

EFFORTLESS EVENT-AUGMENTED LATENT DIFFUSION FOR VIDEO FRAME INTERPOLATION

Anonymous authors

Paper under double-blind review

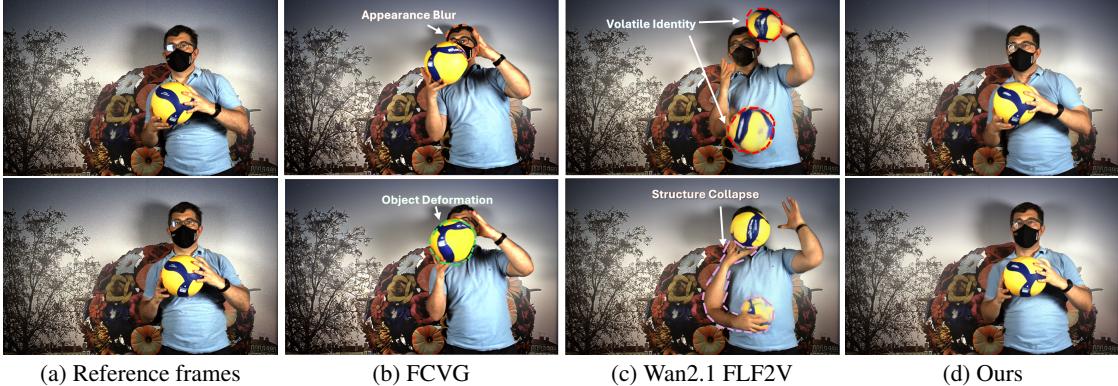


Figure 1: We propose an effortless event-augmented approach for Diffusion Transformer (DiT)-based video frame interpolation, seamlessly integrating event streams to generate clear and temporally consistent frames. (a) shows the ground-truth intermediate frames at different time stamps for reference. Compared to FCGV Zhu et al. (2024) and Wan2.1 FLF2V Wan et al. (2025), which rely solely on the start and the end frames and often result in motion blur, object deformation, identity inconsistency, and structural artifacts. In contrast, our approach produces sharper and more natural results.

ABSTRACT

Latent Diffusion Models have advanced video frame interpolation by generating intermediate frames between input frames. However, effectively handling large temporal gaps and complex motion remains a challenge, often leading to artifacts. We argue that event camera signals, with their ability to capture continuous motion at high temporal resolutions, are ideal for bridging these temporal gaps and enhancing interpolation precision. Given the impracticality of training an event-assisted model from scratch, we introduce a novel adapter-based framework that seamlessly and effortlessly integrates high-temporal-resolution cues from event cameras into pre-trained image-to-video models without modifying their underlying structure. Our method leverages Image Warped Events (IWEs) and bidirectional sparse optical flow for precise spatial and temporal alignment, significantly reducing artifacts and improving interpolation quality. Experimental results demonstrate that our event-enhanced interpolation achieves superior accuracy and temporal coherence compared to existing state-of-the-art methods.

1 INTRODUCTION

Latent Diffusion Models (LDMs) have recently made significant strides in both image and video generation, spurring advances in video frame interpolation, which involves synthesizing intermediate frames between

047 start and end frames. Leveraging pre-trained image-to-video (I2V) diffusion models, recent methods can address challenges such as complex motion and large temporal gaps—scenarios where traditional interpolation
 048 techniques, which rely on motion estimation and motion compensation, often falter.

049
 050 For example, recent methods such as GI Wang et al. (2024) and FCGV Zhu et al. (2024) leverage the
 051 generative capabilities of Stable Video Diffusion (SVD) Blattmann et al. (2023), which is based on a U-
 052 Net diffusion architecture. More recently, Wan2.1 FLF2V Wan et al. (2025) utilizes a powerful Diffusion
 053 Transformer (DiT)-based video diffusion model, achieving superior performance in interpolation across
 054 substantial temporal gaps. However, despite these advances, LDM-based interpolation methods still suffer
 055 from noticeable artifacts, particularly in the intermediate frames of the generated sequences, as illustrated in
 056 Fig. 1. We attribute these limitations to the reliance solely on start and end frames for guidance, constraining
 057 the interpolation quality.

058 Event cameras, which asynchronously capture pixel-wise brightness changes, offer unique advantages, in-
 059 cluding high temporal resolution, broad dynamic range, and low latency. Unlike traditional cameras with
 060 fixed frame rates, event cameras provide continuous, high-temporal-resolution motion information that can
 061 enrich frame interpolation, especially in complex, high-speed scenes Tulyakov et al. (2021; 2022); Sun et al.
 062 (2023); Liu et al. (2024).

063 However, integrating raw event streams into the I2V diffusion models is non-trivial because event data
 064 is sparse, asynchronous, and lacks direct compatibility with the dense, grid-based representations used in
 065 mainstream generative models. Furthermore, large-scale paired event-video datasets are scarce, making
 066 end-to-end supervised training infeasible.

067 To address these challenges, we propose to extract Image Warped Events (IWEs) and bidirectional sparse
 068 optical flow from event streams using contrast maximization techniques Stoffregen & Kleeman (2019);
 069 Shiba et al. (2024). These representations translate the event modality into edge-like and motion-consistent
 070 cues that closely align with control signals commonly used in diffusion-based video generation, such as
 071 edge maps, flow fields Karmokar et al. (2025); Jiang et al. (2025); Burgert et al. (2025). This serves as a
 072 conceptual and practical bridge between event-based vision and frame-based video diffusion.

073 Building on this insight, we propose a novel adapter-based framework that seamlessly injects motion-aware
 074 signals derived from events into a pre-trained video diffusion model. Our method requires only minimal
 075 fine-tuning on limited event-video data and does not alter the underlying diffusion architecture. Specifically,
 076 we introduce two plug-in adapters: (1) An IWE encoder, which embeds edge-consistent spatial structure
 077 into the input latent space; (2) A flow-based alignment-and-fusion adapter, which warps latent features
 078 using bidirectional flow before the DiT block and fuses them to form temporally aligned intermediate
 079 representations. These adapters inject event-derived structural and temporal cues into the generative process,
 080 enhancing interpolation quality and reducing artifacts. To facilitate broader generalization and benchmarking,
 081 we also construct a large-scale synthetic event-video dataset, EvPexels, comprising 1,100 diverse scenes
 082 (about 390,000 RGB frames) spanning a wide range of motions. To the best of our knowledge, EvPexels is
 083 the largest synthetic dataset specifically designed for event-based video frame interpolation. We will release
 084 the dataset along with accompanying tools to support future research in event-driven video generation and
 085 diffusion modeling.

086 In summary, our contributions are:

087

- 088 1. We propose a plug-and-play adapter framework that incorporates event-derived signals into DiT-
 089 based video diffusion models for frame interpolation, improving temporal consistency and reducing
 090 artifacts.
- 091 2. We bridge the gap between event streams and LDM-compatible control signals by extracting IWEs
 092 and bidirectional optical flow, enabling seamless integration into mainstream generative pipelines.

094 3. We construct a synthetic event-video dataset with 1,100 diverse motion-rich scenes to support train-
 095 ing of event-aware frame interpolation models.
 096 4. Extensive experiments validate the effectiveness of our method, showing superior interpolation
 097 quality compared to state-of-the-art baselines.
 098

100 2 RELATED WORK
 101

102 This section provides an overview of research efforts closely related to our work. We begin by reviewing
 103 traditional video frame interpolation techniques, including both frame-based and event-guided approaches.
 104 We then examine recent developments in the emerging generative paradigm, with a focus on diffusion-based
 105 interpolation methods.

107 2.1 TRADITIONAL VIDEO FRAME INTERPOLATION
 108

109 Video Frame Interpolation (VFI) is a technique used to reconstruct intermediate frames from a pair of input
 110 frames Huang et al. (2022); Kong et al. (2022); Li et al. (2023b); Zhang et al. (2023); Niklaus et al. (2017);
 111 Bao et al. (2019). While traditional VFI methods perform well in scenarios with simple motion, they often
 112 struggle with complex motions or substantial scene changes between frames.

113 Event streams, which capture fine-grained motion details between frames, provide more accurate motion
 114 estimation for VFI, making event-based VFI methods increasingly popular Tulyakov et al. (2021; 2022); Yu
 115 et al. (2021); He et al. (2022); Zhang & Yu (2022); Kim et al. (2023); Sun et al. (2023); Lin et al. (2023).
 116 For example, Time Lens Tulyakov et al. (2021) introduced the first VFI model combining warping and
 117 synthesis-based approaches. More recently, CBMNet Kim et al. (2023) and TimeLens-XL Ma et al. (2024)
 118 have advanced the state of the art by significantly improving the performance of event-based VFI.

119 While event-guided VFI has improved motion estimation accuracy, these methods still encounter challenges
 120 with significant scene changes, such as the appearance of new objects, where event data alone may be
 121 insufficient. Consequently, the performance of traditional VFI methods in real-world scenarios involving
 122 complex motion and scenes still requires further refinement, motivating diffusion model-based VFI methods,
 123 which we discuss next.

124 2.2 DIFFUSION-BASED VIDEO FRAME INTERPOLATION
 125

126 Diffusion-based VFI techniques have garnered attention due to their ability to handle large and ambiguous
 127 motions between frames more effectively than traditional methods. Early work, such as MCVD Voleti et al.
 128 (2022), employed latent diffusion models (LDMs) for video prediction and interpolation. Building on this,
 129 LDMVFI Danier et al. (2024) applied LDMs specifically for frame interpolation, while VIDIM Jain et al.
 130 (2024) advanced this by training diffusion models on larger datasets to enhance performance. CBBD Lyu
 131 et al. (2024) introduced the Consecutive Brownian Bridge Diffusion model, which reduces cumulative
 132 variance based on the Brownian Bridge Diffusion Model framework Li et al. (2023a). Similarly, Dream-
 133 Mover Shen et al. (2024) utilizes stable diffusion priors to interpolate frames with large motions.

