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Abstract
Motivation: Gene regulatory networks (GRNs) in a cell provide the tight feedback needed to synchronize cell actions. However, genes in a cell
also take input from, and provide signals to other neighboring cells. These cell–cell interactions (CCIs) and the GRNs deeply influence each other.
Many computational methods have been developed for GRN inference in cells. More recently, methods were proposed to infer CCIs using single
cell gene expression data with or without cell spatial location information. However, in reality, the two processes do not exist in isolation and are
subject to spatial constraints. Despite this rationale, no methods currently exist to infer GRNs and CCIs using the same model.

Results: We propose CLARIFY, a tool that takes GRNs as input, uses them and spatially resolved gene expression data to infer CCIs, while si-
multaneously outputting refined cell-specific GRNs. CLARIFY uses a novel multi-level graph autoencoder, which mimics cellular networks at a
higher level and cell-specific GRNs at a deeper level. We applied CLARIFY to two real spatial transcriptomic datasets, one using seqFISH and the
other using MERFISH, and also tested on simulated datasets from scMultiSim. We compared the quality of predicted GRNs and CCIs with state-
of-the-art baseline methods that inferred either only GRNs or only CCIs. The results show that CLARIFY consistently outperforms the baseline in
terms of commonly used evaluation metrics. Our results point to the importance of co-inference of CCIs and GRNs and to the use of layered
graph neural networks as an inference tool for biological networks.

Availability and implementation: The source code and data is available at https://github.com/MihirBafna/CLARIFY.

1 Introduction

In the complex human body system, cells continually interact
with one another through a series of biochemical signals. This
communication helps the encompassing tissue—an ordered
collection of multiple cell types—maintain its shape and func-
tion. These extracellular signaling interactions (CCIs) often
occur when ligands secreted from one cell bind to receptors
on another cell. Identifying these interactions is critical to un-
derstanding the role of individual cells in maintaining tissue
homeostasis, while responding to their microenvironment
(Rouault and Hakim 2012; Zhou et al. 2018). Thus, methods
have been developed to elucidate these cell–cell interactions
(Almet et al. 2021; Armingol et al. 2021; Dimitrov et al.
2022).

These methods are largely based on single-cell (sc)-RNA
seq data, and unfortunately, result in the positive labeling of
many false interactions. For example, a cell expressing a li-
gand may be deemed to interact with another cell expressing
the receptor, regardless of their spatial location. In reality, the
interaction can happen only if the pair is proximal as the li-
gand can only diffuse so far through a tissue. With the rise of
spatial transcriptomics, we are now able to not only under-
stand gene expression in a single cell, but also identify the spa-
tial location of the cell expressing the gene (Ståhl et al. 2016;
Wang et al. 2018; Eng et al. 2019; Rodriques et al. 2019).
Now the methods have introduced post-processing steps to
cut down on false-positive interactions by eliminating distant
predicted interaction (Efremova et al. 2020; Garcia-Alonso
et al. 2021). And, those that use spatial transcriptomics data

from the start mainly predict cell-type level interactions (Cang
and Nie 2020; Efremova et al. 2020; Shao et al. 2022).

Note that these extracellular interactions are not stand-
alone, but occur alongside intracellular molecular interac-
tions. Gene expressions are known to be regulated by
transcription factors (TFs), which are also encoded by genes.
Together they form networks called gene regulatory networks
(GRNs) (Levine and Davidson 2005). Many methods have
also been developed for GRN inference using gene expression
data, mostly for bulk cells (Pratapa et al. 2020), while some
infer cell-type specific GRNs (Chasman and Roy 2017; Wang
et al. 2021). A few known methods have been created for sin-
gle cell-specific GRN inference (Zhang et al. 2022b; Zhang
and Stumpf 2023). However, to our knowledge, there are no
published methods for inferring GRNs using spatial transcrip-
tomic data.

To summarize, both CCI inference and GRN inference
have been extensively researched in the last few years even at
the single cell level. However, current methods view the two
tasks as being essentially separate. In reality, however, intra-
cellular signaling (through GRNs) affects extracellular signal-
ing (CCIs) and vice versa. Extending from our previous
example, when a ligand from one cell binds to a receptor on
another, it will activate or repress a signal transduction path-
way in the second cell, thus significantly impacting the GRN
of the second cell. Similarly, the extracellular signals gener-
ated from cell 2 may, in turn, further activate or repress the
communication from cell 1. Therefore, while many methods
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have been published for CCI inference that incorporate spatial
constraints, they are still plagued with a high number of false
positives, as downstream gene regulatory information is not
incorporated. Similarly, with GRN inference, there is a need
to infer spatial context aware and cell-specific GRNs. Here,
we make the reasonable assumption that the closer two cells
are in spatial proximity, not only are they more likely to en-
gage in a CCI, but also their GRNs should be more similar as
they will engage in similar regulatory actions. The cells that
are spatially close AND of the same type shall have the most
similar GRNs, for the aforementioned reasons. Using this
idea, we propose the first method for a joint refinement of
spatially-aware CCI and GRNs.

