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EFFORTLESS EVENT-AUGMENTED LATENT DIFFUSION FOR
VIDEO FRAME INTERPOLATION

Anonymous authors
Paper under double-blind review

(a) Reference frames (b) FCVG (c) Wan2.1 FLF2V (d) Ours

Figure 1: We propose an effortless event-augmented approach for Diffusion Transformer (DiT)-based
video frame interpolation, seamlessly integrating event streams to generate clear and temporally consistent
frames. (a) shows the ground-truth intermediate frames at different time stamps for reference. Compared to
FCVG Zhu et al. (2024) and Wan2.1 FLF2V Wan et al. (2025), which rely solely on the start and the end
frames and often result in motion blur, object deformation, identity inconsistency, and structural artifacts. In
contrast, our approach produces sharper and more natural results.

ABSTRACT

Latent Diffusion Models have advanced video frame interpolation by generating interme-
diate frames between input frames. However, effectively handling large temporal gaps
and complex motion remains a challenge, often leading to artifacts. We argue that event
camera signals, with their ability to capture continuous motion at high temporal resolu-
tions, are ideal for bridging these temporal gaps and enhancing interpolation precision.
Given the impracticality of training an event-assisted model from scratch, we introduce a
novel adapter-based framework that seamlessly and effortlessly integrates high-temporal-
resolution cues from event cameras into pre-trained image-to-video models without modi-
fying their underlying structure. Our method leverages Image Warped Events (IWEs) and
bidirectional sparse optical flow for precise spatial and temporal alignment, significantly
reducing artifacts and improving interpolation quality. Experimental results demonstrate
that our event-enhanced interpolation achieves superior accuracy and temporal coherence
compared to existing state-of-the-art methods.

1 INTRODUCTION

Latent Diffusion Models (LDMs) have recently made significant strides in both image and video generation,
spurring advances in video frame interpolation, which involves synthesizing intermediate frames between
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start and end frames. Leveraging pre-trained image-to-video (I2V) diffusion models, recent methods can ad-
dress challenges such as complex motion and large temporal gaps—scenarios where traditional interpolation
techniques, which rely on motion estimation and motion compensation, often falter.

For example, recent methods such as GI Wang et al. (2024) and FCVG Zhu et al. (2024) leverage the
generative capabilities of Stable Video Diffusion (SVD) Blattmann et al. (2023), which is based on a U-
Net diffusion architecture. More recently, Wan2.1 FLF2V Wan et al. (2025) utilizes a powerful Diffusion
Transformer (DiT)-based video diffusion model, achieving superior performance in interpolation across
substantial temporal gaps. However, despite these advances, LDM-based interpolation methods still suffer
from noticeable artifacts, particularly in the intermediate frames of the generated sequences, as illustrated in
Fig. 1. We attribute these limitations to the reliance solely on start and end frames for guidance, constraining
the interpolation quality.

Event cameras, which asynchronously capture pixel-wise brightness changes, offer unique advantages, in-
cluding high temporal resolution, broad dynamic range, and low latency. Unlike traditional cameras with
fixed frame rates, event cameras provide continuous, high-temporal-resolution motion information that can
enrich frame interpolation, especially in complex, high-speed scenes Tulyakov et al. (2021; 2022); Sun et al.
(2023); Liu et al. (2024).

However, integrating raw event streams into the I2V diffusion models is non-trivial because event data
is sparse, asynchronous, and lacks direct compatibility with the dense, grid-based representations used in
mainstream generative models. Furthermore, large-scale paired event-video datasets are scarce, making
end-to-end supervised training infeasible.

To address these challenges, we propose to extract Image Warped Events (IWEs) and bidirectional sparse
optical flow from event streams using contrast maximization techniques Stoffregen & Kleeman (2019);
Shiba et al. (2024). These representations translate the event modality into edge-like and motion-consistent
cues that closely align with control signals commonly used in diffusion-based video generation, such as
edge maps, flow fields Karmokar et al. (2025); Jiang et al. (2025); Burgert et al. (2025). This serves as a
conceptual and practical bridge between event-based vision and frame-based video diffusion.

Building on this insight, we propose a novel adapter-based framework that seamlessly injects motion-aware
signals derived from events into a pre-trained video diffusion model. Our method requires only minimal
fine-tuning on limited event-video data and does not alter the underlying diffusion architecture. Specifically,
we introduce two plug-in adapters: (1) An IWE encoder, which embeds edge-consistent spatial structure
into the input latent space; (2) A flow-based alignment-and-fusion adapter, which warps latent features
using bidirectional flow before the DiT block and fuses them to form temporally aligned intermediate rep-
resentations. These adapters inject event-derived structural and temporal cues into the generative process,
enhancing interpolation quality and reducing artifacts. To facilitate broader generalization and benchmark-
ing, we also construct a large-scale synthetic event-video dataset, EvPexels, comprising 1,100 diverse scenes
(about 390,000 RGB frames) spanning a wide range of motions. To the best of our knowledge, EvPexels is
the largest synthetic dataset specifically designed for event-based video frame interpolation. We will release
the dataset along with accompanying tools to support future research in event-driven video generation and
diffusion modeling.

In summary, our contributions are:

1. We propose a plug-and-play adapter framework that incorporates event-derived signals into DiT-
based video diffusion models for frame interpolation, improving temporal consistency and reducing
artifacts.

2. We bridge the gap between event streams and LDM-compatible control signals by extracting IWEs
and bidirectional optical flow, enabling seamless integration into mainstream generative pipelines.
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3. We construct a synthetic event-video dataset with 1,100 diverse motion-rich scenes to support train-
ing of event-aware frame interpolation models.

4. Extensive experiments validate the effectiveness of our method, showing superior interpolation
quality compared to state-of-the-art baselines.

2 RELATED WORK

This section provides an overview of research efforts closely related to our work. We begin by reviewing
traditional video frame interpolation techniques, including both frame-based and event-guided approaches.
We then examine recent developments in the emerging generative paradigm, with a focus on diffusion-based
interpolation methods.