134 However, most of the above diffusion-based models rely on image-to-image (I2I) diffusion frameworks,
 135 requiring complex architecture designs and specialized training on specific video datasets. This approach
 136 often overlooks recent advancements in I2V models. The emergence of large-scale I2V diffusion models
 137 offers a more efficient alternative: adapting pre-trained models (e.g., Stable Video Diffusion Blattmann et al.
 138 (2023), Wan2.1 Wan et al. (2025)) for VFI with minimal modifications, enabling training-free or tuning-
 139 free methods. Such approaches capitalize on the potential of pre-trained I2V diffusion models for video
 140 generation. For instance, TRF Feng et al. (2024) adapts a video generation model for bounded generation,

141 using initial and final frames to synthesize intermediate frames. However, TRF Feng et al. (2024) does not
 142 fully address motion consistency between frames, prompting recent work, such as GI Wang et al. (2024), to
 143 introduce a reverse motion method to improve frame-to-frame coherence. More recently, ViBiD Yang et al.
 144 (2024), FCVG Zhu et al. (2024) and Wan2.1 FLF2V Wan et al. (2025) have further advanced performance
 145 in this domain. Nonetheless, most prior methods have underappreciated the importance of event signals for
 146 modeling fine-grained temporal dynamics. Recent efforts—such as U-Net-based LDM approaches Chen
 147 et al. (2024)—begin to address this gap, but our strategy is fundamentally different. Rather than training
 148 directly on raw event streams, we convert the spatial and motion cues encoded by events into a representation
 149 that integrates seamlessly with a DiT-based interpolation model, enabling effective event guidance without
 150 requiring end-to-end event-centric training.

151 3 METHODOLOGY

154 In this section, we first provide an overview of event-based video frame interpolation. We then introduce our
 155 fine-tuning pipeline, which involves extracting motion information—specifically, IWEs and bidirectional
 156 optical flow—from raw event streams. Next, we present the design of the IWE encoder, which injects edge-
 157 aligned spatial features into the video diffusion model, and the alignment and fusion adapter, which utilizes
 158 the bidirectional optical flow to warp latent features.

160 3.1 PRELIMINARIES

162 3.1.1 I2V MODELS FOR VIDEO FRAME INTERPOLATION

163 The I2V model based on latent diffusion primarily relies on the start frame I_0 and the end frame I_1 to
 164 perform video interpolation. Let the input video sequence be denoted as
 165

$$166 \mathbf{I} = \{I_0, I_{1/N}, \dots, I_{(N-1)/N}, I_1\}, \quad (1)$$

167 where $i \in [0, 1]$ represents normalized time steps. Following Wan2.1 Wan et al. (2025), we adopt a video
 168 VAE that compresses the temporal resolution by a factor of 4. Accordingly, the sequence is encoded into a
 169 latent video representation
 170

$$171 \mathbf{Z} = \{z^0, z^1, \dots, z^k, \dots, z^{T-1}\}, \quad (2)$$

172 where $T = \lfloor (N+1)/4 \rfloor + 1$, and $k \in [0, T-1]$.

173 To avoid ambiguity, all frame indices refer to the latent space throughout the remainder of this paper, unless
 174 otherwise specified. The base video diffusion model we use, FLF2V in Wan2.1 Wan et al. (2025), is trained
 175 to predict a constant velocity vector v_t from a noisy latent representation x_t^k , the timestamp t , and the
 176 corresponding text condition c_{txt} . The training objective is formulated as the mean squared error (MSE)
 177 between the predicted velocity $u(x_t^k, c_{\text{txt}}, t; \theta)$ and the ground-truth v_t :

$$179 \mathcal{L} = \mathbb{E}_{k, t, c_{\text{txt}}} \|u(x_t^k, c_{\text{txt}}, t; \theta) - v_t\|^2, \quad (3)$$

180 where θ denotes the model parameters. This objective guides the model to learn continuous trajectories in
 181 latent space, conditioned on the input prompt.
 182

183 3.1.2 EVENT-ASSISTED VIDEO FRAME INTERPOLATION

185 To enhance video frame interpolation, we incorporate an event stream
 186

$$187 \mathcal{E} = \{e_i = (x_i, y_i, \tau_i, p_i)\} \quad (4)$$

188 between frames I_0 and I_1 . Each event $e_i \in \mathcal{E}$ occurs at spatial coordinates (x_i, y_i) , at time τ_i , with polarity
 189 $p_i \in \{-1, +1\}$, capturing sparse spatiotemporal changes in the scene. Accordingly, the training objective
 190 for the event-assisted interpolation task is modified to:

$$192 \quad \mathcal{L} = \mathbb{E}_{k,t,\mathcal{E},c_{\text{txt}}} \|u(x_t^k, \mathcal{E}, c_{\text{txt}}, t; \theta) - v_t\|^2. \quad (5)$$

193 We first apply contrast maximization (CMax) to compute bidirectional optical flows $\mathbf{f}_{k-1 \rightarrow k}$ and $\mathbf{f}_{k+1 \rightarrow k}$
 194 from the event intervals $[k-1, k]$ and $[k+1, k]$, respectively:

$$196 \quad \mathbf{f}_{k-1 \rightarrow k}, \mathcal{W}^{k-1 \rightarrow k} = \text{CMax}(\mathcal{E}_{[k-1,k]}), \\ 197 \quad \mathbf{f}_{k+1 \rightarrow k}, \mathcal{W}^{k+1 \rightarrow k} = \text{CMax}(\mathcal{E}_{[k+1,k]}), \quad (6)$$

198 where $\mathcal{E}_{[k-1,k]}$ and $\mathcal{E}_{[k+1,k]}$ denote the subsets of events occurring between the respective frames. The
 199 outputs $\mathcal{W}^{k-1 \rightarrow k}$ and $\mathcal{W}^{k+1 \rightarrow k}$ are IWE representations warped by forward and backward optical flow. We
 200 employ an IWE encoder to extract the aligned spatial edge features from the IWE maps, denoted as $\mathbf{F}_{\mathcal{W}}^k$,
 201 which are subsequently injected into the input latent representation to enhance structural guidance.

202 In the alignment and fusion module, we warp the DiT features from the adjacent latent states $\mathbf{F}_{x_t}^{k-1}$ and
 203 $\mathbf{F}_{x_t}^{k+1}$ toward the current frame k , using the estimated optical flows:

$$205 \quad \mathbf{F}_{x_t}^{k-1 \rightarrow k} = \text{Warp}(\mathbf{F}_{x_t}^{k-1}, \mathbf{f}_{k \rightarrow k-1}), \\ 206 \quad \mathbf{F}_{x_t}^{k+1 \rightarrow k} = \text{Warp}(\mathbf{F}_{x_t}^{k+1}, \mathbf{f}_{k \rightarrow k+1}). \quad (7)$$

207 These aligned features are then fused with the center frame's features $\mathbf{F}_{x_t}^k$ via a fusion function $G(\cdot)$:

$$210 \quad \mathbf{F}_{\text{fused}}^k = G(\mathbf{F}_{x_t}^k, \mathbf{F}_{x_t}^{k-1 \rightarrow k}, \mathbf{F}_{x_t}^{k+1 \rightarrow k}). \quad (8)$$

211 Finally, the fused residual features of all frames $\mathbf{F}_{\text{fused}}$ are added to the DiT features to enhance temporal
 212 consistency across frames.

214 3.2 FRAMEWORK

215 As shown in Fig. 2, our framework takes the start frame I_0 , the end frame I_1 , and the corresponding event
 216 stream as input, and outputs the intermediate frames $\hat{\mathbf{I}}$. The overall architecture consists of an event repre-
 217 sentation module and an adapter-enhanced fine-tuning strategy.

220 3.2.1 EVENT REPRESENTATION

221 To extract motion cues from the event stream, we follow the principle of contrast maximization Stoffregen &
 222 Kleeman (2019); Shiba et al. (2024), which enables both optical flow estimation and generation of the Image
 223 Warped Events (IWE)—a sharp, edge-aware image obtained by temporally aligning events at a designated
 224 reference time. We employ an off-the-shelf CMax-based method Shiba et al. (2024) to compute optical flows
 225 and their corresponding IWEs. For temporal alignment, we divide the event stream between I_0 and I_1 into
 226 multiple temporal segments. For each segment $[k-1, k]$, we compute a sparse forward optical flow $\mathbf{f}_{k-1 \rightarrow k}$
 227 and the corresponding IWE $\mathcal{W}^{k-1 \rightarrow k}$, by masking the dense flow with event activity. Similarly, we reverse
 228 the event stream and extract backward flows $\mathbf{f}_{k+1 \rightarrow k}$ and IWEs $\mathcal{W}^{k+1 \rightarrow k}$. This process yields bidirectional
 229 sparse optical flows and edge-aware IWE representations across the entire sequence.