While it is logical to motivate the need for joint inference of
extracellular and intracellular interactions, developing com-
putational methods for simulating and inferring these com-
plex signaling pathways remains a challenging task. Our
method relies on first viewing this entire network of interac-
tions as a multi-level knowledge graph incorporating informa-
tion from the cell-level and the gene-level. Our method then
utilizes graph neural networks (GNNs) to embed both the
cell-level and the gene-level information together into a robust
latent representation. GNN based methods have become
largely ubiquitous in the computational biology domain
(Yuan and Bar-Joseph 2020; Li and Yang 2022) and in bio-
medicine/drug discovery as well (Li et al. 2022b; Zeng et al.
2022) largely because of their ability to take advantage of
contextual information (Tie and Pe 2022). They have been
used in myriad situations where spatial context was important
and have recently made breakthroughs in biological findings
(Wu et al. 2022; Zhang et al. 2022a). This motivates GNNs
as a fitting candidate for our task to learn our multi-level
knowledge graph.

We propose CLARIFY, a multi-level graph autoencoder
(GAE) that refines intracellular and extracellular interaction
networks by utilizing the spatial organization of single cells
given by spatial transcriptomics data. CLARIFY takes as in-
put spatial transcriptomics data and produces cell-level, gene-
level, and combined embeddings that encapsulate the single
cell gene expression, spatial context, and gene regulatory in-
formation to aid in the refinement of extracellular/intracellu-
lar interactions. We test CLARIFY on two real datasets and
one simulated dataset. For the task of CCI reconstruction, we
compare the performance of CLARIFY with the only other
existing semi-supervised learning method for this task:
DeepLinc (Li and Yang 2022). Additionally, on simulated
data, where ground truth GRNs and cell-type CCIs are avail-
able, we compare the CCI inference with SpaOTsc (Cang and
Nie 2020), and compare the GRN inference with Genie3
(Huynh-Thu et al. 2010). We show that CLARIFY outper-
forms existing methods in both cell-level and gene-level tasks,
while tackling the problem jointly unlike the baselines. This,
along with our multiple spatial enrichment experiments con-
firm that CLARIFY is able to refine both the cell-level and the
gene-level regulatory interaction networks, clarifying the true
spatially constrained dynamic of the tissue.

2 Materials and methods

Here, we describe our multi-level graph autoencoder (GAE)
approach, starting with the input knowledge graph construc-
tion, then graph neural network inference, and finally the
training objective.

2.1 Multi-level graph construction

To address the shortcomings of current methods in extra/
intra-cellular interaction prediction, our multi-level construc-
tion can be broken into two main views: cell-level and gene-
level. The goal of the cell-level graph is to encode the notion
of spatial constraints and the gene-level graph provides the
downstream gene regulatory information. For simplicity, we
denote every cell-level element with subscript ‘c’ and
gene-level element with subscript ‘g’. For this section, refer to
Fig. 1.

2.1.1 Cell-level graph

At the cell level, we view each single cell as a vertex in our
graph. To utilize the spatial component of our data, we con-
nect edges between cell vertices based on spatial proximity. If
no ground truth interactions are available, we used a k-NN
algorithm on the spatial transcriptomics data to determine
edges. We denote the adjacency matrix describing the vertices
and edges as Ac 2 R

nc�nc , where nc is the number of cells.
Ai;j ¼ 1 if there exists an edge connecting cell i and cell j;
Ai;j ¼ 0 otherwise.

Finally, each cell (vertex) in our graph will have an attrib-
uted feature vector based on the single cell expression values
(each row of the ST data). This can be organized into a fea-
ture matrix Xc 2 R

nc�fc , where fc stands for the number of
features (genes) per cell.

Together, adjacency matrix Ac and feature matrix Xc make
up our cell-level proximity graph Gc, which will be used as
one part of the training input to our model. In essence, the
purpose of this cell-level graph construction is to introduce, to
our model, the notion of cells that have the capacity to inter-
act based on their spatial location in the tissue.