2.1 TRADITIONAL VIDEO FRAME INTERPOLATION

Video Frame Interpolation (VFI) is a technique used to reconstruct intermediate frames from a pair of input
frames Huang et al. (2022); Kong et al. (2022); Li et al. (2023b); Zhang et al. (2023); Niklaus et al. (2017);
Bao et al. (2019). While traditional VFI methods perform well in scenarios with simple motion, they often
struggle with complex motions or substantial scene changes between frames.

Event streams, which capture fine-grained motion details between frames, provide more accurate motion
estimation for VFI, making event-based VFI methods increasingly popular Tulyakov et al. (2021; 2022); Yu
et al. (2021); He et al. (2022); Zhang & Yu (2022); Kim et al. (2023); Sun et al. (2023); Lin et al. (2023).
For example, Time Lens Tulyakov et al. (2021) introduced the first VFI model combining warping and
synthesis-based approaches. More recently, CBMNet Kim et al. (2023) and TimeLens-XL Ma et al. (2024)
have advanced the state of the art by significantly improving the performance of event-based VFI.

While event-guided VFI has improved motion estimation accuracy, these methods still encounter challenges
with significant scene changes, such as the appearance of new objects, where event data alone may be
insufficient. Consequently, the performance of traditional VFI methods in real-world scenarios involving
complex motion and scenes still requires further refinement, motivating diffusion model-based VFI methods,
which we discuss next.

2.2 DIFFUSION-BASED VIDEO FRAME INTERPOLATION

Diffusion-based VFI techniques have garnered attention due to their ability to handle large and ambiguous
motions between frames more effectively than traditional methods. Early work, such as MCVD Voleti et al.
(2022), employed latent diffusion models (LDMs) for video prediction and interpolation. Building on this,
LDMVFI Danier et al. (2024) applied LDMs specifically for frame interpolation, while VIDIM Jain et al.
(2024) advanced this by training diffusion models on larger datasets to enhance performance. CBBD Lyu
et al. (2024) introduced the Consecutive Brownian Bridge Diffusion model, which reduces cumulative
variance based on the Brownian Bridge Diffusion Model framework Li et al. (2023a). Similarly, Dream-
Mover Shen et al. (2024) utilizes stable diffusion priors to interpolate frames with large motions.

However, most of the above diffusion-based models rely on image-to-image (I2I) diffusion frameworks,
requiring complex architecture designs and specialized training on specific video datasets. This approach
often overlooks recent advancements in I2V models. The emergence of large-scale I2V diffusion models
offers a more efficient alternative: adapting pre-trained models (e.g., Stable Video Diffusion Blattmann et al.
(2023), Wan2.1 Wan et al. (2025)) for VFI with minimal modifications, enabling training-free or tuning-
free methods. Such approaches capitalize on the potential of pre-trained I2V diffusion models for video
generation. For instance, TRF Feng et al. (2024) adapts a video generation model for bounded generation,
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using initial and final frames to synthesize intermediate frames. However, TRF Feng et al. (2024) does not
fully address motion consistency between frames, prompting recent work, such as GI Wang et al. (2024), to
introduce a reverse motion method to improve frame-to-frame coherence. More recently, ViBiD Yang et al.
(2024), FCVG Zhu et al. (2024) and Wan2.1 FLF2V Wan et al. (2025) have further advanced performance
in this domain. Nonetheless, most prior methods have underappreciated the importance of event signals for
modeling fine-grained temporal dynamics. Recent efforts—such as U-Net–based LDM approaches Chen
et al. (2024)—begin to address this gap, but our strategy is fundamentally different. Rather than training
directly on raw event streams, we convert the spatial and motion cues encoded by events into a representation
that integrates seamlessly with a DiT-based interpolation model, enabling effective event guidance without
requiring end-to-end event-centric training.

3 METHODOLOGY

In this section, we first provide an overview of event-based video frame interpolation. We then introduce our
fine-tuning pipeline, which involves extracting motion information—specifically, IWEs and bidirectional
optical flow—from raw event streams. Next, we present the design of the IWE encoder, which injects edge-
aligned spatial features into the video diffusion model, and the alignment and fusion adapter, which utilizes
the bidirectional optical flow to warp latent features.

3.1 PRELIMINARIES

3.1.1 I2V MODELS FOR VIDEO FRAME INTERPOLATION

The I2V model based on latent diffusion primarily relies on the start frame I0 and the end frame I1 to
perform video interpolation. Let the input video sequence be denoted as

I = {I0, I1/N , . . . , I(N−1)/N , I1}, (1)

where i ∈ [0, 1] represents normalized time steps. Following Wan2.1 Wan et al. (2025), we adopt a video
VAE that compresses the temporal resolution by a factor of 4. Accordingly, the sequence is encoded into a
latent video representation

Z = {z0, z1, . . . , zk, . . . , zT−1}, (2)

where T = ⌊(N + 1)/4⌋+ 1, and k ∈ [0, T − 1].

To avoid ambiguity, all frame indices refer to the latent space throughout the remainder of this paper, unless
otherwise specified. The base video diffusion model we use, FLF2V in Wan2.1 Wan et al. (2025), is trained
to predict a constant velocity vector vt from a noisy latent representation xk

t , the timestamp t, and the
corresponding text condition ctxt. The training objective is formulated as the mean squared error (MSE)
between the predicted velocity u(xk

t , ctxt, t; θ) and the ground-truth vt:

L = Ek,t,ctxt

∥∥u(xk
t , ctxt, t; θ)− vt

∥∥2 , (3)

where θ denotes the model parameters. This objective guides the model to learn continuous trajectories in
latent space, conditioned on the input prompt.