230 **IWE-Based Spatial Conditioning** To extract structured spatial cues from the event stream, we design an
 231 encoder that processes the bidirectional IWEs and produces aligned feature maps $\mathbf{F}_{\mathcal{W}}^k$, where $k \in [0, T]$.
 232 IWEs are known to correlate strongly with scene edges and object boundaries Karmokar et al. (2025), mak-
 233 ing them particularly effective for guiding frame synthesis in motion-intensive regions. Given the sparse and

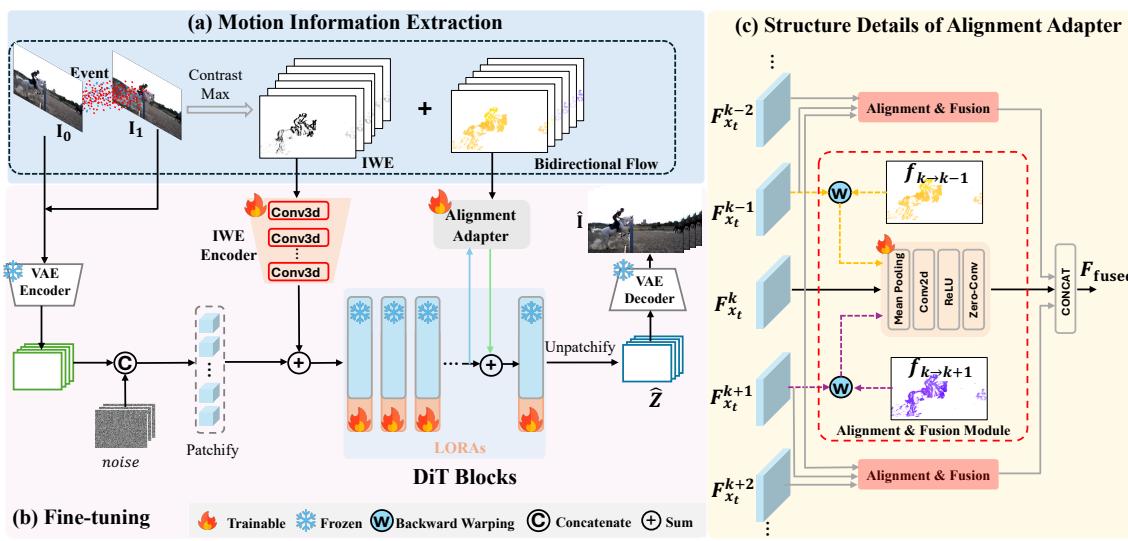


Figure 2: Illustration of Our Framework. (a) We extract bidirectional sparse optical flow and IWEs from the input event stream using the Contrast Maximization (CMax) method. (b) During fine-tuning, the model is enhanced with three components: an IWE encoder, alignment adapters inserted into a subset of DiT blocks, and LoRA layers applied to all DiT blocks. (c) The flow-based alignment adapter leverages the bidirectional flows to warp intermediate features from neighboring frames, aligning them temporally with the current frame. This facilitates motion-consistent feature propagation throughout the denoising process.

lightweight nature of the IWE signal, we adopt a simple yet effective integration strategy. The IWE maps are encoded into feature representations using a compact network composed of 3D convolutional layers. These features are then injected into the video latent space via element-wise addition to the input latents of the diffusion model. This design enables edge-aware spatial conditioning with minimal computational overhead. To adapt the pre-trained diffusion model to this new input modality, we apply LoRA-based fine-tuning across all DiT blocks. This allows the model to leverage IWE-derived structural features while keeping the majority of the original parameters frozen, ensuring parameter efficiency and architectural compatibility.

Flow-Based Temporal Alignment and Fusion Before each selected DiT block, we rearrange the patch-based latent representations back into a frame-wise format that is spatially aligned with the optical flows. To enforce temporal consistency, we first reshape the bidirectional optical flows and warp the features from the previous and next frames toward the current frame using the corresponding forward and backward flows. The three aligned features (from frames $k-1$, k , and $k+1$) are then aggregated via mean pooling and passed through a lightweight fusion network composed of convolutional layers. The fused feature is subsequently added to the original DiT feature as a residual correction, enhancing both spatial fidelity and temporal coherence. Finally, the updated frame-wise features are rearranged back into patch tokens and propagated to the selected DiT block for further refinement. This design allows the model to benefit from explicit motion guidance without incurring significant computational overhead. To balance performance and efficiency, the alignment-and-fusion module is only applied to a subset of DiT blocks rather than all layers.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

282 **Training Datasets** We fine-tune our
 283 framework using two datasets: the real-
 284 world BS-ERGB dataset Tulyakov et al.
 285 (2022) and our curated synthetic EvPex-
 286 els dataset. The BS-ERGB dataset con-
 287 tains high-speed image-event pairs cap-
 288 tured at a resolution of 970×625 and a
 289 frame rate of 28 fps. The training split
 290 includes 48 video clips, while the test
 291 split consists of 26 clips and is used for
 292 quantitative evaluation.

293 To augment training diversity, we intro-
 294 duce the EvPexels dataset, constructed
 295 from videos collected via the Pexels
 296 platform (<https://www.pexels.com>). We
 297 select videos exhibiting diverse motion
 298 patterns using TransNet V2 Soucek & Lokoc (2024), ensuring single-shot segments suitable for the frame
 299 interpolation task. Event streams are synthesized from RGB videos using the Vid2e simulator Gehrig et al.
 300 (2020). The resulting dataset comprises 1,100 video sequences, totaling 389,761 frames at a resolution of
 301 704×480. The visualization of the EvPexels dataset are provided in the Appendix A.1.2.

302 **Test Datasets** We evaluate performance on a real-captured dataset (BS-ERGB test set) and two synthetic
 303 datasets. As for the two additional synthetic datasets, following prior works such as TRF Feng et al. (2024)
 304 and GI Wang et al. (2024), we select 50 video clips from the DAVIS dataset Pont-Tuset et al. (2017) and 30
 305 clips from Pexels, each consisting of 25 frames. These datasets cover diverse motion scenarios and provide
 306 a comprehensive evaluation of interpolation quality.

307 **Implementation Detail** We adopt the open-source FLF2V model from Wan2.1 Wan et al. (2025) as our
 308 base video diffusion architecture. The model takes the first and last frames as input and generates a video
 309 of fixed length (81 frames) in latent space. The learning rate is set to 1×10^{-4} , and all input images
 310 are resized to a resolution of 832×480 during training. Other hyperparameters follow the original FLF2V
 311 configuration without modification. In our experiments, optical flow information is injected into two DiT
 312 blocks to enhance motion guidance. We fine-tune our model for 4,000 steps on 8 NVIDIA A800 GPUs with
 313 a global batch size of 8.

314 **Evaluation Metrics** We calculate metrics including PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural
 315 Similarity Index Measure), Learned Perceptual Image Patch Similarity (LPIPS), Fréchet Inception Distance
 316 (FID), and Fréchet Video Distance (FVD).

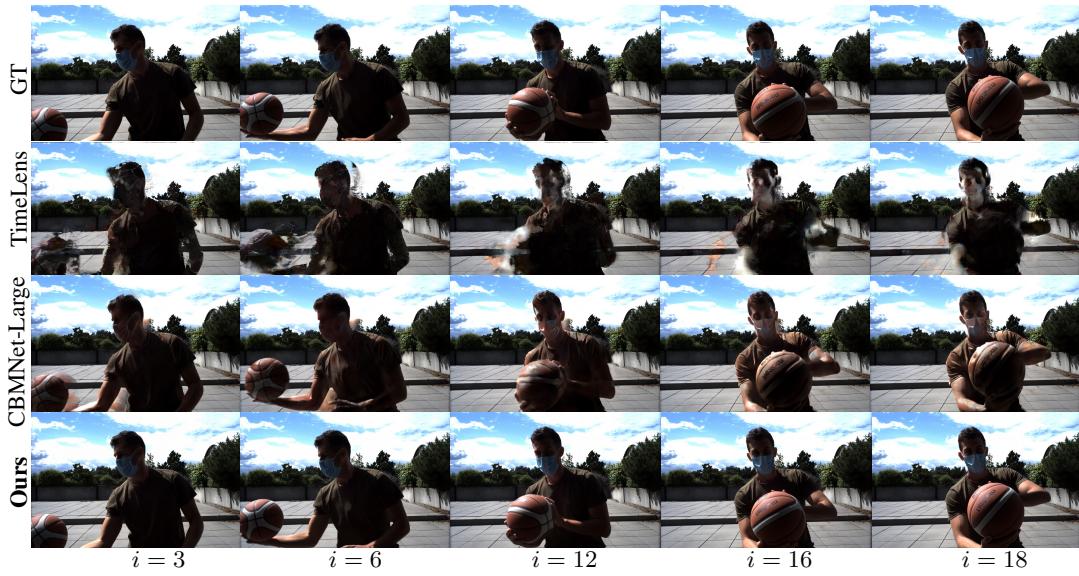
317 4.2 QUANTITATIVE & QUALITATIVE EVALUATION

318 **Quantitative Evaluation** To comprehensively evaluate our method, we compare it against a broad range
 319 of video frame interpolation (VFI) baselines. For event-based VFI, we include TimeLens Tulyakov et al.
 320 (2021), CBMNet-Large Kim et al. (2023), as well as the more recent TimeLens-XL Ma et al. (2024) and
 321 VDM-EVFI Chen et al. (2024). For frame-based VFI, we consider several diffusion-based generative
 322 approaches, including TRF Feng et al. (2024), GI Wang et al. (2024), ViBiD Yang et al. (2024), FCG Zhu
 323 et al. (2024), and Wan2.1 FLF2V Wan et al. (2025).

324 For methods with publicly available training code—namely Wan2.1 FLF2V Wan et al. (2025), VDM-
 325 EVFI Chen et al. (2024), CBMNet-Large Kim et al. (2023), and TimeLens-XL Ma et al. (2024)—we fine-

Table 1: Quantitative comparison of the VFI performance on the BS-ERGB test dataset. **Bold** indicates the best performance under the $24\times$ interpolation setting.

