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Abstract

This study aims to develop surrogate models for
accelerating decision making processes associ-
ated with carbon capture and storage (CCS) tech-
nologies. Selection of sub-surface CO2 storage
sites often necessitates expensive and involved
simulations of CO2 flow fields. Here, we develop
a Fourier Neural Operator (FNO) based model
for real-time, high-resolution simulation of CO2

plume migration. The model is trained on a com-
prehensive dataset generated from realistic subsur-
face parameters and offers O(105) computational
acceleration with minimal sacrifice in prediction
accuracy. We also explore super-resolution ex-
periments to improve the computational cost of
training the FNO based models. Additionally, we
present various strategies for improving the relia-
bility of predictions from the model, which is cru-
cial while assessing actual geological sites. This
novel framework, based on NVIDIA’s Modulus li-
brary, will allow rapid screening of sites for CCS.
The discussed workflows and strategies can be
applied to other energy solutions like geothermal
reservoir modeling and hydrogen storage. Our
work scales scientific machine learning models to
realistic 3D systems that are more consistent with
real-life subsurface aquifers/reservoirs, paving the
way for next-generation digital twins for subsur-
face CCS applications.
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1. Introduction
Carbon dioxide (CO2) capture and storage (CCS) is a critical
technology for decarbonization and achieving net zero emis-
sions and climate goals. The first step of CCS involves the
separation of CO2 from the gases produced by large power
stations or industrial plants. It is then transported to loca-
tions where it can be stored in geological formations below
the surface. The process involves integration of CO2 cap-
ture, compression, transport, and storage in the subsurface.
The theoretical capacity of CO2 storing in deep geological
formations globally is vast and far exceeds that required to
reach net-zero emissions (Rogelj et al., 2018; de Coninck &
Benson, 2014; Kelemen et al., 2019). Currently only a small
fraction of the potential global storage capacity is used. A
major challenge in identifying the most suitable sites for
storage is proving the containment of CO2 within a reservoir
post-injection. This is because CO2 can migrate over time
and potentially escape from the reservoir, posing a risk to
the environment. In addition, the reservoir pressure propaga-
tion caused by CO2 injection needs to be carefully managed
to avoid surface seismicity hazards. We need technological
advancements and breakthroughs to rapidly screen potential
sites for CO2 storage in a cost-effective and timely manner.

Historically, numerical simulations have been used to model
fluid flow and other physical phenomena in subsurface reser-
voirs and aquifers (Aziz, 1979; Ertekin et al., 2001). Exist-
ing reservoir simulators have been extended to model CO2

storage scenarios, but they can be computationally expen-
sive, as they require solving non-linearly coupled partial
differential equations (PDEs) (Nghiem et al., 2004; Wei &
Saaf, 2009). This can limit their use for studying the be-
havior of individual sites, especially when the subsurface
properties are uncertain. The challenge of computational
efficiency becomes even more pronounced for CCS site
screening applications. This is because a substantial number
of simulations are typically required to quantify the effects
of subsurface uncertainties. Uncertain subsurface variables
can include the dip of the formation, rock and fluid proper-
ties, and a wide range of reservoir engineering parameters
that govern the trapping of CO2 in the subsurface. To accu-
rately quantify the uncertainty surrounding the migration of
the plume and the buildup and dissipation of pressure, it is
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necessary to carry out a large number of simulations.

Several surrogate models have been developed in the re-
cent past for accurately capturing the dynamics for CO2

plume migration in the subsurface (Wen et al., 2021; Witte
et al., 2022; Grady et al., 2023; Falola et al., 2023; Witte
et al., 2023). In this study, we build on successes of FNO-
based models (Azizzadenesheli et al., 2024) and extend it to
larger and more practical subsurface representations using
NVIDIA’s Modulus package. We train our models on an ex-
tensive dataset of numerical simulations performed using a
realistic set of subsurface parameters. Along with surrogate
models that are O(105) faster than numerical simulations,
we present and evaluate several physics based accuracy met-
rics that are relevant for assessing and monitoring CCS sites,
such as CO2 plume migration and total mass in the reser-
voir. In an attempt to improve the computational efficiency
of our models, we explore super-resolution, a niche of op-
erator methods (Li et al., 2020b;c; Kovachki et al., 2023).
Additionally, we propose several strategies to enhance the
reliability of the models’ predictions, which is vital when
evaluating actual geological sites for CO2 storage such as
outlier detection and enforcing mass conservation using
physics informed loss functions (Li et al., 2021).