3.1.2 EVENT-ASSISTED VIDEO FRAME INTERPOLATION

To enhance video frame interpolation, we incorporate an event stream

E = {ei = (xi, yi, τi, pi)} (4)
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between frames I0 and I1. Each event ei ∈ E occurs at spatial coordinates (xi, yi), at time τi, with polarity
pi ∈ {−1,+1}, capturing sparse spatiotemporal changes in the scene. Accordingly, the training objective
for the event-assisted interpolation task is modified to:

L = Ek,t,E,ctxt

∥∥u(xk
t , E , ctxt, t; θ)− vt

∥∥2 . (5)

We first apply contrast maximization (CMax) to compute bidirectional optical flows fk−1→k and fk+1→k

from the event intervals [k−1, k] and [k+1, k], respectively:

fk−1→k, Wk−1→k = CMax(E[k−1,k]),

fk+1→k, Wk+1→k = CMax(E[k+1,k]),
(6)

where E[k−1,k] and E[k+1,k] denote the subsets of events occurring between the respective frames. The
outputs Wk−1→k and Wk+1→k are IWE representations warped by forward and backward optical flow. We
employ an IWE encoder to extract the aligned spatial edge features from the IWE maps, denoted as Fk

W ,
which are subsequently injected into the input latent representation to enhance structural guidance.

In the alignment and fusion module, we warp the DiT features from the adjacent latent states Fk−1
xt

and
Fk+1

xt
toward the current frame k, using the estimated optical flows:

Fk−1→k
xt

= Warp(Fk−1
xt

, fk→k−1),

Fk+1→k
xt

= Warp(Fk+1
xt

, fk→k+1).
(7)

These aligned features are then fused with the center frame’s features Fk
xt

via a fusion function G(·):

Fk
fused = G

(
Fk

xt
, Fk−1→k

xt
, Fk+1→k

xt

)
. (8)

Finally, the fused residual features of all frames Ffused are added to the DiT features to enhance temporal
consistency across frames.

3.2 FRAMEWORK

As shown in Fig. 2, our framework takes the start frame I0, the end frame I1, and the corresponding event
stream as input, and outputs the intermediate frames Î. The overall architecture consists of an event repre-
sentation module and an adapter-enhanced fine-tuning strategy.

3.2.1 EVENT REPRESENTATION

To extract motion cues from the event stream, we follow the principle of contrast maximization Stoffregen &
Kleeman (2019); Shiba et al. (2024), which enables both optical flow estimation and generation of the Image
Warped Events (IWE)—a sharp, edge-aware image obtained by temporally aligning events at a designated
reference time. We employ an off-the-shelf CMax-based method Shiba et al. (2024) to compute optical flows
and their corresponding IWEs. For temporal alignment, we divide the event stream between I0 and I1 into
multiple temporal segments. For each segment [k−1, k], we compute a sparse forward optical flow fk−1→k

and the corresponding IWE Wk−1→k, by masking the dense flow with event activity. Similarly, we reverse
the event stream and extract backward flows fk+1→k and IWEs Wk+1→k. This process yields bidirectional
sparse optical flows and edge-aware IWE representations across the entire sequence.

IWE-Based Spatial Conditioning To extract structured spatial cues from the event stream, we design an
encoder that processes the bidirectional IWEs and produces aligned feature maps Fk

W , where k ∈ [0, T ].
IWEs are known to correlate strongly with scene edges and object boundaries Karmokar et al. (2025), mak-
ing them particularly effective for guiding frame synthesis in motion-intensive regions. Given the sparse and
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Figure 2: Illustration of Our Framework. (a) We extract bidirectional sparse optical flow and IWEs from the
input event stream using the Contrast Maximization (CMax) method. (b) During fine-tuning, the model is
enhanced with three components: an IWE encoder, alignment adapters inserted into a subset of DiT blocks,
and LoRA layers applied to all DiT blocks. (c) The flow-based alignment adapter leverages the bidirectional
flows to warp intermediate features from neighboring frames, aligning them temporally with the current
frame. This facilitates motion-consistent feature propagation throughout the denoising process.

lightweight nature of the IWE signal, we adopt a simple yet effective integration strategy. The IWE maps
are encoded into feature representations using a compact network composed of 3D convolutional layers.
These features are then injected into the video latent space via element-wise addition to the input latents of
the diffusion model. This design enables edge-aware spatial conditioning with minimal computational over-
head. To adapt the pre-trained diffusion model to this new input modality, we apply LoRA-based fine-tuning
across all DiT blocks. This allows the model to leverage IWE-derived structural features while keeping the
majority of the original parameters frozen, ensuring parameter efficiency and architectural compatibility.

Flow-Based Temporal Alignment and Fusion Before each selected DiT block, we rearrange the patch-
based latent representations back into a frame-wise format that is spatially aligned with the optical flows.
To enforce temporal consistency, we first reshape the bidirectional optical flows and warp the features from
the previous and next frames toward the current frame using the corresponding forward and backward flows.
The three aligned features (from frames k−1, k, and k+1) are then aggregated via mean pooling and passed
through a lightweight fusion network composed of convolutional layers. The fused feature is subsequently
added to the original DiT feature as a residual correction, enhancing both spatial fidelity and temporal
coherence. Finally, the updated frame-wise features are rearranged back into patch tokens and propagated to
the selected DiT block for further refinement. This design allows the model to benefit from explicit motion
guidance without incurring significant computational overhead. To balance performance and efficiency, the
alignment-and-fusion module is only applied to a subset of DiT blocks rather than all layers.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

6
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Table 1: Quantitative comparison of the VFI performance on the
BS-ERGB test dataset. Bold indicates the best performance un-
der the 24× interpolation setting.

BS-ERGB
Methods PSNR↑SSIM↑LPIPS↓ FID↓ FVD↓
TRF Feng et al. (2024) 14.078 0.4117 0.426 47.146971.424
GI Wang et al. (2024) 16.964 0.518 0.311 33.082588.371
ViBiD Yang et al. (2024) 15.525 0.475 0.352 39.027788.652
FCVG Zhu et al. (2024) 17.809 0.546 0.302 26.832726.752
Wan2.1-FLF2V Wan et al. (2025) 18.698 0.618 0.212 18.607376.828
TimeLens Tulyakov et al. (2021) 24.704 0.699 0.165 43.808851.523
CBMNet-Large Kim et al. (2023) 25.306 0.712 0.169 17.658228.753
TimeLens-XL Ma et al. (2024) 21.737 0.678 0.248 47.155710.688
Ours 23.261 0.704 0.132 8.168 117.368

Training Datasets We fine-tune our
framework using two datasets: the real-
world BS-ERGB dataset Tulyakov et al.
(2022) and our curated synthetic EvPex-
els dataset. The BS-ERGB dataset con-
tains high-speed image-event pairs cap-
tured at a resolution of 970×625 and a
frame rate of 28 fps. The training split
includes 48 video clips, while the test
split consists of 26 clips and is used for
quantitative evaluation.