Methods	BS-ERGB				
	PSNR↑	SSIM↑	LPIPS↓	FID↓	FVD↓
TRF Feng et al. (2024)	14.078	0.4117	0.426	47.146	971.424
GI Wang et al. (2024)	16.964	0.518	0.311	33.082	588.371
ViBiD Yang et al. (2024)	15.525	0.475	0.352	39.027	7788.652
FCVG Zhu et al. (2024)	17.809	0.546	0.302	26.832	726.752
Wan2.1-FLF2V Wan et al. (2025)	18.698	0.618	0.212	18.607	376.828
TimeLens Tulyakov et al. (2021)	24.704	0.699	0.165	43.808	851.523
CBMNet-Large Kim et al. (2023)	25.306	0.712	0.169	17.658	228.753
TimeLens-XL Ma et al. (2024)	21.737	0.678	0.248	47.155	710.688
Ours	23.261	0.704	0.132	8.168	117.368

Figure 3: Visual comparison of VFI methods on the BS-ERGB test dataset (time $\times 24$).

tune the official pretrained models on our training datasets to ensure a fair comparison. For methods without released training code, such as TimeLens Tulyakov et al. (2021), TRF Feng et al. (2024), GI Wang et al. (2024), ViBiD Yang et al. (2024), and FCGV Zhu et al. (2024), we use their official checkpoints for inference. Following standard practice in diffusion-based interpolation Feng et al. (2024); Wang et al. (2024), all methods (except VDM-EVFI Chen et al. (2024)) are evaluated under a $\times 24$ interpolation setting across three datasets: BS-ERGB, DAVIS, and Pexels. The quantitative results on the BS-ERGB test set with $\times 24$ interpolation are summarized in Tab. 1, while the results on DAVIS and Pexels are reported in Tab. 2. Since VDM-EVFI supports only $\times 12$ interpolation, we additionally compare against it under this setting, with results shown in Tab. 3.

In the $\times 24$ interpolation setting, our method achieves the best overall performance across all metrics—PSNR, SSIM, LPIPS, FID, and FVD—on the DAVIS and Pexels datasets. On BS-ERGB test dataset, our approach achieves state-of-the-art results on perceptual metrics (LPIPS, FID, and FVD), while ranking third and second in PSNR and SSIM, respectively, among distortion-based metrics. Traditional event-based methods, such as TimeLens Tulyakov et al. (2021) and CBMNet-Large Kim et al. (2023), achieve higher PSNR scores, with CBMNet-Large also showing strong SSIM performance on BS-ERGB. This is largely due to the design of conventional interpolation methods, which emphasize pixel-level reconstruction accuracy. Consequently, they perform well on distortion-based metrics (e.g., PSNR, SSIM), but often fall short in generating perceptually realistic or temporally consistent frames. By contrast, generative models prioritize visual realism and temporal consistency, leading to superior perceptual quality even if pixel-wise similarity is sometimes compromised. The qualitative comparisons further illustrate these trends.

In the $\times 12$ interpolation setting, our method consistently outperforms VDM-EVFI Chen et al. (2024) across nearly all evaluation metrics, particularly those based on perception. While our approach achieves a slightly lower PSNR (0.16 dB less) on BS-ERGB, it demonstrates significantly stronger generalization ability, as evidenced by superior results on the DAVIS and Pexels datasets. Additional visual comparisons in the Appendix A.2.3 further validate the effectiveness of our method.

376 Table 2: Quantitative comparison on the VFI tasks on DAVIS and Pexels datasets (time \times 24).
377

378 Methods	379 DAVIS					380 Pexels				
	381 PSNR↑	382 SSIM↑	383 LPIPS↓	384 FID↓	385 FVD↓	386 PSNR↑	387 SSIM↑	388 LPIPS↓	389 FID↓	390 FVD↓
TRF Feng et al. (2024)	14.132	0.459	0.484	70.528	1373.954	16.737	0.600	0.400	109.516	1624.791
GI Wang et al. (2024)	14.850	0.467	0.406	55.067	1158.330	17.700	0.600	0.306	109.029	1212.097
ViBiD Yang et al. (2024)	14.811	0.456	0.448	55.343	1194.670	17.413	0.588	0.365	104.089	1335.211
FCVG Zhu et al. (2024)	16.162	0.509	0.385	48.839	1246.823	19.172	0.635	0.275	105.617	1481.806
Wan2.1-FLF2V Wan et al. (2025)	17.510	0.538	0.310	36.740	800.613	19.747	0.642	0.223	46.009	959.256
TimeLens Tulyakov et al. (2021)	22.913	0.632	0.352	102.191	1706.523	27.071	0.757	0.215	79.886	1093.200
CBMNet-Large Kim et al. (2023)	20.633	0.742	0.343	79.459	1164.145	23.429	0.799	0.292	81.449	840.820
TimeLens-XL Ma et al. (2024)	17.498	0.530	0.235	100.506	1438.467	26.241	0.789	0.224	82.760	557.176
Ours	25.544	0.799	0.115	13.367	158.557	29.089	0.858	0.080	16.319	151.345

390 **Qualitative Results** Fig. 3 shows qualitative comparisons on the BS-ERGB test set, which features challenging motion involving a person and a basketball. Although TimeLens Tulyakov et al. (2021) and 391 CBMNet-Large Kim et al. (2023) attain higher PSNR scores, their visual quality is clearly inferior. Time- 392 Lens Tulyakov et al. (2021) suffers from noticeable artifacts near moving objects, while CBMNet-Large Kim 393 et al. (2023) generates a distorted appearance of the basketball. In contrast, our method effectively leverages 394 intermediate event information to accurately model the motion of dynamic foreground objects, resulting in 395 temporally coherent and visually faithful reconstructions. Additional visual results and ablation study are 396 provided in the appendix, further demonstrating the effectiveness of our method.

400 5 CONCLUSION

402 In this paper, we explore leveraging event data to 403 efficiently enhance DiT-based video frame interpo- 404 lation tasks. We propose an adapter-based frame- 405 work that integrates high temporal resolution cues 406 from event cameras—capturing continuous motion 407 data via a pre-trained Image-to-Video (I2V) model, 408 requiring only lightweight adapter training. By 409 incorporating IWE and bidirectional sparse optical 410 flow, our approach enables precise temporal 411 guidance, mitigating motion artifacts and improv- 412 ing interpolation quality. Our experimental results 413 demonstrate that event-enhanced interpolation out- 414 performs existing methods in terms of both accu- 415 racy and temporal consistency, effectively reducing 416 long-range motion drift and improving structural fi- 417 delity. This confirms the feasibility of extracting optical flow and IWE from event data to assist frame 418 interpolation, thereby circumventing the challenges associated with directly adapting sparse event data to 419 dense RGB frames.

420 **Discussion and Future Work:** While our work primarily focuses on utilizing the high temporal resolution 421 of event data to aid frame interpolation, event cameras also possess unique spatial advantages, such as a high 422 dynamic range and robustness to lighting variations. These properties could be further leveraged to enhance 423 video generation under challenging conditions.

423 REFERENCES

425 Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. Depth-aware
426 video frame interpolation. In *IEEE Conf. Comput. Vis. Pattern Recog.*, 2019.

427 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz,
428 Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling latent video
429 diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

430 Ryan Burgert, Yuancheng Xu, Wenqi Xian, Oliver Pilarski, Pascal Clausen, Mingming He, Li Ma, Yi-
431 tong Deng, Lingxiao Li, Mohsen Mousavi, et al. Go-with-the-flow: Motion-controllable video diffusion
432 models using real-time warped noise. In *Proceedings of the Computer Vision and Pattern Recognition
433 Conference*, pp. 13–23, 2025.

434 Jingxi Chen, Brandon Y Feng, Haoming Cai, Tianfu Wang, Levi Burner, Dehao Yuan, Cornelia Fermuller,
435 Christopher A Metzler, and Yiannis Aloimonos. Repurposing pre-trained video diffusion models for
436 event-based video interpolation. *arXiv preprint arXiv:2412.07761*, 2024.

438 Duolikun Danier, Fan Zhang, and David Bull. Ldmvfi: Video frame interpolation with latent diffusion
439 models. In *AAAI*, 2024.

441 Haiwen Feng, Zheng Ding, Zhihao Xia, Simon Niklaus, Victoria Abrevaya, Michael J Black, and Xuaner
442 Zhang. Explorative inbetweening of time and space. *arXiv preprint arXiv:2403.14611*, 2024.

443 Daniel Gehrig, Matthias Gehrig, Javier Hidalgo-Carrió, and Davide Scaramuzza. Video to events: Recycling
444 video datasets for event cameras. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
445 Pattern Recognition*, pp. 3586–3595, 2020.

446 Weihua He, Kaichao You, Zhendong Qiao, Xu Jia, Ziyang Zhang, Wenhui Wang, Huchuan Lu, Yaoyuan
447 Wang, and Jianxing Liao. TimeReplayer: Unlocking the potential of event cameras for video interpolation.
448 In *IEEE Conf. Comput. Vis. Pattern Recog.*, 2022.

450 Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and Shuchang Zhou. Real-time intermediate flow
451 estimation for video frame interpolation. In *Eur. Conf. Comput. Vis.*, 2022.

453 Siddhant Jain, Daniel Watson, Eric Tabellion, Ben Poole, Janne Kontkanen, et al. Video interpolation with
454 diffusion models. In *IEEE Conf. Comput. Vis. Pattern Recog.*, 2024.

