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Abstract. While deep learning methods have shown great potential
in the context of medical image segmentation, it remains both time-
consuming and expensive to collect sufficient data with expert annota-
tions required to train large neural networks effectively. However, large
amounts of unlabeled medical image data is available due to the rapid
growth of digital healthcare and the increase in availability of imaging
devices. This yields great potential for methods which can exploit large
unlabeled image datasets to improve sample efficiency on downstream
tasks with limited amounts of labeled data. At the same time, deploying
such models in real-world scenarios poses some limitations in terms of
model size and required compute resources during inference. The 2022
MICCAI FLARE Challenge tries to address both these aspects in a task
where participants can make use of 2000 unlabeled, as well as 50 labeled
images, while also measuring inference speed, CPU utilization and GPU
memory as part of the evaluation metrics. In the context of this chal-
lenge, we propose a simple method to make use of unlabeled data: The
noisy nnU-Net student. Here the unlabeled data is exploited through
self-training, where a teacher model creates pseudo labels, which in turn
are used to improve a student model of the same architecture. We show,
based on results in a cross-validation and a separate held-out dataset,
that this simple method yields improvements over even a strong base-
line (+2 DSC), while simultaneously reducing inference time by an order
of magnitude, from an average of over 500s to roughly 50s, and peak
memory requirements by almost a factor of two.
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1 Introduction

The MICCAI FLARE 2022 challenge is concerned with multi-organ segmenta-
tion from abdominal CT scans. The dataset consists of 2000 unlabeled CT scans
and 50 labeled CT scans. This represents a challenge often faced in practice,
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where medical images are readily available, but expert annotations are scarce
due to their expensive and time-consuming nature. A successful method in this
context has to make efficient use of the unlabeled images in addition to the
labeled set. Additionally, the FLARE 2022 challenge not only evaluates via es-
tablished segmentation metrics, but also measures CPU utilization and GPU
memory during inference. This poses limits on the model size and pre-/post-
processing used. Being able to efficiently run inference for segmentation models
is often a necessary step for their application in clinical practice, where long
inference times can be prohibitive. We address the challenges of this efficiency-
focused semi-supervised setting by choosing a moderate architecture size paired
with self-training based on noisy student training [9].

The main contributions of this work can be summarized as follows:

– We propose a simple extension to the proven nnU-Net framework using self-
training with an ensemble of teacher models and a noisy student model of
the same network architecture.

– With some small architecture and preprocessing adaptations, we greatly re-
duce the memory footprint of the proposed method, while sacrificing only
little performance compared with a larger model.

– Through a lightweight inference and resampling scheme, we greatly reduce
the resource requirements and inference time compared to nnU-Net.

– We evaluate the effectiveness of the proposed method in the context of the
FLARE 2022 challenge, where we achieve performance improvements over
even a strong baseline.

2 Method

We propose a method based on the nnU-Net framework [5]. To make use of the
large unlabeled dataset, we implement noisy student training, inspired by [9],
with additional fine-tuning. Additionally, we propose several inference strategies
detailed in Section 2.3 to reduce resource consumption during inference.

2.1 Preprocessing

Following [5], we make use of the following preprocessing steps:

– Cropping the individual scans to non-zero region.
– Global dataset intensity percentile clipping and z-score normalization with

global foreground mean and standard deviation.
– Resampling to median spacing for each axis.

The intensity percentile clipping and normalization based on global fore-
ground mean and standard deviation are employed due to the CT scan values
representing physical properties, which should be retained in the preprocessed
state.
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2.2 Proposed Method

The proposed noisy nnU-Net student is inspired by noisy student training
[4,9], based on the nnU-Net framework [5]. Here, we distill the knowledge of an
ensemble of teacher models into the student by using pseudo labels created by the
teacher ensemble. In knowledge distillation, the student model is often chosen to
be of smaller capacity to aid in scenarios where the teacher model is too expensive
to deploy in a real-world use-case. We instead opt to use the same architecture for
both teacher and student. This was shown to yield performance improvements
in the context of image classification [9]. A schematic overview of the U-Net
architecture used is illustrated in Figure 1. This architecture represents a slight
adaptation from the full resolution 3D nnU-Net [5,7], where the base number of
convolutional filters is reduced to achieve a smaller memory footprint.