2.1.2 Gene-level graph

At the gene level, we essentially take the cell level graph one
step further, by viewing each single cell as a subgraph of its
underlying cell-specific gene regulatory network (GRN). To
do this, we must first infer baseline cell-specific gene regula-
tory networks with the CeSpGRN method (Zhang et al.
2022b). Note that cell-type level GRN inferences can also be
utilized, but cell-specific methods encourage more cell–cell
variability. As the first part of the gene-level preprocessing,
we take in the input cell-level feature matrix Xc 2 R

nc�fc de-
fined in the previous subsection. CeSpGRN then infers and
outputs a gene regulatory network for each single cell, as a list
of adjacency matrices where each vertex in a single adjacency
matrix represents a gene—though of the same name—which
belongs to a specific cell. The gene adjacency matrix is firstly
constructed by stacking the cell-specific GRN adjacency ma-
trices diagonally, resulting in a block diagonal matrix
Ag 2 R

ng�ng , where ng is the number of total genes, i.e. each
gene in each cell corresponds to one row or column. Note
that for each cell i in the cell-level graph Gc, there exists a cor-
responding GRN component in the gene-level graph Gg,
which is represented by a block along the diagonal in Ag and
denoted by the pink dotted line (Fig. 1d between the cell/GRN
pair across the two graphs).

We then augment the gene-level graph with inter-cellular
edges by translating the proximity edges of Gc to the GRN
components of Gg.To do this, we first must understand which
genes of cells have the capacity to interact with genes of neigh-
boring cells. These cell–cell interactions (CCIs) are primarily
observed by the genes corresponding to ligands and receptors.
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Figure 1. Multi-level graph construction. The left column represents the interactions occurring in the tissue and the right column represents the multi-

level graph view that models the interactions. (a) It depicts view of the starting spatial transcriptomics data, (b) it shows the view of the spatially

constrained cell–cell interactions (usually mediated by ligand–receptor connections), and (c) views the within-cell gene regulatory interactions. The views

from (b) and (c) are constructed into separate cell-level and gene-level graphs respectively, shown in (d) and the right column.

Figure 2. Illustration of the proposed multi-level Graph autoencoder architecture, CLARIFY.
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Using a standard ligand–receptor (LR) database (Shao et al.
2021), we identify LR genes in every GRN. The LR edges are
then constructed in the following manner: given cell i and cell
j, if they share an edge in Gc (meaning they are spatially prox-
imal), we construct an edge between every LR gene in GRN i
and GRN j in Gg. That is, Agu;v

¼ 1 if u is in cell i and v is in
cell j, and ðu; vÞ is a gene pair present in the LR database. The
adjacency matrix of Ag will have intracellular (GRN) edges
on the block diagonal and extracellular (CCI-LR) edges off
the block diagonal.

For proper graph autoencoding, we establish an initial set
of features R

fg for each vertex (gene) in our graph by using
the Node2Vec method (Grover and Leskovec 2016), where
each vector represents an embedding of the corresponding
vertex’s local network neighborhood. The feature vectors can
be grouped into a matrix Xg 2 R

ng�fg format analogous to the
cell features but differing in dimension.

The adjacency and feature matrix complete our gene-level
graph construction, which can essentially be thought of as a
graph of GRN subgraphs. With this gene-level graph, we ef-
fectively provide our model the knowledge of each cell’s un-
derlying gene regulatory network which models the
downstream effect of an extracellular interactions.

2.2 Multi-level graph autoencoder framework
2.2.1 Overview

CLARIFY has four inputs: the features and binary adjacency
matrices from both cell-level and gene-level graphs
(Xc;Ac;Xg;Ag). CLARIFY makes use of two parallel Graph
Neural Network encoders (see Fig 2.) for both the cell and the
gene level graphs Ecð�Þ and Egð�Þ. Each encoder embeds the re-
spective cell or gene features into latent representations. These
separate latent representations are then aggregated (either
concatenation or averaging), to integrate learned information
from both levels. This combined latent variable is then
decoded (inner-product) into a reconstructed cell-level adja-
cency matrix. The model is then optimized on reconstruction
ability of the cell-level adjacency, but also penalized for harsh
changes in intracellular gene interactions.

2.2.2 GCN layer

For the encoding layers of CLARIFY, we utilize Graph
Convolutional Networks (GCNs), which is a widely used
GNN architecture that have become omnipresent in the com-
putational biology world.

Built upon message passing neural networks, a GCN can be
deconstructed into a series of message passing and aggrega-
tion steps. This can be thought of as a function Z ¼ f ðX;AÞ
that takes a graph’s vertex features X and adjacency A and
uses the edges to pass messages between neighboring vertices
to embed the vertex features into a more effective representa-
tion Z. In this way, the development of novel GCN layers is
essentially a tweaking of the function f ð�Þ, i.e. the steps taken
in message passing and aggregation. Note that we can stack
these layers analogously to standard convolutional neural net-
works. For our model, we use stacked graph convolutional
layers which has the following message-passing rule proposed
by (Kipf and Welling 2016):

Zðlþ1Þ ¼ r D~
1

2
~A ~D

�1
2

|{z}
normalizationZðlÞWðlÞ

!
; Zð0Þ ¼ X:

0
B@

(1)

At GCN layer 0, Zð0Þ is the initial input node features X. The
graph’s input adjacency matrix is symmetrically normalized
shown by the normalization step in (1). Note that ~A ¼ Aþ In

and ~D is the degree matrix of ~A. At each layer l, there is a
learnable weight parameter WðlÞ.

