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Abstract

High-probability analysis of stochastic first-order
optimization methods under mild assumptions
on the noise has been gaining a lot of attention
in recent years. Typically, gradient clipping is
one of the key algorithmic ingredients to derive
good high-probability guarantees when the noise
is heavy-tailed. However, if implemented naively,
clipping can spoil the convergence of the popu-
lar methods for composite and distributed opti-
mization (Prox-SGD/Parallel SGD) even in the
absence of any noise. Due to this reason, many
works on high-probability analysis consider only
unconstrained non-distributed problems, and the
existing results for composite/distributed prob-
lems do not include some important special cases
(like strongly convex problems) and are not op-
timal. To address this issue, we propose new
stochastic methods for composite and distributed
optimization based on the clipping of stochas-
tic gradient differences and prove tight high-
probability convergence results (including nearly
optimal ones) for the new methods. In addition,
we also develop new methods for composite and
distributed variational inequalities and analyze the
high-probability convergence of these methods.
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1. Introduction

Many recent works on stochastic optimization have the ul-
timate goal of bridging the theory and practice in machine
learning. This is mostly reflected in the attempts at the
theoretical analysis of optimization methods under weaker
assumptions than the standard ones. Moreover, some phe-
nomena cannot be explained using classical in-expectation
convergence analysis (see the motivating example from
(Gorbunov et al., 2020a)) that results in the growing interest
in more accurate ways to the analysis of stochastic methods,
for example, high-probability convergence analysis.

However, despite the significant attention to this topic
(Nazin et al., 2019; Davis et al., 2021; Gorbunov et al.,
2020a; 2022a; Cutkosky & Mehta, 2021; Sadiev et al., 2023;
Nguyen et al., 2023b; Liu & Zhou, 2023; Liu et al., 2023),
several important directions remain unexplored. In par-
ticular, all mentioned works either consider unconstrained
problems or consider general composite/constrained min-
imization/variational inequality problems but have some
noticeable limitations, such as bounded domain assumption,
extra logarithmic factors in the complexity bounds, not op-
timal (not accelerated) convergence rates, or no analysis
of (quasi-) strongly convex (monotone) case. The impor-
tance of composite/constrained formulations for the ma-
chine learning community can be justified in many ways.
For example, composite optimization and distributed op-
timization have a lot of similarities, i.e., one can view a
distributed optimization problem as a special composite
optimization problem (Parikh & Boyd, 2014). Due to the
large sizes of modern machine learning models and datasets,
many important problems can be solved in a reasonable
time only via distributed methods. Moreover, some prob-
lems have a distributed nature, e.g., data determining the
problem can be (privately) stored on multiple devices con-
nected with a central server, which is a classical setup for
Federated Learning (Konecny et al., 2016; Kairouz et al.,
2021). Next, composite formulations are very useful for han-
dling different regularizations popular in machine learning
and statistics (Zou & Hastie, 2005; Shalev-Shwartz & Ben-
David, 2014; Beck, 2017). Finally, variational inequalities
are usually considered with constraints as well.
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The discrepancy between the importance of compos-
ite/constrained and distributed formulations and the lack
of high-probability convergence results in this setup can
be partially explained as follows. SOTA high-probability
convergence results are derived for the algorithms that use
gradient clipping (Pascanu et al., 2013), i.e., the clipping op-
erator defined as clip(z, A) = min{1l, |z }z forz # 0
and c1ip(0,\) = 0 with some clipping level A > 0 is ap-
plied to the stochastic gradients. If A is too small, then naive
Proximal Gradient Descent with gradient clipping is not a
fixed point method, i.e., the method escapes the solution
even if it is initialized there (see a technical explanation in
Section 2). This fact implies that one has either to increase
the clipping level or to decrease the stepsize to converge to
the exact solution asymptotically; the latter approach leads
to a slower convergence rate. On the other hand, even in
the unconstrained case, the existing results with accelera-
tion/linear convergence are derived for the methods using
decreasing clipping level (Gorbunov et al., 2020a; Sadiev
et al., 2023). Therefore, new algorithms and analyses are
required to handle this issue.

In this work, we close this gap by proposing new stochastic
methods for composite and distributed problems via the
clipping of gradient differences that converge to zero with
high probability. This allows us to achieve the desirable
acceleration and linear convergence. Before we move on
to the presentation of the main contributions, we need to
introduce the problem settings formally.

1.1. Setup

Notation. The standard Euclidean norm of vector x € RY
is denoted as ||z| = /(z,z). Br(z) = {y € R¢ |
ly — x| < R} is the ball centered at x with radius
R. Bregman divergence w.r.t. function f is denoted as

Dy(x,y) = f(2)—f(y)—(Vf(y), 2—y). ]n O("), we omit
the numerical factors, and in O(-), we omit numerical and
logarithmic factors. For natural n > 1 the set {1,2,...,n}
is denoted as [n]. We use E¢[-] to denote the expectation

w.r.t. the randomness coming from &.

Considered problems. In this work, we focus on stochas-
tic composite minimization problems:

min {®(z) = f(z) + ¥(x)}, e))

z€R?

where f(z) = E¢up[fe(x)] is a differentiable function sat-
isfying some properties to be defined later and ¥(x) is a
proper, closed, convex function (composite/regularization
term). The examples of problem (1) arise in various applica-
tions, e.g., machine learning (Shalev-Shwartz & Ben-David,
2014), signal processing (Combettes & Pesquet, 2011), im-
age processing (Luke, 2020). We also consider variational
inequality problems, see Appendix C.

The distributed version of (1) has the following structure:

= %Z {fi(z

In this case, there are n workers connected in a centralized
way with some parameter server; worker ¢ can query some
noisy information (stochastic gradients/estimates) about f;.

) = EfiNDi [fﬁz (l‘)]} : ()

In-expectation and high-probability convergence. In-
expectation convergence guarantees provide the upper
bounds on the number of iterations/oracle calls K = K ()
for a method needed to find point z% such that E[C(z%)] <
e for given convergence criterion C(z) (e.g., C(z) can be
fl@) = f(z*), (7)]|?) and given accu-
racy € > (. High-probability convergence guarantees give
the upper bounds on the number of iterations/oracle calls
K = K(g, 8) for a method needed to find point 2 such that
P{C(x¥) < e} > 1 — 3, where 3 € (0,1) is a confidence
level. It is worth noting that Markov’s inequality implies
P{C(zF) > e} < ElC(= K)]/a, meaning that it is sufficient to
take K = K(Be) = K: P{C(zX) > ¢} < Elc@ /e < 8.
However, this typically leads to the polynomial depen-
dence on 1/ that significantly spoils the complexity of the
method when £ is small. Therefore, we focus on the high-
probability convergence guarantees that depend on 1/ poly-
logarithmically. Moreover, such high-probability results are
more sensitive to the noise distribution (and, thus, more
accurate) than in-expectation ones (Gorbunov et al., 2020a;
Sadiev et al., 2023).

Proximal operator. We assume that function ¥(z)
has a relatively simple structure such that one can ef-
ficiently compute proximal operator: prox.,y(r) =
arg min,epa{y¥(y) + 5|ly — z||*}. For the properties of
the proximal operator and examples of functions ¥(z) such
that prox., ¢ () can be easily computed, we refer the reader
to (Beck, 2017).

Bounded central a-th moment. We consider the situa-
tion when f; and F; are accessible through the stochastic
oracle calls. The stochastic estimates satisfy the following
assumption.

Assumption 1.1. There exist some set Q C R and val-
ues 0 > 0, @ € (1,2] such that for all z € @ we have

"Following (Sadiev et al., 2023), we consider all assumptions
only on some bounded set Q C R?; the diameter of () depends on
the starting point. We emphasize that we do not assume bounded-
ness of the domain of the original problem. Instead, we prove via
induction that the iterates of the considered methods stay in some
ball around the solution with high probability (see the details in
Section 3). Thus, it is sufficient for us to assume everything just on
this ball, though our analysis remains unchanged if we introduce
all assumptions on the whole domain.
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E¢,~p, [V fe, (x)] = V fi(x) and

EfiNDz‘[ vffi (.’I}) - vfz(x)”a] <o%. (3)

For o = 2, Assumption 1.1 reduces to the bounded variance
assumption, and for « € (1,2) variance of the stochastic
estimator can be unbounded, e.g., the noise can have Lévy
a-stable distribution (Zhang et al., 2020b), which is heavy-
tailed.

Assumptions on f;. We assume that functions { f; };c[n]
are L-smooth.

Assumption 1.2. We assume that there exist some set Q C
R? and constant L > 0 such that for all z,y € Q,i € [n]
and for all * € arg min, cgae ®(x)

Lllz —yl|, @

IVfi(z) =V iyl <
< 2LDy,(z,z*). (5

IV fi(z) = V fi(a")II?

As noted in (Sadiev et al., 2023, Appendix B), (5) is satisfied
on the set ) # R? if (4) holds on a slightly larger set in
the case of ¥ = 0, n = 1 (unconstrained single-node case).
For simplicity, we assume that both (4) and (5) hold on Q.
This is always the case for L-smooth functions on Q = R?
when W = 0, n = 1. In a more general situation, condition
(5) can be viewed as an assumption on the structured non-
convexity of { f; }ic[n). Finally, if { f;};c[, are convex and
L-smooth on the whole domain of the problem (1), then
Assumption 1.2 holds.

Next, for each particular result about the convergence of
methods for (1), we make one of the following assumptions.

Assumption 1.3. There exist some set Q) C R and constant
1 > 0 such that f is u-strongly convex: Va,y € @

) > @)+ (Vi@)y =)+ Sly =% ©

When ¢ = 0, function f is called convex on Q).

This is a standard assumption for optimization literature
(Nesterov et al., 2018). We also consider a relaxation of
strong convexity.

Assumption 1.4. There exist some set Q C R? and con-
stant ¢ > 0 such that fi, ..., f, are (u, *)-quasi-strongly
convex for all z* € argmin,cge ®(2): Va € Q, i € [n]

Ji(a*) 2 fil@) +(Vfila),a" = ) + Gl —a*|%. (@)

Condition (7) is weaker than (6) and holds even for some
non-convex functions (Necoara et al., 2019).

1.2. Our Contributions

e Methods with clipping of gradient differences for
distributed composite minimization. We develop two
stochastic methods for composite minimization problems
— Proximal Clipped SGD with shifts (Prox-clipped-SGD-
shift) and Proximal Clipped Similar Triangles Method with
shifts (Prox-clipped-SSTM-shift). Instead of clipping
stochastic gradients, these methods clip the difference be-
tween the stochastic gradients and the shifts that are updated
on the fly. This trick allows us to use decreasing clipping
levels, and, as a result, we derive the first accelerated high-
probability convergence rates and tight high-probability con-
vergence rates for the non-accelerated method in the quasi-
strongly convex case. We also generalize the proposed
methods to the distributed case (DProx-clipped-SGD-shift
and DProx-clipped-SSTM-shift) and prove that they bene-
fit from parallelization. To the best of our knowledge, our
results are the first showing linear speed-up under Assump-
tion 1.1.

e Methods with clipping of gradient differences for dis-
tributed composite VIPs. We also apply the proposed trick
to the methods for variational inequalities. In particular, we
propose DProx-clipped-SGDA-shifts and DProx-clipped-
SEG-shifts and rigorously analyze their high-probability
convergence. As in the minimization case, the proposed
methods have provable benefits from parallelization.

o Tight convergence rates. As a separate contribution, we
highlight the tightness of our analysis: in the known special
cases (¥ = 0 and/or n = 1), the derived complexity bounds
either recover or outperform previously known ones (see
Table 1 and also Table 2 in the appendix). Moreover, in
certain regimes, the results have optimal (up to logarithms)
dependencies on ¢. This is achieved under quite general
assumptions.

1.3. Closely Related Work

We discuss closely related work here and defer additional
discussion to Appendix A.

High-probability bounds for unconstrained convex prob-
lems. Standard high-probability convergence results are
obtained under the so-called light-tails assumption (sub-
Gaussian noise) (Nemirovski et al., 2009; Juditsky et al.,
2011; Ghadimi & Lan, 2012). The first work addressing this
limitation is (Nazin et al., 2019), where the authors derive
the first high-probability complexity bounds for the case
of minimization on a bounded set under bounded variance
assumption. In the unconstrained case, these results are
extended and accelerated by Gorbunov et al. (2020a) for
smooth convex and strongly convex minimization problems.
Gorbunov et al. (2021) tightens them and generalizes to the
case of problems with Holder-continuous gradients and Gor-
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Table 1: Summary of known and new high-probability complexity results for solving (non-) composite (non-) distributed smooth optimization problem (1). Column “Setup”

indicates the assumptions made in addition to Assumptions 1.1 and 1.2. All assumptions are made only on some ball around the solution with radius ~ R > ||z

o _z*.

Complexity is the number of stochastic oracle calls (per worker) needed for a method to guarantee that P{Metric < ¢} > 1 — S forsome e > 0, 8 € (0, 1] and “Metric”
is taken from the corresponding column. Numerical and logarithmic factors are omitted for simplicity. Column “C?” shows whether the problem (1) is composite, “D?”

indicates whether the problem (1) is distributed. Notation: L = Lipschitz constant; o =

upper bound on /L 37 ||V fi (a*)|2; R’=R (BR+ L™ (2no + ||V £(2°)

R2 = @(R2 + RCx/L) when n = 1, see the discussion after Theorem 2.5); 1 = (quasi

parameter from Assumption 1.1; R = any upper bound on ||z® — z*||; . = any
II)) for some 1 > 0 (for the result from (Nguyen et al., 2023a); one can show that

-)strong convexity parameter. The results of this paper are highlighted in blue.

[ Setp ] Method Metric Complexity C?  D? ]

(Saﬂggx?:?;ls,%BZS) F@*) = f=") max {LTI?z (ef)a™1 } XX

S ) 1)~ f(a®) max { /L2, (22)a"1 | XX

s | ey 2@ -6 ma { 482, (=) 77} /o
I R R (R N
o e 23 e@E) 0@ max (L B d ()T} v
e e I U ) o ) AR

As. 1.4 (Safjliigfgrdf,ezgzs) 2 — 2" ]* max £ (72 7D } xox
R I e S UL C S ki) S

WAl assumptions are made on the whole domain.
© The authors additionally assume that for a chosen point Z from the

domain and for > 0 one can compute an estimate g such that

P{||g — Vf(&)|| > no} < e. Such an estimate can be found using geometric median of O (In e~ ') samples (Minsker, 2015).
© The authors assume that V f (z*) = 0, which is not true for general composite optimization.

bunov et al. (2022a) derives high-probability convergence
rates in the case of VIPs. Sadiev et al. (2023) relaxes the
assumption of bounded variance to Assumption 1.1 for all
problem classes mentioned above, and the results under the
same assumption are also derived for clipped-SGD (with-
out acceleration) by Nguyen et al. (2023b) in the convex
and non-convex cases.

High-probability bounds for composite convex problems.
Nazin et al. (2019) propose a truncated version of Mirror
Descent for convex and strongly convex composite prob-
lems and prove non-accelerated rates of convergence under
bounded variance and bounded domain assumptions. Ac-
celerated results under bounded variance assumption for
strongly convex composite problems are proven by Davis
et al. (2021), who propose an approach based on robust
distance estimation. Since this approach requires solving
some auxiliary problem at each iteration of the method,
the complexity bound from Davis et al. (2021) contains ex-
tra logarithmic factors independent of the confidence level.
Finally, in their very recent work, Nguyen et al. (2023a)
prove high-probability convergence for Clipped Stochas-
tic Mirror Descent (Clipped-SMD) for convex composite
problems. Moreover, the authors also propose Accelerated
Clipped-SMD (Clipped-ASMD) and show that the algo-
rithm is indeed accelerated but only under the additional
assumption that V f (x*) = 0.

2. Main Results

In this section, we consider problem (1) and methods for it.

Failure of the naive approach. For simplicity, consider
a non-stochastic case with strongly convex f(x), n = 1.
The standard deterministic first-order method for solving
problems like (1) is Proximal Gradient Descent (Prox-GD)
(Combettes & Pesquet, 2011; Nesterov, 2013): ahtl =
prox. (z¥ =V f(2*)). Due to the good interplay between
the structure of the problem, properties of the proximal
operator, and the structure of the method, Prox-GD has the
same (linear) convergence rate as GD for minimization of
f(z). One of the key reasons for that is that any solution
x* of problem (1) satisfies * = prox. (" — ¥V f(z*)),
i.e., the solutions of (1) are fixed points of Prox-GD (and
vice versa), which is equivalent to —V f(z*) € 9¥(x*),
where 0¥ (z*) is a subdifferential of ¥ at z*. However, if
we apply gradient clipping to Prox-GD naively

k= prox. g (z* —yclip(Vf(="),N),  ®)

then the method loses a fixed point property if ||V f(z*)|| >
A, because in this case, —clip(V f(z*),\) does not
necessarily belongs to 9 (x*) and z* # prox, g (z* —
~vclip(Vf(z*),\)) in general. Therefore, for such A, one
has to decrease the stepsize <y to achieve any accuracy of
the solution. This approach slows down the convergence
making it sublinear even without any stochasticity in the
gradients. To avoid this issue, it is necessary to set A large
enough. This strategy works in the deterministic case but
becomes problematic for a stochastic version of (8):

zh = Prox.y (ack —yclip(V fex (mk),)\k)) , 9

where £F is sampled independently from previous iterations.
The problem comes from the fact the existing analysis in the
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unconstrained case (which is a special case of the composite
case) requires taking decreasing A (Gorbunov et al., 2021;
Sadiev et al., 2023) that contradicts the requirement that
clipping level has to be large enough. Therefore, more
fundamental algorithmic changes are needed.