455 Zeyinzi Jiang, Zhen Han, Chaojie Mao, Jingfeng Zhang, Yulin Pan, and Yu Liu. Vace: All-in-one video
456 creation and editing. *arXiv preprint arXiv:2503.07598*, 2025.

458 Pritam P Karmokar, Quan H Nguyen, and William J Beksi. Secrets of edge-informed contrast maximiza-
459 tion for event-based vision. In *2025 IEEE/CVF Winter Conference on Applications of Computer Vision
460 (WACV)*, pp. 630–639. IEEE, 2025.

461 Taewoo Kim, Yujeong Chae, Hyun-Kurl Jang, and Kuk-Jin Yoon. Event-based video frame interpolation
462 with cross-modal asymmetric bidirectional motion fields. In *IEEE Conf. Comput. Vis. Pattern Recog.*,
463 2023.

464 Lingtong Kong, Boyuan Jiang, Donghao Luo, Wenqing Chu, Xiaoming Huang, Ying Tai, Chengjie Wang,
465 and Jie Yang. Ifrnet: Intermediate feature refine network for efficient frame interpolation. In *IEEE Conf.
466 Comput. Vis. Pattern Recog.*, 2022.

468 Bo Li, Kaitao Xue, Bin Liu, and Yu-Kun Lai. Bbdm: Image-to-image translation with brownian bridge
469 diffusion models. In *IEEE Conf. Comput. Vis. Pattern Recog.*, 2023a.

470 Zhen Li, Zuo-Liang Zhu, Ling-Hao Han, Qibin Hou, Chun-Le Guo, and Ming-Ming Cheng. Amt: All-pairs
 471 multi-field transforms for efficient frame interpolation. In *IEEE Conf. Comput. Vis. Pattern Recog.*, 2023b.
 472

473 Guixu Lin, Jin Han, Mingdeng Cao, Zhihang Zhong, and Yinqiang Zheng. Event-guided frame interpo-
 474 lation and dynamic range expansion of single rolling shutter image. In *Proceedings of the 31st ACM*
 475 *International Conference on Multimedia*, 2023.

476 Yuhang Liu, Yongjian Deng, Hao Chen, and Zhen Yang. Video frame interpolation via direct synthesis with
 477 the event-based reference. In *IEEE Conf. Comput. Vis. Pattern Recog.*, 2024.

478

479 Zonglin Lyu, Ming Li, Jianbo Jiao, and Chen Chen. Frame interpolation with consecutive brownian bridge
 480 diffusion. *arXiv preprint arXiv:2405.05953*, 2024.

481

482 Yongrui Ma, Shi Guo, Yutian Chen, Tianfan Xue, and Jinwei Gu. Timelens-xl: Real-time event-based video
 483 frame interpolation with large motion. In *Eur. Conf. Comput. Vis.*, 2024.

484

485 Simon Niklaus, Long Mai, and Feng Liu. Video frame interpolation via adaptive separable convolution. In
 486 *Int. Conf. Comput. Vis.*, 2017.

487

488 Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-Hornung, and Luc
 489 Van Gool. The 2017 davis challenge on video object segmentation. *arXiv preprint arXiv:1704.00675*,
 490 2017.

491

492 Liao Shen, Tianqi Liu, Huiqiang Sun, Xinyi Ye, Baopu Li, Jianming Zhang, and Zhiguo Cao. Dream-
 493 mover: Leveraging the prior of diffusion models for image interpolation with large motion. *arXiv preprint*
 494 *arXiv:2409.09605*, 2024.

495

496 Shintaro Shiba, Yannick Klose, Yoshimitsu Aoki, and Guillermo Gallego. Secrets of event-based optical
 497 flow, depth and ego-motion estimation by contrast maximization. *IEEE Transactions on Pattern Analysis*
 498 and *Machine Intelligence*, pp. 1–18, 2024.

499

500 Tomás Soucek and Jakub Lokoc. Transnet v2: An effective deep network architecture for fast shot transition
 501 detection. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 11218–11221,
 502 2024.

503

504 Timo Stoffregen and Lindsay Kleeman. Event cameras, contrast maximization and reward functions: An
 505 analysis. In *IEEE Conf. Comput. Vis. Pattern Recog.*, 2019.

506

507 Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow using pyramid,
 508 warping, and cost volume, 2018. URL <https://arxiv.org/abs/1709.02371>.

509

510 Lei Sun, Christos Sakaridis, Jingyun Liang, Peng Sun, Jiezhang Cao, Kai Zhang, Qi Jiang, Kaiwei Wang,
 511 and Luc Van Gool. Event-based frame interpolation with ad-hoc deblurring. In *IEEE Conf. Comput. Vis.*
 512 *Pattern Recog.*, 2023.

513

514 Stepan Tulyakov, Daniel Gehrig, Stamatios Georgoulis, Julius Erbach, Mathias Gehrig, Yuanyou Li, and
 515 Davide Scaramuzza. Time lens: Event-based video frame interpolation. In *IEEE Conf. Comput. Vis.*
 516 *Pattern Recog.*, 2021.

517

518 Stepan Tulyakov, Alfredo Bochicchio, Daniel Gehrig, Stamatios Georgoulis, Yuanyou Li, and Davide Scara-
 519 muzza. Time lens++: Event-based frame interpolation with parametric non-linear flow and multi-scale
 520 fusion. In *IEEE Conf. Comput. Vis. Pattern Recog.*, 2022.

521

522 Vikram Voleti, Alexia Jolicoeur-Martineau, and Chris Pal. Mcvd-masked conditional video diffusion for
 523 prediction, generation, and interpolation. *Adv. Neural Inform. Process. Syst.*, 2022.

517 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming
518 Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative models. *arXiv preprint*
519 *arXiv:2503.20314*, 2025.

520
521 Xiaojuan Wang, Boyang Zhou, Brian Curless, Ira Kemelmacher-Shlizerman, Aleksander Holynski, and
522 Steven M Seitz. Generative inbetweening: Adapting image-to-video models for keyframe interpolation.
523 *arXiv preprint arXiv:2408.15239*, 2024.

524 Serin Yang, Taesung Kwon, and Jong Chul Ye. Vibidsampler: Enhancing video interpolation using bidirec-
525 tional diffusion sampler. *arXiv preprint arXiv:2410.05651*, 2024.

526
527 Zhiyang Yu, Yu Zhang, Deyuan Liu, Dongqing Zou, Xijun Chen, Yebin Liu, and Jimmy S Ren. Training
528 weakly supervised video frame interpolation with events. In *Int. Conf. Comput. Vis.*, 2021.

529 Guozhen Zhang, Yuhang Zhu, Haonan Wang, Youxin Chen, Gangshan Wu, and Limin Wang. Extracting
530 motion and appearance via inter-frame attention for efficient video frame interpolation. In *IEEE Conf.*
531 *Comput. Vis. Pattern Recog.*, 2023.

532 Xiang Zhang and Lei Yu. Unifying motion deblurring and frame interpolation with events. In *IEEE Conf.*
533 *Comput. Vis. Pattern Recog.*, 2022.

535 Yaping Zhao, Pei Zhang, Chutian Wang, and Edmund Y Lam. Controllable unsupervised event-based video
536 generation. In *2024 IEEE International Conference on Image Processing (ICIP)*, pp. 2278–2284. IEEE,
537 2024.

538
539 Tianyi Zhu, Dongwei Ren, Qilong Wang, Xiaohe Wu, and Wangmeng Zuo. Generative inbetweening
540 through frame-wise conditions-driven video generation. *arXiv preprint arXiv:2412.11755*, 2024.

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

564 **A APPENDIX**565 **A.1 ADDITIONAL EXPERIMENTS**566 **A.1.1 ABLATION STUDY**

567 **Impact of Different Input Features** To systematically evaluate the contribution of each input component
 568 to the overall interpolation performance, we conduct an ablation study by selectively removing or modifying
 569 specific modules in our framework and retraining each variant from scratch. The ablation settings include:

- 570 **1. No IWE and flows:** Only fine-tunes the Wan2.1 FLF2V model on our dataset, without incorporating
 571 any event-based features (including IWE and flows).
- 572 **2. w/o optical flow:** Removes the optical flow warping module while retaining the IWE encoder.
- 573 **3. w/o IWE:** Removes the IWE encoder while keeping the optical flow warping and fusion module.
- 574 **4. IWE and flow as input:** Uses both IWE and flow features as direct inputs, but disables the warping
 575 mechanism.
- 576 **5. Full model:** Use IWE as input, and flows as warping manner to align the temporal features.

577 All ablation variants are individually trained for 5,400 steps on a NVIDIA A800 GPU and evaluated on the
 578 Pexels test set. The quantitative results are presented in Tab. 4. The results confirm that both IWE and optical
 579 flow features play essential roles in enhancing interpolation quality. Directly injecting flow information as
 580 input (without warping) yields inferior performance compared to the warping-based approach, highlighting
 581 the effectiveness of explicit temporal alignment via flow-guided feature warping.