This paper is structured as follows: In Section 2 we discuss
the problem setup along with details of the numerical flow
simulations results that are used as training/testing data.
Section 3 describes our machine learning methodology. We
present and discuss results in Section 4.

2. Problem setup and dataset creation
To emulate realistic geological scenarios, we consider a
three-dimensional dipping box model with a layered strati-
graphic architecture. A schematic of the setup is shown in
Figure 1. For simplicity, a 2D representation of the box is
used in the schematic visualization; X, Y, and Z dimen-
sions are 100km, 3km, 0.3km respectively. The set of nine
input parameters considered in this study are reported in
Table 1, which are selected based on advice from domain
experts. Outputs are CO2 mass accumulation (mCO2

), gas
saturation (Sg), and change in pressure (δp). Two-phase
Darcy flow equations govern the dynamics of fluid flow
within the reservoir (Aziz, 1979).

After a grid sensitivity study we arrive at a final resolu-
tion that has 241 × 10 × 200 grid points in the X, Y, and
Z direction, respectively. The chosen grid is the lowest
resolution that captures the plume characteristics with the
accuracy necessary for site assessment. While creating dif-
ferent samples (training dataset), the active region of the
geometry changes based on the input parameters. In certain
cases, the CO2 plume reaches the edge of the active region
and accumulates because of the aquifer boundary condition

Table 1. Scalar parameters used for parameterizing CO2 storage
model and surrogate model development.

Parameters Type

Permeability, number of geological
layers, heterogeneity scale, reservoir
height

Geology (lay-
ering)

Reservoir dip angle Geology
Porosity Geology
Vertical-horizontal permeability ratio Geology
Reservoir Pressure Geology, Fluid
Reservoir Temperature Fluid

employed in the simulation.

The number of grid points is constant across all samples
leading to a simple data ingestion pipeline. We train the sur-
rogate model to predict the solution at eight time snapshots
(including the end-of-injection time) in the post-injection
period. These time snapshots are temporally spread out in a
logarithmic manner until the end-of-simulation time, which
is assumed to be a sufficiently long time at which migration
of the CO2 plume approximately comes to a halt. Our spatial
grid is also non-uniformly spaced with finer resolution near
the injection location. For modeling of CO2 storage, we use
20 years for injection period and 1000 years post-injection.
Our ML models are trained to predict CO2 plume migration
after injection period. Such long time forecasting has not
been carried out in previous machine-learning based CO2

plume migration studies that have predominantly focused
on the injection period and forecasting up to only O(10)
years (Wen et al., 2021; 2022; 2023; Jiang et al., 2023).

Inactive region

Ground Level

X

YZ

Dip 
Angle

Injection

Figure 1. Schematic of the layered reservoir geometries. Differ-
ent colors correspond to varying permeability. The parts of the
reservoir protruding above ground level (reservoir ceiling), shaded
in black, represent void-blocks (inactive regions), and changes
based on reservoir dip angle and other input parameters (first row
of Table 1).

Using a proprietary reservoir simulator for modeling multi-
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phase multicomponent flow in porous media (Alpak & Vink,
2018; Por et al., 1989; Regtien et al., 1995) we generate
10, 330 samples for training and 2, 593 for testing. A sepa-
rate validation set is not considered in this study as model
performance was fairly consistent across the chosen hyper-
parameter combinations. Our choice of hyperparameters
was based on previous studies of similar systems in sim-
plified geometries (Pawar et al., 2023; Wen et al., 2021).
Combinations of the nine input parameters are chosen using
Latin hypercube sampling. Ranges of these parameters are
documented in the Appendix A.1 (Table 3). Output vari-
ables of interest are: (a) CO2 gas saturation - Sg (b) CO2

mass accumulation - mCO2
(c) Change in pressure from the

initial state - δp.