Non-implementable solution. Let us reformulate the is-
sue: (i) to handle the heavy-tailed noise, we want to use
decreasing clipping level A\, (ii) but the method should also
converge linearly without the noise, i.e., when V fgk (x’“) =
Eer [V fer (2%)] = Vf(2*). In other words, the expec-
tation of the vector that is clipped in the method should
converge to zero with the same rate as \,. The method
should converge, i.e., with high probability, we should have
Vf(x*) — Vf(x*). These observations lead us to the
following purely theoretical algorithm that we call Prox-
clipped-SGD-star?:

k+1

a* ! = prox. g (¢* —7g"), where (10)

§" =Vf(z*) 4+ clip (Vfgk(mk) - Vf(x*),/\k) . (1D

The method is non-implementable since V f(x*) is un-
known in advance. Nevertheless, as we explain in the next
subsection, the method is useful in designing and analyzing
implementable versions. The following theorem gives the
complexity of Prox-clipped-SGD-star.

Theorem 2.1. Let n = 1 and Assumptions 1.1, 1.2, and
1.4 with i > 0 hold for Q = Bag(x*), R > |z° — x*||,
for some® x* € argmingcpa ®(x). Assume that K > 1,

56(071),14:1114(#;1),

- . 1 ln(BK)
0<7=0 <mm{LA’u<K+1>}> ’
2a-1)/a 2 P2
BKe(max{2, (K+1) 2“R })
o2 A2V/a 1n2(By)

exp(—yu(l 4+ K/2))R
=9 ( A ) '

Then to guarantee ||z —x*||? < e with probability > 1— 3
Prox-clipped-SGD-star requires

_ 2\ 2GS0
O (max{f;, <:2€> ( )}> (12)

iterations/oracle calls.

Sketch of the proof. Following Gorbunov et al. (2020a);

The idea behind and the name of this method is inspired
by SGD-star proposed by Gorbunov et al. (2020b); Hanzely &
Richtdrik (2019).

31f all of our results, one can use any solution z*, e.g., one can
take x* being a projection of z* on the solution set.

Sadiev et al. (2023), we prove by induction* that ||z* —
2*||> < 2exp(—yuk)R? with high probability. This
and L-smoothness imply that ||V f(z*) — Vf(a*)| ~
exp(—7#k/2) and ||V f(2%) — V f(2*)|| < *x/2 with high
probability. These facts allow us to properly clip the heavy-
tailed noise without sacrificing the convergence rate. See
the complete formulation of Theorem 2.1 and the full proof
in Appendix D. O

The above complexity bound for Prox-clipped-SGD-star
coincides with the known one for clipped-SGD for the un-
constrained problems under the same assumptions (Sadiev
et al., 2023) — similarly as the complexity of Prox-GD coin-
cides with the complexity of GD for unconstrained smooth
problems.

Remark 2.2 (On the logarithmic factors.). In our results,
we do not focus on the logarithmic factors to keep the proofs
simpler. Therefore, in the main part of the paper, we omit
logarithmic dependencies, but we provide them in the Ap-
pendix. We believe it is possible to improve the logarithmic
factors in our complexity bounds following the proof tech-
nique from (Nguyen et al., 2023a).

Remark 2.3 (Dependence of the parameters on R.). Sim-
ilarly to many previous works (Gorbunov et al., 2020a;
2022a; Sadiev et al., 2023; Nguyen et al., 2023b;a), in all our
results, the choice of the stepsize and clipping level depends
on some upper bound® R for ||z — x*||. Deriving match-
ing high-probability results for parameter-free methods is
an important open problem going beyond the scope of this
paper. In practice, one can run the method with R = R for
a sufficiently large number of steps (prescribed by theory).
If the target accuracy is not achieved, then one needs to
take R = 2R and repeat the procedure. Then, with a high
probability after the logarithmic number of restarts, either
parameter R will be chosen appropriately, or the method
will reach the desired accuracy.

Prox-clipped-SGD-shift. As mentioned before, the key
limitation of Prox-clipped-SGD-star is that it explicitly
uses shift V f (z*), which is not known in advance. There-
fore, guided by the literature on variance reduction and com-
munication compression (Gorbunov et al., 2020b; Gower
et al., 2020; Mishchenko et al., 2019), it is natural to
approximate V f(z*) via shifts h*. This leads us to a
new method called Prox-clipped-SGD-shift: as before

“We use the induction to apply Bernstein’s inequality for the
estimation of the sums appearing due to the stochasticity of the
gradients. We refer to Section 3 for the details.

5One can avoid this via considering problems defined on
bounded domain (Nazin et al., 2019) (then one can take R equal
to the diameter of the domain) or assuming that the gradient is
bounded (Cutkosky & Mehta, 2021) (in this case, one can at least
remove the dependence on R from the clipping level). However,
both options have clear limitations.
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a* ! = prox g (2% — yg") but now
gt =nF+ AR M = BE 4 vAR, (13)
AF =clip (Vfgk(xk) — hk7)\k:) ) (14)

where v > 0 is a stepsize for learning shifts. Similar shifts
are proposed by Mishchenko et al. (2019) in the context of
distributed optimization with communication compression.
Despite the similarities between compression operators and
clipping, the latter does not have a constant contraction
factor, making it non-trivial to extend the techniques from
the literature on communication compression to the methods
with clipping, e.g., see (Khirirat et al., 2023, Section 5).
Moreover, the proofs from (Mishchenko et al., 2019) rely on
the unbiasedness of the compression operator. In contrast,
gradient clipping introduces bias, and we consider high-
proabbility analysis that differs significantly from the in-
expectation one considered by Mishchenko et al. (2019).

Since Prox-clipped-SGD-shift is a special case of its dis-
tributed variant, we continue our discussion with the dis-
tributed version of the method.

Distributed Prox-clipped-SGD-shift. We propose a
generalization of Prox-clipped-SGD-shift to the dis-
tributed case (2) called Distributed Prox-clipped-SGD-
shift (DProx-clipped-SGD-shift):

k+1

a" ! = prox.y (¢* —7g"), where (15)

1 — A Ak
7= =Sk, g =hb+ AY, BEY = E VA,
n i=1
Ak =clip (Vig () = BN, (16)

where &F, ... ¢k are sampled independently from each
other and previous steps. In this method, worker ¢ updates
the shift ¥ and sends clipped vector Af to the server. Since
gF = bk 4+ 15" AFand AR = P4 23" AR
where B¥ = L3 hF, workers do not need to send
h% to the server for k > 0. We notice that even when
¥ = 0, i.e., the problem is unconstrained, individual
gradients {V f;(2*)}ie[n) of the clients’ function at the
solution of problem (1) are not necessary zero, though
their sum equals to zero. However, if applied without
any shifts to the local (stochastic) gradients, then, simi-
larly to the case of non-distributed Prox-GD (8), the clip-
ping operation also breaks the fixed point property, since
LN clip(Vfi(z*), A) # 0 for small values of A. This
highlights the importance of the shifts for distributed uncon-
strained case.

For the proposed method, we derive the following result.

Theorem 2.4 (Convergence of DProx-clipped-SGD-shift:
quasi-strongly convex case). Let K > 1, 8 € (0,1), A =

In %. Let Assumptions 1.1, 1.2, and 1.4 with p > 0
hold for Q = By, s5p(x*), where R > ||2°—x*[|. Assume

that C. = \[L Y1, [V fila®) |2, v = ©(1/4),
. [ 1 nR In(Bg) })
0<y=0 — vy ()
! <mm{LA A (K +1)
2(a=1)/a 2, 2(a=1)/0 D2
BK:@(maX{Q,(K+1) HZ R}),
02 A*“"V/«In*(By)

nexp(—yu(l+#/2)R
=9 ( A > '

Then to guarantee ||z —x*||? < e with probability > 1— 3
DProx-clipped-SGD-shift requires

~ L ¢ 1[/0c>\T0D

iterations/oracle calls per worker.

Sketch of the proof. The proof follows similar steps to the
proof of Theorem 2.1 up the change of the Lyapunov func-
tion: by induction, we prove that Vi, < 2exp(—vyuk)V
with high probability, where Vi = |[zF — 2*|? +
% S, |hf — Vfi(z*)||>. The choice of the Lya-
punov function reflects the importance of the “quality” of
shifts {Al};c(n), ie., their proximity to {V f;(z*)}icn)-
Moreover, we increase the clipping level n times to bal-
ance the bias and variance of §*; see Appendix B. This
allows us to reduce the last term in the complexity bound
n times. See the complete formulation of Theorem 2.4 and
the full proof in Appendix E. O

The next theorem gives the result in the convex case.

Theorem 2.5 (Convergence of DProx-clipped-SGD-shift:
convex case). Let K > 1, f € (0,1), A=1n d8n(K41)
Let Assumptions 1.1, 1.2, and 1.3 with p = 0 hold for
Q = B gg(z*), where R > |2° — 2*||. Assume that

v=0C > /LS V)

. 1 vnR n"“"YeR
0<y=0 <H11H{LA7 AG, oK Ya AP a }) )

nR
Then to guarantee ®(z%) — ®(z*) < ¢ for K =

7 S @® with probability > 1 — 8 DProx-clipped-
SGD-shift requires

~ LR? R¢. 1 [oR\+7T
@ (max{s, ﬁ,ﬁ <€> }) (18)

iterations/oracle calls per worker.
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Discussion of the results for DProx-clipped-SGD-shift. Up
to the difference between V and ||2° — z*||2, in the single-
node case, the derived results coincide with ones known for
clipped-SGD in the unconstrained case (Sadiev et al., 2023).
In the composite non-distributed case (n = 1), the result of
Theorem 2.4 is the first known of its type, and Theorem 2.5
recovers (up to logarithmic factors) the result from (Nguyen
et al., 2023a) for a version of Stochastic Mirror Descent
with gradient clipping (Clipped-SMD), see Table 1. In-
deed, parameter R? = R (3R + L™ (2no + |V f(2%)]))
for some 7 > 0 from the result by Nguyen et al. (2023a)
equals ©(R? + R¢./L), when 7 is sufficiently small (oth-
erwise R can be worse than ©(R2 + R(./L)), which can
be seen from the following inequalities following smooth-
ness: |V £(0)]| < [IVf(z*)] + |V () = V(") <
IV £ (@)l + L]l«® — 2*[| and [|V f(2*)[| < [|Vf(z°)] +
IVf(@?) = V§@")l < [IVf(2°)] + Ll|z® — 2*||. Since
in this work we do not focus on the logarithmic factors, we
do not show them in the main text and provide the com-
plete expressions in the appendix. Nguyen et al. (2023a)
has better dependencies on the parameters under logarithms
than our results. In particular, the logarithmic factor in

front of the last term in (18) is In (ﬁ‘l (V20R/e) mﬂa*l))

(see (88) from Theorem E.2), which matches the loga-
rithmic factors from the result obtained by Sadiev et al.
(2023). In the same setting with n = 1, Nguyen et al.
(2023a) obtained a high-probability complexity result with
In(B~1) logarithmic factor, which is smaller than the one
we have. However, this discrepancy can be relatively small
in many situations. For example, if o ~ 102 (high variance),
R ~ 103 (starting point is far from the solution), o = 3/2,
€ ~ 1075, B ~ 107 (very accurate solution and small fail-

ure probability), then In (ﬂfl (V2oR/e) &/(ufl)) ~ 98 and

In(B~1) ~ 14, i.e., our logarithmic factor is just ~ 7 times
larger in this case. We conjecture that adjusting the proof
technique from (Nguyen et al., 2023a) one can improve the
logarithmic factors in our results as well.

It is worth mentioning that shifts are not needed in the
convex case because the method does not have fast enough
convergence, which makes it work with a constant clipping
level, i.e., the method in the convex case requires less tight
gradient estimates and is more robust to the bias than in
strongly convex. In the quasi-strongly convex case, the
shifts’ stepsize is chosen as v ~ ©(1/4) and it does not
explicitly affect the rate since vy = ©(1/4), see the details
in Section 3 and Appendix E. Moreover, as we show later,
shifts are important for achieving acceleration in the convex
case as well. A similar tradeoff between the needed accuracy
of the estimate and the speed of convergence of the method
is observed in the literature on the convergence of methods
with inexact oracle (Devolder, 2013; Devolder et al., 2014).

Next, as expected for a distributed method, the terms in

the complexity bounds related to the noise improve with
the growth of n. More precisely, the terms depending on
the noise level o are proportional to 1/n, i.e., our results
show so-called linear speed-up in the complexity — a desir-
able feature for a stochastic distributed method. This aspect
highlights the benefits of parallelization. To the best of our
knowledge, the results for the distributed methods proposed
in our work are the only existing ones under Assumption 1.1
(even if we take into account the in-expectation convergence
results). In the special case of & = 2, our results match
(up to logarithmic factors) the SOTA ones from (Gorbunov
et al., 2021) since parallelization with linear speed-up fol-
lows for free under the bounded variance assumption, if the
clipping is applied after averaging as it should be in the par-
allelized version of methods from (Gorbunov et al., 2021) to
keep the analysis from (Gorbunov et al., 2021) unchanged.
Indeed, when {V f¢, () }ic[n) are independent stochastic
gradients satisfying Assumption 1.1 with parameters o > 0
and o = 2, then 1 Yicpn Ve (2) also satisfies Assump-
tion 1.1 with parameters °/,/n and o = 2. However, when
a < 2 achieving linear speed-up is not that straightforward.
If {V fe, () }ic[n) are independent stochastic gradients sat-
isfying Assumption 1.1 with parameters o > 0 and o < 2,
then the existing results (Wang et al., 2021, Lemma 7) give
a weaker guarantee: - Yicm Ve (z) satisfies Assump-
1

27(Yd%77
o

tion 1.1 with parameters 2 29 which is dimension

dependent, and the same «. T"i“h(érefore, if one applies this
result to the known ones from (Sadiev et al., 2023; Nguyen
et al., 2023a), then the resulting complexity will have an ex-
tra factor of d~7 -1 in the term that depends on o. For
large-scale or even medium-scale heavy-tailed problems,
this factor can be huge, e.g., when d = 1000 and o = 7

ga
this factor is 10006~% > 10003 = 10°.

To avoid these issues, we apply gradient clipping on the
workers and then average clipped vectors, not vice versa.
This is also partially motivated by the popularity of gra-
dient clipping for ensuring differential privacy guarantees
(Abadi et al., 2016; Chen et al., 2020) in Federated Learning.
Therefore, the proposed distributed methods can be useful
for differential privacy as well, though we do not study this
aspect in our work.

Remark 2.6 (Dependence of the parameters on (,.). In our
results, v and {A\y}x>0 depend on (., which is an upper

bound for \/% S IV fi(z*)||?. Since f; are L-smooth
forall i € [n], we have /2 1, [V fi(a)[2 < Go +
VESEL IV iat) = VHEO)2 < Go+ LIz — 27

where Go = (/= 3" [[Vfi(z0)|]2. As suggested by
Nazin et al. (2019); Nguyen et al. (2023a), one can esti-
mate ||V f;(z°)|| with probability at least 1 — /3 using the
procedure from (Minsker, 2015) requiring O(In(n371))
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samples on each client ¢ € [n]. Therefore, to estimate (,, it
is sufficient to know R.

Acceleration. Next, we propose a distributed version of
clipped Stochastic Similar Triangles Method (Gorbunov
et al., 2020a; Gasnikov & Nesterov, 2016) for composite
problems (DProx-clipped-SSTM-shift): 29 = ¢° = 2°,
Ag=ao =0, ap1 = 52, Apy1 = Ay + ajq1 and

k k
kel _ Apy" + g1z

, (19)
Akt1
SRl ProX,, . w (Zk — ak+1§($k+l)) > (20)
A k k+1
it = 2V Q1 @0

Apq1
with

n

1 )
~ k1Y _ 2N k1Y >kl _ gk k
g™ = - > G, Gi(a* ) = hE 4+ A¥, (22)

i=1

hEFL = pk AR (23)
A =clip (V@) —mE N, @4)

where &F, ... ¢k are sampled independently from each
other and previous steps. For the proposed method, we
derive the following result.

Theorem 2.7 (Convergence of DProx-clipped-SST-
M-shift). Let Assumptions 1.1, 1.2, and 1.3 with u = 0
hold for Q = Bg s, p(x*), where R > [|a° — |2,
Let (. > \JLS0 IV fi(a")|2 C = ©(#/va), Ko =
O(A?), where K > 1, 8 € (0,1), A =In 198K Ler

(2161-6‘,-723’)27 lfk > K07 nR
Vg = (k+2)2 . 5 A, =0 A)°
T RKot12)n’ ifk < Ko, k41

At A%,
a-@(max{?,n,L\/ﬁR,

Then to guarantee ®(yX) — ®(x*) < ¢ with probability
> 1 — ¢ DProx-clipped-SSTM-shift requires

~ [LR2 [R¢, 1 (oR\1
(’)(max{ ot ﬁs’n(s) }) (25)

iterations/oracle calls per worker.

o K/ g@=/a
LRn* "= }) '

Sketch of the proof. The proof resembles the one for
clipped-SSTM from (Sadiev et al., 2023) but has some no-
ticeable differences. In addition to handling the extra techni-
cal challenges appearing due to the composite structure (e.g.,
one cannot apply some useful formulas like 2% — zF+1 =
ag+1g(z* 1) that hold in the unconstrained case), we use

a non-standard potential function M}, defined as My =
2042
2% — |24 S-SR SR - ()| for k < Ko

n 2 2
and My, = |25 — |2 + S5 Y [hE = V£
for k > Kj. See more details in Appendix F. O

When n = 1, the derived result has optimal dependence
on ¢ (up to logarithmic factors) (Nemirovskij & Yudin,
1983; Zhang et al., 2020b). In contrast to the result from
(Nguyen et al., 2023a), we do not assume that V f(z*) = 0.
Moreover, as DProx-clipped-SGD-shift, DProx-clipped-
SSTM-shift benefits from parallelization since the second
term in (25) is proportional 1/n. When n is sufficiently large,
the effect of acceleration can become significant even for
large 0. In Appendix F.2, we also provide the convergence
results for the restarted version of DProx-clipped-SSTM-
shift assuming additionally that f is strongly convex and
one can compute starting shifts A as V f;(2°).