582
583 **Table 4: Ablation study on Pexels test dataset of our method (time \times 24).**

584 Methods	585 PSNR \uparrow	586 SSIM \uparrow	587 LPIPS \downarrow	588 FID \downarrow	589 FVD \downarrow
590 w/o (IWE and flows)	591 16.928	592 0.577	593 0.301	594 59.362	595 1823.590
596 w/o flows warping	597 25.130	598 0.783	599 0.110	600 27.207	601 252.806
602 w/o IWE	603 25.231	604 0.785	605 0.111	606 27.249	607 242.496
608 IWE & flow inputs	609 25.179	610 0.790	611 0.112	612 27.519	613 234.407
614 Full model	615 25.693	616 0.804	617 0.100	618 23.445	619 217.054

597 **A.1.2 EVPEXELS DATASET**

598 The EvPexels dataset we collected covers a diverse range of motion scenarios, including urban street scenes,
 599 natural environments, aerial views, traffic, humans, and pets. Fig. 4 presents visualizations of the corre-
 600 sponding event data and video frames from a subset of these scenarios. Each video, with a spatial resolution
 601 of 704×480 , consists of a single continuous shot containing no more than 500 frames.

604 **A.2 ADDITIONAL ANALYSIS**605 **A.2.1 VISUALIZATION RESULTS ON SCENES WITH CAMERA MOTION**

606 Additional qualitative results on the DAVIS dataset are presented in Fig. 5, featuring scenes with large
 607 camera motion. Our method consistently produces artifact-free, temporally smooth frames, while competing
 608 methods exhibit significant visual degradations.

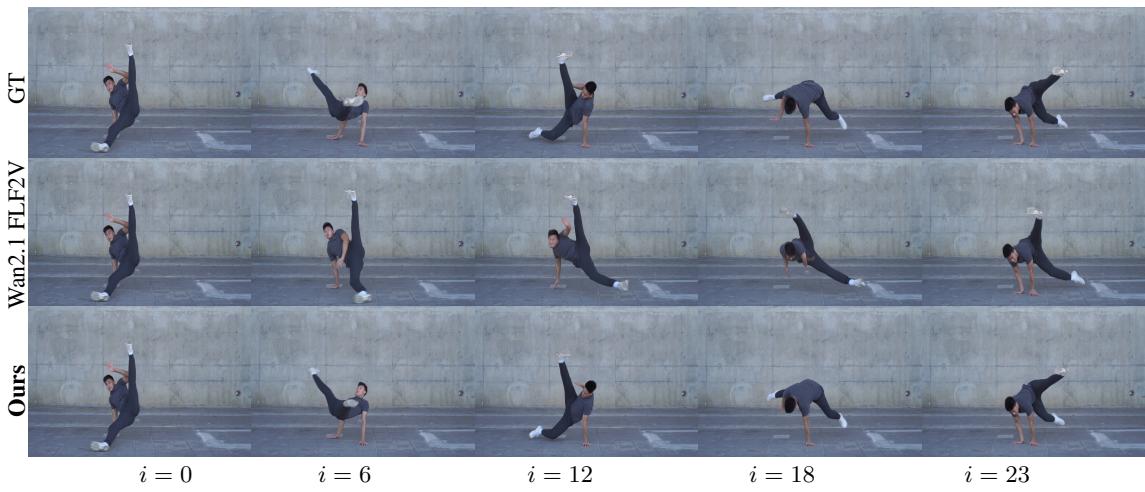
Figure 4: Visualization of the EvPexels dataset.

A.2.2 QUALITATIVE COMPARISON WITH WAN2.1 FLF2V

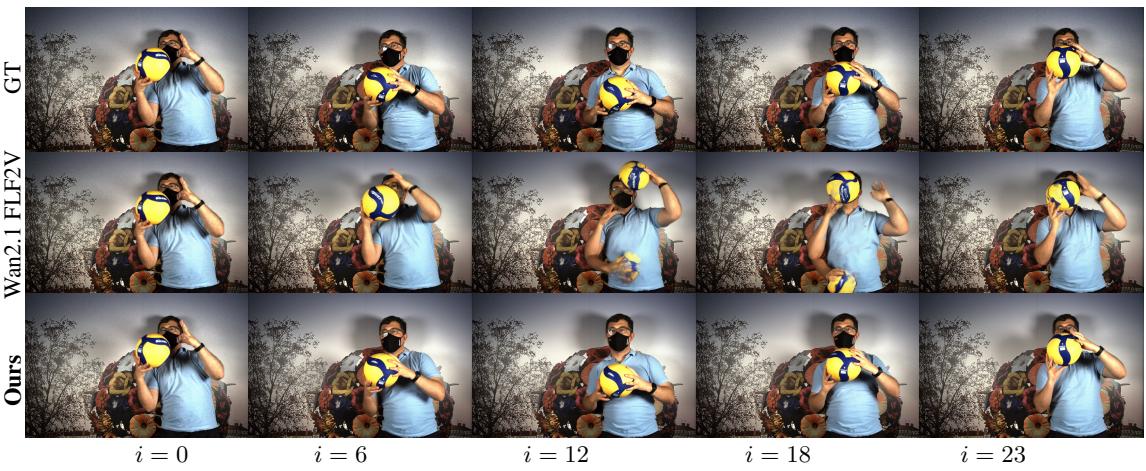
Wan2.1 FLF2V Wan et al. (2025), as an advanced DiT-based VFI method, demonstrates promising performance in our experiments. For instance, in the large-motion scenario shown in Fig. 6, even without intermediate motion guidance, Wan2.1 FLF2V is able to generate relatively smooth and visually plausible interpolated frames. However, compared to our approach, certain limitations remain. Our method can better capture intermediate motion, while Wan2.1 FLF2V, relying solely on the start and end frames, fails to accurately follow the ground-truth motion trajectory of the subject. In the generated intermediate frames, the human pose (e.g., the head) sometimes appears distorted, deviating from natural body structure. In the second example (Fig. 7), the interpolation results of Wan2.1 FLF2V even produce artifacts such as multiple limbs and duplicate balls, whereas our method generates temporally coherent and structurally consistent intermediate frames. These two cases indicate that although Wan2.1 FLF2V, as a baseline VFI model, is capable of producing reasonably smooth videos, it still lacks reliable motion guidance in large-motion sce-

680 Figure 5: Visual comparison of VFI methods on a challenging scene with camera motion from the DAVIS
681 dataset (time $\times 24$).

682
683
684 narios. As a result, the generated intermediate frames suffer from temporal inconsistency, reduced visual
685 fidelity, and impaired structural preservation.
686



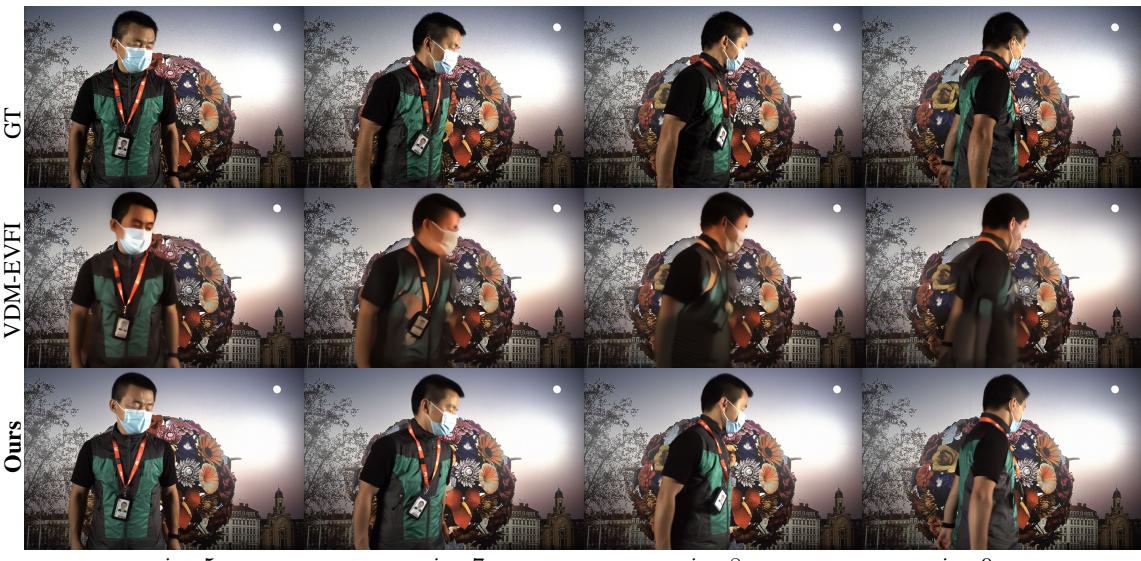
703 Figure 6: Visual comparison with Wan2.1 FLF2V on the Pexels dataset (time $\times 24$).
704

Figure 7: Visual comparison with Wan2.1 FLF2V on the BS-ERGB dataset (time \times 24).

A.2.3 QUALITATIVE COMPARISON WITH VDM-EVFI

724 As shown in Tab. 3, VDM-EVFI Chen et al. (2024) achieves slightly higher PSNR and SSIM scores than
 725 our method on the BS-ERGB dataset; however, it performs substantially worse on perceptual metrics such
 726 as LPIPS, FID, and FVD. The qualitative results in Fig. 8 and 9 further demonstrate this gap. In the \times
 727 12 frame interpolation scenario, our method produces noticeably better results than VDM-EVFI on the BS-
 728 ERGB dataset. For instance, in Fig. 8, VDM-EVFI fails to faithfully reconstruct the subject’s facial region
 729 and left arm, whereas our method preserves fine details clearly, such as the reflections on the eyeglass lenses.
 730 In the large-motion turning scenario shown in Fig. 9, VDM-EVFI struggles to handle facial and clothing
 731 details, while the frames generated by our method are visually much closer to the ground truth.

Figure 8: Visual comparison with VDM-EVFI on the BS-ERGB dataset (time \times 12).

Figure 9: Visual comparison with VDM-EVFI on the BS-ERGB dataset (time \times 12).