3. Machine learning methods
3.1. Neural operators

Neural operators are capable of learning the relationships
between function spaces. They can map any parametric
functional input to its corresponding output function. Oper-
ator learning here involves predicting one function based on
other functions. In a physical system characterized by par-
tial differential equations (PDEs), the input functions could
be the initial condition u0 defined on the physical domain x,
the boundary condition ub and the forcing term f , defined
on physical temporal domain (x, t). The output in this case
would be a PDE solution u(x, t) at all x’s and t’s, where x
and t are the space and time coordinates, respectively. For
our problem, we define the domain D ∈ Rd be a bounded
and open set; V be the input function space defined on D
that takes values in Rdv ; and U be the output function space
on D that takes values in Rdu . The mapping between the
input function v and output function u is denoted by an
operator

G : V ∋ v → u ∈ U . (1)

We aim to approximate G with an operator Gθ from train-
ing data T = {(v(1), u(1)), (v(1), u(2)), . . . (v(m), u(m))},
where v(i) is drawn from a probability measure µ ∈ V and
u(i) = G(v(i)). Here θ refers to the trainable parame-
ters of the neural operator and we learn this operator Gθ by
minimizing the following problem with a cost functional C

argmin
θ

Ev∈µ

[
C
(
Gθ(v),G(v)

)]
. (2)

The Fourier neural operator (FNO) is an iterative architec-
ture that employs kernel integral operations to learn mapping
between two function spaces (Li et al., 2020a). In FNO, the
kernel integral operator is substituted with a convolution
operation defined in the Fourier space, i.e., the coefficients
of the Fourier series of the output functions are learned from
the data. The FNO consists of a lifting layer, a point wise

operator that maps the input co-dimension to higher dimen-
sional representation using a fully connected neural network,
then several Fourier layers, and finally the projection layer
that maps the high-dimensional output co-dimension of the
last Fourier layer to the output function. Several modifica-
tions have been proposed in the literature to apply FNOs to
input and output functions defined on various domains and
to handle complex geometry (Lu et al., 2022).

For the output of the l’th Fourier layer zl with dv channels,
the Fourier layer can be written as follows:

F−1
(
Rl · F(zl)

)
+Wlzl (3)

where

• F is the Fourier transform and is applied to each chan-
nel of zl separately. The higher modes of F(zl) are
truncated to retain only k modes for computational
efficiency. Thus, F(zl) has the shape k × dv .

• The Wl is yet another pointwise operator acting as a
residual connection.

• We then multiply each mode index of F(zl) with
a learnable weight matrix (complex number) of
shape dv × dv which form the weight matrix Rl ∈
C(dv×dv×k).

• Finally, we perform inverse Fourier transforms and
apply a point-wise nonlinear activation function of
choice. When the discretization grids are regular, the
approximate integral of Fourier transforms are carried
out using fast Fourier Transform (FFT). In the inverse
FFTR · F(zl) zeros fill in the truncated modes.

The residual layer term is added to the output of each of
the Fourier layers before it is passed through an activation
function. This bias term allows FNOs to handle data with
non-periodic boundary conditions as well as high frequency
components. We use the relative lp loss to train the neural
operator models. The loss function can be written as,

L(u, û) =
∥(u− û)∥p

∥u∥p
+α

∥
∫
V
mCO2 −

∫
V
m̂CO2∥p

∥
∫
V
mCO2

∥p
, (4)

where u is the ground truth, û is the predicted output,∫
V
mCO2 is the ground truth for total CO2 mass,

∫
V
m̂CO2

is the predicted total CO2 mass, p is the order of norm,
and α is the hyperparameter to assign a weight to the mass
conservation penalty term.

3.2. Software framework

Our workflow is based on NVIDIA’s open-source package
Modulus (NVIDIA Modulus Team). NVIDIA Modulus
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is a pytorch-based framework for scientific machine learn-
ing applications that provides an extensive collection of
network architectures and convenience functions for set-
ting up training and inference pipelines. Several hardware
and software optimizations are also implemented implic-
itly. In our work, we leverage the 4D FNO models that are
available in Modulus’ architectural library and heavily use
DistributedManager for scaling to multi-GPU and
multi-node settings. More details are provided in A.2.

4. Results and Discussion
Spatiotemporal distributions of mass of CO2 (mCO2) and
gas saturation (Sg) are two variables of interest, that are cor-
related to each other via phase densities. Another variable
of interest is the pressure change compared to the initial
pressure state, δp. Figure 2 shows 3D and 2D snapshots of
a specific sample. For spatiotemporal visualization, we use
mCO2 , which is mCO2 scaled by grid volume and porosity,
to obtain a better visual representation of the plume. In
all cases, a good match between ground truth (numerical
simulation) and ML prediction is observed. We evaluate
several global error metrics, both numerical and physical, to
assess the accuracy of our predictions.