We first train the teacher model in a standard nnU-Net training scheme
on the labeled portion of the FLARE 2022 challenge dataset. This results in
5 different teacher models trained in a 5-fold cross-validation. To create robust
pseudo labels for the following student training, we ensemble the predictions
from all 5 teacher models by averaging the softmax outputs of the individual
models before creating the hard pseudo labels. For simplicity reasons, we make
use of hard pseudo labels to train the student model, instead of soft labels as
proposed in [9]. The student model largely follows the same setup. However we
sample the training batch by using both labeled samples, as well as unlabeled
samples with pseudo labels, in the same minibatch. We balance the two datasets
by using 3 times as many samples from the pseudo labeled set in every minibatch.
To introduce additional noise for the student, we make use of a stronger data
augmentation scheme for the student training, see Section 3.3. In a final stage,
we fine-tune the resulting model using only the labeled training cases.

2.3 Inference optimization

Apart from the Dice Similarity Coefficient and the Normalized Surface Dice, the
2022 MICCAI FLARE challenge tracks three additional metrics related to infer-
ence resource consumption and speed, which contribute to the overall ranking.
These metrics are the area under GPU memory-time curve, the area under CPU
utilization-time curve, as well as the running time per sample. On top of that,
the challenge requires a hard memory limit of 28 GB.
Originally, nnU-Net was not designed with these resource consumption met-
rics in mind, and instead aims to make efficient use of a given GPU memory
setup, optimizing for a maximum of GPU memory and utilization during train-
ing to increase segmentation performance. This also impacts nnU-Net’s resource
consumption during inference. To adapt nnU-Net for the resource consumption
metrics used in this challenge, we propose several inference strategies detailed
below.

As mentioned in Section 2.2, we adapt the 3D nnU-Net architecture to use
fewer filters per convolutional layer. This achieves a smaller memory footprint
during both training and inference.
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Fig. 1. Schematic of the U-Net architecture used for both the teacher and student
model. It represents the network architecture proposed by nnU-Net [5], however with
half the base number of features. The number of features is then progressively doubled
up to the network’s bottleneck.

Staying within the challenge’s memory limit of 28 GB during inference on at
times very large CT scans is a challenging task when using 3D segmentation
networks, as the resampling of softmax outputs or segmentation maps to the
desired target spacing requires a lot of memory. In this context, we switch the
default order of operations usually employed by nnU-Net when creating the final
segmentation maps from the network’s softmax outputs. Instead of resampling
the softmax outputs directly, we instead first create segmentation maps before
resampling to the target spacing, as this represents a more computationally effi-
cient operation. Additionaly, we only make use of nearest neighbor interpolation
during resampling. While this might come at a segmentation performance cost,
this greatly reduces the memory footprint during inference, while simultaneously
reducing inference time by roughly an order of magnitude on average. The re-
sulting resource consumption improvements are shown in Table 1. We note that
without these adaptations, for 7 out of 50 validation cases, the memory limit
would be surpassed. However, these improvements in resource consumption and
inference time come at a small cost of increased CPU utilization.

2.4 Post-processing

We do not make use of any post-processing in the context of this challenge.
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Table 1. Comparison of resource consumption metrics during inference on the valida-
tion dataset. Best results are highlighted in bold. *Seven cases resulted in peak RAM
above 28 GB.

Inference metric nnU-Net low-footprint nnU-Net noisy nnU-Net student
Mean Peak RAM 22.69 GB∗ 23.07 GB∗ 13.78 GB
Mean GPU memory 5.911 GB 1.834 GB 1.722 GB
Mean CPU utilization 3.87 % 3.9 % 4.38 %
Mean inference time 535.4 s 122.3 s 53.5 s

3 Experiments

3.1 Dataset and evaluation measures

As per official challenge documentation, the FLARE2022 dataset is curated from
more than 20 medical groups under the license permission, including MSD [8],
KiTS [2,3], AbdomenCT-1K [6], and TCIA [1]. The training set includes 50
labeled CT scans with pancreas disease and 2000 unlabeled CT scans with liver,
kidney, spleen, or pancreas diseases. The validation set includes 50 CT scans with
liver, kidney, spleen, or pancreas diseases. The testing set includes 200 CT scans,
where 100 cases show liver, kidney, spleen, or pancreas diseases and the other
100 cases has uterine corpus endometrial, urothelial bladder, stomach, sarcomas,
or ovarian diseases. All the CT scans only have image information and the center
information is not available.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve. All measures will be used to compute the
ranking. Moreover, the GPU memory consumption has a 2 GB tolerance.