3. On the Proofs Structure

In this section, we elaborate on the proofs structure of our
results and highlight additional challenges appearing due to
the presence of the composite term and distributed nature
of the methods. The proof of each result consists of two
parts: optimization/descent lemma and the analysis of the
sums appearing due to the stochasticity and biasedness of
the updates (due to the clipping). In the first part, we usually
follow some standard analysis of corresponding determin-
istic method without clipping and separate the stochastic
part from the deterministic one (though for DProx-clipped-
SSTM-shift we use quite non-standard Lyapunov function,
which can be interesting on its own). For example, in
the analysis® of DProx-clipped-SGD-shift under Assump-
tion 1.4, we prove the following inequality:

Vicrr < (1 =)

2 = _
% D (=) F s, wi)

=1

_ 1 &
(1—yp)F <||Wk||2 + ;Z wi,k||2> ,
0 1=1

where Vi, = [l — 2|2+ S22 0 [hE =V fia) 2
for some numerical constant C' > 0, s, = " — 2* —
Y(Vf(a*) — Vf(z*)) and vectors w; , = V f;(z*) — gk
represent the discrepancy between the full gradients and
their estimates. Moreover, to use this inequality for some
K = T > 0 we need to show that {z*}7_ belong
to the set where the assumptions hold (in this particu-
lar case, to By, 5p(x")) with high probability. We do

+

-

2

M=

+7

el
Il

%In the appendix, we analyze this case in the generality of
variational inequalities. Here we provide a simplified version for
minimization.



High-Probability Convergence for Composite and Distributed Optimization with Heavy-Tailed Noise

Table 2: summary of known and new high-probability complexity results for solving (non-) composite (non-) distributed variational inequality problem (26). Column “Setup”
indicates the assumptions made in addition to Assumptions 1.1. All assumptions are made only on some ball around the solution with radius ~ R > on — x| (for the
results from (Sadiev et al., 2023)) or radius ~ +/V (Theorems C.6 and C.7). Complexity is the number of stochastic oracle calls(per worker) needed for a method to guarantee
that P{Metric < e} > 1 — B forsome e > 0, 8 € (0, 1] and “Metric” is taken from the corresponding column. Numerical and logarithmic factors are omitted for simplicity.

Column “C?” shows whether the problem (1) is composite, “D?” indicates whether the problem (1) is distributed. Notation: zK

ﬁ Zli(:o Z* (for SEG-type methods),

avg

mgg = ﬁ Zszo z* (for SGDA-type methods); L = Lipschitz constant; o = parameter from Assumption 1.1; R = any upper bound on ||#® — 2*|| (for the results from
40960042 1n2 48n(K+1)
; 0 *12 7 In B n *Y112 . . -
(Sadiev et al., 2023)); V' = any upper bound on ||z° — z™||* 4 > Sty IFi(x™)]|* (for the results of this paper); p = quasi-strong monotonicity

n

parameter; £ = star-cocoercivity parameter. The results of this paper are highlighted in blue.

[ Setup [ Method Metric Complexity Cc?  D? l
clipped-SEG ~K LR?2 (oR\32T
(Sadicv et al., 2023) Gapp () ma"{ &= () et x X
As. C1&C2 DProx-clipped-SEG-shift T
2 A R ~K o a—1
Theorem H.2 Gapﬁ(xavq) max { Lev ? % ( €V) 4 4
clipped-SEG . W 2 )
(Sadies o L, 2023) lz® —a”|*  max {5 ()7 } XX
As.C.1&C23 ! eea sy o
DProx-clipped-SEG-shift k w2 L 1 /( o2\ 3(a=1’
[|z® — ™| max { &, = ( ) ( v v
Theorem H.4 prm \ p2e
clipped-SGDA 'R2 a

(Sadiev et al., 2023)
DProx-clipped-SGDA-shift
Theorem G.2

As.C2&C4&CS

GapR(mgg) ma;

clipped-SGDA
(Sadiev et al., 2023)
DProx-clipped-SGDA-shift
Theorem G.4

As.C3&C4

x (
K —
Gap 7 (7y,)  max {%, 1 (=)=t
2 (1

K g2

_w*H2

it always by induction. More precisely, we prove that
P{Er} > 1 — kB/(x+1) for the probability event Fj
defined as follows: inequalities V; < 4exp(—yut)R?
%Z::_ll w;ftle < exp(—r(t=1)/2)1/E*/2 hold for
t=0,1,...,kand r = 1,2, ..., n simultaneously, where
wi', = E¢:[gf] — g} and E¢:[-] denotes an expectation w.r.t.
&t To prove this, we use Bernstein inequality for mar-
tingale difference (see Lemma B.1). However, to apply
Bernstein inequality we need to circumvent multiple techni-
cal difficulties related to the estimation of the norm of the
clipped vector (that involves derivations related to the shifts
{hf}ie[n] ), proper choice of the clipping level to control the
bias and variance and achieve desired linear speed-up (see
Lemma B.3 and the following discussion). Moreover, when
n > 1 (distributed case), we also need to apply additional
induction over clients to estimate sums like ® from (269).

and

4. Extensions for Variational Inequalities

In addition to the minimization problems, we also consider
stochastic composite variational inequality problems (VIPs):

find z* € R? such that
(F(z*),x —a") + U(x) — ¥(z") >0, (26)

where the assumptions on operator F'(z) = E¢up[Fe ()] :
R? — R? will be specified later and, as in the case of
minimization, ¥(z) is a proper, closed, convex function.
When f(z) is convex problem (1) is a special case of (26)
with F'(z) = V f(z). For the examples of problems of type
(26), we refer to (Alacaoglu & Malitsky, 2022; Beznosikov
et al., 2023).

The distributed version of (26) has the following structure:

n

Y {Fi(x) =Egon,[Fe (@)} . @)

i=1

)=

In this case, there are n workers connected in a centralized
way with some parameter server; worker ¢ can query some
noisy information (stochastic gradients/estimates) about F;.

Similarly to the minimization case, we consider the situation
when F; is accessible through the stochastic oracle calls.
The stochastic estimates satisfy the following assumption.

Assumption 4.1. There exist some set Q C R? and val-
ues ¢ > 0, & € (1,2] such that for all z € () we have
EEiNDi [F& (I,C)] = Fl(x) and

Ee¢,~p, (| Fe, (x) — Fi(x)||*] < 0. (28)

Under this and additional assumptions on {F;}?_;, we ob-
tain several convergence results for the distributed versions’
of clipped-SGDA and clipped-SEG from (Gorbunov et al.,
2022a). The results are summarized in Table 2. As one
can see from the table, our results generalize the ones from
(Sadiev et al., 2023) to the composite distributed case and
achieve linear speedup. Further details on the assumptions
and our main results for distributed composite variational

inequalities are deferred to Appendix C.

"GDA-type methods are analogs of GD iteration z** = z* —
v F(z"). Such methods converge under (star-)cocoercivity but fail
for general monotone problems. To address this issue, versions
of Extragradient-type iteration (Korpelevich, 1976) ¥ ! = z* —

yF(z* — ~vF(z*)) are used; see further details in Appendix C.
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A. Extra Related Work

Non-convex case. Li & Orabona (2020) analyze the high-probability convergence rate of SGD for finding first-order
stationary points for smooth non-convex unconstrained problems. The first high-probability result under Assumption 1.1 for
the same class of functions is derived by Cutkosky & Mehta (2021). However, the result of Cutkosky & Mehta (2021) relies
on the additional assumption that the gradients are bounded. Sadiev et al. (2023) remove the bounded gradient assumption
but derive a slightly worse rate. Nguyen et al. (2023b) improve the result and achieve the same rate as in (Cutkosky &
Mehta, 2021) without assuming boundedness of the gradients. It is worth mentioning that Cutkosky & Mehta (2021); Sadiev
et al. (2023); Nguyen et al. (2023b) derive their main results for the methods that use gradient clipping.

Gradient clipping is a very useful algorithmic tool in the training of deep neural networks (Pascanu et al., 2013;
Goodfellow et al., 2016). Gradient clipping also has some good theoretical properties, e.g., it can be useful for minimization
of (Lg, L1)-smooth functions (Zhang et al., 2020a), in differential privacy (Abadi et al., 2016), Byzantine-robustness
(Karimireddy et al., 2021). Moreover, as we already mentioned, almost all existing high-probability results that do not rely
on the light-tailed noise assumption are derived for the methods with clipping. Recently, Sadiev et al. (2023) theoretically
showed that SGD has worse high-probability convergence than clipped-SGD even when the noise in the gradient has
bounded variance.
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B. Auxiliary and Technical Results

Bernstein inequality. In the final stages of our proofs, we need to estimate certain sums of random variables. The main
tool that we use to handle such sums is Bernstein inequality for martingale differences (Bennett, 1962; Dzhaparidze &
Van Zanten, 2001; Freedman et al., 1975).

Lemma B.1. Let the sequence of random variables {X;};>1 form a martingale difference sequence, i.e.
E[X; | Xi_1,...,X1] = 0 forall i > 1. Assume that conditional variances o? = [X? | Xio1,... 7Xl] exist and

i

are bounded and also assume that there exists deterministic constant ¢ > 0 such that | X;| < ¢ almost surely for all i > 1.
Then forallb >0, G > 0andn > 1

P{‘iXi
=1

Impact of clipping on the bias and variance. The following lemma also helps to handle the aforementioned sums of
random variables.

Lemma B.2 (Lemma 5.1 from (Sadiev et al., 2023)). Let X be a random vector in R and X =cl ip(X,A). Then,
| X — E[X]|| < 2\ Moreover, if for some o > 0 and o € (1,2] we have E[X] = z € R%, E[| X — z[|*] < o, and
||| < A2, then

> band ZU?SG} < 2exp (—) (29)
P 2G + 2¢b/3

-] < 22
E{H)?E[S(]m < 18A29gC, 31)

Intuition behind the choice of clipping level in the distributed case. To better illustrate why we increase clipping level
n times, we prove the following lemma.

Lemma B.3. Let X1, Xs, ..., X,, be independent random vectors in R* and X, =cl ip(X;, A) for all i € [n]. Then, for
X =1 Py X; we have | X — E[X]|| < 2\. Moreover, if for some o > 0 and o € (1,2] we have E[X;] = x; € RY,

T n

E[||X; — ;[|*] < 0%, and ||z;|| < 2 for all i € [n], then for x = 3" | x; the following inequalities hold

> 2%«
fisi-o] < 25
- 12 1 2—a o
E {HX —JE[X]H } < SAT". (33)
Proof. From Lemma B.2 we have for all i € [n] that || X; — E[X;]|| < 2) and
= 2%«
HE[X’L] — T S F, (34)
- 2
E [HX _E[X] ] < 18A2 g0, (35)

Jensen’s inequality implies

|x-mm] = L3 (%-BE)| < 230 |5 -mR <2
= i=1
e -4 = ié(ﬂi[fﬁ]fm) sjlizjjumfci]zi LT

Finally, using the independence of X Tyee- ,X’ n», We derive

n 2

I3 (R EIX)

1=

ef|%-mx)] = = = B[~ Eik

]

35 18\~
S -

n
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that concludes the proof. O

From (32)-(33), we see that number of workers n appears differently in the bound on bias and variance. However, if we
replace A with n ), then both bounds will transform to (30)-(31) respectively with 0 = @/n>=! (in other words, bias and
variance will have the same dependence on n). These observations hint that the complexity bounds for distributed methods
should be similar to the ones proven for non-distributed methods (in the unconstrained case) by Sadiev et al. (2023) up to
the replacement of o with ¢ /n>~*. Nevertheless, our analysis of the distributed case does not rely on Lemma B.3 and has
some important differences with the single-node case (even when ¥ = 0).

Useful inequality related to prox-operator. In the analysis of DProx-clipped-SGDA-shift, we use the following standard
result.

Lemma B.4 (Theorem 6.39 (iii) from (Beck, 2017)). Let ¥ be a proper lower semicontinuous convex function and
T = prox. g (). Then for all y € R? the following inequality holds:

(@t —zy—at) 2y (V(zT) - U(y)).
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C. Composite Distributed Variational Inequalities

In this section, we provide further details on the results we obtained for variational inequalities.

C.1. Assumptions

In addition to Assumption 4.1, we consider the following assumptions in the case of variational inequalities.

Assumptions on ;. We make standard assumptions on { F; };c[,]. The first one is Lipschitzness.

Assumption C.1. There exist some set Q C R such that operators F; are L-Lipschitz:

1Fi(x) = Fi(y)ll < Lllx —yll Vz,y €@, i€ [n]. (36)

Next, for each particular result, we make one or two of the following assumptions.

Assumption C.2. There exist some set Q C R? such that F' is monotone on Q:
(F(z) = F(y),z—y) 20 Vz,yeq. (37)

Assumption C.3. There exist some set Q C R? such that F is (u, z*)-quasi strongly monotone on @ for some x > 0 and
any solution x* of (26):

(F(z) — F(z*),z — z*) > pllz — z*||>, VzeQ. (38)

Assumption C.4. There exist some set Q C R¢ such that {F;}iem are (£, x*)-star-cocoercive on @ for some £ > 0 and
any solution x* of (26):

| Fi(x) — Fi(z*)|? < {(Fi(x) — Fy(z*),z —2*), Vz€Q,icn]. (39)
Assumption C.5. There exist some set Q C R? such that F is ¢-cocoercive on @ for some ¢ > 0:

|F(z) — F(y)|? <UF(z) - F(y),z —y), Vaz,y€eq. (40)

Assumption C.2 is a standard assumption for the literature on VIPs. Quasi-strong monotonicity (Mertikopoulos & Zhou,
2019; Song et al., 2020; Loizou et al., 2021) is weaker than standard strong monotonicity® and star-cocoercivity is weaker
than standard cocoercivity (Assumption C.5), which implies monotonicity and Lipschitzness but not vice versa. Both
conditions (38) and (39) imply neither monotonicity nor Lipschitzness (Loizou et al., 2021).

C.2. DProx-clipped-SGDA -shift

For composite variational inequalities, we start with Distributed Prox-clipped-SGDA-shift (DProx-clipped-SGDA-shift)
that is defined in (15)-(16) with the following change: Af =clip (Fgf (z*) — hk, )\k) , where £F ... ¢F are sampled
independently from each other and previous steps. For the proposed method, we derive the following result.

Theorem C.6 (Convergence of DProx-clipped-SGDA-shift). Let K > 1, 8 € (0,1), A = In %ﬁ“’l),
V > [la® - |2 4 B S| B2

n2

Case 1. Let Assumptions 1.1, C.3 with i > 0, and C.4 hold for Q = By s7(z*). Assume that 0 < v = O(1/y/na)
0 < v = O(min{/ynap, ea, m(Bx)/u(k+1)}), Bx = O (max{?, (K+1)* T Vo220 2 j2(0- 10 1n2(BK)}>
Ap = O(nexp(=u(1+5/2))VV /.y 4),

Case 2. Let Assumptions 1.1, C.2, and C4 hold for Q = Bsﬁ(x*) Assume that v = 0, 0 < ~ =
O(min{1/ea, n "™V VV o g2 AC7001) N = X = O(nVV/44).

Then to  guarantee oK - 2|? < e in Case 1 and Gap y(xk,) =

s
s

8Operator F is called p-strongly monotone on Q if (F(z) — F(y),z —y) > ullz — />
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MaXyen () {(F(y),ojgg y)+ U (x avg) (y)} < ¢ in Case 2 with :z:gg = ﬁ Zf:o x* with probability
> 1 — B DProx-clipped-SGDA-shift requires
~ £ 1 [ 0o° 2D
Casel: O | max< —,— <2> iterations/oracle calls per worker, 41
won \ ple
~ vl VT
Case 2: O | max 0 <J\€F> iterations/oracle calls per worker. (42)
n

As in the case of minimization, in the single-node case, the derived results coincide with ones known for clipped-SGD in
the unconstrained case (Sadiev et al., 2023) Up to the difference between V and ||2° — 2*||2. In the distributed case, we also
observe the benefits of parallelization.

C.3. DProx-clipped-SEG-shift
Finally, we propose a distributed version of clipped-SEG for composite VIPs (DProx-clipped-SEG-shift):

= Prox., g (x - vg Zgl . grF = Ef + Af, Efﬂ = Ef + uAf (43)
zFtl = Prox. g (a* —~g"), " Zgl , gF =nk 4+ AF, ﬁf“ =hF + vAF (44)

where AF = clip(Fer (2 k) — hk i), AF = Cllp(FEk (@) — hE, \) and &1 & 0,68, &b, are sampled
independently from each other and previous steps. For the proposed method, we derive the following result.

Theorem C.7 (Convergence of DProx-clipped-SEG-shift). Ler K > 1, 8 € (0,1, A = In %ﬁ”l),
V > [la® — o 4 A S| Fya)|2

Case 1. Let Assumptions 1.1, C.1, and C.3 with p > 0 hold for Q = Bsﬁ(x*)' Assume that v = ~vyu, 0 <
v = O (min{l/ua?, YL, Vi/La, (B u(k+1)}), Bx = 9(max{2, <K+1>2<“*1’/%2n2“’*”/aV/ngM*”/a1n2<BK>}),
A = O(nexp(=u(L+¥/))VV /.y 4),

Case 2. Let Assumptions 1.1, C.1, and C.2 hold for QQ = B4nﬁ(x*)' Assume that v = 0, 0 < v =
O(min{/ra, n "NV [gr e g0 DY) N = A = O(nVV/54).

Then to  guarantee  ||z® — *H2 < e in Case 1 and Gapf( The) =
MaXyep o (a* o {(Fy), 25, —v) + V(@h,) —¥(y)} < e in Case 2 with Tk, = ﬁ Zk:o z% with probability
> 1 — 3 DProx-clipped-SEG-shift requires
. L 1 2(a—1)
Casel: O |max< —,— (2> iterations/oracle calls per worker, 45)
uwon \ ple
~ LV 1 VT
Case2: O | max —V, — (U\F> iterations/oracle calls per worker. (46)
e ’'n €

The main properties of the above result are similar to the ones of the result for DProx-clipped-SGDA-shift. The only
difference is that the methods (DProx-clipped-SGDA/SEG-shift) are analyzed for different classes of problems and, thus,
complement each other. According to the known lower bounds, our upper bound (45) has optimal dependence on € up to
logarithmic factors.

17



High-Probability Convergence for Composite and Distributed Optimization with Heavy-Tailed Noise

D. Missing Proofs for Prox-clipped-SGD-star
This section provides the complete formulations of our results for Prox-clipped-SGD-star and rigorous proofs. We start
with the following result — a generalization of Lemma E.7 from (Sadiev et al., 2023) to the composite distributed problems.