4.1. Accuracy metrics

Figure 3(a) shows the mean absolute error (MAE) for the
two solution variables of interest; MAE is generally a good
metric for assessing the accuracy of the variables over the
entire domain. In addition, we monitor physical metrics
such as, p90[mCO2 ], which is the migration distance of the
90% plume mass contour from the injection location. In Fig-
ure 3 (b) we show the R2 correlation plots of this metric at
different points in time. With increasing time, the accuracy
decreases slightly, as the plume migrates. Metrics for pres-
sure (δp) need more careful consideration as global values
are not informative. Instead, we explore a few point-wise
(local) metrics for assessing the accuracy of the pressure
predictions of the FNO based model. Histograms of max-
imum point-wise error in δp across samples are shown in
Figure 3 (c). While most cases have a low error, there exists
a O(10) outliers. Although this metric provides us with an
upper bound, it is not a metric that cannot be easily evalu-
ated in realistic settings. While monitoring CCS sites, we
are often interested in the location where the maximum pres-
sure occurs – typically near the injection well. Thus, we
evaluate the prediction from the model at the location where
the true pressure is maximum. Red circles in Figure 3(d)
demonstrate the accuracy of the FNO model with respect
to this metric. Furthermore, for monitoring of CCS sites,
the pressure buildup at additional (site-specific) locations
can be important. To emulate this, while avoiding a location
bias, we randomly select a few additional locations from

our test set and assess predictions from our model at the
same location, as represented by the blue circles in Figure
3(d). In both metrics, we observe a R2 score greater than
0.97, suggesting that the model would provide reasonable
predictions in most cases.

4.2. Effect of weak imposition of mass conservation

While our models exhibit good accuracy in all the metrics
discussed in the previous subsection, an additional important
metric to assess model fidelity is CO2 mass conservation,∫
V
mCO2

. As we generally train our models with the rela-
tive L2 loss as shown in Equation 4 (with α=0), there is no
explicit constraint on the total mass conservation. There-
fore, to enforce better mass conservation, we explore loss
functions with finite values of α. Figure 4(a) shows the
distribution of relative errors in mass conservation for four
settings of α. The histograms are constructed considering
all time instances. In the base case, i.e. α = 0, not only
is the mean relative error (MRE) the highest, but several
outliers exist. Here, MRE is used instead of MAE in this
case to provide a more intuitive measure of the mismatch in
mass conservation. Amongst all the considered values of α,
MRE reaches a minimum α = 0.5. Other metrics are shown
in Figure 4(b). MAE(mCO2

) increases with increasing α
which is intuitive as the additional soft constraint indirectly
modifies this metric. At α = 0.5, an empirical optimum
is achieved, where MAE(Sg) and p90[mCO2 ] is compara-
ble to the base case. At the highest value of α, these error
metrics become worse, which is indicative of a harder opti-
mization problem. Other engineered loss functions, akin to
those explored by (Wen et al., 2022), could further improve
accuracy of predictions.

4.3. Super resolution

A key difference between neural operators and neural net-
works is the ability to learn functional mappings rather than
finite-dimensional approximations. Thus, a model trained
on a coarse-resolution data can yield predictions at a finer
resolution - this is regarded as super resolution. For inves-
tigating the accuracy of super-resolution experiments, the
ML models are trained and tested on a variety of resolu-
tions. ML(rt, ri) denotes that the model was trained on
resolution rt and inferred on ri, where rt and ri are se-
lected from the set of resolutions {cv, cd, f}. cv and cd are
volume-averaged and discrete representations of the vari-
ables of interest, respectively. Both types of down-sampling
reduces the number of grid points by a factor of two in the y-
direction. f is the original simulated (ground truth) data on
the finer grid. For comparison, the original simulated data,
Sim(f), is also down-sampled in the aforementioned ways,
and is represented by Sim(cv) and Sim(cd). It should be
noted that only the variables of interest (input and outputs)
undergo two types down-sampling operations. The spatial
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a) Reservoir geometry

Injection

b) 𝑚"!"! along XZ plane at Y=0 km 

c) Three-dimensional visualization of 𝑆#, 	𝑚"!"! 	(𝑘𝑔/𝑚
$), and  𝛿𝑝	(𝑏𝑎𝑟)