To augment training diversity, we intro-
duce the EvPexels dataset, constructed
from videos collected via the Pexels
platform (https://www.pexels.com). We
select videos exhibiting diverse motion
patterns using TransNet V2 Soucek & Lokoc (2024), ensuring single-shot segments suitable for the frame
interpolation task. Event streams are synthesized from RGB videos using the Vid2e simulator Gehrig et al.
(2020). The resulting dataset comprises 1,100 video sequences, totaling 389,761 frames at a resolution of
704×480. The visualization of the EvPexels dataset are provided in the Appendix A.1.2.

Test Datasets We evaluate performance on a real-captured dataset (BS-ERGB test set) and two synthetic
datasets. As for the two additional synthetic datasets, following prior works such as TRF Feng et al. (2024)
and GI Wang et al. (2024), we select 50 video clips from the DAVIS dataset Pont-Tuset et al. (2017) and 30
clips from Pexels, each consisting of 25 frames. These datasets cover diverse motion scenarios and provide
a comprehensive evaluation of interpolation quality.

Implementation Detail We adopt the open-source FLF2V model from Wan2.1 Wan et al. (2025) as our
base video diffusion architecture. The model takes the first and last frames as input and generates a video
of fixed length (81 frames) in latent space. The learning rate is set to 1 × 10−4, and all input images
are resized to a resolution of 832×480 during training. Other hyperparameters follow the original FLF2V
configuration without modification. In our experiments, optical flow information is injected into two DiT
blocks to enhance motion guidance. We fine-tune our model for 4,000 steps on 8 NVIDIA A800 GPUs with
a global batch size of 8.

Evaluation Metrics We calculate metrics including PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural
Similarity Index Measure), Learned Perceptual Image Patch Similarity (LPIPS), Fréchet Inception Distance
(FID), and Fréchet Video Distance (FVD).

4.2 QUANTITATIVE & QUALITATIVE EVALUATION

Quantitative Evaluation To comprehensively evaluate our method, we compare it against a broad range
of video frame interpolation (VFI) baselines. For event-based VFI, we include TimeLens Tulyakov et al.
(2021), CBMNet-Large Kim et al. (2023), as well as the more recent TimeLens-XL Ma et al. (2024) and
VDM-EVFI Chen et al. (2024). For frame-based VFI, we consider several diffusion-based generative ap-
proaches, including TRF Feng et al. (2024), GI Wang et al. (2024), ViBiD Yang et al. (2024), FCVG Zhu
et al. (2024), and Wan2.1 FLF2V Wan et al. (2025).

For methods with publicly available training code—namely Wan2.1 FLF2V Wan et al. (2025), VDM-
EVFI Chen et al. (2024), CBMNet-Large Kim et al. (2023), and TimeLens-XL Ma et al. (2024)—we fine-
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Figure 3: Visual comparison of VFI methods on the BS-ERGB test dataset (time × 24).

tune the official pretrained models on our training datasets to ensure a fair comparison. For methods without
released training code, such as TimeLens Tulyakov et al. (2021), TRF Feng et al. (2024), GI Wang et al.
(2024), ViBiD Yang et al. (2024), and FCVG Zhu et al. (2024), we use their official checkpoints for infer-
ence. Following standard practice in diffusion-based interpolation Feng et al. (2024); Wang et al. (2024),
all methods (except VDM-EVFI Chen et al. (2024)) are evaluated under a ×24 interpolation setting across
three datasets: BS-ERGB, DAVIS, and Pexels. The quantitative results on the BS-ERGB test set with ×24
interpolation are summarized in Tab. 1, while the results on DAVIS and Pexels are reported in Tab. 2. Since
VDM-EVFI supports only ×12 interpolation, we additionally compare against it under this setting, with
results shown in Tab. 3.

In the ×24 interpolation setting, our method achieves the best overall performance across all met-
rics—PSNR, SSIM, LPIPS, FID, and FVD—on the DAVIS and Pexels datasets. On BS-ERGB test dataset,
our approach achieves state-of-the-art results on perceptual metrics (LPIPS, FID, and FVD), while ranking
third and second in PSNR and SSIM, respectively, among distortion-based metrics. Traditional event-based
methods, such as TimeLens Tulyakov et al. (2021) and CBMNet-Large Kim et al. (2023), achieve higher
PSNR scores, with CBMNet-Large also showing strong SSIM performance on BS-ERGB. This is largely
due to the design of conventional interpolation methods, which emphasize pixel-level reconstruction accu-
racy. Consequently, they perform well on distortion-based metrics (e.g., PSNR, SSIM), but often fall short in
generating perceptually realistic or temporally consistent frames. By contrast, generative models prioritize
visual realism and temporal consistency, leading to superior perceptual quality even if pixel-wise similarity
is sometimes compromised. The qualitative comparisons further illustrate these trends.