3.2 Dataset splits

For model selection, we make use of a 5-fold cross-validation split, resulting in
40 training cases in each fold in the case of the labeled dataset. During the
training with the joint labeled and pseudo labeled dataset, we re-use the same
cross-validation splits for the labeled samples and add all pseudo labeled scans
to each respective fold’s training set.

3.3 Implementation details

Environment settings The environments and requirements are presented in
Table 2. We note that while development was done in this environment, the
training runs were performed on a GPU cluster node with different hardware.
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Table 2. Development environment and requirements.

Windows/Ubuntu version Ubuntu 20.04.2 LTS
CPU AMD Ryzen 9 3900X 12-Core CPU@3.80GHz
RAM 4×16DDR4@3.60GHz

GPU (number and type) 1 Nvidia GeForce RTX 2080Ti 11G
CUDA version 11.3
Programming language Python 3.9.7
Deep learning framework Pytorch (Torch 1.10.2)
Specific dependencies nnunet

Training protocols For training both the teacher and student model, we follow
the general training protocol detailed in Table 3. However, the training protocols
differ in terms of data augmentation strategies employed. For the initial teacher
models, we use the data augmentation strategy described in Table 4. We make
use of nnUNet’s deep supervision loss based on equally weighted dice and cross-
entropy loss terms.

After training the 5 teacher models to convergence, we ensemble their pre-
dictions on the unlabeled samples to create pseudo labels for the student model.

Table 3. Training protocol.

Network initialization “he" normal initialization
Training mode Mixed precision
Batch size 4
Patch size 40×224×192
Total epochs 1000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Poly (exponent 0.9)
Training time (5 initial teacher models) 5 × 36 hours
Training time (student model) 36 hours
Training time (fine-tune) 2.7 hours
Loss function Combined Dice and Cross-Entropy loss

Using the pseudo labels created by the teacher models, we then train the
student model. For this training, we again follow the protocol from Table 3, but
use more extensive data augmentation, as detailed in Table 5. We then select the
best-performing student model based on a 5-fold cross-validation, and perform
an additional fine-tuning using just the labeled training data, again following
the protocol from Table 3. The resulting model is used as the final model for
test set inference.
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Table 4. Data augmentation strategy for the teacher model. psample refers to a prob-
ability to apply this augmentation on a sample level, while pchannel and paxis are used
on a channel and axis level, respectively.

Rotation Angle range: [-30°, 30°]
Scaling Scale range: [0.7, 1.4]
Gaussian noise psample=0.1, σ2=[0.0,0.1]
Gaussian blur psample=0.2, pchannel=0.5, σ=[0.5,1.0]
Brightness (multiplicative) psample=0.15, Multiplier range: [0.75,1.25]
Contrast psample=0.15, Contrast range: [0.75,1.25]
Simulate low resolution psample=0.25, pchannel=0.5, Zoom range: [0.5,1.0]
Gamma correction psample=0.1, Gamma range: [0.7,1.5]
Mirroring psample=1.0, paxis=0.5

Table 5. Data augmentation strategy for the student model.

Rotation Angle range: [-30°, 30°]
Scaling Scale range: [0.7, 1.4]
Gaussian noise psample=0.15, σ2=[0.0,0.1]
Gaussian blur psample=0.2, pchannel=0.5, σ=[0.5,1.5]
Brightness (multiplicative) psample=0.15, Multiplier range: [0.7,1.3]
Contrast psample=0.15, Contrast range: [0.65,1.5]
Simulate low resolution psample=0.25, pchannel=0.5, Zoom range: [0.5,1.0]
Gamma correction psample=0.15, Gamma range: [0.7,1.5]
Mirroring psample=1.0, pperaxis=0.5
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Testing protocols We use the same preprocessing as used during training
and use the best student model, as determined in cross-validation, for test set
inference. To reduce the memory footprint both for GPU VRAM and RAM,
we predict using FP16 precision mode and don’t use test-time augmentation,
while also up-sampling segmentation maps using nearest neighbor interpolation,
as detailed in Section 2.3.