2.2.3 Cell/gene level encoders

To adapt this standard GAE to our task on a graph with mul-
tiple levels, we utilize two parallel Graph Encoders–one for
each level. Both graph encoders use GCN layers to embed the
vertex features of their respective level as denoted below.

Zc ¼ EcðXc;AcÞ Zg ¼ EgðXg;AgÞ: (2)

Note that Zc 2 R
nc�d and Zg 2 R

ng�d, where d is the dimen-
sion of the latent embedding space. Each row in Zc is the la-
tent representation of the cell (vertex) in Gc. Each row in Zg is
the latent representation of a gene belonging to a single cell’s
GRN. We aggregate each GRN’s gene representations to-
gether into one gene-level cell embedding such that the
updated matrix is of the form Z�g 2 R

nc�d. Formally, for the k
genes in cell i,

Z�g i½ � ¼ 1

k

Xk

j¼1

GRN i½ � j½ � or Z�g i½ � ¼ �
k

j¼1
GRN i½ � j½ � : (3)

As noted, either pooling or concatenating (written as direct
sum � notation) can be used for this step of aggregation.
Essentially, this step aggregates the gene-level embeddings by
the cells to which they belong, effectively creating a GRN
based cell-level embedding. We then integrate the information
learned in the original cell level embeddings and the new
(GRN) cell level embeddings, by concatenating the two
matrices:

Z ¼ ½Zc Z�g �: (4)

This resulting embedding encapsulates the single cell gene ex-
pression, spatial context, and downstream gene regulatory
information.

2.2.4 Cell/gene level decoders

For both the cell-level and the gene-level tasks, graph recon-
struction is done by the use of inner-product decoders. The in-
ner product decoder for the cell-level makes use of the
combined embedding Z and is defined as such:

A0c ¼ DcðZÞ ¼ rðZZ>Þ; A0c 2 R
nc�nc : (5)

The gene-level decoder on the other hand carries out the gene-
level graph reconstruction using only the gene-level
embeddings:

A0g ¼ DgðZgÞ ¼ rðZgZ>g Þ; A0g 2 R
ng�ng : (6)

The inner product decoders compute the inner product (co-
sine similarity score) between each pair of embeddings. Each
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cosine similarity score is an entry in the resulting matrix,
which represents how likely an edge exists between the two
candidate vertices. The sigmoid function is then applied to
transform the cosine similarity matrix into probabilities that
represent the existence likelihood of an edge. These, in es-
sence, are the reconstructed values of the adjacency matrix.

2.3 Training objective

CLARIFY is optimized on two tasks, the first of which is its
ability to reconstruct the spatial proximity edges defined by
the cell level adjacency matrix Ac. For this, we utilize binary
cross entropy (BCE) reconstruction loss. Note that each i, j en-
try of Ac represents the ground truth label for the existence of
a proximity edge between cell i and cell j. And, each i, j entry
of A0c represents CLARIFY’s predicted probability score for
that same edge. Thus, the BCE loss is defined as such:

Lc Ac;A
0
c

� �
¼ � 1

n2
c

Xnc

i¼1

Xnc

j¼1

Ac i½ � j½ � log A0c i½ � j½ �
� �

þð1� Ac i½ � j½ �Þ logð1� A0c i½ � j½ �Þ: (7)

As the model trains, the updated weights will drastically
change each of the gene feature vectors in the gene-level
graph. In order to reduce the effect of this message propaga-
tion and the cell-specific GRN information, we include a sec-
ondary loss term that ensures that the edges in each cell-
specific GRN are not changed too drastically, but rather just
enough to be spatially refined. Recall that the intracellular
(GRN) edges are located on the block diagonal of Ag. Thus,
for Lg, we use mean squared error loss between the block di-
agonal entries of Ag and reconstructed A0g. Each block is of di-
mension R

g�g, where g is the number of genes per cell.
Formally, we let the block diagonal entries of a Ag be defined
as such:

mask ¼ �
nc

i¼0
1 where 1 2 R

g�g; mask 2 R
ng�ng : (8)

Agblock ¼ Ag �mask: (9)

In other words, the mask is a matrix with 1 s in the g� g
blocks along the diagonal. The entries of Ag are then masked
by element-wise multiplication �. The same is done for A0g.
Finally, the loss of the block diagonal entries is:

Lg ¼MSEðAgblock;A
0
gblockÞ: (10)

We combine these losses in a weighted sum as follows. ki are
hyperparameters defined by the user depending on whether
the preservation of GRN information or spatial refinement is
more important. As default, they are both set to 1. The total
loss is defined below:

L ¼ kcLc þ kgLg: (11)

3 Results

We evaluated CLARIFY in a series of experiments, broken
up into two main components: cell-level and gene-level.
Recall that CLARIFY jointly refines both cell-level (CCI)
and gene-level interactions (GRN), and it is the only known

method to do so. Typically, however, these problems were
viewed as distinct, and independent methods were devised to
solve either problem. Therefore, we evaluate CLARIFY per-
formance separately against existing methods in each
domain.