Lemma D.1. Consider differentiable function f : R? — R having a finite-sum structure (2). If f satisfies Assumption 1.4 on
some set Q) with parameter (1 and Dy (z,z*) > 0 for all’ x € Q, then operator F(z) = V f(x) satisfies Assumption C.3 on
Q with parameter #/2. If f1, ..., [y, satisfy Assumption 1.2 and 1.4 with ;1 = 0 on some set Q, then operator F (z) = V f(z)
satisfies Assumption C.4 on Q with { = 2L.

Proof. Let Assumption 1.4 hold on some set () and D s(x, z*) > 0 for all € Q). Then, averaging inequalities (7), we get
that for all x € @

@) = f(2) + (Vf(2),2" ) + Sl — |,
implying for F'(z) = V f(z) that
(F(a) = F(a*),x —a") > Dylw,a")+Slw —a*? = Ll —a|,

meaning that Assumption C.3 is satisfied with parameter #/2.

It remains to show the second part of the lemma. Let Assumptions 1.2 and 1.4 with ¢ = 0 hold on some set ). We need to
show that operators F;(x) = V f;(x),i = 1,...,n satisfy Assumption C.4 on @) with ¢ = 2L. Guided by (Gorbunov et al.,
2022b, Lemma C.6) and (Sadiev et al., 2023, Lemma E.7), we derive

% 1 % _ *(12 2 * . _ *
-2t H(B@ - B = o2 - 2o -2 B - BE)
+25lIF (@) - i)l @

® * 2 *
< Je—a'|P = Fle—a", Vi)
2 *
+z (fi(x) = fi(z"))
D |2
< e —a2" (48)
From (47) and (48) we get
* (12 2 * * 1 * (|2 * (|2
lz = a™|" = £z — 2%, Fi(z) = Fi(2")) + 5 llFi(2) - Fi(@)]” < flz — 27
that is equivalent to (39) with ¢ = 2L. O

Therefore, for smooth quasi-strongly convex f such that D (z,z*) > 0 (n = 1) we can consider operator F'(z) = V f(z)
and VI formulation instead. In this case, the method is equivalent to Prox-clipped-SGDA-star:

zht = Prox.y (xk — 'yﬁk) . gt = F(z*)+ clip (ng (xk) — F(z"), )\k)
§" = clip (Fer(2¥) — F(2*), M) -

The following lemma is the main “optimization” part of the analysis of Prox-clipped-SGDA-star.

°For example Dy (x,z*) > 0 when f is convex or when () = 0. We notice that Assumption 1.2 implies D (x,z*) > 0 since the
right-hand side of (5) equals D (z, ™) after averaging.
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Lemma D.2. Let n = 1, Assumptions C.3, C.4 hold for Q = Bagr(x*), where R > Ry 4 l2° — 2*|, and 0 < v < /e If
x¥ lies in Bop(z*) forallk = 0,1, ..., K for some K > 0, then the iterates produced by Prox-clipped-SGDA-star satisfy

K
[ =22 < (=) 2 — 22 92 (1 = ) S e
k=0

K
+2y Y (L= ) M@k - — y(F(a*) — F(x")), wp), (49)
k=0
we 2 F(aF) - F(z*) - 3" (50)

Proof. Using the update rule of Prox-clipped-SGDA-star, we obtain

Izt — a2 = |prox,y (¢F —") — prox,y (¢ —yF(a*)) |

S (A A )]
= 2 2P = 2y(a" — 2", G + 719"

50 * * * *
Db — 2| - 29(ab — 2, F(a) - F(a%)) — 293 (F(a) = F(2*),w)
+2y (2" — 2, wi) + VI F () = F@®)|? + 72 |ws]?
39)
<t P 2y - 2 wk) — 292 (F(aF) — F(a7), wi)
074 » »
2y (1 _ 2) (2 — 2, F(e*) — F(2)) + 7wl
(38),'6%
<t =P 4 2y (@b — 2 — y(F(a") — F(a®)), w)
o7 .
2 (1= ) I = o P+
v<7

<
< (=t =2+ 2yt — 2t = A(F () = F(a")), wk) + 22 |wk*.
Unrolling the recurrence, we obtain (49). O

Theorem D.3. Let n = 1, Assumptions C.3, C.4, hold for Q = Bar(z*) = {x € R? | ||z — 2*|| < 2R} for any
x € Bag(z*), where R > ||2° — x*||, and

. 1 hl(BK)
0 < 51
=T mm{zxoomn‘*”j;”’u(ffﬂ)}’ b

2a0—1

(K+1)"a u?R?
BK = max 27 1 2(a—1) 2(a—1) 4(K+1) 2 (52)
4-102120" « o¢2In” = (T) In*(Bk)
2ol 2p2

— O |max{2, K < ph , (53)

20a=l) /g 2 Kza(;l 2 R2

o2ln” @ (F)ln max < 2, ———

o (g)

(1 Lk

N = e (1 + /2))R7 (54)

120y In 2520

Sfor some K > 0and 8 € (0, 1] such that In % > 1. Then, after K iterations the iterates produced by Prox-clipped-
SGDA-star with probability at least 1 — 3 satisfy

a5 — 2*)|* < 2exp(—yu(K +1))R?. (55)
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In particular, when ~ equals the minimum from (51), then the iterates produced by Prox-clipped-SGDA-star after K
iterations with probability at least 1 — (3 satisfy

o2 ln2(aa_l) (K> In? [ max 2, w
K K ot ()
R%2 = O | max{ R? exp [ — = | " c , (56)
flnf K a IL[,2

meaning that to achieve R3. = ||z — x*||? < e with probability at least 1 — 3 Prox-clipped-SGDA-star requires

Y R2 ¢ R2 0.2 Ta—T 1 02 Ta—T o
K = O (M hl <E) 111 (,uﬂ ln 5) 5 (,u25> ln <6 <//L2€) ) 111“’1 (BE)> (57)

iterations/oracle calls, where

B: = max { 2,

20/&—1
m (3 ()

Proof. Let Ry, = ||z* — z*|| for all kK > 0. Our proof is induction-based: by induction, we show that the iterates of the
method stay in some ball around the solution with high probability. To formulate the statement rigorously, we introduce
probability event Ej, foreach £ = 0,1,..., K + 1 as follows: inequalities

R} < 2exp(—vyut)R? (58)

hold fort = 0,1, ..., k simultaneously. We will prove by induction that P{Ey} > 1 —k8/(k+1) forall k =0,1,..., K + 1.
The base of the induction follows immediately by the definition of R. Next, assume that for kK = T'— 1 < K the
statement holds: P{E7_1} > 1 — (T-1)8/(k+1). Given this, we need to prove P{Er} > 1 — T8/(k+1). Since R} <
2exp(—yut)R? < 2R?, we have 2t € Bagr(a*) fort = 0,1,...,T — 1, where operator F is {-star-cocoercive. Thus,
Er_, implies

G54 )\,
Si

58)
IF(") — F(a")| < Lo’ —a*| < V2exp(—mi/2)R >

(59)

and

59 5 ., 54 exp(—yut)R?

loell® < 2 F @) = F@)* +20"1* < 5A7 < e (60)

forallt =0,1,...,T — 1, where we use that ||a + b||?> < 2||a||? + 2||b||? holding for all a,b € R?. This means that we can
apply Lemma D.2 and (1 — yu)T < exp(—yuT): Er_; implies

T-1
R% < exp(—yuT)R* + 2y Z(l — )T ot — 2 — Ay (F(2h) — F(2*)),w;)
t=0
T-1
7Y (1= )T e
t=0

Before we proceed, we introduce a new notation:

ot —a* —(F(a') — F(z*)), if [l < V(1 + ) exp(—mt/2) R,
Nt = At (61)
0, otherwise,
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fort =0,1,...,7 — 1. Random vectors {Wt}tho are bounded almost surely:
el < V201 + 70) exp(—mif2) R (62)
forallt = 0,1,...,T — 1. We also notice that E7_; implies || F'(x?) — F(z*)|| < v/2¢ exp(—7#t/2) R (due to (59)) and
2" — 2" —y(F(@") = F@@)| < |a" —a"[| +7lIF(2") — Fa")|
2 VB At exp(—mifa) R

fort =0,1,...,T — 1. Therefore, Er_; implies n; = 2* — 2* — y(F(a!) — F(z*)) forallt = 0,1,...,7 — 1 and from
FEr_ it follows that

T-1
Ry < exp(—ypuT)R* +2y > (1 — )" (n, )
t=0
T—1
77 ) (1 =) e
t=0
For convenience, we define unbiased and biased parts of w;:
udifE ~1 _ ~t bdifF t —_F(z*) - E ~ 63
wi = Ee [§'] =7, w} = F(a') — F(z*) —Ee [9'] (63)

forallt =0,...,T — 1. By definition we have w; = w} + w? forallt = 0,..., T — 1. Therefore, F7_; implies

T—1
Ry < exp(—ypuT)R*+2y > (1 —yw)" " (n, wit)
t=0
()
T—1 T—1
+29 > (A=) W) 292 > (1 =) B [Jlwp 1]
t=0 t=0
@ &)

T-1
+292 ) (1= )" (ol — Eee [llef*)1%])
t=0

@

T—1
+292 > (1= )"l (64)
t=0

®

where we also use inequality |la + b||? < 2[|al|? + 2/|b]|* holding for all a,b € R? to upper bound ||w||?. To derive
high-probability bounds for @, @,®, ®, ® we need to establish several useful inequalities related to w;';, wf,t. First, by
definition of clipping

il < 2. (65)

Next, Er_1 implies that ||F(z?) — F(z*)|| < /2 forallt = 0,1,...,T — 1 (see (59)). Therefore, from Lemma B.2 we
also have that Fp_; implies

2a «
el < 3o (66)
Ee [|lwf]|*] < 18X70°, 67)
Ee: [||w§‘H2} < 18M2 9, (68)

forallt=0,1,...,7 — 1.
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Upper bound for ©. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

Eer [29(1 —yp)" ' m, wi)] = 0.
Next, the summands are bounded:

Y e wi)] < 2yexp(=yu(T = 1= 0) el - lwi

(62),(65)
< AV2y(1 4+ y0) exp(—yp(T — 1 = t2)) R),

0B exp(-yuT)R? g

127(1 —yp

-

= gD ©
B
Finally, conditional variances o2 & E. [472(1 = yp)?T =272 (n;, w}*)?] of the summands are bounded:
of < Be [4y? exp(—yp(2T — 2 = 28))[me])* - [lwi' 7]

@ o o 2 2 w2

< 8y (1+ 0% exp(—yp(2T — 2 — 1)) R*Eee [[|wf'||?]

(51)

< 1092 exp(—yu(2T — ) R?Eer [[lwf']|?] - (70)

Applying Bernstein’s inequality (Lemma B.1) with X; = 2y(1 — yu)T =1~ (5, w), constant ¢ defined in (69), b =

X 2ypuT)R
Lexp(—yuT)R?, G = %, we get

1 - eXp 27,uT)R4 b?
_ B
2(K+1)
The above is equivalent to P{Ep} > 1 — ﬁ for
) — exp 2’y,uT)R4 1 9
Eg = | either ————— or |® <= exp YuI)R* 5. an
foer 31> SCIUDE o 012 oo
Moreover, E_1 implies
T-1 T—
(70) w
St P w0peszpnre Y e
— = exp(—yput)
K 2—a
(68), T<K+1 )\
< 18072 exp(—2yuT)R?c? Y — L
v” exp(—2yp Z oxp(—l)
(5<4) 1807 exp(—2yuT)R*~ aa“(K +1) exp(#)
- 12020 >~ D

(5<1) exp(—2yuT)R*

150 In 252D 7
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Upper bound for @. Probability event Er_; implies

||77t|| ||wt
@ < 2
© o £
T-1
(621,666
< 21/ 2 (1 + ) ex ))Ro“
< Y(1+ 7€) exp(—yu(T ;A? 1eXp T

sk 271207712y 0 R0 (14 90 exp(— (T — 1) (K + 1) exp (245
<

= lnl—a 4(K[3+1)

(51) 1 9
< R exp(—yuT)R=. (73)

Upper bound for ®. Probability event Fr_; implies

— Ee [lw]?]

® = 2% exp(—yu(T — 1 —_ =
( ) ; exp(—yput)
T-1 2—«

(68) A

< 367" exp(—yu(T — 1))y —F

“— exp(—yput)

GOTSHH 3677 R exp(—yp(T — 1)o™ (K + 1) exp(2455)
- 1202— n?~° 74“;“)

(51 1 9
< R exp(—ypT)R=. (714)

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

292 (1 = )" B [l [ — Eer [lwilI]] =

Next, the summands are bounded:

Sty " 63 167* exp(—yuT)A?

T~ Be [IP)] S o
(5<4) exp(—yuT)R?
S TpwAKm

29 (1 = yp)

I (75)
Finally, conditional variances
~9 def o 2
72 E Ee [4y* (1= y0)* 7272 |2 - Bee [Jeot1?]|7]

of the summands are bounded:

3 292 exp(—2yuT) R? u u
7 © e [t — Ees [t 2]
Sexp(—yu(l+1t)) In ==~

4n? exp(=2yuT) R?

5exp(—yu(l+1t))In 4(Kﬂ+1)

e [llwp?] - (76)
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Applying Bernstein’s inequality (Lemma B.1) with X; = 2y2(1 — yp)? =17 ([|wf||? — Ege [||lwi[|?]), constant ¢ defined

ex — 4
in (75), b = %exp(—’yﬂT)RQ, G = %, we get:
;]

1 — exp (—2yuT)R* b2
P{|@ > gexp(—’yuT and Z >~ W S 2exp _m
_ B
2(K +1)
The above is equivalent to P{Ep} > 1 — ﬁ for
T-1
—2yuT)R*
Eg = | either Z o7 > % or |@ < - exp( YuT)R? & . (77)
=0 150 ln T
Moreover, Er_1 implies
T-1 T-lp
Y a9 7% exp(—yp(2T — 1) R* = Eee [[|w}'||”]
t = 1K+ (—yput)
5IHT t=0 exp T
OTSKL 7292 exp(—yu(2T — 1)) R0 i DY
- 5In 2D “— exp(—yut)
(5<4) 727 exp(—yu(2T — 1)) R* %0 (K + 1) exp(#)
- 51202~ In®~ 2D
5D exp(—2yuT)R*

Upper bound for ®. Probability event Fr_1 implies

T-1
® = 292 ) exp(—yu(T — 1 - t))||wf||?
=0
T-1
(66) 1
< 222920 exp(—yu(T — 1)) —
; A7 % exp(—yput)
(54),T<§K+1 2 - 2201202022052 oxpy(—yp(T — 3)) In?* 2 LK;” XK: exp (vpa)
< P p (yuar
2. 220120202420 52 oxpy (—y (T — 3)) In?* 2 %(K + 1) exp(yuaK)
S R2a72
51 1 )
< £ exp(—yuT)R=. (79)

That is, we derive the upper bounds for ©, @, ®, ®, ®. More precisely, EFr_; implies

(64)

RE < exp(—yuT)R*+ D+ @+ @ + @+ B,
73) 1 74 1 79 1
@ < cexp(—pl)R?, ® < cexp(—T)R?, ® < = exp(—yuT) R,

T—1 T—1
22(72)w Z US)M

150 In 20D — 150 In 2D
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In addition, we also establish (see (71), (77) and our induction assumption)

(T-1)8
P{Er_1}>1— ——
{ T 1} el K+1 ’
P{Es}>1— — D PEy>1- L
- 2(K +1)’ - 2(K +1)
where
T-1 4
R 5 _ exp(=2yuT)R 1 2
Ey = {elther 2 o; > ol 4(}(;_1) @] < : exp(—yuT)R* 3 |
— exp(—2yuT)R* 1
Es = {either 52 > SPTETRI )Y @| < - exp(—yuT)R2 Y.
{ Yot S ey o 161 el

Therefore, probability event Er_; N Ep N Eg implies

(64)
R} < exp(-ywDR*+0+@+0@+®@+6

< 2exp(—yuT)R?,
which is equivalent to (58) for ¢ = T'. Moreover,

— B — T
P{Es} >P{Er_1NEoNEs} =1-P{Er UEgUEs} > 1— Ki—fl
In other words, we showed that P{E},} > 1 — *8/(k+1) forall k = 0,1,..., K + 1. For k = K + 1 we have that with
probability at least 1 — 3

2"+ — 2% < 2exp(—yu(K + 1))R2.

Finally, if
— mmin 1 IH(BK)
T 400¢1n 2USED” p(K +1) [
(K +1)" 12R?

Bg = max{ 2,

2(a—1)

4-10%120" % 02 1n " (%) In*(Bi)
K*< 2R?

9, 2a=b /g 2 K%‘;l u2R2
g ln @ F ln max 2, S ICE N
()

25T — 2> < 2exp(—yu(K +1))R?

p(K+1) 1
= 2R’max{exp| -——-——+—|,—
{ P ( 4000 1n 2EFY |7 By

= O | max{ 2,

then with probability at least 1 — 3

B
2a—1
o2 (5) In? (max{2, W})
B 2 2ad) (g
= 0 R? pE S
= max exp TILE | 20—a) _ 2a-1
n 5 1n @ K a l,[,2
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To get |25 +1 — 2*||2 < e with probability at least 1 — 3, K should be

Y R2 Y R2 02 Ta—T1 1 02 Py o
ko (Gn(F)n(n ) () w5 () Juereen).

where
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E. Missing Proofs for DProx-clipped-SGD-shift

In this section, we give the complete formulations of our results for DProx-clipped-SGD-shift and rigorous proofs. For the
readers’ convenience, the method’s update rule is repeated below:
~ 5 I -
T = prox, g (2% —~g"), where §* = - S Gr, gf =hi+ AL,
i=1

WAL = R AR AR = clip (Vfgf (z*) — bk, Ak> .
Lemma E.1. Let Assumptions 1.2 and 1.3 with i = 0 hold on Q = By, s (x*), where V. > |lz° — z*|]* +
21n2 48n(K+1) n
20864771 , and let stepsize y satisfy v < % Ifz* € Qforallk =0,1,...,K +1, K >0, then

T Z IV fi(2*)II?
after K iterations of DPrOX -Clipped-SGD-shift we have

* |2 K+1 * |2
I I el e
7 (@@ — @) < K
272 K
ok 2
KHZ% x>+K+1]§HwkH, (80)
—K+1 de 1 k+1
‘ B K+1Zm ' e
k=0
N de,
- Prox. g (z% =4V (")), (82)
de ~
wp L Vf@Ek) -Gk, (83)

Proof. Using Lemma C.2 from (Khaled et al., 2020) with p = z**!, y = zF — 4gF, = = 2*, we derive for all
k=0,1,.... K that
2y (@) 0() < ek — 2| et — 2 - 20— V), - a).