773 A.2.4 VISUALIZATION OF IWES AND OPTICAL FLOWS

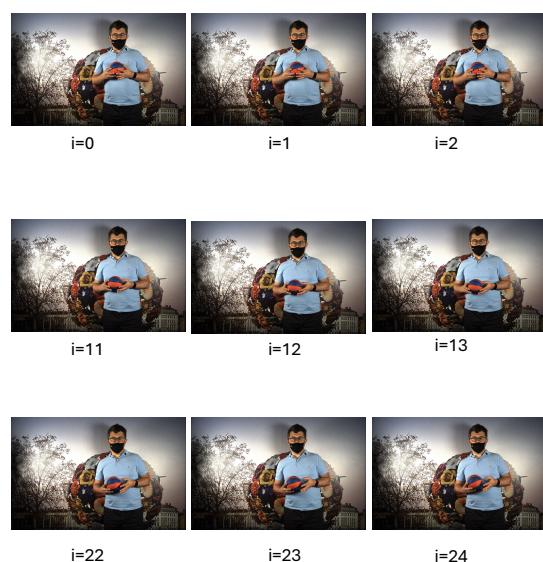
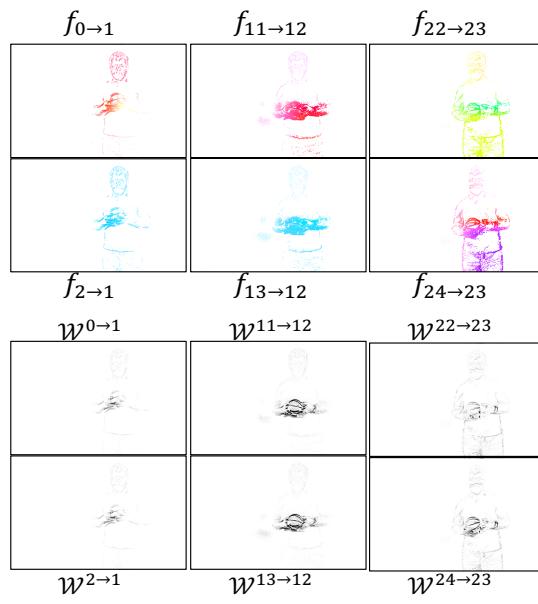
774 We provide a detailed visualization of the sparse bidirectional optical flow and IWE, as shown in Fig. 10
 775 (b). Specifically, we apply a contrast maximization method on the event data between every two consecutive
 776 latent frames to compute these sparse optical flow segments and the IWE. Comparing them with the ground
 777 truth in Fig. 10 (a) reveals that the optical flow segments in Fig. 10 (b) accurately capture the motion between
 778 consecutive frames in Fig. 10 (a).

780 A.2.5 VIDEO RESULTS

781 Please refer to our project page in the supplementary material: [event_vfi/index.html](#) for video
 782 results, which clearly demonstrate that our reconstructions provide superior consistency and generalization
 783 compared to other baselines.

785 A.3 THE USE OF LARGE LANGUAGE MODELS(LLMs)

786 In this study, Large Language Models (LLMs) were employed solely to improve the readability and polish
 787 of the manuscript. No part of the substantive analysis, results, or interpretations was generated by LLMs.



(a) Reference Images

(b) Bidirectional Optical Flow & IWE

Figure 10: Illustration of the optical flow & IWE.

846 B REBUTTAL APPENDIX

847 B.1 QUANTITATIVE AND QUALITY EVALUATION

850 For a comprehensive comparison, we adapt the VDM-EVFI Chen et al. (2024) method—originally based
 851 on Stable Video Diffusion—to the Wan2.1 FLF2V Wan et al. (2025) backbone, and refer to this variant as
 852 VDM-EVFI-Wan2.1. We retrain this model from scratch on our training set. To ensure fairness, we strictly
 853 follow the same training configuration as our method, using 8 NVIDIA GPUs and maintaining the same
 854 number of training iterations. We further include the non-generative interpolation method RIFE Huang et al.
 855 (2022) as an additional baseline. All methods are evaluated under a $\times 24$ interpolation setting across three
 856 datasets: BS-ERGB, DAVIS, and Pexels. The quantitative results on the BS-ERGB test set are reported in
 857 Tab. 5, while the results on DAVIS and Pexels are presented in Tab. 6. Qualitative visual comparisons are
 858 illustrated in Fig. 11 and Fig. 12.

859 The quantitative and qualitative comparisons show that VDM-EVFI-Wan2.1 remains inferior to our method
 860 even when equipped with the same backbone, demonstrating the effectiveness of our design. Furthermore,
 861 the non-generative baseline RIFE exhibits clear limitations in large-motion scenarios, which further high-
 862 lights the advantages of our approach.

863
 864 Table 5: Quantitative comparison of the VFI performance on the BS-ERGB test dataset. **Bold** indicates the
 865 best performance under the $24 \times$ interpolation setting.

866 867 Methods	868 869 870 871 872 873 874 875 876 BS-ERGB				
	PSNR↑	SSIM↑	LPIPS↓	FID↓	FVD↓
RIFE Huang et al. (2022)	22.174	0.641	0.172	35.347	1113.496
TRF Feng et al. (2024)	14.078	0.4117	0.426	47.146	971.424
GI Wang et al. (2024)	16.964	0.518	0.311	33.082	588.371
ViBiD Yang et al. (2024)	15.525	0.475	0.352	39.027	788.652
FCVG Zhu et al. (2024)	17.809	0.546	0.302	26.832	726.752
Wan2.1-FLF2V Wan et al. (2025)	18.698	0.618	0.212	18.607	376.828
TimeLens Tulyakov et al. (2021)	24.704	0.699	0.165	43.808	851.523
CBMNet-Large Kim et al. (2023)	25.306	0.712	0.169	17.658	228.753
TimeLens-XL Ma et al. (2024)	21.737	0.678	0.248	47.155	710.688
VDM-EVFI-Wan2.1 Chen et al. (2024)	22.402	0.673	0.282	15.693	145.067
Ours	23.261	0.704	0.132	8.168	117.368

877
 878
 879 Table 6: Quantitative comparison on the VFI tasks on DAVIS and Pexels datasets (time $\times 24$).
 880

881 882 Methods	883 884 885 886 887 888 889 890 DAVIS					891 892 Pexels				
	PSNR↑	SSIM↑	LPIPS↓	FID↓	FVD↓	PSNR↑	SSIM↑	LPIPS↓	FID↓	FVD↓
RIFE Huang et al. (2022)	18.287	0.487	0.402	82.137	2028.480	21.820	0.634	0.274	80.118	1976.327
TRF Feng et al. (2024)	14.132	0.459	0.484	70.528	1373.954	16.737	0.600	0.400	109.516	1624.791
GI Wang et al. (2024)	14.850	0.467	0.406	55.067	1158.330	17.700	0.600	0.306	109.029	1212.097
ViBiD Yang et al. (2024)	14.811	0.456	0.448	55.343	1194.670	17.413	0.588	0.365	104.089	1335.211
FCVG Zhu et al. (2024)	16.162	0.509	0.385	48.839	1246.823	19.172	0.635	0.275	105.617	1481.806
Wan2.1-FLF2V Wan et al. (2025)	17.510	0.538	0.310	36.740	800.613	19.747	0.642	0.223	46.009	959.256
TimeLens Tulyakov et al. (2021)	22.913	0.632	0.352	102.191	1706.523	27.071	0.757	0.215	79.886	1093.200
CBMNet-Large Kim et al. (2023)	20.633	0.742	0.343	79.459	1164.145	23.429	0.799	0.292	81.449	840.820
TimeLens-XL Ma et al. (2024)	17.498	0.530	0.235	100.506	1438.467	26.241	0.789	0.224	82.760	557.176
VDM-EVFI-Wan2.1 Chen et al. (2024)	25.040	0.779	0.123	15.361	165.236	29.042	0.821	0.082	17.275	158.183
Ours	25.544	0.799	0.115	13.367	158.557	29.089	0.858	0.080	16.319	151.345

Figure 11: Visual comparison between VDM-EVFI-Wan2.1 and our method on the BS-ERGB dataset.(time $\times 24$).

B.2 ADDITIONAL ABLATION STUDY

Impact of Different Input Features We evaluate all ablation settings on the BS-ERGB test dataset, and the results are reported in Tab. 7, which indicates that both IWEs and flow warping are benefit for a better performance.

Impact of Different Injection Blocks In this work, the Wan2.1 FLF2V backbone contains 40 blocks. We choose the first two blocks as the injection points for our flow-based alignment and fusion module. To further investigate the effect of injection position, we conduct additional ablation studies by inserting the module into the middle two blocks and the last two blocks of the backbone. The corresponding results are reported in Tab. 8. The results indicate that injecting temporal information into the last two blocks yields better LPIPS, FID, and FVD scores, whereas injecting it into the first two blocks leads to better PSNR and SSIM. In this work, we adopt the first two blocks as the injection position to prioritize reconstruction quality.

Impact of Different Event Representations We conducted a literature review on event-based conditioning and identified two representative approaches: the edge-based conditioning method proposed in CUBE Zhao et al. (2024), which converts the event stream into an edge images, and the event voxel stack representation used in VDM-EVFI Chen et al. (2024). We incorporated each of these event representations separately as additional inputs to the Wan2.1 FLF2V by feeding them through an encoder that shares the same architecture as our IWE encoder. The models were trained for 5,400 steps on an NVIDIA A800 GPU and evaluated on the BS-ERGB dataset for fair comparison. The results are summarized in Tab. 9. These results demonstrate that our event representation (IWE and Flow Warping) achieves consistently superior performance across all metrics under the same backbone architecture and training settings.