3.1 Experimental design
3.1.1 Datasets

Due to the lack of data at single cell resolution for spatial
transcriptomics, there are only a handful of datasets to be uti-
lized. And, most of them are not extensively studied, so there
are no known ground truth interactions for those real data-
sets. For each task, we evaluated CLARIFY and existing
methods on two real spatial transcriptomics datasets and one
simulated dataset. We considered two published datasets on
mice. The first dataset was acquired from the mouse visual
cortex using seqFISH technology (Lubeck et al. 2014). The
data captures transcript expression from 125 genes in 1597
single cells, along with the spatial location of the expressed
transcripts. The second dataset was a slice from the mouse hy-
pothalamus using the MERFISH technology (Moffitt et al.
2018), which sampled 160 genes in 2000 single cells. Data
from both sets was preprocessed using a standard approach
(log transform over counts), also used by other tools like
DeepLinc.

We also generated simulated data with scMultiSim (Li et al.
2022a). scMultiSim generates single cell gene expression data
from multiple cell types as well as cell locations. The gene ex-
pression data is driven by the ground truth GRNs, CCIs, and
cell-type structures.

3.1.2 Evaluation metrics

To evaluate CLARIFY, we use two commonly applied met-
rics. The first is a precision-recall based framework, specifi-
cally the Average Precision (AP) score, which calculates the
weighted mean of precisions achieved at each threshold. The
weights are defined by the increase in recall from the previous
threshold. Note, that the AP score is robust to datasets that
are highly skewed as it does not use linear interpolation.
Secondly, we utilize the area under the receiver operating
characteristic (AUROC), where the ROC curve measures the
True Positive Rate (TPR) versus False-Positive Rate (FPR) at
different decision thresholds. We used the scikit-learn imple-
mentations of these methods (https://scikit-learn.org/stable/).

Each of the experiments defined in were designed to assess
the main capabilities of CLARIFY on these datasets: recon-
struction of the cell/gene interaction networks, and spatial re-
finement of the said networks.

3.2 Cell-level experiments

To the best of our knowledge, we have identified only one
method (DeepLinc) that is aimed at cell interaction landscape
reconstruction. There are indeed other CCI methods, how-
ever, most of them are at the cell-type level, and do not seek
to reconstruct and impute spatially refined edges as DeepLinc
and CLARIFY. Thus, our cell-level evaluations are mainly
compared to DeepLinc. DeepLinc is similar in that it is a
Variational Graph Autoencoder for CCI reconstruction, but it
does not incorporate downstream gene regulatory informa-
tion, nor does it consider the joint problem of CCI and GRN
refinement. Therefore, we evaluated CLARIFY against it for
only cell–cell interactions, but not gene–gene interactions. For
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the CCI reconstruction, we used the DeepLinc methodology
of evaluation to provide a fair comparison.

3.2.1 CLARIFY outperforms related methods for cell–cell
interaction network reconstruction

For the task of CCI reconstruction, we first need to define a
set of ground truth interactions as the real datasets do not
have any. Following the same procedure described with
DeepLinc and our cell-level graph construction, we con-
structed cell–cell adjacency matrices for each of the real data-
sets by using the k nearest neighbor (kNN) algorithm to find
the k closest neighbors in Euclidean distance (using the spatial
coordinates) for a cell. This follows the same assumption in
DeepLinc, that in a 2D tissue, each cell could be locally inter-
acting with k � 3 other cells. As noted in the methods section,
this cell-level adjacency matrix Ac was used as the set of
ground truth interactions for CLARIFY to reconstruct.

To construct the training and testing split, we randomly se-
lected 70% of edges for CLARIFY to train on and the remain-
ing 30% were masked out and utilized for testing/evaluation.
These edges are denoted as the positive set. In each training
and test set, we also add randomly sampled negative edges in
a 1:1 ratio with the positive edges. To assess reconstruction
performance, we measured the AP and AUROC in recon-
structing the test set edges over training epochs and compared
them to DeepLinc’s performance. See Fig. 3b and
Supplementary Fig. S4b. CLARIFY significantly outper-
formed DeepLinc on the seqFISH and scMultiSim datasets,
while the two methods achieved comparable results on the

MERFISH dataset. These results strongly suggest that
CLARIFY was able to properly incorporate not only spatial
information and single cell gene expression, but also the
downstream network of regulating genes as part of the cell-
level embeddings, and that directly influenced its performance
in reconstructing cell–cell interactions.