Next, we obtain the following inequality

—29(gF = Vf(a"), 2" —a*) = —29(GF — Vf(ah), 3" —2*) + 29(gF — Vf(aF), 2k — 2T
(83) A . B R
< —2y{wp, #F — 2*) + 29|77 — V()| - ||2F - 2R
(82) A * ~
= —2y(wi, &7 — 2%) + 29)|g" — Vf(a")||
[Iprox, g (z*F =V f(2*)) — prox g (z* —7g") |
(83)

< —2y{wn, 2% — 27 + 292w 2.
Putting all together we get
2y (@) — @(z) < la® =2 — [l = 2P — 2y(wn, 27 - 2*) + 29l .

Summing up the above inequalities for k = 0,1, ..., K, we get
1 XK
k+1 * k * (|12 k+1 * (|2
KJrlz —®(z") < mk_o(llw — | = [l —2?)
K K
272
g s = a") + 2 S [
L k=0
Ja® — a*||? — JleKH -2 2y
— = Z(wk ik — %)
K+1 K41

K

272 2
iy o e
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Finally, we use the definition of Z and Jensen’s inequality and get the result. O

Theorem E.2. Let Assumptions 1.2 and 1.3 with i = 0 hold on Q = By, s7(2*), where V. > [ja® — z*|]* +

36864’}’2 In2 48n(K+1) n
Zandv=0,h)=...=1hd =0,

. ; IV fi(z")

1 Ryn VVnos

48n(K+1) " 192 A¢,’ e
360L In =3 ¢ 97t . 48oKE (m 4871([1;-&-1))

'V

- 48y 1n 48n(é(+1) ’

v < min (34)

Ae = A (85)

for some C, > \/% Yor IV fi(z*)||2 K+1 > 0and B € (0,1]. Then, after K +1 iterations of DProx-clipped-SGD-shift
the iterates with probability at least 1 — 3 satisfy

() — o(z*) < 4

SSwan @ S € Byyr(e), (36)

In particular, we have V' < 2R?, and when vy equals the minimum from (84), then the iterates produced by DProx-clipped-
SGD-shift after K + 1 iterations with probability at least 1 — 3 satisfy

LR21n 2K R(i In % oR lnan1 %

OEET) — ®(z*) = O | max 7 L NS ; (87)
meaning that to achieve ®(T5+1) — ®(2*) < & with probability at least 1 — 3 DProx-clipped-SGD-shift requires
IR IR : : a1 1 a7
K =0 | max i In” I , s In AILLS , U\g In| - vV (88)
€ Be \/ne Be ena B €

iterations/oracle calls.

Proof. The key idea behind the proof is similar to the one used in (Gorbunov et al., 2022a; Sadiev et al., 2023): we prove by
induction that the iterates do not leave some ball and the sums decrease as !/x+1. To formulate the statement rigorously, we

introduce probability event E, foreach k = 0,1,..., K 4 1 as follows: inequalities
t—1 t—1
l2° = a*|* =29 fwr, 8 = a*) +297 ) ]| < 2V, (89)
1=0 1=0
Ay
r—1
TN vV
A t < T 90
w2 b | £ 5 (90)
hold fort =0,1,...,kandr = 1,2, ..., n simultaneously, where
wp = w4 w?, 91)
def 1 o pdet 1o~ 4
u def 2 u def = b 92
Wy n ;%,l Wy n ;wz,l 92)
w def 17~ def ~ ,
Wiy S Ba [G1] — 05 wiy = V@) —Ea [g] Vieln] 93)
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We will prove by induction that P{E;} > 1 — k8/(k+1) for all k = 0,1,..., K + 1. The base of induction follows
immediately: ||z° — z*||> <V < 2V and for k = 0 we have |[2 >/~ fwfk 1|| = Osince w’ _; = 0. Next, we assume that
the statement holds for k =T — 1 < K, ie., P{Er_1} > 1 — (T-18/(x+1). Let us show that it also holds for k = T,ie.,
P{Er} > 1—T8/(k+1).

To proceed, we need to show that F_; implies ||2* — z*|| < 3ny/V forallt = 0,1,...,T. First, fort =0,1,..., T — 1
probability event E7_; implies (in view of, ®(Z*) — ®(z*) > 0)

(89)
|zt — z*||? < A, < 2V. (94)

Next, by definition of V' we have

. nV
V@) = VIV@E9)I? < Z IV fi(z*)[]? < W 95)
=1 B
Then, for t = T" we have that E_; implies
[ =¥ = |prox,y(a¥ —7g") — prox,g (z* =V f ("))l

< a2t —Ag" =2t V)] < et =2 F G0+ AV )]
(94),(95) (85)
< <ﬂ+n)\/x7+w\§3mﬁ7.

1921n %

This means that E7_; implies ¢ € By, sv(z*) fort =0,1,...,T and we can apply Lemma E.1: E7_; implies

0 _ |12 _ ||T _ %2
- T—1
2y 272 2
72 w it =)+ 2 S
1=0 1=0
Ar
< —.
s 7 (96)
Before we proceed, we introduce a new notation:
@t =, if 2t — 2| <2VV,
= 0, otherwise,
forallt =0,1,...,7 — 1. Random vectors {n; }._, are bounded almost surely:
lmel] < 2v/'V. (97)
forallt =0,1,...,7 — 1. In addition, Ep_; implies forallt = 0,1,...,7 — 1 that
[2° 2" = |lprox,y (z' =1V f(x t)) —prox,y (7 =7V f(z")) ||
< lf =2t = (V@) - (*))H
< Jlat =2 +’Y||Vf(ff ) = V()|

~
N
=z

ey &) 361 s
(1 + Iyllat — o] 'S ol —# < 2vv.

meaning that ; = ¢ — z* follows from Ep_; forallt = 0,1,...,T — 1. Thus, E7_; implies

T—1 —
(89) . N
Ap =2 — 2P =2y ) (wi @ =2t 4297 ) fwil?

IN

< V=29 () + 297wl (98)
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Using the notation from (91)-(93), we can rewrite ||w; ||? as

b b
lenl® < 2l l* + 2l 1* = =5 + 2wy

n n j—1
SOV ETIED Sl N PRI )
=1 =1

Putting all together, we obtain that £’ implies

27 T—-1 n T—-1 472T 1 n ) 9
Ar £ V=TEY ) (i) =2y Y (elim) + > (letal” ~ By [Jltal”])
=0 =1 =0 =0 =1

@ @ ®

-1 ) T-1 8 2o T—1 n Jj—1

Z €l {szulH }+4722 lw?II* + —5 <Zwm > (100)

=0 =1 =0 =0 j=
@ ® ®

To finish the proof, it remains to estimate @, @, @, ®, ®, ® with high probability. More precisely, the goal is to prove that
D+O@®+0®+ @+ ®+ ® <V with high probability. Before we proceed, we need to derive several useful inequalities
related to (,uz s wlb. First of all, we have

ot || < 2 (101)

by definition of the clipping operator. Next, probability event Ep_; implies

IVAE] < IVAGE) = VE@) |+ V@] € Lt - o] + > IV fi(a))?

i=1
nVV nVV A
< V2ILVV + 1927 n B2 = g 1, ST <35 (102)
fort =0,1,...,7 — 1 and i € [n]. Therefore, Lemma B.2 and E7_; imply
[Jw? || < = Z”Wu” < Aa ., (103)
Ee [Hw;le } < 18X, (104)

foralll =0,1,...,7 —landi € [n].

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

2y 2y u
Eﬁl [_< zlvnl>:| = Z<m’E§f¢[wi,l]> =0.

T-1,n
Moreover, for all/ = 0, ..., T — 1 random vectors {w;"; }}_; are independent. Thus, sequence { Iy, wit >} isa
1,i=0,1
martingale difference sequence. Next, the summands are bounded:
2y, 27w ©ON,(10) 8y AV 5) \% def
22 ot < ot " 22 o 2 (105)
Finally, conditional variances o7, & Eg [4%2 (wi;, m)?] of the summands are bounded:
492 167 %
ot < B | Tl Ind?] S 22 B htl?] (106)
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v _
Applying Bernstein’s inequality (Lemma B.1) with X;; = f—<m, > constant c defined in (105), b = &, G =

v?2
s RT » We get
n B

2161
T—1 n
V2 b2 8
® >~ and R Y P - - .
{ |> " zz;z; 2161n48"(ff+1)}_ eXp( 2G+2C*’/24n> 24n(K + 1)

The above is equivalent to

P{Ep} >1 b for E either T—lz”: 2> v or |@< 4 (107)
_— = o _— — .
Y= (K 1) v i 2161 220D =6
Moreover, E_1 implies
T—1 n T—-1 n
(1% 16721/ ( 0 28872VGQT A2
PID LA > D B [ltill’] .
=0 =1 =0 =1
®5) 480‘\/‘747QJO‘T7°‘ (8<4) V2 (108)
o 8na—11n2—2 48n(é(+1) ~ 92161n 48n(§(+1) :
Upper bound for @. Probability event Er_; implies
T-1 T-1
ON,(103) 4 . 2%~ gV
@ = -29) (Whm <2y Wil ml < el
22—«
96“ *TVV > GV
@) 7 ¢ VT Ty < Z. (109)
12 na,1 lnl—a 48n(K+1) 6

B

Upper bound for ®. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations

equal to zero:
4
Eei [7 (H%ZH — B [le‘lHQD] =0

Moreover, for all | = 0,...,7 — 1 random vectors {w! }!", are independent. Thus, sequence

2 T—1,n . . )
{% (||w;‘l 2 — Ee {Hw;‘l ||2} ) } is a martingale difference sequence. Next, the summands are bounded:
’ i ' 1,i=0,1

4~ 4~?
e ) [ (e )

(121) 3292\2 5 \%
— n2 - 721H2 48n(K+1)
B
Vv def
B

Finally, conditional variances
o de 16+* w 12 w 121\ 2
2 g [ (Jotel” - B [Jtal?])

of the summands are bounded:
» (110) \% 472 9 9
ot S e | el B [l

72V

—— e Ber [l I] - (111)
3n21n48n(§+1) 51[ it }
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Applying Bernstein’s inequality (Lemma B.1) with X ; = 47%22 <||wfl||2 —Egu [walHQD, constant ¢ defined in (110),

b=12.G = W’Weget
T—1 n
V2 b2
©) > and —— 5> <2 - = .
{' | P ;U "7 8641n (il } = ( 2G + 2cb/3) 24n(K + 1)
The above is equivalent to
B . — V2 |4
]P){E@} 2 1 — m, fOr E@ = elther ZO g@' 1 > W or |®| S 12
Moreover, Ep_1 implies
T—1 n T—1 n
ain (04> 18y2V \2—ageT
Z ZJZ - 48n K11 Z ZEél loflI?] < 18n(K i1
=0 i=1 3n?In ( )lOzl 3711117([3 )
85) 48% . 6 J"T\/V4_a7a (84) V2
- 482 na—11p3— 48n([]3(+1) ~ 8641n 48n(é<+1) ’

Upper bound for @. Probability event Fp_; implies

2 T—1 n

109 7292 \2 g T ) 48%%0‘T\/V2_a @)V
2 O B [letdll’] < <=

=0 O n 32ne—11p% 7487’(2{“) N

Upper bound for ®. Probability event Er-_; implies

(84)
S

_ 2(1l—«

® =4 27121 HwbH2 (123) 4(a+1)02aT72 ®5) 9216% . UQ(XT,YQ(X % (1-a)
=7 R \2(a—1) =~ TR76 2(1—a) |p2(1—@) 48n(K+1)
—0 n n =5

Upper bounds for ®. This sum requires a more refined analysis. We introduce new vectors:

j=1 Jj=1
BN EDI A EDORE E
o; = i=1 i=1
0, otherwise,
forall j € [n]andl = 0,...,T — 1. Then, by definition
VvV
ot < ¥
and
87T1n 87T1n Y
0SS ) 12 T3 (TS~ ).
1=0 j=2 1=0 j=2 i=1

®

We also note here that E7_; implies

8y 7 8y o~ /73~
1 1 T—1
QZZ n 4 win =0, Wiy ) = ;Z n wir—1 —0; L Wir_1 ).

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)
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Upper bound for ®'. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional
expectations equal to zero:

87 o 8y u

T-1,n
Moreover, foralll =0, ...,T — 1 random vectors {w",}?_, are independent. Thus, sequence {% <6 wi l>} isa
’ 1,j=0,2

martingale difference sequence. Next, the summands are bounded:

(117),(101) 87 \F vV def

8
< =285 - gl ;

8y u
‘ {0 w)

Finally, conditional variances (o D2 = &ef ]Egz {64 <5l ) } of the summands are bounded:

642

) 1672V
(000 < By |17 ol 'S g (). (121

Applying Bernstein’s inequality (Lemma B.1) with X,;; = % <6J,w] l> constant ¢ defined in (120), b = %, G =
2

|4
216 In BRCKED) » we get
B

) T—1 n V2 b2 ﬁ
Pq|® > d _ 3 <2 — = .
@] an ZZEJZQ i) = e B (= eXp< 2G+2cb/3> 24n(K + 1)
The above is equivalent to
B T—1 n ) V2 , V
P{Eg} >1— ———— for Eg = { either o) > —————or|®| < — 3. 122
{ ©® } = 24”(K I 1) ® ; ]2::2( Z,l) 216 In 48n(g{+1) ‘ ‘ = 6 ( )

Moreover, Ep_; implies

T—1 n T 1 n
(121) 167 (104), T<K+1 288(K+1) 2|/ \2-a o
> D (@) < SN B [lwnl?] <

=0 j=2 =0 j=2 n
(85) a af/2—% (84) 2
L 288(K + 1)y“o*V ¥ |4 ' (123)
482-opo—1 In?~* D T 9161 220U

That is, we derive the upper bounds for ©, @, ®, ®, ®, ®. More precisely, Fr_; implies

(100)
Ar < V+®+®+@+@+®+©7

©=® S'YZ< szT L =8 hwiro 1>

(109) (114) (115)
® < Ka < Za < Ka
6 - 12 - 6
T—1
(108) (m) V2
2
0f £ —————— oy = )
pr t 216 1n 48n(K+1 Z t 864 1n 48n(é(+1)
— 48n(K+1) ©
= :2 216111%
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In addition, we also establish (see (107), (112), (122) and our induction assumption)

(T-1)p
PlEr 4} >1— ———
{Bra} = K+1"
P(Eo}>1-— D BB 1-— BB 1-— P
- 24n(K + 1)’ - 24n(K + 1)’ - 24n(K + 1)’
where
T—1
V2 \%4
Ey = {either 0f > ——— or @< },
n +1
— 216 In 220D 6
T—1
V2 1%
Es = {either ot > ——e o 8] < },
n +1
py 864 In 120D 12
— V2 \%4
Ber = either ZZ 05" > gy o 1@<
{ == 216 In 280U 6
Therefore, probability event Er_1 N Fg N Eg N Eg implies
Ar < VLY VY VYV VLV
T = 6 6 12 126 ' 6
8 o~ /7 Tl
+; . ; 1% 7-1—0; -1
j= i=
87« /7 — u T-1
< Wy {2 win -8 el (124)
j=2 i=1
fort ="1T.
-1

In the final part of the proof, we will show that * Z wip_ 4 = 5?‘1 with high probability. In particular, we consider
¢,

r—1
Y VV
S wiroa| <55
i=1
hold for » = 2,...,j simultaneously. We want to show that P{Ep_; N ET_LJ-} >1- (TKjHB (K+1) for all
j =2,...,n. For j = 2 the statement is trivial since
101 2\ 1%
[Log o] 22 < Vv
n n 2
N ; i _@-1B _ (m=-1)8
Next, we assume that the statement holds for some j = m — 1 < n,ie,P{Er_1 N Ep_1m_1} >1 e S (RiD)"
Our goal is to prove that P{E7_; N ET_l,m} >1- G;;_:iﬁ 8n(K+1) We have
5 m—1 ’YQ m—1 2
£ SN NN P
i=1 i=1

2 m—1 m
i=1

1—1
Y 2 Y
- B b nz< St
r=1

i=1

IN

’Y T — m— ~y i—1
535 METTESD S E) DTN
r=1

1=0 i=1 i=1
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Next, we introduce a new notation:

i—1 i—1
D D DITFIRTEE D DR
PiT-1= r=1 r=1
0, otherwise
fori =1,...,m — 1. By definition, we have
VvV
o5 r_all < - (125)
fori =1,...,m — 1. Moreover, Ep_ 1,m—1 implies p} 7, = i wyp_yfori=1,...,m—1and
~ m—1
L < ®+@4+ @

where

fym
u
*n E pZ}T717w’i,T71>'
i=1

It remains to estimate @.