	𝑆!(test)                                                   𝑆!(pred) 𝛿𝑝(test)                                                 𝛿𝑝(pred)

log!"(𝐾)

t=20yrs

t=1020yrs

𝑚&"#$	(test)                                           𝑚&"#$(pred)

𝑚&"#$	(test)                              𝑚&"#$(pred)

Figure 2. Visualization of fields. (a) 3D permeability map of the reservoir along with injection location. Distance is measured in km and
permeability (K) in milliDarcy (mD). (b) mCO2 , measured in kg/m3, as viewed on the XZ plane (c) Cross sectional views of various
fields at the injection location. mCO2 and Sg are shown at final time whereas δp at initial time because of their respective importance in
decision making.

grid is always discretely downsampled. More information
regarding downsampling is provided in Appendix A.6.

Figure 5(a) shows the performance of models trained and
evaluated at various resolutions. All the metrics - MAE
for the MAE(Sg), MAE(mCO2

), and R2(p90[mCO2
])

- are evaluated with respect to numerical simulations.
[Sim(f),ML(f, f)], represented by black circles, is the
base case where the model was trained and evaluated on the
finer grid, and compared with simulated data on the finer
grid. Similarly, [Sim(f),ML(cv, f)], denoted by orange
squares, signify that the model was trained on a volume-
averaged coarse grid and inference was performed on a
fine grid, and compared against finer-grid numerical simula-
tions to obtain the different error metrics. In all cases and
through all time-instances, base case performs the best while
[Sim(cd),ML(cd, cd)] performs the worst. The advantage
of neural operators is predominantly demonstrated by the
’orange squares’. Even though these cases were trained on a
volume-averaged representation of variables, the error met-
rics closely follow the base case. The [Sim(f),ML(cd, f)]
comparison is slightly worse than the volume-averaged case
as our grid is non-uniform and volume-averaging embeds
more physical information. Snapshots mCO2

on two planes
spanning the y-direction at the injection location are shown
in Figures 5(c) and (d). In all cases, ML(cv, f) represents
ML(f, f) more closely as compared to ML(cd, f). Errors
are more prominent closer to the geometrical boundaries

(Y = 30km) due to coarser grid spacing.

4.4. Outlier detection

While the developed surrogate models allow rapid predic-
tion of p90[mCO2

] for various geologic scenarios, in certain
conditions, the predictions can be misleading. Generally,
a slight reduction in overall accuracy is expected and ac-
ceptable due to geologic uncertainties, but highly deviating
predictions can be misleading. In, Figure 6, we present a
methodology for detecting outliers based on model uncer-
tainties. Slightly changing the hyperparameters (decoder
width, Fourier modes, number of FNO layers) of the model
leads to similar training and validation performance, as
shown in Figure 6(a). Details of the considered models are
presented in Appendix A.3. The migration distance of the
90 percent of the (vertically integrated) CO2 plume mass,
p90[mCO2

], is one of the most important metrics for CCS
applications, thus we use this variable to tailor our outlier
detection technique. In Figure 6(b) we show that the stan-
dard deviation of the prediction of plume mass migration
distance, σ(p90[mCO2

]), has a strong positive correlation
with the prediction error of this variable. While deploying
the model (during inference), the error in p90[mCO2

] can-
not be evaluated; therefore, this correlating behavior can
be exploited to point out high error samples, i.e., the out-
liers. Figure 6(c) shows R2 correlations of plume mass

5



Fourier Neural Operator based surrogates for CO2 storage in realistic geologies

b)    CO2 plume mass migration distance (𝑝!"[𝑚#$!])a)  Error metrics for 𝑚#$! and 𝑆%

d)    Pointwise pressure (𝛿𝑝) comparison: max. and randomc)   𝐿&'( error of pressure (𝛿𝑝) at 
end of injection

Figure 3. Error metrics (a) MAE for mCO2 and Sg , with < MAE > representing average in time (b) R2 correlation plots of 90% plume
mass migration distance. (c) Maximum pointwise error in δp (d) [red circles] R2 correlation plots of δp at maximum pressure location
corresponding to the test sample. [blue circles] Correlation plots δp for randomly selected locations within the active domain of the test
sample.

migration distance of samples selected based on different
σ(p90[mCO2 ]) values. No cutoff represents the base case;
increasing value of σcutoff represents a stricter removal of
outlying samples and hence a reduction in the R2 values.
This methodology can be used to identify unreliable predic-
tions from the surrogate model and run additional numerical
simulations to enrich the training dataset as needed.