Figure 12: Visual comparison between VDM-EVFI-Wan2.1 and Ours method on the Davis dataset (time \times 24).

Table 7: Ablation study on BS-ERGB test dataset of our method (time \times 24).

Methods	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FID \downarrow	FVD \downarrow
w/o (IWE and flows)	17.390	0.578	0.241	22.233	678.026
w/o flows warping	22.751	0.685	0.126	9.207	124.715
w/o IWE	21.237	0.626	0.189	17.807	200.861
IWE & flow inputs	22.839	0.689	0.126	9.402	123.306
Full model	23.072	0.693	0.126	9.023	121.620

Table 8: Ablation study on BS-ERGB test dataset regarding the injection position of flow-guided blocks (time \times 24).

Injection Point	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FID \downarrow	FVD \downarrow
Last two blocks	22.814	0.691	0.120	8.986	108.093
Mid. two blocks	22.801	0.687	0.129	9.393	121.771
First two blocks	23.072	0.693	0.126	9.023	121.620

Table 9: Ablation study on BS-ERGB test dataset of different event conditions (time \times 24).

Event Rep.	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FID \downarrow	FVD \downarrow
Edge Zhao et al. (2024)	17.703	0.599	0.227	23.204	755.380
Event Voxel Stack Chen et al. (2024)	21.311	0.611	0.205	18.447	228.950
Ours (IWE & Flow)	23.072	0.693	0.126	9.023	121.620

987 B.3 ADDITIONAL ANALYSIS
988989 B.3.1 CLARIFICATION ON THE NECESSITY AND ROLE OF EVENT STREAMS
990

991 The key advantage of using the raw event stream—rather than external or frame-derived optical flow—lies
992 in its temporal precision, motion observability, and optimization stability.

993 (1) Fundamental limitation of frame-based optical flow. Frame-based methods (PWC-Net Sun et al. (2018),
994 RIFE Huang et al. (2022), etc.) only observe motion at two discrete time points. As a result, they are
995 fundamentally unable to recover high-frequency or nonlinear motion occurring between the frames. No
996 matter how strong the model is, the intermediate dynamics remain unobserved. This inherent sampling-gap
997 issue explains the inferior performance of RIFE in our quantitative results (Tab. 5).

998 (2) Events provide dense temporal observations and enable accurate intermediate flow. Events record asyn-
999 chronous brightness changes at microsecond resolution, giving access to a dense stream of motion cues that
1000 frames completely miss. This allows us to reconstruct optical flow and IWEs aligned to any intermediate
1001 timestamp, supplying the “missing motion samples” that frame-based flow cannot provide.

1002 (3) Segmented contrast maximization is essential for stable and accurate motion estimation. Using the
1003 entire event span to estimate a single IWE leads to structure smear, inconsistent gradients, and a highly
1004 non-convex contrast-maximization objective. In contrast, segmenting the event stream into T short intervals
1005 (Eq. 6–7) ensures that the displacement within each segment is small and nearly linear, producing sharp
1006 IWEs and reliable flow fields (Fig. 13(b)). The full-span IWE (Fig. 13(c)) clearly demonstrates the failure
1007 mode—blurred textures and inaccurate motion.

1008 (4) Temporally accurate flow is structurally required by our diffusion pipeline. Our diffusion model warps
1009 latent features at multiple intermediate timestamps. Errors of even a few milliseconds accumulate across steps,
1010 leading to geometric drift, ghosting, and motion inconsistency. Thus, the temporally coherent, segment-wise
1011 flows from events are not only beneficial but necessary for stable latent warping and high-quality interpola-
1012 tion.

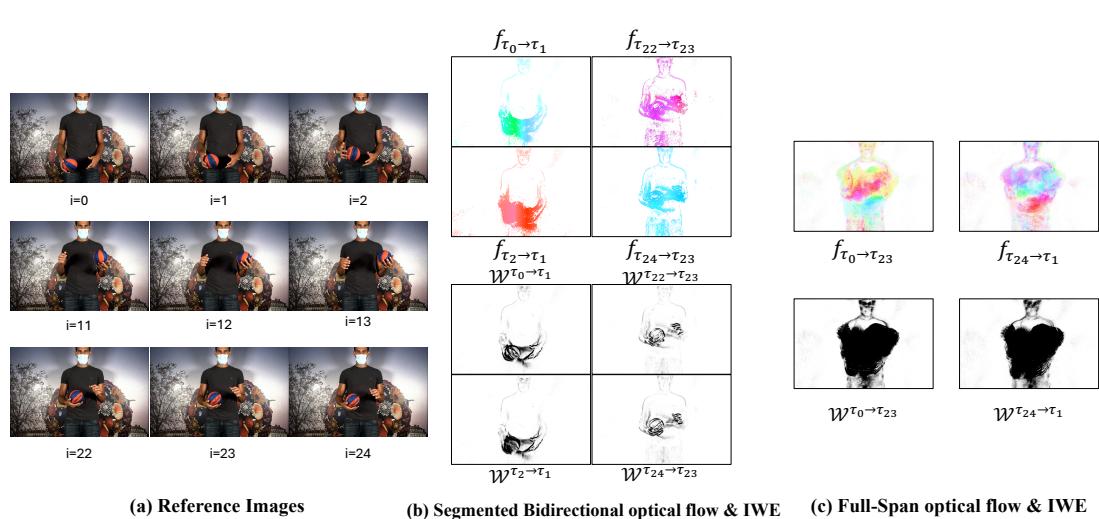
1013 (5) Compatibility with diffusion-transformer-based video generation models. Although alternative event
1014 representations (e.g., voxel grids, edge/accumulation images) also encode temporal cues, they introduce sub-
1015 stantial ambiguity and force the model to implicitly infer complex motion dynamics from high-dimensional,
1016 entangled features. In contrast, our event-derived IWEs and optical flows—obtained via contrast maximiza-
1017 tion—are explicit and physically interpretable descriptors of scene structure and pixel-wise motion. This
1018 makes them inherently well aligned with diffusion-transformer architectures, which rely on accurate, struc-
1019 tured warping of latent features during the denoising process. Our ablation study (in Tab. 9) corroborates
1020 this design choice: substituting IWEs/flows with other event representations markedly increases the learning
1021 difficulty and leads to noticeable degradation in interpolation quality. These results demonstrate that phys-
1022 ically grounded event-based motion cues provide a far more effective supervisory signal for high-quality
1023 frame synthesis.

1024 Together, these points demonstrate that raw event streams provide essential temporal information, enable
1025 stable flow estimation, and ensure correct motion propagation in the diffusion model—making them a critical
1026 component of our interpolation framework.

1027 B.3.2 ADDITIONAL DESCRIPTION OF EVPEXELS DATASETS
1028

1029 **Acquisition method:** We constructed the EvPexels dataset through a two-stage filtering pipeline:

1031 1. Coarse Filtering: We first queried videos from the Pexels website using semantic keywords such as
1032 “urban street,” “human activity,” and other scene-relevant terms to collect a broad set of candidate
1033 videos.



1050
1051
1052 Figure 13: Visual comparison of IWEs and optical flows generated from segmented event intervals versus
1053 the full-span event interval.

1054
1055 2. Fine Filtering: Since many downloaded videos contain multiple shots—making them unsuitable
1056 for frame interpolation—we applied TransNet V2 Soucek & Lokoc (2024) to detect and retain only
1057 single-shot segments.

1058 This pipeline yielded 1,100 high-quality, single-shot videos, each with a resolution of 704×480 and no
1059 more than 500 frames. Finally, we used the Vid2e simulator Gehrig et al. (2020) to convert each video into
1060 a corresponding event stream, resulting in the EvPexels dataset.

1061 **Scene patterns:** The EvPexels dataset exhibits rich scene diversity. Specifically, it contains 223 videos
1062 of nature landscape, 198 of forest, 170 of urban street, 119 of beach, and 117 of sports field. Additional
1063 common scenes include indoor office (71), gym (49), kitchen (20), playground (16), highway (14), cafe (12),
1064 parking lot (11), subway station (11), and shopping mall (10). There are also 59 videos categorized as other.
1065 In total, these account for 1,100 videos, reflecting the dataset’s broad coverage of real-world environments.

1066 **Motion types:** EvPexels captures a wide spectrum of motion dynamics, essential for evaluating video gen-
1067 eration under realistic conditions. The dataset contains 402 videos featuring non-rigid deformation (e.g.,
1068 cloth waving, human running), 226 videos with complex multi-agent motion (e.g., crowds, team sports),
1069 and 170 videos dominated by pure camera motion (pan/tilt/zoom). It also includes 31 videos of rigid object
1070 translation (e.g., moving vehicles), alongside examples of rotational motion (e.g., spinning fans or wheels,
1071 12 videos) and oscillatory motion (e.g., bouncing balls or pendulums, 12 videos). The remaining 247 videos
1072 belong to other motion categories, further enriching the diversity of temporal dynamics in the dataset.

1073 **Dataset Splits:** For the training phase, we utilize all 1,100 videos contained within the EvPexels dataset.
1074 This comprehensive set ensures a robust training foundation covering a wide range of scene types and motion
1075 dynamics. For evaluation purposes, instead of using videos from the EvPexels dataset, we have curated an
1076 additional set of high-motion videos exclusively from Pexels website. These evaluation videos are carefully
1077 selected to ensure there is no overlap with the videos used in the EvPexels training dataset. This approach
1078 guarantees an unbiased assessment of model performance on unseen data, accurately reflecting its capability
1079 to generalize across different scenes and motion patterns.