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

27y 2’y
ng-l {n<P§,T1ang1>] = <pzT 1,E§ [W?,Tfl]> =0,

m—1 . . .
since random vectors {wj';_; }7_; are independent. Thus, sequence { (0h 71, ng_1>}Z__ , 1s amartingale difference
sequence. Next, the summands are bounded:

2y, 27, (125),(101) (85) v def
—{p! w < =|p! | < £ P S
n <pz,T717wz,T71> = n ||p7,,T71H ||wz,T71|| = n\/V)\ 2410 48n(g(+1) C. (126)
Finally, conditional variances (5] ;) o Eer- {4%@@ T 1y W T71>2} of the summands are bounded:
~/ 2 4y 2 2] 129 *V
(o—z’,Tfl) SEginl Tz ||pzT 1 ||W1T 1] ?E T-1 [szT 1l ] (127)
Applying Bernstein’s inequality (Lemma B.1) with X; = %(P;j—l,w;&_l), constant ¢ defined in (126), b = %,
2
G = W, we get

V2 62 5
o q Ve (- = :
{ |> i Z Fir-) 34561n48'“§+1)} - exp( 2G+2d’/3> 24n(K +1)

The above is equivalent to

ﬂ ) m—1 » 2 V2 V
P{Egp} >1— ————, for Eg = | either E L TRy OF @ . 128
{ @} = 24TL(K+ 1) @ s (UZ,T 1) 3456 In 48n(g{+1 | | ( )
Moreover, Ep_1 implies
m—1 n
N 2 A2y . (104) 1842V N2~ g
§ (Jg,T—1)2 < e E Eginl [||W7:,T—1||2] < - .
i=1 i=1
(85) 18~ g™ 22— (84) 2
< 8ytot Ve v (129)

<
- 482—apa—1 111270‘ 48n(§<+1) = 34561n 48n([la(+1) :
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Putting all together we get that E_1 N ET_Lm_l implies

m—1
(114 vV
IN i, <vVer@t0, @ < o
n k)
i=1
T—-1 n m—1
(113) V2 e
§ : ~2 -, )
Tit = J (Cip_1) < ———.
1=0 i=1 ! 2161n 48n(K+1) ; T 34561n%

In addition, we also establish (see (112), (128) and our induction assumption)

(T-1B (m-1)8
K+1 8n(K+1)

P{Er_1 N ET—I,m—l} >1-

3 B
P{Bs} 21— oy PlBa} 21— oy
{Ee} > 24n(K + 1) {Bo} = 24n(K +1)
where
T—-1 n
V2 4
E@ = {elther ; ; m or ‘®| < 12}7
Es =

m—1 ) V2 v
ith o ————or |®| < —
either Z(ULT_l) > 21560 48n(§+1) or |@| < ol

Therefore, probability event Ep_1 N ET,Lm,l N Eg N Eg implies

m—1

i=1
This implies ET,Lm and

P{Er 1 NEr_1m} > P{Er_1NEr 1,10 EsNEs}
= 1-P {ET,1 N ET,mel UE@ UE@}

L T=1  mp
= K+1 8n(K+1)

Therefore, for all m = 2, ..., n the statement holds and, in particular, P{ Er_1 N ET_LH} >1- (7};_1%5 8(K+1) Taking

into account (124), we conclude that F_1 N ET_Ln N Eg N Ee N Eg implies
Ap <2V

that is equivalent to (89) for t = T'. Moreover,

P{E;} > P{ET 1N Er_1 N EyN Ee N Eg

}
IP{ET \NE, UE®UE@UE©/}
B

_ o, r-ng 8 T3

- =1- =
K+1 B8K+1) = 2an(K+1) K+1

In other words, we showed that P{E},} > 1 — *8/(k+1) forall k = 0,1,..., K + 1. For k = K + 1 we have that with
probability at least 1 — 3
(96),(89) Vv

BT — B(z*) < SETT

36



High-Probability Convergence for Composite and Distributed Optimization with Heavy-Tailed Noise

Finally, if

1 n“s NV

v < min ,
360L ln% O7E ASGKE <ln 48n(§(+1))T

then with probability at least 1 — 3

\%4

@<§K+1)_q)(m*) S m

a—1

S60LV In 282(E+D 48 27% 5 /V K+ (m%) g
= max 5 ,
K+1

n“= (K +1)

LV In 2K oV In e nit

O | max
b —1 —1
K na K%

To get ®(zX+1) — @ (2*) < ¢ with probability at least 1 — 3 it is sufficient to choose K such that both terms in the maximum
above are O(e). This leads to

B

K=0|max{ —1In—
€

LV . LV [ oV ﬁln 1 {ovV )"
c 6/87 ’

a—1
eEn a
which concludes the proof. O

In view of Lemma D.1, the result in the quasi-strongly convex case for DProx-clipped-SGD-shift follows from our result
for DProx-clipped-SGDA-shift.
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F. Missing Proofs for DProx-clipped-SSTM-shift

In this section, we provide the complete formulations of our results for DProx-clipped-SSTM-shift and proofs. For
the readers’ convenience, the method’s update rule is repeated below: 20 = ¢y = 2%, Ay = a9 = 0, ap 1 =
Apy1 = A + gy and

k+2
2aL”’

Apy® 4+ g 2*

k1 _ ArY k+1 k+1 _ k k+1

T = — , 2z = PIoX,, v (z — agr19(x )) ,
Akt

n

1 .
S(pktly = E ~ (k41 k+1 hk Ak
g(.’l? ) n gl(x )? gl( ) 1 + (R

i=1

W= S Al AR = elip (V@) < hE )

w1 Any" +app 2
v A
k+1
where £¥, ..., ¢k are sampled independently from each other and previous steps.

F.1. Convex case

The following lemma is the main “optimization” part of the analysis of DProx-clipped-SSTM-shift.
Lemma F.1. Let Assumptions 1.1, 1.2 and 1.3(n = 0) hold on Q = By, s;(z*), where M > |20 — z*|]* +

C2a3e = > IV fi(@*)||?, where C > 0, and a > 0. Let o, y*, 2* lie in By, q57(a*) forall k = 0,1,...,K
for some K > 0. Additionally, let parameters of DProx-clipped-SSTM-shift sarisfy
72 3 2
a > max-< 2, EC , Ko = §C n|; (130)
(k+2) ; .
v = | P R < Koy (131)
then the iterates produced by DProx-clipped-SSTM-shift sarisfy
1 1 K—1 K—1
Ax(@S) ~B(a") < M- 5MK £ 3wt lnsn s — 2+ 3 o w2
k=0 k=0
K—-1 n
+> Z 2 lewi a1, (132)
k=0 i=1
where Lyapunov function My, is defined as follows
My, = ||2* — 2" +02ak+1 [ (133)
where
. f k < Ko;
iy = { Mot TR Ros, (134)
ary1 ifk > Ko;
and wy 1 is defined as follows
def ~ def 1
wikn ZGi(@) = VEEY), wn € sz k+1- (135)
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Proof. By optimality condition for the problem (20), we have for any z € B, m(x*)

Qg1 <§(mk+1), 2k z>

Using Ap 41 (yFH — b)) = apy g (251 —

Qt1 <§(xk+1), 2k — z) <

< @ (W(2) = Y(EET) + apga <£~7(l’k+1>7 2 - zk+1>

(135)

1 1 1
Tl s LI P B
o1 (U(2) — TR + gy (wiyr, 27 — 2511
tapr (Vf(aFTh), 2% — zk+1>

1 1 1
T EA S L FE

zk),we get

a1 (U(2) = U(Z5) + apir (wigr, 28 = 2

+Apgr (Vf(PHh), 2T =y

1 1 1
32t = 2P Sl 2P — Sl 2

a1 (U(2) = U(Z") + g (wigr, 28 = 2

L
i (£ = ) 4 G - )

1 1 1
T I R P
ey 1(T(2) — U(F) + gt {wipr, 27 — 2510

2
L
FAppr (FH) = fgRTY) 4+ SEELT |kt k2

2Ak41
1 1 1
+§||Zk — 2| - §||Z]€Jrl — 2| - §||ZI€+1 —2F|?
apr1(U(2) = UERY) + apg (wrpn, 28 = 2

1 1
A (FE) = F) + GlI28 = 2 = Sl =2

2
2
1 (1 _ O‘k+1L> |24+ — )2
2 A
k+1

where in (%) L-smoothness of f was used. Using Young’s inequality, we have

+1)7zk _ Z>

IN

Q41 <§(1’k

D=2ak+1

D «
a1 (U(2) = W)+ g g wi |* + 5015 = 2412

1

P (P = FGRY) + gl -l

2
1 (1 B ak+1L) |25+ — 2k |2
2 A

k+1

sz+1 _ ZHQ

1
g1 (¥(2) — ‘I’(zk+1)) + 0‘%+1Hwk+1|\2 + QHZk - 2k+1||2

1

Fd (FEY) = FGRY) + 5l -

2
_1 <]_ _ ak-i-lL) szJrl _ Zk||2
2 A

k+1

sz+1 _ zHQ
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2
ap L
Akt

Now, by a > 2, we have % — > 0 and

g (™), 28 = 2) < (U (z) — UMY + afy [|lwrsa |
1 1
+ A (f@™) = FMTY) + §||Z’C — 2| - §||Z’Hrl —z|?

2
71 } _ ak+1L ||Zk:+1 _ Zlc||2
2\2  Agn

< o1 (U(2) = U + of g lwkga | + Ak (F@"HY) = FFT)
1, . 1, .
3 l12° = 22 = Sl = 2]

To continue the proof, we have to mention that

B R R A E R (VRN

< f(yk) - f(karl) + <wk+1a yk - xk+1> )

~

where in the last inequality we used convexity of f. Also, by convexity of ¥ and definition of 4/***, we have

Ay Qg1 Ay Qg1
Uyt = w(’w’* ) < (R + (),
(y™) 1’ T A S (") . (")

o W) < A (T + AT ().

Thus, we acquire

g ("), 28 —2) = gy (G, 2T = 2F) + o (GaMT), 2R - 2)

= A <§($k+1)a yk - $k+1> + ap1 <§($k+1)a 2 — Z>
where the last equation is true due to that a1 (251 — 2F) = Ay (y* — 2¥+1). By (136), (138), we get

o (), M = 2) < AF) — FET) + A (g -2t
a1 (W(2) = WER) + Ap (F) = F(B*)
1 1
o pllwnstl? + G125 = 22 = 51154 - 22

2
2 A - FEY) + Ay (g, yF — 2

o1 ¥(2) = A U + AU (yF) + App (f(2*h) = FT)

1 1
a2+ 5112 = 22— Sl - 2

By definition of function ®(-) (1), we have

o (G, 2" =2y < ARB(YF) — A @) + A (wrg, F — 2T
o1 W(2) + (Apgr — Ag) (2T

1 1
gyl P + 12 = 2P = S — 22

= A®F) — A @) + ogr (wigr, 2T = 2F)
o1V (2) + e f(a"T)
|25 — 22

1, 1
o ol + 5128 = 22 = 2

40
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where in (%) we used ag 1 (2F 1 — 2%) = A (y* — 2FH1) and Ay = Ag + apy1. Making a small rearrangement, we

derive

1 1
Apn @) = 40Y) < Sl -2 - 5

o1 f (@) + apg <§($k+1), Z—x

= 2*) + oy llwna|®

k+1
+agy1 (wepr, 2T

ass) 1
2

A =22 4 s U(2)

k+1>

1
Slt 2|~ §||Zk+1 — 2| + a1 9(2)

1 — kil 1< k41 k+1
S Syt >+ak+l<n§wx e

=1

tagtr (Wit 2 — 2+ apg (Wi, @

IN

o (Wigt, 2 — 2°) + 0 g lwia |

_ Okt - RS AR v 2
ZLn;uwﬁc )= V@),

k+1

1 1
§||Zk —2|]* - §||Z]€Jrl — 2?4 19(2) + arg1 f(2)

—2*) + ok llwr |?

(140)

where in the last inequality we used L-smoothness and convexity of each f;. Now we consider the sequences of k¥, produced

by the method, for any ¢ € [n]. Denoting hf = V f;(z*) and , we have

IR = hi2 ' hE = B2+ 2m (AERE = BY) + VRIAK)?

(2 K2

1 = R I1? + 2vk (gi(@® 1) = hE, BE — hi) + vRllga(a™) — |2

217)

SN IRE IR 4 2 (G ) — BE RS — B2 + vy Gu(aR L) — BE

= IR = B+ v (G — RE, G + RE —

< (L ) IR — BT+ vl () — B

< (U= wllE — BIIP + 2| () — VL2 4 20 [V S — B

—
—
)
wn

=

Summing up (141) by ¢ from 1 to n, we obtain

(1 = vi)llhf = BEI1* + 2vpllwi s | + 20|V fi(@® 1) = V fi(2®) )12

I i 1 — . Wi,
EZth“—hiH? < (1—Vk)EZHh§—hi||2+72||wi,k+1\\2
i=1 i i=1

2”’“anz Y 9 £

41
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Combining inequality (140), where we take z = x*, and inequality (142) multiplied by 3 Lo2a? k1o» We get

. oy 1 1 .
Appr (@) —@(2%) < Ap ((yF) — ®(a")) + 5|27 — ¥ + CQ%H Z\Ihf—hi\\z

2
i=1
1
T e e Znh’“*l i

! X - .
+5(1— ) earor I Znhk h ||2—702 e lehffhi I

21/;€
tappr (Wi, ot = 28) + af llorn|® + 02%+2 ZH% e

(077 ER} 1 °
( oLn ”k02ak+2> ; IV fi(a" 1) = V fi(2)]1%.

By the selection of parameters (130), (131) and definition of Lyapunov function M} (133), we have

A (B~ D) < Ax (B(F) — () + 5 Me— g My

(6%
Farn (Wi, @ = 28) + af o |12 + Z;rl > lwi ]|,
=1

Summing up the previous inequality by k from 0 to K — 1, we finish the proof.
O

Theorem F.2. Let Assumptions 1.1, 1.2 and 1.3(u = 0) hold on Q = By, s;;(x*), where M > |[z° — z*|* +
C2 1 x>y IV fi(@*)||2, where C = 8641n %, and a > 0, and

.35.724  ,10nK 18-6°0Ka (K +1), a1 10nK
a > max 2,8 3T In* On , 860 i71+ )1nTIOL , (143)
n B VMInSs B
v M
Ak = n—mx (144)
72041 In =32

for some K > Ko = [3C?n]| > 0and B € (0,1] such that In % > 1. Then, after K iterations of DProx-clipped-
SSTM-shift the following inequality holds with probability at least 1 — 3

2(y") - () < 2

= m and {zk}f:?v{zk}kl-(zm{yk}gzo - BQW(x*)' (145)

In particular, when parameter a equals the maximum from (143), then after K iterations of DProx-clipped-SSTM-shift,
we have with probability at least 1 —

LM LMn* % or\/MlnaTi1 %

— 146
K2 ’ nk?2 ’ na;1 a—1 ) ( )

®(yK) — ®(2*) = O | max

i.e. achieve ®(yX) — ®(x*) < e with probability at least 1 — 3 DProx-clipped-SSTM-shift requires

K =0 [ max ,/ ,/ 12”LM 1(”{) UgBM (147)

iterations/oracle calls per worker.
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Proof. The key idea behind the proof is similar to the one used in (Gorbunov et al., 2021; Sadiev et al., 2023). We prove by
induction that the iterates do not leave some ball and ®(y*) — ®(y*) decreases as ~ 1/k (k+3)

Firstly, we denote Ry, = ||2* — 2*||, Ry = Ro, Riy1 = max{Ry, R4} for all k > 0, and now we show by induction

that for all £ > 0 the iterates z**1, 2% ¢* lie in Bg (2*). The induction base is trivial since v = 20, Ry = Ry,
0 0
and 2! = AOZ’A# = 29, Next, we assume this statement is true for some | > 1: z!, z/=1 y/=1 ¢ Bﬁz 1(:r*)

According to definitions of R; and Ry, we obtain z! € B r(z*) C B 7 (x*). Due to that 3 is a convex combination of
y=te Bg,  (z*) C Bg (z7), e By, (2*) and By (x*) is a convex set, we have that yl e Bg, (2*). Finally, since P

is a convex combination of ' and 2!, we conclude z!* lies in B 7, (%) as well.

Now to formulate the statement rigorously, we introduce probability event Ej, for each for each k = 0, ..., K as follows:
inequalities
t—1 n
2 Z (Wi, @t = 2') +2 Z ofyllwrial +2) % = l“ lwi i[> < M, (148)
1=0 1=0 1=0 i=1
Bt

Ry < /My <2VM, (149)

Qi s w M

;;wm <5 (150)
hold fort =0,1,...,kandr = 1,2...,n simultaneously, where

Wit = Wiy Wl (151)

w def 1 def 1
Wi = sz 1 Wl = sz I+15 (152)

ot e def ,

wigr = gi@"™) — Eg [gi(e ”1>]7 Wiks1 = Egr [Gi(x ’““)] — Vfi(z"h), Vi€ [n]. (153)

We want to show via induction R, < 5nv/M with high probability, which allows us to apply the result of Lemma F.1
and Bernstein’s inequality to estimate the stochastic part of the upper-bound. After that, we will prove by induction that
P{E;} > 1—k*B/k forallk = 0,1,..., K. The base induction follows immediately: the left-hand side of (148) equals zero

' S Z wz ,0
holds forsome k=T —1< K —1: P{Ep_1} > 1— (7- 1)ﬁ/K Let us show that P{Er} > 1 — T6/k.

and M > M by definition, and for £ = 0 we have = 0, since ovg = 0. Next we assume that the statement

To proceed, we need to show that probability event Er_; implies that Rt <2vM forallt =0,1,...,T. The base is
already proven. Next we assume that R; < 2v/M forallt = 0,1,...,t forsomet' < T. Thenforallt =0,1,...,¢

2" = a*[| = [[prox,,y (2~ —oztg(mt))—proxaw(af —a V()|
< I et o (9(2f) - V() |
< T = atl F anlglat) = BT A e |ATT Rl

IN

1 1
<1 + C> lzt=1 — 2|2 + Czafﬁ Z A=Y — B2 + e hi—y

i=1

4VM + nvVM < 5nVM.

(144) (149)

< 2 My + oA
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This means that 2*, 2%, y* € By ;(z*) fort = 0,1,...,#and we can apply Lemma F.1: Ez_; implies

t'—1 t'—1

Ay ((I)(yt’) _ q)(x*)) < 5 0 — §Mt, + Z 1w, ot — 2 + Z ozl+1||wl+1||
1=0 1=0
t'—1 n
af
+D D ikl
k=0 i=1
1 1 3
< §M0 — §Mt’ + By < §M (154)

that gives
My < Mo+ M < 2M.