Next, to assess CLARIFY’s robustness to different edge
partitions, we also evaluated the model across all datasets
while varying the size of the number of test edges. DeepLinc
noted that their model was mainly trained on a split of 10%
test edges leaving 90% of training. But, such a small test size
may not be enough for a reconstructability task. Thus, across
all datasets, we measured the AP and AUROC of test edge re-
construction over different splits ranging from 10% to 90%
test edges. This was repeated 5 times for epochs 100, 110,
120 (total 15 per split) to generate the boxplots. Once again,
CLARIFY outperformed DeepLinc across all splits for the
seqFISH and scMultiSim datasets while gaining comparable
performance for the MERFISH dataset (Fig. 3c and
Supplementary Table S1), indicating robustness in maintain-
ing performance even when training on less data. Note that
for the scMultiSim simulated data, the ground truth cell inter-
action graph is very sparse (Fig. 3a). This contributes to the
unorthodox training curves, as due to the low number of
edges, each split of test edges may contain high variability,
leading to slightly skewed performance for both models.

To evaluate CLARIFY’s tolerance to noisy data, we per-
turbed the input training graph with false-positive and false-
negative edges. For false-positive edges, in the input training

Figure 3. Cell-level experiment performance. (a) depiction of the spatial transcriptomics datasets with ground truth cell interaction edges. (b) CLARIFY

versus DeepLinc training Average Precision over epochs. (c) CLARIFY versus DeepLinc Average Precision performance over various train/test splits

denoted by the % of test edges.
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graph of known ligand–receptor edges, we add fake edges at
rates from 0.1 to 0.5 times the original number of edges.
Similarly, for the false-negative edges, we remove edges from
the training set at rates from 0.1 to 0.5. We then train
CLARIFY on these noisy inputs and evaluate its Average
Precision score on the test set of edges for each of the cases
and compare them to DeepLinc (Supplementary Fig. S2).

Lastly, for the scMultiSim simulated dataset, we obtained a
cell-type CCI ground truth. As a baseline, we utilized a repre-
sentative tool for cell-type level interaction prediction from
spatial transcriptomics, known as SpaOTsc (Cang and Nie
2020). For each of the cell-type pairs that SpaOTsc deemed
significant, we maintained in a set. We then constructed a
SpaOTsc cell level adjacency matrix R

nc�nc , where every i, j
entry was set to 1 if cell i’s type and cell j’s type is a cell-type
pair in the aforementioned set. We followed the same proce-
dure to construct the ground truth adjacency matrix for
scMultiSim and then compared CLARIFY’s reconstructed ad-
jacency matrix with SpaOTsc’s adjacency matrix, by measur-
ing the AP and AUROC score. Note, we also provided a
baseline based on randomly permuting the scMultiSim
ground truth matrix (maintaining the number of ones) 100
times and calculating the average AP and AUROC score with
the normal scMultiSim ground truth. This was to provide a
random baseline, to give reference for the performance of
other methods. The final results are formulated in Table 1.

It is worth mentioning that SpaOTsc does not require any
labeled data for training, while DeepLinc and CLARIFY both
split the interactions into training and testing sets. The large
improvement of CLARIFY over SpaOTsc and that SpaOTsc
performance is close to random indicate that supervision can
significantly improve the accuracy of this task.

3.2.2 CLARIFY latent cell embeddings indicate valid spatial
refinement and preserve spatial domains

After establishing CLARIFY’s reconstruction performance,
we then assessed its ability to embed the input cell features
(normalized counts) to latent representations that better con-
textualize the spatial distribution of cells in the tissue. These
experiments help validate the claim that CLARIFY’s cell
embeddings are spatially refined.

To provide context, we first visualize pairwise Euclidean
distances between cells in Fig. 4a. In this nc � nc matrix, entry
i, j represents the distance between cell i and cell j using the
ST data coordinates. It represents the distribution of spatially
located cells. We generate a representation of cell–cell similar-
ity using both the cell’s initial features (Fig. 4b) and the cell’s
latent representation produced by CLARIFY (Fig. 4c). In both
cases, the entry at i, j represents the Euclidean distance be-
tween cell i and cell j’s initial feature vector or latent represen-
tation, respectively. We can see that the heatmap of the
CLARIFY latent representations is visually more similar to
the location distribution. For example, in Fig. 4c, the block
diagonal entries (cell–cell neighborhoods) are darker (closer)
similar to (Fig. 4a). In contrast, the initial feature distribu-
tion appears to be nearly uniformly distributed, and every
pairwise comparison is given a similarly high Euclidean dis-
tance (indicating features are equally distant and diverse). In
comparison, we note that the CLARIFY latent representa-
tions have an underlying structure, but they are not
completely identical to the location distribution, which is
important, as spatial location is not the only information
that the embeddings encapsulate. Rather, the embeddings
represent spatial location combined with gene expression,
gene regulatory network information, and cell–cell interac-
tion information.