In the ×12 interpolation setting, our method consistently outperforms VDM-EVFI Chen et al. (2024) across
nearly all evaluation metrics, particularly those based on perception. While our approach achieves a slightly
lower PSNR (0.16 dB less) on BS-ERGB, it demonstrates significantly stronger generalization ability, as
evidenced by superior results on the DAVIS and Pexels datasets. Additional visual comparisons in the
Appendix A.2.3 further validate the effectiveness of our method.
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Table 2: Quantitative comparison on the VFI tasks on DAVIS and Pexels datasets (time × 24).
DAVIS Pexels

Methods PSNR↑ SSIM↑LPIPS↓ FID↓ FVD↓ PSNR↑ SSIM↑LPIPS↓ FID↓ FVD↓
TRF Feng et al. (2024) 14.132 0.459 0.484 70.528 1373.954 16.737 0.600 0.400 109.516 1624.791
GI Wang et al. (2024) 14.850 0.467 0.406 55.067 1158.330 17.700 0.600 0.306 109.029 1212.097
ViBiD Yang et al. (2024) 14.811 0.456 0.448 55.343 1194.670 17.413 0.588 0.365 104.089 1335.211
FCVG Zhu et al. (2024) 16.162 0.509 0.385 48.839 1246.823 19.172 0.635 0.275 105.617 1481.806
Wan2.1-FLF2V Wan et al. (2025) 17.510 0.538 0.310 36.740 800.613 19.747 0.642 0.223 46.009 959.256
TimeLens Tulyakov et al. (2021) 22.913 0.632 0.352 102.191 1706.523 27.071 0.757 0.215 79.886 1093.200
CBMNet-Large Kim et al. (2023) 20.633 0.742 0.343 79.459 1164.145 23.429 0.799 0.292 81.449 840.820
TimeLens-XL Ma et al. (2024) 17.498 0.530 0.235 100.506 1438.467 26.241 0.789 0.224 82.760 557.176
Ours 25.544 0.799 0.115 13.367 158.557 29.089 0.858 0.080 16.319 151.345

Qualitative Results Fig. 3 shows qualitative comparisons on the BS-ERGB test set, which features chal-
lenging motion involving a person and a basketball. Although TimeLens Tulyakov et al. (2021) and
CBMNet-Large Kim et al. (2023) attain higher PSNR scores, their visual quality is clearly inferior. Time-
Lens Tulyakov et al. (2021) suffers from noticeable artifacts near moving objects, while CBMNet-Large Kim
et al. (2023) generates a distorted appearance of the basketball. In contrast, our method effectively leverages
intermediate event information to accurately model the motion of dynamic foreground objects, resulting in
temporally coherent and visually faithful reconstructions. Additional visual results and ablation study are
provided in the appendix, further demonstrating the effectiveness of our method.

5 CONCLUSION

Table 3: Quantitative comparison on the VFI tasks on
BS-ERGB, DAVIS and Pexels dataset (time × 12).

BS-ERGB PSNR↑ SSIM↑ LPIPS↓ FID↓ FVD↓
VDM-EVFI 23.590 0.741 0.184 30.335 299.201
Ours 23.437 0.706 0.131 10.532 146.095
DAVIS PSNR↑ SSIM↑ LPIPS↓ FID↓ FVD↓
VDM-VFI 23.831 0.767 0.253 52.178 510.708
Ours 25.918 0.803 0.113 17.138 183.573
Pexels PSNR↑ SSIM↑ LPIPS↓ FID↓ FVD↓
VDM-VFI 27.715 0.844 0.194 42.654 401.272
Ours 29.411 0.861 0.079 18.905 168.214

In this paper, we explore leveraging event data to
efficiently enhance DiT-based video frame interpo-
lation tasks. We propose an adapter-based frame-
work that integrates high temporal resolution cues
from event cameras—capturing continuous motion
data via a pre-trained Image-to-Video (I2V) model,
requiring only lightweight adapter training. By
incorporating IWE and bidirectional sparse opti-
cal flow, our approach enables precise temporal
guidance, mitigating motion artifacts and improv-
ing interpolation quality. Our experimental results
demonstrate that event-enhanced interpolation out-
performs existing methods in terms of both accu-
racy and temporal consistency, effectively reducing
long-range motion drift and improving structural fi-
delity. This confirms the feasibility of extracting optical flow and IWE from event data to assist frame
interpolation, thereby circumventing the challenges associated with directly adapting sparse event data to
dense RGB frames.

Discussion and Future Work: While our work primarily focuses on utilizing the high temporal resolution
of event data to aid frame interpolation, event cameras also possess unique spatial advantages, such as a high
dynamic range and robustness to lighting variations. These properties could be further leveraged to enhance
video generation under challenging conditions.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTS

A.1.1 ABLATION STUDY

Impact of Different Input Features To systematically evaluate the contribution of each input component
to the overall interpolation performance, we conduct an ablation study by selectively removing or modifying
specific modules in our framework and retraining each variant from scratch. The ablation settings include:

1. No IWE and flows: Only fine-tunes the Wan2.1 FLF2V model on our dataset, without incorporat-
ing any event-based features (including IWE and flows).

2. w/o optical flow: Removes the optical flow warping module while retaining the IWE encoder.

3. w/o IWE: Removes the IWE encoder while keeping the optical flow warping and fusion module.

4. IWE and flow as input: Uses both IWE and flow features as direct inputs, but disables the warping
mechanism.

5. Full model: Use IWE as input, and flows as warping manner to align the temporal features.

All ablation variants are individually trained for 5,400 steps on a NVIDIA A800 GPU and evaluated on the
Pexels test set. The quantitative results are presented in Tab. 4. The results confirm that both IWE and optical
flow features play essential roles in enhancing interpolation quality. Directly injecting flow information as
input (without warping) yields inferior performance compared to the warping-based approach, highlighting
the effectiveness of explicit temporal alignment via flow-guided feature warping.

Table 4: Ablation study on Pexels test dataset of our method (time × 24).
Methods PSNR↑ SSIM↑ LPIPS↓ FID↓ FVD↓

w/o (IWE and flows) 16.928 0.577 0.301 59.362 1823.590
w/o flows warping 25.130 0.783 0.110 27.207 252.806

w/o IWE 25.231 0.785 0.111 27.249 242.496
IWE & flow inputs 25.179 0.790 0.112 27.519 234.407

Full model 25.693 0.804 0.100 23.445 217.054

A.1.2 EVPEXELS DATASET

The EvPexels dataset we collected covers a diverse range of motion scenarios, including urban street scenes,
natural environments, aerial views, traffic, humans, and pets. Fig. 4 presents visualizations of the corre-
sponding event data and video frames from a subset of these scenarios. Each video, with a spatial resolution
of 704×480, consists of a single continuous shot containing no more than 500 frames.