That is, we showed that Ez_; implies z*, 2%, y* € B, /5;(z*) and
(149,059 3 Mo — My + M _ 3M _ G6aLM

o(yt) — B(z* — = . 155
(') — &) A, =24, t(t+3) (159
forallt =0,1,...,T. Before we proceed, we introduce a new notation:
et =2t it = 2 < 2vM,
= 0, otherwise,
forallt = 0,1,...,T. Random vectors {n; }Z_, are bounded almost surely:
el <2vVM (156)
forallt =0,1,...,T. In addition, 1; = x* — 2! follows from Er_; forallt = 0,1, ..., T and, thus, Epr_; implies
T—1 n
BT = 2 Z Q41 wk+1, ¥ — Z -l— 2 Z ak+1||wk+1|| +2 Z Z k+1 ||w2 k+1H
k=0 i=1
T—1 n
= 2 Z g1 (Wrr1, M) + 2 Z oy lwns]® +2 Z Z k“ llws k1| (157)
k=0 i=1

Using the notation from (151)-(153), we can rewrite ||wg1(|% and [jw; k1] as

9 n 4 n j—1
lwrrall? < o) Z it |1? + ) Z <Zwéfk+1aw5sz+1> + 2l|wp 1% (158)
i=1 j=2 \i=1

Putting all together, we obtain that Ep_; implies

T—-1 n a T-1 n a
k+1 k+1
B QZZ i,k+17nk +QZZ zk+15nk>
n n
k=0 i=1 k=0 i=1
@ @
T—-1 n Oé 9 9
k+1
+83 3 (|fwtin]” —Eer |t ®])
k=0 i=1
®
T—-1 n O( T-1 n Oé
k+l k41
+8° > B [[fwtinl] +8 30 20 wbin |
k=0 i=1 k=0 i=1
@ ®
T—1 n ag j—1
k+1
+8Y > <Zw;fk+1,w;{k+1>. (159)
k=0 j=2 i=1
®
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To finish the proof, it remains to estimate ®, ®, ®, ®, ®, ® with high probability. More precisely, the goal to prove that
D+ @+ @+ @+ ®+ ® < M with high probability. Before we proceed, we need to derive several useful inequalities
related to wl' ,;, w? ., ;. First of all, we have

lwi sl < 2X. (160)

by definition of the clipping operator. Next, probability event F7_; implies that for ¢ = 0 we have 2! = z° and

IV fi(z") = by < IV fi(2%) = V fi(a*)|| + [[R) — R}l
smooth vn 1 &
0 * ~2 0 *
Lt 0 S e

2(Ko +2
(20612 1
ad Coy
(143),(144) )\,
< —.

161
< 5 (161)
Next, fort =1,...,T — 1 event Ep_; implies
VA = hill < (VAT = VA + IV i) = Vi) + 18 = ki
< L™ =y + V2L (fily") = fi(a*) = (Vfilz*), 4t = 27))
() i
< Ll =yl + V2L (B(y") — B(a) + 4| D IhE — k)2 (162)
i=1
(59 Lagyr, 441 : 12anL?M vn 1 &
< — - + 5= — ht — R}
< SRR S g 2o
S 4L V MOétJ,_l 12anL2M \/{’Tl \/ﬁt
Ay tt+3)  Cap
~ 10nK ~2 2 10nK
(1%4) ﬁ 8- 72L0ét+101t+1 In 8 4o 12 - 722aL2at+1 In 3
2 nA; nt(t + 3)
Jr)\t 288 ! 10nK
2t 222 g
2 Cyn B
- A 576aL? max { Ko + 2,t + 2} (t+2)ln%
-2 a?L?t(t + 3)n
A [12aL?max {(Ko+2)?, (t +2)%} 722 In® 102K
+? ' na?L2t(t 4 3)
+ﬁ 288 In 10nK
2 Cyn Jé]
A 2. 10nK
< Et . gmax{(Ko +2),2} % In OZ
A 22 10nK
+2t\/2 max { (Ko + 2)2, 9} % In? OZ
Ae 2 10nK 143) X
A 288 In On < A (163)

+2'C\/ﬁ 3~ 2

where in () we use — (2 3 Vf;(z*),y" — 2*) < U(y") — ¥(z*), and in the last row we use gt(jf; < 2 forallt > 1and
i=1

C > 12.721n%.
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Therefore, Lemma B.2 and E7_; imply

2%

[wfpiall < =g (164)
k

IN

Eer [[lf s [1?] 18)\ %o, (165)

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional equal to
zero, since Egr [wi'y ] = 0:

Ber [akﬂ <W;fk+1777k>} =0.

T—1
Moreover, for all Kk = 0,...,7 — 1 random vectors {w;‘k +1>} are independent. = Thus, sequence
' k=0

T—1
{2 ak;l <wf k1> 77k> }k:O is a martingale difference sequence. Next, the summands are bounded:

Ok+1 ak+1 e !
2% Gt )| < 2Tt el S 4% VAT

(144) 4no¢k+1 vM < vM def

= c. 166
72nag41 In 1OZK ~ 6In 1OZK ¢ (166)

. " . def 2 2
Finally, conditional variances ai = Eex [40‘;‘51 <wi‘fk+17 77k> ] of the summands are bounded::

2 2
Qg w Qg w
o < By |18 P ] < 16255 Mg [l ] (167)

<w;{k+1,nk>, parameter c as in (166), b = %, G =

X411

Applying Bernstein’s inequality (Lemma B.1) with X; ;, = 2

M2
37, 10nkK *
63 In 5

T—-1 n M b2 ﬂ
{|®> and ZZU”“‘@‘SI 10”K}§26XP(2G+26b/3>5nK'

k=0 i=1

The above is equivalent to

ﬂ T—1 n M2 M
P{Ep}>1- R for Eg = {elther ,;J ;al B> oL 10nK or |® < 6} . (168)
Moreover, Ep_; implies that
T—1 n (167) T—1 n k+1 T—1 n a%+1 .
> ot 16M ) Z Eet [[lo i ll?] 2 9880 M > A2
k=0 i=1 k=0 i=1 k=0 i=1
o 2880 M2/2 N ady, 2885 M2=/2 N af,,
— 722 aln 2—« IOnK Z no— 1052 a — 722 oln 2—«a 10nK Z nafl
2880“M2*“/2 — N
< ne—1792—a . 9agafa 1n2—a 10;1( ];)(k + 2)
1 1440M2=“PT(T + 1)> (43 M?
S aia ’ na_lLa 1n27a IOZK S 63 In 10nK (169)
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Upper bound for @. Probability event Er_; implies

T-1 n -1
Qs Q41
@ < 2y S Ll 'S 4V 20" Y kY
k=0 i=1 k=0 "k
(4 16720 M P 100K |
< p— In®~! 3 Z max {ak+1%+1 ) O‘k+1}
k=0
16- 722 oM 100K |
< In® K Nk 2~ 1 k 2
= 20qa L s ;maX{ BT
THESK 1 12-16-722 1o M "PK(K + 1)* | oy 100K
= a® qo o ﬁ
(143) M
. (170)

Upper bound for ®. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

801 g Tt I = Ber ([l I2]] = 0
2k [ gk lwiterall”] | =0
n
Moreover, for all ¥ = 0,...,7 — 1 random vectors {wfk +1} are independent. Thus, sequence
’ i=1

T—-1,n
2
Wikt H ] ) } is a martingale difference sequence. Next, the summands are bounded:
k,i=0,1

’I’L2

2
u
st e

2
8ag g

8a?
(hotinll” = B i P])] = 252 (ot + Bt [Jotienal])

160)  64a?, A2 144 M .
< K17k © e (171)

n2

n2 ~ 9ln 1071K

Finally, conditional variances

5 de 64 " 2
g [0k (o - ey [Jotal])]

of the summands are bounded:

~ a1y 8ot M
T = g e [ letenl” - B et

1607, M

< —gor Ee [llwilenl®]- (172)
2
Applying Bernstein’s inequality (Lemma B.1) with XZ k= 8%“ <||(,L),€Jrl H Egr U Wikt H ] > , parameter c defined in
2
(171, b=4.G = W{‘fimgx
T—-1 n
M? b? B
® > — and 2 < 2 .
{' | — ;U7 k= 6-921n 102K } P ( 2G + 2cb/3> Bk
The above is equivalent to
3 = M? M
P{E@} Z 1-— 5717, for E@ = {either kZ: Z: W or ‘®| S 9} . (173)
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Moreover, Er_1 implies

_ 1712 16 n az (1 69) M2
DDA MY Y B [lwiall] < 6 021 0K (174)

Upper bound for @. Probability event Ep_; implies

= ak+1 p A 2
® = SZZ 5 gk sz k+1“ } < 57 8M Z 2 Eg {erkJrlH }
k=0 i=1 k=0 1=1
(169) M M
S PRmE Sy

(175)

Upper bound for ®. Probability event Ep_; implies

T-1 n T-1

2
_ k+1 2043 ;20 QXit1
® = 822 H zk+1H <2 Z)\2a72
k=0 i=1 k=0 "'k
92043 722a 2520 1n204 2 10nK T—-1

~20—2 2
n2a—2 |\ [a—1 Z max {0} 418457 Oy }

(144)

22a+3 722a 2 Qa 1n20¢ 2 10nK T-1

20—2
= 92ag2an2a—2]2a | [a— 1 Z max{ k+2)%, (Ko +2) (k+2)° }

1 8-72%72 2”‘K(K—Fl)%l 202 10;1{ as M
< a2 n2a—2[2a)fa-1 6 (176)

Upper bound for ®. This sum requires more refined analysis. We introduce a new vector:

1

Jj—
Oék+1 : Otk+1
Xk _ Z wz k+1> if Z wz k+1
J i=1

0, otherwise,

< YM

2 177)

Then, by definition

X511 < \F (178)

and

T—1 n T—1 n
— 8ZZak+1 <X]> T +8ZZ<O¢H1Z ﬁk+1_X§7w;k+1>' (179)

k=0 j=2 k=0 j=2 i=1

®'

We also note here that £, implies

— n _]—1 n j_l
ar _
Z > < = Wit — x?,w?,k+1> =8) <n > wiy —x] l,w;-iT> : (180)
j=2 i=1

k=0 :2 =1

Upper bound for ®'. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional
expectations equal to zero:

8arpi1 u Bk 41 u
Egk [ - <X§7wj,k+l>:| = n+ <X§,E§§ [Wj,k+1]> =0.
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T—1,n
Moreover, forall k = 0,...,T — 1 random vectors {w}'; }}_; are independent. Thus, sequence {80‘2“ <X§?, Wi, +1>}
’ k,j=0,2
is a martingale difference sequence. Next, the summands are bounded:
Bag41 W 8k+1 ki1l (160,078 Bag1 VM M der
n < Wy, k+1> < T ||Xj||||wj,k+1” < 9 “2X < 76 In mZK =C (181)
Finally, conditional variances
6403 -
52, def k+1 2
jk — gk |: n2 <Xka Zk+1> :|
of summands are bounded:
6403 1602, M
A2 k+1 k2 2 k+1 2
G5k < 2 Eet [ 1Pl 7] < T]ng [lewserall?] - (182)

Applying Bernstein’s inequality (Lemma B.1) with X, = 80"‘“ <X], wj k+1>, constant ¢ defined in (181), b = %,
G= Mﬁ, we get

T-1

P \@|> and 52 < M> <2e b’ b
— E ) — xp | — = .
R T (e TR

The above is equivalent to

B . ~ M? M
P{E@/} Z 1 — 57177 for E@/ = elthe Z Z2l W |©l‘ E . (183)
k=0 :
Moreover, Er_1 implies
T—1 n T—1 n 2 2
(182) (169) M
~2 k+1
a7y < 16MZZ T Ee (ot l?] < 7631 o (184)
k=0 j=2 k=0 j=1
That is, we derive the upper bounds for ©, @, @, @, ®, ®. More precisely, Fp_; implies
(159)
Br < ®+®+©+@+®+©7
(179).( (180) ar _
D
=1
(170) (175) (176)
@s%, CREIOR L
9 6
T—1 n T—1 n
(169) (174) M?2
PP DA 671 05 > D G < 6 97 In K
k=0 i=1 6% In k=0 i=1 6-9%In
Uz E S 3 IOnK
k=0 j=2 6% In
In addition, we also establish (see (168), (173), (183) and our induction assumption):
T-1
P{ET—l} Z 1 - %a
B B B
P{Egt >1—-—, P{Eg}>1— ——, P{Eg}+>1—- ——
{Ea} 2 5nK’ {Ea} 2 5nK’ {Bor} 2 5nK’
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where

T—
. M? M
E@ = {elther E :E W or |®| S F } .

k=0
T—1 n
M? M
_ : ~2
E@ = {elther 2L O—i,k’ W or |©| S 9} s
T—1 n
. . M? M
E@/ = elther Z O'Z-Q’l W or ‘@ ‘ 6
k=0 j=2
Therefore, probability event Er_1 N Eg N Eg N Eg implies
B <M+M_~_M+M_~_M+M
= % "6 "9 "9 "6 6
T-1n /o j—1
k+1
+8 < " k1 — X;v jk:+1>
k=0 j=2 i=1
n a j—1
< M+SZ<nT wZ,T—X?_l,w;T>. (185)
Jj=2 =1

J
In the final part of the proof, we will show that % YW = X? with high probability. In particular, we consider
i=1

probability event ET,L ; defined as follows: inequalities
ar - o

hold for r = 2, ..., j simultaneously. We want to show that P{Er_; N ET_M} >1- w - 5)2”]—15( forallj =2,...,n
For j = 2 the statement is trivial since

< g (186)

H Wl H (160) 2a7 A1 < vM
- n - 27

Next, we assume that the statement holds for some j = m — 1 < n, i.e., P{Er_1 N ET71,m71} >1-— (7;536 — ?;Tgpﬁ

m—1
ar u_||.
- _lein :
1=

Our goal is to prove that P{Er_1 N ET,Lm} >1 - UZDB _ 2mB gt we consider

K SnK*
m—1 2 2
ar § WY _ Qp w
n < 1, T ng @, T
i=1
2 m—1
o OZT ||w ”2 QOAT OLT b
n2 2 : 1, T E : n E : rT7
i=1
T—1m-—1 —
< k+1 2 2ar ar
> § n2 Jw zk+1|| n § n § w
k=0 i=1 i=1
Next, we introduce a new notation:
i—1 i—1
ar u i |l ez u vM
_ n ZOJT,T’ if n Zwr,T S 2
Pi,T—1 = r=1 r=1

0, otherwise
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fori =1,...,m — 1 a. By definition, we have
v M
lps.r—1ll < =~ (187)
1—1
fori=1,...,m — 1. Moreover, Em 1 implies p; 7—1 = aT E w pfori=1,...,m—1and
=
o m—1
LN Wi < VIT@tO,
[
where
a m—1
T
@ = Tn <Pi,T—1,WZfT> .
i=1

It remains to estimate @.

Upper bound for @ . To estimate this sum, we will use Bernstein’s inequality. The summands have conditional
expectations equal to zero:

2aT

E.r-1 <Pz T-1,W T>:| = T <Pi,T—17E5iT—1[WZ‘J,T]> =0,

204'1“
&

. . m—1 . . .
since random vectors {w -}, are independent. Thus, sequence {QO‘TT@LT,D w}‘ﬁ}ii , s a martingale difference
sequence. Next, the summands are bounded:

2a 20 (160),(187) ¢y " M dof
: < il Juiirll € VMM Y e Fe (188)

<p1T 1, W > 361 10nK

def 402
Finally, conditional variances 02T 1 = Eg -1 {%(pij_l, w?ﬂﬂ of the summands are bounded:

_ 4o, >a M u
oiT1<Eggl[ Floir—all? ||sz2} 7 B [l ]] (189)

Applying Bernstein’s inequality (Lemma B.1) with X; = ZO‘TT(pLT_l, w;fT> constant ¢ defined in (188), b = % G =

M?
I 0OK 07T we get

m—1
M Ve B2 3
P{|®| T 36 and Z UZT 1S 651 10nK} < 2exp (_2G+2cb/3> T sk

The above is equivalent to

m—1
B . _g M? M
P{E@} > 1-— W, for E@ = ( either ii - Uz‘,T—l > W |®| > 36 (190)
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Moreover, Er_1 implies

) (189) a2 M w gy (169 OF 2 a2
UZT—l < 22 ]Eginl [”%‘,T”Q] < 18(m — 1)?§M‘7 /\3“—0{
i=1 i=1
(144) a2 npEeMEr o 10nK
< 18(m—1)—% - N n®
n T2y, 5
m<n,T<K a2 o \° 10nK M?
5 K a—1
< 18- 6° —= <\/M> In 5 o 10nK
118-6° 1 o * o1 a1 IOnK M?
(143) M?
é 651 10nK (191)
Putting all together we get that Ep_1 N ETfmel implies
m—1
ar a7s M
- YAl <VO+D+@, @ < —,
n ; wz,T = + + ) =9
; ik 57 10nkK ’ U S s ionk
PRt -921In 5 6° In 5

In addition, we also establish (see and our induction assumption):

~ (T-1)p 2(m-1)p
P{Er 1N Ep_1m 1} >1— —
{BranErama} > K+1 Snk

B B
P{Eg} >1— P{Ezs} >1— ——
{Eo} = 5nK’ {Eo} 2 5nK’
where
T-1 n
M? M
E@ = {elther ZZUZk Wor‘@| < 9};

k=0 i=1

=, M? M

E@ = either ; 0'7:7 W |®‘ < %

Therefore, probability event Fr_1 N ET_Lm_l N Ee N Eg implies

This implies ET_Lm and

P{Er_1N ET—l,m} > P{Er_inN ET—l,m—l NEgNEg}
= 1-P {ET_1 NEr_1m-1UEg UE@}

(T-1)8 2mpB
K 5K’

Y

1-—

Therefore, for all m = 2,. .., n the statement holds and, in particular, P{E7_1 N ET_L,L} >1-— w - 5276( Taking
into account (185), we conclude that Er_1 N Ep_1 , N Eg N Eg N Egr N Eg implies

Br <M
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that is equivalent to (148) for ¢ = T". Moreover,

P{E;} > IP’{ET_l A Er_1.,N Eg N Es N Eg N E@}
1 —IP’{ET,l NE,UEsUEsUEge UE@}
3 T

(r-08 2, 5 ., T8
K 5K nK — K-

Finally, if

8-35.72¢  ,10nK 18-6°0K« (K +1) a-1 10nK
a = max« 2, In , — In"= ,
n 16} VMIn“s B

then with probability at least 1 — 3

6aLM
d(y") — d(z* e
o d 12LM 162 7T2PLM | 100K 36708t st 1nK
= X s ) a— *
K(K +3)" nK(K +3) B T VM(Kn)= B

LM LM In* 2K 0\/Mln%1 nk

= O | max{ — A p
K2 nK? R

To get ®(y) — ®(2*) < e wit probability 1 — 3, K should be

LM [LM ,nLM 1 [ovM\* ' oVM
O | max —4/—n , — In
€ en e 'n € ep

that concludes the proof.