4.5. Model performance

Lastly, we discuss the computational speedup of our model
compared to numerical simulation. Training data is gener-
ated using an in-house proprietary simulation package for
subsurface flows. The hardware used to produce a training
sample consists of 4 physical cores of Intel Cascade Lake
CPUs. The two ML models, ML(mCO2

, Sg) and ML(δp),
are trained on 8 NVIDIA A100 GPUs and inferred on 1
NVIDIA A100 GPU. Typically, our models are trained for
100 epochs. Table 2 provides computational times for gen-
erating a sample of training data, training a model, and
inference. Inference times on a AMD EPYC 7763 CPU,
which is O(20) slower than GPU inferencing, is presented
as a reference; in all our cases, we perform inference on
GPU. The training and inference times for the ML model

predicting δp are similar to ML(mCO2 , Sg). Hyperparam-
eters and architectural details are presented in Appendix
A.3. During GPU inference, using our ML model provides
a speed-up of O(105) with respect to numerical simulations.

Table 2. Run times for training data generation, ML model (Sg ,
mCO2 ) training and inference. Time is reported in either GPU or
CPU (Intel Cascade Lake‡, AMD EPYC 7763†) seconds.

Case type Run time

Simulation (per sample) 3.037× 104 CPU‡ sec
ML infer. (per sample) 1.780× 10−1 GPU sec
ML infer. (per sample) 3.329 CPU† sec
ML train (per epoch) 7.205× 103 GPU sec

A fair and exact comparison between numerical simulation
and ML models based on runtime is not possible, as they
were run on different hardware. However, we show a simple
break-even analysis using CPU hr as computational unit
for numerical simulation and GPU hr as unit for ML mod-
els. Total time for generating the entire training dataset ac-
counts to tgen = 3.037×104 CPU sec×12 923 samples =
1.090×105 CPU hr. The total times for training and valida-
tion of a single ML model are, ttrain = 100 epochs ×
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𝛼 = 0 𝛼 = 0.2 𝛼 = 0.5 𝛼 = 1.0

𝛼 = 0
(base)

𝛼 = 0.2 𝛼 = 0.5 𝛼 = 1.0

a)  Model performance with mass conservation (∫ 𝑚!"!# ) constraint

b)   Other error metrics for 𝑚!"! and 𝑆$

Figure 4. Performance metrics when a soft constraint on total mass in the system is imposed (a) Mean relative error (MRE) of total mass,∫
V
mCO2 , over all time instances as weighing factor in the loss function (α) is varied. (b) MAE for mCO2 and Sg along with R2 of

p90[mCO2 ]

7.205 × 103 GPU sec = 200.138 GPU hr and tvalid =
1.780 × 10−1 GPU sec × 2593 samples = 0.128 GPU hr
respectively. Therefore total time spent building the two
ML models is, tML−develop = tgen + 2(ttrain + tvalid) =
1.094 × 105 hr. The factor of two is due to the fact that
ML(δp) is developed as a separate model, and both models
require similar training and validation times.

In a typical screening setting, around 20, 000 Monte Carlo
simulations are required for generating a diverse range of
scenarios. The total computational time for developing
the ML models and inferencing 20, 000 samples sums up
to, tML−develop + (20, 000 × 2 × 1.780 × 10−1 sec) =
1.094×105+1.978 hr = 1.094×105hr. Producing 20, 000
samples through numerical simulation requires 20, 000 ×
3.037 × 104 sec = 1.687 × 105 hr. Therefore, just one
site assessment justifies training an ML model. The fully-
trained model can be applied to numerous screening tasks,
amplifying the benefits of our approach.