To quantify this result, we computed the Spearman correla-
tion between the location and the cell embedding heatmap,
and as a baseline, between the location and the initial features
heatmap (see Table 2). Since the entire matrix is quite large
and represents sparse distal interactions, we provide the
Spearman correlation between the block diagonal entries of
both matrices as well. These entries represent the cell–cell
neighborhoods (cells that are close together spatially shown
in the location heatmap), and thus are more likely to be spa-
tially refined. Thus, we compute this statistic for both real
datasets in two scenarios: using the entire matrix and over the
block diagonal entries. The results are shown in the table be-
low. We note that the P-value of the Spearman correlation
was highly significant in every single case (P-value <2e-308)
because of the large number of data-points.

Across both datasets, we saw a significant improvement in
the correlation when comparing the CLARIFY latent repre-
sentation distribution to the location distribution, with a
2–4� increase in Spearman correlation. When using the entire
matrix as comparison, there was a moderately positive corre-
lation (0.22, 0.33), which is still interesting because the matri-
ces represent both sparse and distal interactions. However,
when using the block diagonal entries of the matrix, repre-
senting the cell–cell neighborhoods in the tissue, there was a
strong positive correlation (0.696, 0.625) compared to the ini-
tial features (0.25,0.2).

As a final proof of concept, for both datasets, we clustered
the cell latent representations using the k-Means algorithm
(k¼6), similar to the analysis in DeepLinc. Each of the six
clusters was defined as spatial domains (0 through 5) and
then mapped back to each single cell and plotted (Fig. 4d).
This provides another visual confirmation that even with
unsupervised clustering of the embeddings, CLARIFY latent
representations are clearly spatially organized into separate
domains in the tissue.

All of these results strongly indicate that CLARIFY repre-
sentations are spatially correlated, thus validating CLARIFY’s
ability to spatially refine the single cell features.

Table 1. Performance of methods on predicting scMultiSim simulated

cell-type level interactions.

Method AUROC Avg. precision (AP)

CLARIFY 0.710817 0.696506
SpaOTsc 0.5 0.501513
Baseline (random) 0.500669 0.003024

Bold values indicate highest scoring.

Table 2. Correlations between distances of cell embeddings and spatial

distances.

Initial CLARIFY

Cell features Cell embeddings

seqFISH Entire matrix 0.101927 0.22118
Block diagonal 0.252199 0.69567

MERFISH Entire matrix 0.07148 0.33426
Block diagonal 0.20234 0.62496

Bold values indicate highest scoring.
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3.3 Gene-level experiments
3.3.1 CLARIFY cell-specific GRNs outperform existing
cell-type inference methods

Currently, there are few methods that infer cell-specific GRNs
(a main one is CeSpGRN, which is used for our initial graph
construction). However, there are a number of cell-type GRN
inference methods. The most notably benchmarked is the
Genie3 proposed by (Huynh-Thu et al. 2010), which utilizes a
regression tree based method to infer the GRNs based on
expression data (thus cell-type specific). Though, it is worth
noting, like in the SpaOTsc case, that CLARIFY is a semi-
supervised cell-specific method, we still compare it to a repre-
sentative cell-type method to gauge the baseline performance.

We use the scMultiSim dataset which has ground truth
GRNs. To obtain the Genie3 GRNs, we isolate cells from
each cell type (5 total) from the scMultiSim expression data
and infer a cell-type GRN for each. Any cell of type i will
have the same GRN i. To obtain the CLARIFY GRNs, we
take the block diagonal of the gene-level adjacency matrix Ag.
We compare both CLARIFY and Genie3 to the simulated
ground truth using the AUPRC ratio, which allows us to
quantify how many folds the candidate model performs better
than a random classifier, and has been used in previous work
(Pratapa et al. 2020). CLARIFY performs better with an
AUPRC ratio of 1.48 compared to Genie3’s 1.40 and
CeSpGRN’s 1.33—a good result considering CLARIFY’s
multiple other functions.

3.3.2 CLARIFY latent gene embeddings indicate valid spatial
refinement through global structure while also maintaining
local structure information

To assess the spatial refinement of CLARIFY gene embed-
dings, we used unsupervised clustering. We projected all genes
belonging to GRNs of the first 10 cells, across all datasets.
Each point in Fig. 5 represents the lower dimensional projec-
tion of a gene.

First, to assess the global structure, we compared the projec-
tions on the first two Principal Components of the input
gene features and the CLARIFY embeddings (Fig. 5a and b,
respectively). The input gene features showed virtually no
clustering. This was expected because the gene features were
constructed on the GRN connected components with
Node2Vec. The initial graph consisted of disjoint GRN com-
ponents, thus no gene from different GRNs were able to
share information via the Node2Vec random walks. Hence,
the scattered projections across datasets.

