NO markdown wrapper, NO ‘‘‘xml or
‘‘‘svg tags). Your reasoning should consider: concept sketching,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

canvas planning, shape decomposition, coordinate calculation,
styling and color, symbolism or metaphor, and final assembly.
IMPORTANT: After </think>, output ONLY the raw SVG starting with
<svg and ending with </svg>. Do NOT use markdown code blocks or
wrap in ‘‘‘xml or ‘‘‘svg.

Prompt 7: Used for SVG Editing Generation

You are an expert in editing SVG images based on text instructions.
Follow these steps carefully:

1. Analyze the original SVG and the editing instruction.

2. Apply the requested modifications while preserving the
overall structure.

3. Ensure the edited SVG is valid and well-formed.

4. Do not include any additional text, explanations, comments,
or formatting---only output valid SVG code.

5. The output must be a complete SVG document, starting with
<svg> and ending with </svg>.

Original SVG:
-- svg code
Editing Instruction:

Reduce the image size and add a kite string extending
from the bottom-right corner to make it look like a
kite.

*** REASONING***
Let’s think step by step then output the edited svg. First, wrap
your detailed reasoning process in <think> and </think> tags. In
your reasoning, describe your approach in natural language WITHOUT
showing code examples. Then, output the complete SVG code directly
after the closing </think> tag (NO markdown wrapper, NO ‘‘‘xml
or ‘‘‘svg tags). Your reasoning should consider: parsing the
instruction, identifying target elements, determining minimal
required changes, preserving unmodified elements, and validating
the result.
IMPORTANT: After </think>, output ONLY the raw SVG starting with
<svg and ending with </svg>. Do NOT use markdown code blocks or
wrap in ‘‘‘xml or ‘‘‘svg.

Prompt 8: Used for SVG Captioning Generation

You are an expert at describing SVG images. Given an SVG, provide
a clear and concise caption that describes the visual elements,
their colors, positions, and any notable features. Focus on what
someone would see when looking at the rendered SVG.
SVG: {svg}
Caption:

E CAPTIONING METRICS

We compute captioning metrics pairwise over aligned (reference, prediction) captions and average
across the corpus.

• BLEU (corpus BLEU): n-gram precision with brevity penalty; 0–100 (higher is better).

• CHRF++ (CHRF): Character n-gram F-score (word order=2); 0–100 (higher is better).

• ROUGE-L (F1): Longest common subsequence overlap (F1); 0–100 (higher is better).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 7: VectorGym SVG Editing qualitative examples. Results from models on the test set.

• BERTScore (F1): Semantic similarity via contextual embeddings; 0–100 (higher is better).
rescale with baseline=False.

• BGE-M3 Similarity: Average cosine similarity of BAAI/bge-m3 sentence embeddings;
0–100 (higher is better).

• GPT-5 Rubric Similarity: LLM-judged semantic agreement on a 0–5 rubric mapped to
0–100; higher is better.

F DATA LICENSING

All SVG data used in this work originate from the SVG Stack (Rodriguez et al., 2023a) dataset.
SVG Stack is not an independent crawl of the web. It is a direct extraction of SVG files from
The Stack (Kocetkov et al., 2022), the dataset maintained by the BigCode project. The Stack is
a curated collection of source code repositories that have passed a strict license filtering pipeline.
Only repositories under permissive licenses such as MIT, Apache, BSD, and CC0 are included, and
repositories with non permissive or non redistributable licenses are excluded during collection.

The Stack also includes an opt out protocol that allows developers to request removal of their content.
These removals are propagated automatically to all derived datasets. Since SVG Stack retains the
original file paths and license identifiers from The Stack, it inherits the same governance and reflects
all removals applied by BigCode.

Our work uses SVG Stack exactly as distributed, without adding external sources. All files therefore
fall under permissive open source licenses that allow redistribution and research use. We intend to
release the specific processed subset used in our experiments, which remains fully compatible with
the original licensing terms.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 8: VectorGym Sketch-to-SVG qualitative examples. Results from models on the test set.

Table 9: VectorGym Text-to-SVG qualitative examples. Results from GPT4o on the test set.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 10: VectorGym SVG-Captioning qualitative examples. Results from models on the test set.

30

	Introduction
	Related Work
	VectorGym Benchmark
	Task Definitions
	Dataset Construction
	Designing a VLM-as-Judge Evaluation Metric for SVG Generation
	Evaluation

	Experiments
	Methods and Baselines

	Results
	Sketch2SVG Generation
	SVG Editing
	Text2SVG Generation
	SVG Captioning
	Cross-Task Analysis

	Conclusion
	VectorGym Data Creation
	Annotation Methodology
	Data Curation and Sampling
	Annotation Vendor Partnership
	Annotator Demographics and Training
	Task-Specific Annotation Procedures

	Additional Qualitative Results
	RLRF Experiments
	Prompts
	VLM-as-a-Judge Prompts
	SVG Generation Prompts

	Captioning Metrics
	Data Licensing