5. Summary and Conclusions
In this study, we have developed a model based on
the Fourier Neural Operators (FNO) for real-time, high-
resolution simulation of CO2 plume migration. This model
is trained on an extensive dataset derived from realistic sub-
surface parameters. During inference, we observe a speedup
of O(105) over traditional numerical simulators of CO2

flow fields with minimal reduction in accuracy. Along with
fast surrogate models, we present and assess several physics
based accuracy metrics that are relevant for assessing and
monitoring CCS sites. In an attempt to improve the com-
putational efficiency of our models, we explore training on
coarser grid, that is created by downsampling a simulation
created on a fine grid, and finally evaluating on a finer grid.
Our experiments suggest that training on a coarse grid and
evaluating on a finer grid has better accuracy than a case
where the model is trained and evaluated on a coarse grid.
This is a niche capability of a neural operator. Using uniform
grids would further improve the accuracy of the models. Ad-
ditionally, we propose several strategies – outlier detection,
enforcing mass conservation – to enhance the reliability of
the model’s predictions, which is vital when evaluating ac-

7



Fourier Neural Operator based surrogates for CO2 storage in realistic geologies

Sim. 𝑀𝐿(𝑓, 𝑓) 𝑀𝐿(𝑐! , 𝑓) 𝑀𝐿(𝑐" , 𝑓)

𝑡#
(1020𝑦𝑟𝑠)

𝑡$
(20𝑦𝑟𝑠)

d) 𝑚"!"! fields (Z=0km)

a)  Error metrics for super 
resolution experiments 

[𝑆𝑖𝑚(𝑓),𝑀𝐿 𝑓, 𝑓 ] [𝑆𝑖𝑚(𝑓),𝑀𝐿 𝑐!, 𝑓 ] [𝑆𝑖𝑚(𝑐!),𝑀𝐿 𝑐!, 𝑐! ]
[𝑆𝑖𝑚(𝑓),𝑀𝐿 𝑐", 𝑓 ] [𝑆𝑖𝑚(𝑐"),𝑀𝐿 𝑐", 𝑐" ]

𝑡$
(20𝑦𝑟𝑠)

c) 𝑚"!"! fields (X=50km)
Sim. 𝑀𝐿(𝑓, 𝑓) 𝑀𝐿(𝑐! , 𝑓) 𝑀𝐿(𝑐" , 𝑓)

𝑡#
(1020𝑦𝑟𝑠)

Z=0km X=50km

b) Permeability fields across cross-sections

Figure 5. Super resolution experiments (a) Error metrics for different cases – base case (black circles), model trained on vol. avg coarse
grid and evaluated on fine grid (orange square), model trained on vol. avg coarse grid and evaluated on vol. avg coarse grid (orange
triangle), model trained on discretely down-sampled coarse grid and evaluated on fine grid (blue square), model trained on discretely
down-sampled coarse grid and evaluated on discretely down-sampled coarse grid (blue triangle), (b, c, d) 2D visualization of fields along
the Y axis.

t=1020yrs

a)  ML models: 𝑀𝐿 !,#,$,%

Train
Valid

b)  Correlation of errors and 
std. dev. (𝜎) of predictions

c)  𝑅# of 𝑝&' 𝑚()! for different 𝜎*+,-..: None, 1 km, 0.5 km

Figure 6. Detecting outliers based on ensemble models. (a) Training statistics of four ML models with slightly varying hyperparameters.
All four models have similar performance. (b) Variation of standard deviation of 90% plume mass plume migration distance prediction
from four ML models with absolute error in plume mass plume migration distance. (c) R2 correlation of samples down-selected based on
standard deviation of 90% plume mass plume migration distance prediction

tual geological sites. Our methodologies and strategies can
be potentially extended with some domain-specific adapta-
tions to other energy solutions such as geothermal reservoir
modeling and hydrogen storage. Our work scales up scien-

tific machine learning models to realistic 3D systems that
more consistent with real-life subsurface aquifers/reservoirs,
and builds a foundation for advanced screening tools for
subsurface CCS applications.
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A. Appendix
A.1. Input variables

Ranges of various input variables are shown in Table 3. All the reported values are scalars - permeability fields are generated
using a proprietary algorithm scripted in our in-house flow simulator.

Table 3. Ranges of scalar parameters used for parameterizing CO2 storage model and surrogate model development

Parameters Range

Base permeability (log10, base 1mD) (1, 3.30)
Number of geological layers (2, 20)d
Heterogeneity scale (0, 1)
Reservoir height (m) (15, 300)
Reservoir dip angle (degrees) (0, 6)
Porosity (0.05, 0.35)
Vertical-horizontal permeability ratio (log10) (-6, 0)
Reservoir Pressure (bar) (100, 300)
Reservoir Temperature (oC) (25, 135)

A.2. Architectural modifications

In NVIDIA Modulus, FNO models can be constructed by a simple function call providing configurations such as the number
of FNO layers, number of modes and activation functions. NVIDIA Modulus being open-source in combination with its
modular design enables additional customisation of the FNO architectures. Listing 1 provides pseudo code for customising
the lift layer akin to the models used in this work.