A.2 ADDITIONAL ANALYSIS

A.2.1 VISUALIZATION RESULTS ON SCENES WITH CAMERA MOTION

Additional qualitative results on the DAVIS dataset are presented in Fig. 5, featuring scenes with large
camera motion. Our method consistently produces artifact-free, temporally smooth frames, while competing
methods exhibit significant visual degradations.
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Figure 4: Visualization of the EvPexels dataset.

A.2.2 QUALITATIVE COMPARISON WITH WAN2.1 FLF2V

Wan2.1 FLF2V Wan et al. (2025), as an advanced DiT-based VFI method, demonstrates promising per-
formance in our experiments. For instance, in the large-motion scenario shown in Fig. 6, even without
intermediate motion guidance, Wan2.1 FLF2V is able to generate relatively smooth and visually plausible
interpolated frames. However, compared to our approach, certain limitations remain. Our method can bet-
ter capture intermediate motion, while Wan2.1 FLF2V, relying solely on the start and end frames, fails to
accurately follow the ground-truth motion trajectory of the subject. In the generated intermediate frames,
the human pose (e.g., the head) sometimes appears distorted, deviating from natural body structure. In the
second example (Fig. 7), the interpolation results of Wan2.1 FLF2V even produce artifacts such as multiple
limbs and duplicate balls, whereas our method generates temporally coherent and structurally consistent
intermediate frames. These two cases indicate that although Wan2.1 FLF2V, as a baseline VFI model, is
capable of producing reasonably smooth videos, it still lacks reliable motion guidance in large-motion sce-
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Figure 5: Visual comparison of VFI methods on a challenging scene with camera motion from the DAVIS
dataset (time × 24).

narios. As a result, the generated intermediate frames suffer from temporal inconsistency, reduced visual
fidelity, and impaired structural preservation.
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Figure 6: Visual comparison with Wan2.1 FLF2V on the Pexels dataset (time × 24).
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Figure 7: Visual comparison with Wan2.1 FLF2V on the BS-ERGB dataset (time × 24).

A.2.3 QUALITATIVE COMPARISON WITH VDM-EVFI

As shown in Tab. 3, VDM-EVFI Chen et al. (2024) achieves slightly higher PSNR and SSIM scores than
our method on the BS-ERGB dataset; however, it performs substantially worse on perceptual metrics such
as LPIPS, FID, and FVD. The qualitative results in Fig. 8 and 9 further demonstrate this gap. In the ×
12 frame interpolation scenario, our method produces noticeably better results than VDM-EVFI on the BS-
ERGB dataset. For instance, in Fig. 8 , VDM-EVFI fails to faithfully reconstruct the subject’s facial region
and left arm, whereas our method preserves fine details clearly, such as the reflections on the eyeglass lenses.
In the large-motion turning scenario shown in Fig. 9, VDM-EVFI struggles to handle facial and clothing
details, while the frames generated by our method are visually much closer to the ground truth.
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Figure 8: Visual comparison with VDM-EVFI on the BS-ERGB dataset (time × 12).
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Figure 9: Visual comparison with VDM-EVFI on the BS-ERGB dataset (time × 12).

A.2.4 VISUALIZATION OF IWES AND OPTICAL FLOWS

We provide a detailed visualization of the sparse bidirectional optical flow and IWE, as shown in Fig. 10
(b). Specifically, we apply a contrast maximization method on the event data between every two consecutive
latent frames to compute these sparse optical flow segments and the IWE. Comparing them with the ground
truth in Fig. 10 (a) reveals that the optical flow segments in Fig. 10 (b) accurately capture the motion between
consecutive frames in Fig. 10 (a).

A.2.5 VIDEO RESULTS

Please refer to our project page in the supplementary material: event_vfi/index.html for video
results, which clearly demonstrate that our reconstructions provide superior consistency and generalization
compared to other baselines.

A.3 THE USE OF LARGE LANGUAGE MODELS(LLMS)

In this study, Large Language Models (LLMs) were employed solely to improve the readability and polish
of the manuscript. No part of the substantive analysis, results, or interpretations was generated by LLMs.
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(b) Bidirectional Optical Flow & IWE
Figure 10: Illustration of the optical flow & IWE.
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B REBUTTAL APPENDIX

B.1 QUANTITATIVE AND QUALITY EVALUATION

For a comprehensive comparison, we adapt the VDM-EVFI Chen et al. (2024) method—originally based
on Stable Video Diffusion—to the Wan2.1 FLF2V Wan et al. (2025) backbone, and refer to this variant as
VDM-EVFI-Wan2.1. We retrain this model from scratch on our training set. To ensure fairness, we strictly
follow the same training configuration as our method, using 8 NVIDIA GPUs and maintaining the same
number of training iterations. We further include the non-generative interpolation method RIFE Huang et al.
(2022) as an additional baseline. All methods are evaluated under a ×24 interpolation setting across three
datasets: BS-ERGB, DAVIS, and Pexels. The quantitative results on the BS-ERGB test set are reported in
Tab. 5, while the results on DAVIS and Pexels are presented in Tab. 6. Qualitative visual comparisons are
illustrated in Fig. 11 and Fig. 12.

The quantitative and qualitative comparisons show that VDM-EVFI-Wan2.1 remains inferior to our method
even when equipped with the same backbone, demonstrating the effectiveness of our design. Furthermore,
the non-generative baseline RIFE exhibits clear limitations in large-motion scenarios, which further high-
lights the advantages of our approach.

Table 5: Quantitative comparison of the VFI performance on the BS-ERGB test dataset. Bold indicates the
best performance under the 24× interpolation setting.