4 Results and discussion

4.1 Quantitative results for 5-fold cross-validation

We show ablation analysis results of using noisy student training for the low-
footprint nnU-Net network in Table 6. In this cross-validation ablation, we can
see a noticeable benefit of the proposed noisy student training regarding the
mean foreground Dice score. This suggests that self-training with a noisy student
can be an effective way to leverage unlabeled images in the context of medical
image segmentation.

Table 6. Quantitative results for 5-fold cross-validation in terms of mean DSC. The
low-footprint nnU-Net refers to the reduced architecture as shown in Figure 1.

Training scheme Mean foreground DSC (all classes)
low-footprint nnU-Net 93.5 ± 0.4
low-footprint nnU-Net
(w. noisy student training) 94.0 ± 0.4

4.2 Quantitative results on the validation and test set

While cross-validation results yield first performance indicators, we perform a
more thorough evaluation of the proposed method on 20 held-out cases. Ta-
ble 7 illustrates the results on this validation set. As expected, we can observe
a clear performance degradation when moving from the original architecture to
the low-footprint model, which also represents one individual teacher model used
for ensembling the pseudo labels. This is most likely due to the reduced capacity
and lack of additional learning signal from the pseudo labeled data. We note that
this low-footprint model was necessary to obtain the GPU memory consumption
reported in Table 1.
However, the proposed noisy nnU-Net student is able to compensate for the
reduced model capacity and even substantially improve upon the strong nnU-
Net baseline. This is represented also in most individual class metrics, in both
the DSC and NSD. Only the right adrenal gland shows performance which is
markedly worse than the baseline.
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This performance is also reflected in the held-out test set, where the proposed
noisy nnU-Net student achieved 87.4 DSC and 91.68 NSD, which is in line with
the validation results, if not slightly better. For this reason, we believe the val-
idation results are a reliable indicator of general performance gains with the
proposed method.

Table 7. Quantitative results on the validation dataset in terms of mean DSC/NSD
per class and overall. The best results per metric are highlighted in bold.

Class nnU-Net low-footprint nnU-Net noisy nnU-Net student
DSC NSD DSC NSD DSC NSD

Liver 96.73 94.33 96.5 94.43 97.58 97.43
Right Kidney 85.2 83.59 80.44 77.3 86.61 85.88
Spleen 93.87 92.25 92.45 91.16 95.75 95.32
Pancreas 82.11 91.04 83.86 92.4 84.05 93.4
Aorta 97.13 98.52 96.96 98.25 96.58 98.8
Inferior Vena Cava 87.64 87.25 87.22 87.02 88.17 88.36
Right Adrenal Gland 85.43 94.95 80.27 89.73 80.73 90.94
Left Adrenal Gland 88.23 96.96 82.7 91.71 88.13 97.57
Gallbladder 57.19 56.91 62.95 62.0 67.18 66.31
Esophagus 86.01 92.72 83.92 90.3 88.56 96.16
Stomach 87.82 88.41 80.82 84.68 88.4 90.95
Duodenum 71.94 84.83 74.07 86.74 77.75 89.7
Left Kidney 86.2 85.73 82.51 79.83 91.13 91.01
Mean 85.04 88.27 83.44 86.58 86.97 90.91

4.3 Qualitative results

We present segmentation results on an easy, as well as a hard sample in Figure 2.
In the top row we can attest the proposed method a clear improvement over the
low-footprint model without using the unlabeled data via noisy student training,
while showing similar shortcomings as the original nnU-Net, as can be seen e.g.
from the class confusion in the lower left side of the shown segmentation maps.
As the example in the bottom row of Figure 2 shows however, the model is
still susceptible to confusing e.g. the left and right kidney. Such failure cases
could potentially be decreased by more involved postprocessing and ensembling
of multiple models, which in turn comes at the cost of slower inference speeds.

5 Conclusion

We conclude that the proposed method of self-training with a noisy student can
lead to performance improvements even over strong baselines such as the nnU-
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Fig. 2. Qualitative results on a rather easy (case 2, top) and a rather hard (case
23, bottom) example from the validation set. The first column shows the prediction
by nnU-Net, the second column the prediction by the low-footprint model, the third
column the proposed method’s prediction and the fourth column shows the ground
truth labels.

Net [5]. While we restricted ourselves to a low memory footprint architecture, we
note that performance improvements might be more pronounced when employ-
ing larger teacher and student models or longer schedules with stronger data
augmentation. We also note that future work could incorporate segmentation
confidence estimates in order to filter for high-confidence pseudo labels.
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