Listing 1. Pseudocode for changing the lift layer of FNO to a linear transormation.
c l a s s CustomFNO4DEncoder ( modulus . models . fno . FNO4DEncoder ) :

def b u i l d l i f t n e t w o r k ( s e l f ) :
s e l f . l i f t n e t w o r k = t o r c h . nn . S e q u e n t i a l ( )
s e l f . l i f t n e t w o r k . append (

L i n e a r ( s e l f . i n c h a n n e l s , s e l f . fno modes )
)

Other methods used from NVIDIA Modulus are logging routines and the DistributedManager. The
DistributedManager provides a singleton class for setting up the parallel environment by assigning available devices,
carrying out optimisations like clearing device cache and automatically choosing the communication backend based on the
availability of NCCL.

A.3. Model architecture and hyperparameters

In all base cases domain size is nx, ny, nz, nt = 214, 10, 200, 8 and hyperparameters are shown in Table 4.

It should be noted that the number of input dimensions are 10 – 6 field variables and 4 coordinates corresponding to x,y,z, and
t. For super resolution experiments, dimensions are (nx, ny, nz, nt = 214, 5, 200, 8) and 2 modes are retained in the y direction.
For outlier detection, the three additional models (in addition to the base case) are created by changing the following
hyperparameters independently w.r.t the base case – padding=2, latent channels=48, fno layers=8.
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Parameter Value
Decoder

layers 1
layer size 128

FNO
dimension 4
latent channels 36
fno layers 6
fno modes [10,5,10,5]
padding 0

Scheduler
initial lr 1.E-3
decay rate .95
decay epochs 2

Table 4. Deep Learning Model Configuration

A.4. Visualization of various output variables

𝑆!(test)                              𝑆!(pred) 𝑆!(test)                              𝑆!(pred)

𝑆!(test)                              𝑆!(pred)𝑆!(test)                              𝑆!(pred)𝑆!(test)                              𝑆!(pred)

𝑆!(test)                              𝑆!(pred) 𝑆!(test)                              𝑆!(pred)𝑆!(test)                              𝑆!(pred)

Figure 7. Comparison of Sg-test and Sg-pred of a specific sample at different time instances
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𝑚"!"! 	(test)                         𝑚"!"!(pred) 𝑚"!"! 	(test)                         𝑚"!"!(pred)

𝑚"!"! 	(test)                         𝑚"!"!(pred)𝑚"!"! 	(test)                         𝑚"!"!(pred)𝑚"!"! 	(test)                         𝑚"!"!(pred)

𝑚"!"! 	(test)                         𝑚"!"!(pred) 𝑚"!"! 	(test)                         𝑚"!"!(pred) 𝑚"!"! 	(test)                         𝑚"!"!(pred)

Figure 8. Comparison of mCO2 -test and mCO2 -pred of a specific sample at different time instances

𝛿𝑝(test)                                    𝛿𝑝(pred) 𝛿𝑝(test)                                    𝛿𝑝(pred)𝛿𝑝(test)                                    𝛿𝑝(pred)

𝛿𝑝(test)                                    𝛿𝑝(pred) 𝛿𝑝(test)                                    𝛿𝑝(pred)𝛿𝑝(test)                                    𝛿𝑝(pred)

𝛿𝑝(test)                                    𝛿𝑝(pred) 𝛿𝑝(test)                                    𝛿𝑝(pred)

Figure 9. Comparison ofδp-test and δp-pred of a specific sample at different time instances
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A.5. Mass Conservation

𝛼 = 0.5

Figure 10. Mean relative error in total mass conservation at different times when α = 0.5

A.6. Downsampling strategies

We choose to create our coarsened representation in two ways: (a) Volume averaged downsampling - The field variables
are volume averaged (b) Discrete downsampling - every other point from the original grid is selected. A schematic of our
methodology is shown in Figure 11. Note that in all our cases, downsampling is only performed in the y-direction. The grid
(X, Y, Z) coordinates is always discretely picked - no volume averaging is performed.

(a) Volume averaged down-sampling 

Values

x

x

Values

(a) Discrete down-sampling 

Figure 11. Different downsampling strategies
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