BS-ERGB
Methods PSNR↑ SSIM↑ LPIPS↓ FID↓ FVD↓
RIFE Huang et al. (2022) 22.174 0.641 0.172 35.347 1113.496
TRF Feng et al. (2024) 14.078 0.4117 0.426 47.146 971.424
GI Wang et al. (2024) 16.964 0.518 0.311 33.082 588.371
ViBiD Yang et al. (2024) 15.525 0.475 0.352 39.027 788.652
FCVG Zhu et al. (2024) 17.809 0.546 0.302 26.832 726.752
Wan2.1-FLF2V Wan et al. (2025) 18.698 0.618 0.212 18.607 376.828
TimeLens Tulyakov et al. (2021) 24.704 0.699 0.165 43.808 851.523
CBMNet-Large Kim et al. (2023) 25.306 0.712 0.169 17.658 228.753
TimeLens-XL Ma et al. (2024) 21.737 0.678 0.248 47.155 710.688
VDM-EVFI-Wan2.1 Chen et al. (2024) 22.402 0.673 0.282 15.693 145.067
Ours 23.261 0.704 0.132 8.168 117.368

Table 6: Quantitative comparison on the VFI tasks on DAVIS and Pexels datasets (time × 24).
DAVIS Pexels

Methods PSNR↑ SSIM↑LPIPS↓ FID↓ FVD↓ PSNR↑ SSIM↑LPIPS↓ FID↓ FVD↓
RIFE Huang et al. (2022) 18.287 0.487 0.402 82.137 2028.480 21.820 0.634 0.274 80.118 1976.327
TRF Feng et al. (2024) 14.132 0.459 0.484 70.528 1373.954 16.737 0.600 0.400 109.516 1624.791
GI Wang et al. (2024) 14.850 0.467 0.406 55.067 1158.330 17.700 0.600 0.306 109.029 1212.097
ViBiD Yang et al. (2024) 14.811 0.456 0.448 55.343 1194.670 17.413 0.588 0.365 104.089 1335.211
FCVG Zhu et al. (2024) 16.162 0.509 0.385 48.839 1246.823 19.172 0.635 0.275 105.617 1481.806
Wan2.1-FLF2V Wan et al. (2025) 17.510 0.538 0.310 36.740 800.613 19.747 0.642 0.223 46.009 959.256
TimeLens Tulyakov et al. (2021) 22.913 0.632 0.352 102.191 1706.523 27.071 0.757 0.215 79.886 1093.200
CBMNet-Large Kim et al. (2023) 20.633 0.742 0.343 79.459 1164.145 23.429 0.799 0.292 81.449 840.820
TimeLens-XL Ma et al. (2024) 17.498 0.530 0.235 100.506 1438.467 26.241 0.789 0.224 82.760 557.176
VDM-EVFI-Wan2.1 Chen et al. (2024) 25.040 0.779 0.123 15.361 165.236 29.042 0.821 0.082 17.275 158.183
Ours 25.544 0.799 0.115 13.367 158.557 29.089 0.858 0.080 16.319 151.345
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Figure 11: Visual comparison between VDM-EVFI-Wan2.1 and our method on the BS-ERGB dataset.(time
× 24).

B.2 ADDITIONAL ABLATION STUDY

Impact of Different Input Features We evaluate all ablation settings on the BS-ERGB test dataset, and
the results are reported in Tab. 7, which indicates that both IWEs and flow warping are benefit for a better
performance.

Impact of Different Injection Blocks In this work, the Wan2.1 FLF2V backbone contains 40 blocks.
We choose the first two blocks as the injection points for our flow-based alignment and fusion module. To
further investigate the effect of injection position, we conduct additional ablation studies by inserting the
module into the middle two blocks and the last two blocks of the backbone. The corresponding results are
reported in Tab. 8. The results indicate that injecting temporal information into the last two blocks yields
better LPIPS, FID, and FVD scores, whereas injecting it into the first two blocks leads to better PSNR and
SSIM. In this work, we adopt the first two blocks as the injection position to prioritize reconstruction quality.

Impact of Different Event Representaion We conducted a literature review on event-based conditioning
and identified two representative approaches: the edge-based conditioning method proposed in CUBE Zhao
et al. (2024), which converts the event stream into an edge images, and the event voxel stack representation
used in VDM-EVFI Chen et al. (2024). We incorporated each of these event representations separately as
additional inputs to the Wan2.1 FLF2V by feeding them through an encoder that shares the same architecture
as our IWE encoder. The models were trained for 5,400 steps on an NVIDIA A800 GPU and evaluated on
the BS-ERGB dataset for fair comparison. The results are summarized in Tab. 9. These results demonstrate
that our event representation (IWE and Flow Warping) achieves consistently superior performance across all
metrics under the same backbone architecture and training settings.

20



940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

V
D

M
-E

V
FI

-W
an

2.
1

O
ur

s
G

T

i=12 i=18 i=20

Figure 12: Visual comparison between VDM-EVFI-Wan2.1 and Ours method on the Davis dataset (time ×
24).

Table 7: Ablation study on BS-ERGB test dataset of our method (time × 24).
Methods PSNR↑ SSIM↑ LPIPS↓ FID↓ FVD↓

w/o (IWE and flows) 17.390 0.578 0.241 22.233 678.026
w/o flows warping 22.751 0.685 0.126 9.207 124.715

w/o IWE 21.237 0.626 0.189 17.807 200.861
IWE & flow inputs 22.839 0.689 0.126 9.402 123.306

Full model 23.072 0.693 0.126 9.023 121.620

Table 8: Ablation study on BS-ERGB test dataset regarding the injection position of flow-guided blocks
(time ×24).