However, after embedding the gene features with CLARIFY,
we observed a tight clustering of genes belonging to the same
cell (Fig. 5c; each cell has a distinct color). Moreover, because
PCA preserves global structures (intercluster distance), we also
observed that genes of neighboring cells are also clustered. For
example, proximal cells Cell0, Cell1, and Cell2 are clustered on
the far right of seqFISH plot (b). We also investigated the local
structure between CLARIFY Gene embeddings using Uniform
Manifold Approximation and Projection (UMAP), which tightly

Figure 4. Visualization of cell level spatial refinement. (a) pairwise cell–cell heatmap based, (b) heatmap between initial cell features, (c) heatmap between

CLARIFY refined cell embeddings, (d) visualization of unsupervised clusters organizing into spatial domains in the ST slice.

Table 3. Spearman rank correlation between spatial location and gene–gene adjacency matrices before and after CLARIFY refinement.

Type CLARIFY

Initial Gene adjacency

Euclidean Frobenius Euclidean Frobenius

seqFISH Entire matrix �0.000234 �0.005458 0.107278 0.076636
Block diagonal 0.101489 �0.068645 0.252312 0.207894

MERFISH Entire matrix 0.020761 0.033948 0.025857 0.013762
Block diagonal 0.108249 0.094082 0.181197 0.149367

Bold values indicate highest scoring.
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clusters each gene belonging to the same cell and far apart from
other genes, showing that local structure is preserved.

Both the PCA and the UMAP plots confirm that CLARIFY
gene representations are spatially refined (indicated by the
global structure) and cell-specific as well (shown by the
UMAP local structure).

Lastly, in order to test if the CLARIFY “refined” GRNs are
spatially correlated, we used Spearman correlation again (see
Table 3). The baseline experiment was the same as the cell-
level heatmap, where each entry represented the euclidean dis-
tance between the pair of cell locations, which essentially encap-
sulates the spatial distribution of the cells. Since each cell is now
associated with an adjacency matrix of the corresponding GRN,
we therefore tested if the adjacency matrices of each GRN were
spatially refined. First, we construct another heatmap/correlation
matrix with the same dimensions as the cell by cell analog. Each,
i, j entry represents a “distance” metric between the adjacency
matrices corresponding to GRN i and GRN j. Matrix distance
was measured using the Frobenius Norm defined below or alter-
natively, using the Euclidean distance on the flattened matrix.
We calculated each of these pairwise Matrix comparisons and
organized them into a heatmap correlation matrix. This was
done for both the initial gene adjacencies (inferred by
CeSpGRN) and the CLARIFY “refined” gene adjacencies.
Finally, analogous to the cell level experiment, we compute the
Spearman correlation in two cases: the initial adjacency versus
location distribution baseline and the CLARIFY adjacency ver-
sus location distribution baseline. In these two cases, we com-
pute the scores either using the entire heatmap matrix or just on
the block diagonal. Understandably, there was a lot of sparsity
in the entire matrix and the block diagonal entries better repre-
sented the cell–cell communities. Across all correlation compari-
sons along the block diagonal (and both Euclidean and
Frobenius distances), there was an increase in correlation with
the spatial distribution when using the CLARIFY refined adja-
cency (block diagonal Correlation coefficient �0.0069 for
CeSpGRN versus 0.2079 for CLARIFY refined GRN). For com-
parisons using the entire matrix, there was a lower increase,
which can be explained by the sparsity of data (Correlation coef-
ficient �0.0055 for CeSpGRN versus 0.0766 for CLARIFY re-
fined GRN).

In summary, these results, including (i) unsupervised clus-
tering experiments that indicated both global spatial patterns
while maintaining local structure and (ii) the Spearman corre-
lation experiments that quantified increase in spatial correla-
tion after CLARIFY refinement, support our claim that
CLARIFY is able to spatially refine gene regulatory networks.

4 Conclusion

We present CLARIFY, a graph autoencoder based method
that jointly refines both CCIs and cell-specific GRNs. It is the
first method that outputs CCIs and GRNs in the same model.
The improvements predicted by our tool point to the impor-
tance of joint model inference in the future. Our future work
will focus on using these regulatory inference tools for prob-
lems like the characterization of the tumor microenvironment,
or the interplay between tumor cells and immune cells. Since
the study of CCIs is still in its infancy, there is much unknown
and some common assumptions are needed to be made while
designing computational models. Here, we made the assump-
tion that the GRNs of cells which are spatially close are simi-
lar. As more knowledge is gained on the spatial landscape of
GRNs, the CLARIFY model can be modified to accommodate
new information.
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