Injection Point PSNR↑ SSIM↑ LPIPS↓ FID↓ FVD↓
Last two blocks 22.814 0.691 0.120 8.986 108.093
Mid. two blocks 22.801 0.687 0.129 9.393 121.771
First two blocks 23.072 0.693 0.126 9.023 121.620

Table 9: Ablation study on BS-ERGB test dataset of different event conditions (time × 24).
Event Rep. PSNR↑ SSIM↑ LPIPS↓ FID↓ FVD↓

Edge Zhao et al. (2024) 17.703 0.599 0.227 23.204 755.380
Event Voxel Stack Chen et al. (2024) 21.311 0.611 0.205 18.447 228.950

Ours (IWE & Flow) 23.072 0.693 0.126 9.023 121.620
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B.3 ADDITIONAL ANALYSIS

B.3.1 CLARIFICATION ON THE NECESSITY AND ROLE OF EVENT STREAMS

The key advantage of using the raw event stream—rather than external or frame-derived optical flow—lies
in its temporal precision, motion observability, and optimization stability.

(1) Fundamental limitation of frame-based optical flow. Frame-based methods (PWC-Net Sun et al. (2018),
RIFE Huang et al. (2022), etc.) only observe motion at two discrete time points. As a result, they are
fundamentally unable to recover high-frequency or nonlinear motion occurring between the frames. No
matter how strong the model is, the intermediate dynamics remain unobserved. This inherent sampling-gap
issue explains the inferior performance of RIFE in our quantitative results (Tab. 5).

(2) Events provide dense temporal observations and enable accurate intermediate flow. Events record asyn-
chronous brightness changes at microsecond resolution, giving access to a dense stream of motion cues that
frames completely miss. This allows us to reconstruct optical flow and IWEs aligned to any intermediate
timestamp, supplying the “missing motion samples” that frame-based flow cannot provide.

(3) Segmented contrast maximization is essential for stable and accurate motion estimation. Using the
entire event span to estimate a single IWE leads to structure smear, inconsistent gradients, and a highly
non-convex contrast-maximization objective. In contrast, segmenting the event stream into T short intervals
(Eq. 6–7) ensures that the displacement within each segment is small and nearly linear, producing sharp
IWEs and reliable flow fields (Fig. 13(b)). The full-span IWE (Fig. 13(c)) clearly demonstrates the failure
mode—blurred textures and inaccurate motion.

(4) Temporally accurate flow is structurally required by our diffusion pipeline. Our diffusion model warps la-
tent features at multiple intermediate timestamps. Errors of even a few milliseconds accumulate across steps,
leading to geometric drift, ghosting, and motion inconsistency. Thus, the temporally coherent, segment-wise
flows from events are not only beneficial but necessary for stable latent warping and high-quality interpola-
tion.

(5) Compatibility with diffusion-transformer–based video generation models. Although alternative event
representations (e.g., voxel grids, edge/accumulation images) also encode temporal cues, they introduce sub-
stantial ambiguity and force the model to implicitly infer complex motion dynamics from high-dimensional,
entangled features. In contrast, our event-derived IWEs and optical flows—obtained via contrast maximiza-
tion—are explicit and physically interpretable descriptors of scene structure and pixel-wise motion. This
makes them inherently well aligned with diffusion-transformer architectures, which rely on accurate, struc-
tured warping of latent features during the denoising process. Our ablation study (in Tab. 9) corroborates
this design choice: substituting IWEs/flows with other event representations markedly increases the learning
difficulty and leads to noticeable degradation in interpolation quality. These results demonstrate that phys-
ically grounded event-based motion cues provide a far more effective supervisory signal for high-quality
frame synthesis.

Together, these points demonstrate that raw event streams provide essential temporal information, enable
stable flow estimation, and ensure correct motion propagation in the diffusion model—making them a critical
component of our interpolation framework.

B.3.2 ADDITIONAL DESCRIPTION OF EVPEXELS DATASETS

Acquisiton method: We constructed the EvPexels dataset through a two-stage filtering pipeline:

1. Coarse Filtering: We first queried videos from the Pexels website using semantic keywords such as
“urban street,” “human activity,” and other scene-relevant terms to collect a broad set of candidate
videos.
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Figure 13: Visual comparison of IWEs and optical flows generated from segmented event intervals versus
the full-span event interval.

2. Fine Filtering: Since many downloaded videos contain multiple shots—making them unsuitable
for frame interpolation—we applied TransNet V2 Soucek & Lokoc (2024) to detect and retain only
single-shot segments.

This pipeline yielded 1,100 high-quality, single-shot videos, each with a resolution of 704 × 480 and no
more than 500 frames. Finally, we used the Vid2e simulator Gehrig et al. (2020) to convert each video into
a corresponding event stream, resulting in the EvPexels dataset.

Scene patterns: The EvPexels dataset exhibits rich scene diversity. Specifically, it contains 223 videos
of nature landscape, 198 of forest, 170 of urban street, 119 of beach, and 117 of sports field. Additional
common scenes include indoor office (71), gym (49), kitchen (20), playground (16), highway (14), cafe (12),
parking lot (11), subway station (11), and shopping mall (10). There are also 59 videos categorized as other.
In total, these account for 1,100 videos, reflecting the dataset’s broad coverage of real-world environments.

Motion types: EvPexels captures a wide spectrum of motion dynamics, essential for evaluating video gen-
eration under realistic conditions. The dataset contains 402 videos featuring non-rigid deformation (e.g.,
cloth waving, human running), 226 videos with complex multi-agent motion (e.g., crowds, team sports),
and 170 videos dominated by pure camera motion (pan/tilt/zoom). It also includes 31 videos of rigid object
translation (e.g., moving vehicles), alongside examples of rotational motion (e.g., spinning fans or wheels,
12 videos) and oscillatory motion (e.g., bouncing balls or pendulums, 12 videos). The remaining 247 videos
belong to other motion categories, further enriching the diversity of temporal dynamics in the dataset.

Dataset Splits: For the training phase, we utilize all 1,100 videos contained within the EvPexels dataset.
This comprehensive set ensures a robust training foundation covering a wide range of scene types and motion
dynamics. For evaluation purposes, instead of using videos from the EvPexels dataset, we have curated an
additional set of high-motion videos exclusively from Pexels website. These evaluation videos are carefully
selected to ensure there is no overlap with the videos used in the EvPexels training dataset. This approach
guarantees an unbiased assessment of model performance on unseen data, accurately reflecting its capability
to generalize across different scenes and motion patterns.
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