F.2. Strongly Convex case

In this section, we provide the complete formulation of our result for R-DProx-clipped-SSTM-shift (a restarted ver-
sion for DProx-clipped-SSTM-shift) and proofs. We should mention that the results for DProx-clipped-SSTM-
shift), Theorem F.2 and Lemma F.1, can be proven in the same way if we assume that h) = Vf;(z°) and M >

[ = 2*2 + C20%, 11 2 S0y 1K = V()|

For the readers’ convenience, the method’s update rule is repeated below:

Algorithm 1 Restarted DProx-clipped-SSTM-shift (R-DProx-clipped-SSTM-shift)

Input: starting point 2°, number of restarts 7, number of steps of DProx-clipped-SSTM-shift between restarts { K;}7_;,

stepsize parameters {a; }7_,, clipping levels {\} kK:la LN 5:26 L {A;}f;g ! smoothness constant L, the constant
{NeH—y
1 20 =20
2: fort=1,...,7do
3:  Run DProx-clipped-SSTM-shift for K iterations with stepsize parameter a;, clipping levels {\, kK:tgl, and starting
point £'~1. Define the output of DProx-clipped-SSTM-shift by &*.
4: end for

QOutput: 27

Theorem F.3. Let Assumptions 1.1, 1.2, 1.3 with . > 0 hold for Q = By

yar(*), where M > [|a® — x*||> +

n
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CEad, 12 >y ||h) — V f;(2%)||* and R-DProx-clipped-SSTM-shift runs DProx-clipped-SSTM-shift 7 times. Let

K — {max{ /24LMt Ly 10 My, 2 1016 M, 17,
<68 Mt1>”_1 107 (68 Mt1>"‘1
- =Vt In | —/— ( =V ""t1
n Et B €t

1 (161026, 3\ " " e 16 -10%0\/M;
— < IV 1) ol (192)
n et £t B €t
My M uM 10nKtT
Et = 4 5 Mt_l = W, ’710g2 2% —‘ In B ]. (193)
.35 . 724 10nK; 18-6° K K,+1). a1 10nK
a > max 2,8 3T In* On t, 860 ( t+ )110 10nk, , (194)
n B v/ M, Ln o B
nv/ M,
Al = TR (195)

72&};_’_1 In 5

fort=1,...,7, where C; = ¢ 1n %, N, = [3C?n]| > 0. Then to achieve ®(27) — ®(2*) < e with probability at
least 1 — 3 R-DProx-clipped-SSTM-shift requires

O| max £ln (/M> , £ln <M> In® VL In (MM> ,
1% € np € VB
1 <U2> PTG " (1 (02) Gy . (W)) ’
n \ Ue B \ ue €
2\ 26D oy 2\ @D
sz (“) T (1 <"> T <”M)> }) (196)
na-1 \HE B\ ue €

iterations/oracle calls per worker. Moreover, with probability > 1 — [ the iterates of R-DProx-clipped-SSTM-shift ar
stage t stay in the ball BQ\/m(a:*).

Proof. The key idea behind the proof is similar to the one used in (Gorbunov et al., 2021; Sadiev et al., 2023). We prove by

induction that for any ¢ = 1, ..., 7 with probability at least 1 — ¢8/+ inequalities
7 ) < <=2
q)(l' ) - <I>(x ) S €y, Ml ~ Ml = ? (197)
hold for [ = 1, ..., t simultaneously. We recall the Lyapunov function is determined as
) 1 n X .
Wy = 4 2| + Gy SO IVAG) — VA S (1 + CFlaly )L 4 2

i=1 —
=G,

where by definition of C, aﬁvl 1> We can estimate Gy

(198)

- 8646 10nK
Gy <2maux{l,94i§1 In® On ﬁlHT}
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Now, we prove the base of the induction. Theorem F.2 implies that with probability at least 1 — 8/~

Gi(®(@") — @(a7))

X ma , In
X{Kﬂk&+3>nKuKy+a 3

6a1 LR?
< 177 %
Kqi(K1+3)

194
(2 Qmax{l,

9. 86496 ¢ IOnK 7
In
4nt B

3670 fit o=t 0nE T

12LM  162-725LM _ , 10nK, T

9 o — 1 - 5
VM (Kyin)*& B }
0 1077,K1’7'

In'

{24LM 162725 .9 . 8645 LM
< max K7
1

nK? 8’

650/ MIn"s 00T 8151846 . o/ M In" s L0nfar
(nK,)*= 7 nf"i;lKla%l
(192) M
< a=tp

and, due to the strong convexity,

M < Gy||z" —2*|* <

2G,(®(2') —
1

The base of the induction is proven. Now, assume that the statement holds for some ¢t = T' < 7, i.e., with probability at least

1 — T8/ inequalities

o

i) — ®(z*) < e,

M

M <M =+

5 (199)

hold for [ = 1,...,T simultaneously. In particular, with probability at least 1 — 78/~ we have My < Mrp. Applying
Theorem F.2 and using union bound for probability events, we get that with probability at least 1 — (T+1)8/>

Cra(®E™) —0@") <

(192)
<

and, due to the strong convexity,

My < Gryq |27 —

Gar1 LM
Krp1(Krp1 +3)
12L My 162 - 725 LMz
X max ,
Kri1(Kry1 +3) nKri(Kria +3)

Gri1

- 8646 10nK
(g)QmaX{1,94ii In® On BT+1T}

4 1OnKT+17'

/8 )

K +1
3 67‘7ﬁ .— 10nKpq7
VM(Krpin)“s B
24L M7 162-725-9-864L M7 1 . 19 10nKri17
max 702 , e In 3 ,
T+1 T+1
650/ My In"s EraT 8151846 . o /Ny In" s L0nkrr }
oa—1 9 Sa—1 a—1
(nKr41)"= n> e Kpo,
uMr

ET+1 = 1

x*H2 < 2GT+1((I)('£'T+1) — q)(x*)) < My

L= My
" 5 T+1

Thus, we finished the inductive part of the proof. In particular, with probability at least 1 — [ inequalities

&(

. . ~ M
i — @(z*) < e, M <M=

hold for [ = 1,..., 7 simultaneously, which gives for [ = 7 that with probability at least 1 — /3

d(z!) — (z*) < e,

(193)
_ w4 _ uM 2,
4 97+l —
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It remains to calculate the overall number of oracle calls during all runs of clipped-SSTM. We have

S - of S P B (i
= max 7,
t=1 t=1

() 5 () )

€t

o

A i) )
= (; M> % @ﬁ) }>

1 o2 a1 7a—1
nslf:ll;( MR > In (
- (’)(max{\/zl ("M> 1/ Ll (" 1n5< (“M>>

i € €
1( i )inln (< 27/2>a T 22<a D,
n \uv/M B t=1

1 o T ras (7 (027 & _at
- — Ine—1 — 22(a—1
= Qm) § (ﬂ(WM) )Z ( >}>
= O(max{ﬁln(%),1/iln(/€4>ln<\/gl (MRQ)>7

1 g a1 T g a1 o -7
(v 1“<ﬂ(m) o )2 A

# <U> o 1n7°__11 T ( o >a°‘1 2% | 92D

na= \ /M B\ uvM '
ZKt = O max L In (W) , L In (W> In® @ In <M> ,
P p 3 np £ VB €

Thus, we have

which concludes the proof.
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G. Missing Proofs for DProx-clipped-SGDA-shift

G.1. Cocoercive case

In this section, we give the complete formulations of our results for DProx-clipped-SGDA-shift and rigorous proofs. For
the readers’ convenience, the method’s update rule is repeated below:

zhtl = ProX. g (xk - ’yﬁk) , where g" = Zgl ) gz hi Af?
WEFU = hE 4 uAE, AF =clip (ng( £y )
Lemma G.1. Let Assumptions C.2, C.4 and C.5 hold for Q = By s7(z*), where V. > |l2° — z*||* +

256002 1n2 dmmike )

S I F(@)]? and 0 < v < Ve If 2* lies in By 7 (x*) for all k = 0,1,..., K — 1 for some
K >0, thenfor all u € By, si7(x*) the iterates produced by DProx-clipped-SGDA-shift satisfy

K—1
K 2% = ull® = ||la* — ul? L 2
<F(u)axavg >+ \II( avg) \I/(U) = 2’}/K K Pt ||UJk||
K—
? Z — u,w), (200)
k=0
def R
ok, = > (201)
k=0
wy, 2 F(ak) - (202)

Proof. The proof of this lemma follows the proof of Theorem D.3 from (Beznosikov et al., 2023). For completeness, we
provide here the full proof. We start with the application of Lemma B.4 with 2t = zF+1 2 = 2¥ — 4¢*, and y = u for
arbitrary u € By 57 (27):

(@ —aF 4 ag" u— M) 2y (W) — ()
Rearranging the terms, we get
2y (T(zF) = W(w)) < 29(F,u—a®) +2(2F ! — ¥ u — 2")

+2<£L’k+1 _ xk + 7§k,xk _ (Ek+1>

implying

[\
2
N
!
—~
S
N
8
|
£
+
S
E
+
=
S
—~
<
=
IN

2z — 2k u— 2Py £ 2y(F(2F) — GF, 2P — )
+2<(Ek+1 o fEk + ,ygk’xk o $k+1>

[ — 2P+ la* — ] = (2 = wf?
F21(F(a*) - 2% — u)

ol — | 4 2y(FF 2 - ohH)
k+1 _ u||2 - ||£L'k+1 _ kaQ

lz* —ul|* ~ |l
+2y(F(a*) — §*, 2" — )
+2y(F (u), 2% — 2" 1)

+29(g" — F(u), 2" — 2™
k k+1 _ u||2

IN

—ul® |l
+2y(F(2") = " 2" —u)
+2y(F(u), 2" —a"*1) + 927" = F(u)|?,

[l
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where in the last step we apply 2v(g* — F(u), 2% — 2¥+1) <~2|[gF — F(u)||? + [|l2% — 2% 1|2, Adding 2 (F (u), 2! —
u) — 2y({F (2*), z¥ — u) to the both sides, we derive
2y (F(u), "™ —u) + U(@") = W(w)) < [la® —uf? = 2" —ulf?
+29(F(u) = g%, a* —u) + 925" — F(u)[|?

k+1

= la® = — [l —lf?

“2 (") — Flu),a* — u) + 2|7 — F(u)]?
+29(F(a%) — G, 2t — )

< et =l — 2 —u?
2
—%IIF(CE’“) — F(u)[* +29*||F(a") = F(w)|?

F2(F(ah) 32 ) + 22| F (P - 5P
i e

+2y(wr, ¥ — u) + 297w .

Next, we sum up the above inequality for £k = 0,1, ..., K — 1 and divide both sides by 2vK:

1\~ - k1 la® =l — o —ul? | ¥ RS
LY (Pt =)+ @)~ w(w) < . + 23
k=0 k=0
N 1 K71< >
— ¥ —u,w
K y Wk /s
k=0
K-1 K-1
To finish the proof, we need to use Jensen’s inequality \Il( 3 mkH) DI C-Lan))
k=0 k=0
0 2 K 2 K-1
K K [ —ul|® — 2™ —wul® v 2
(Fu).a’%, ) + Wk, W) < — " 2
K1
—|—i (2" — u,wy)
K ) k b
k=0
K1
where 2% = £ kz—:o okt O

Theorem G.2. Let Assumptions C.2, C4, and C.5 hold for Q = By (), where V. > [2° — 2*|* +
25600~2 In2 48nUC+1)

n2 . Z?:l ”FZ(I*) 2

, and

min L VVn's (203)
480¢In 2D (86400) % (K + 1) o ln"s B2 [

B v
A=A = 107y BT ey (204)

0<y

IN

for some K > 0 and B € (0,1]. Then, after K iterations the iterates produced by DProx-clipped-SGDA-shift with
probability at least 1 — (3 satisfy

4V
Gapﬁ(xg,'gl) < KT and {z"} ! C By 7 (x7), (205)
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where zfjgl is defined in (201). In particular, when vy equals the minimum from (203), then the iterates produced by

DProx-clipped-SGDA-shift after K iterations with probability at least 1 — 3 satisfy

£Vln% U\/VlnaT_1 nk

K+1 ____F , (206)
na K o

Gap 7 (o ) = O | max I

meaning that to achieve Gapﬁ(mKH) < e with probability at least 1 — 3 DProx-clipped-SGDA-shift requires

avg
2% Vo1 1% e 1 \% =1
K=0|—In n—, — oV In{ — oV iterations/oracle calls. (207)
€ e 'n € B €

Proof. The key idea behind the proof is similar to the one used in (Gorbunov et al., 2022a; Sadiev et al., 2023): we prove by
induction that the iterates do not leave some ball and the sums decrease as !/x+1. To formulate the statement rigorously, we

introduce probability event E, foreach k = 0,1,..., K + 1 as follows: inequalities
t—1 t—1
max [|° —u|\2+2'yz<xl — U, wy) +272Z||wl||2 <8V, (208)
u€B - (z*) —o —o
Ay
t—1
VSl < VP, (209)
1=0
r—1
VvV
w < — 21
7D Wi £ 5 (210)
i=1
hold fort =0,1,...,kand r = 1,2, ..., n simultaneously, where
wp = w4 w?, (211)
wdef L def 1
wit = - ;wl w? = - ;wﬁl, (212)
u def ~1 ~1 p def 1 ~1 .
Wi = ]Efi [gz] — i wi; = Fi(z") — Egg [gz] Vi € [n]. (213)

We will prove by induction that P{E} > 1 — k8/(k+1) for all k = 0,1,..., K 4+ 1. The base of induction follows
immediately: for all u € B 7 (z*) we have [|20 — u|[* < 2[|z° — 2*||* + 2||lz* — u||* < 4V < 8V and for k = 0 we have
1% Z;:UI wi|] = 0. Next, we assume that the statement holds for k =T — 1 < K,ie,P{Er_1} > 1 — (T-1)8/(k+1). Let
us show that it also holds for k = T, i.e., P{Er} > 1 — T8/(Kx+1).

To proceed, we need to show that Er_; implies ||zt — 2*|| < 3v/V forallt = 0,1,...,T — 1. We will use the induction
argument as well. The base is already proven. Next, we assume that [|2? — z*|| < 3v/V forall t = 0,1,...,# for some
t'" < T — 1. This means that z* € By -(2*) fort =0,1,...,t" and we can apply Lemma G.1: Er_; implies

max {27(15' +1) ((F(u)7 2w+ Ul — \I/(u)) +lat - u||2}

u€B (%)
t
<  max {”JJO —u||2—|—2'yz<xl —u,wl>}

u€B /7 (z*) =0

t
+29° ) Jlwrl|?
=0

(208)
< 8V.

59



High-Probability Convergence for Composite and Distributed Optimization with Heavy-Tailed Noise

that gives
Jo =t < max {2+ 1) ((F),alg =) + (k) = O(w)) + 2"+ — uf?
u€B - (z*) g 9

< 8V

That is, we showed that F_; implies ||2* — z*|| < 3v/V and
ueén\/aj%x*) {29t ((F(u), 2,y —u) + U (TL,y) — U(u) + 2+ —ul?} <8V (214)

\%4

forallt =0,1,...,7 — 1. Before we proceed, we introduce a new notation:
Jat—ar, if |2t — 27| < 3VV,
= 0, otherwise,

forallt =0,1,...,7 — 1. Random vectors {n; }._, are bounded almost surely:

el < 3VV 215)
forallt =0,1,...,T. In addition, n; = x! — x* follows from Ep_; forallt =0,1,...,T and, thus, E7_; implies

T-1 T—1 T-1
208
Ap & max ||sc07u||2+2’yz<x* —u,wy) p + 2y Z(xl — 2%, W) + 272 Z [t ]|
u€B sy (z*) —o — o

T-1 T-1 T-1
Wiy {<fc*—u72w>}+2vz<nz,m>+2v22||w||2
=0 =0 =0

TIGBf(T*)
T-1 T-1
+29 ) (mw) + 297 ) [l
=0 =0

Using the notation from (211)-(213), we can rewrite ||w;||? as

IN

IN

b
Jewn 2w |I? + 2flwy |I* = +2||wl I

2 e 4 &
S lelll + — <wa wj l> + 2w |* (216)
i=1 =2

Putting all together, we obtain that £ implies

T—-1 n

T-1 -
2
Ap < AV +20VV (D w +%ZZ n,w +272 (i, wp')
=0 =0 i=1
@ @
2T 1 n 472 T—1 n , ,
Y Y B [l + o D0 (et — B [lwtl?])
=0 =1 =0 i=1
® @
T-1 8 2 T—1 n -
+4v? Z ||Wlb||2 v Z <Zwl 1 Wy, l> 217)
=0 =0 j=
® ®

To finish the proof, it remains to estimate 2V Hzl o wl‘ , the

goal is to prove that 2V HZZ:O wy H + D+ @+ @+ @+ ® + ® < 4V with high probability. Before we proceed, we

need to derive several useful inequalities related to w,,w?. First of all, we have

il < 2X (218)
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by definition of the clipping operator. Next, probability event E'r_1 implies

IF:(z) < 1Fi(a") = Fy(a™) || + [ Fi(a™)I| < €lla’ — 2 +

E (£ ()]
V/ (203) v/
YN nvV s nvV 204) A

< = (219)
1607 In 48n(§+1) 807 1n 48n(g(+1) 2
forl =0,1,...,7 — 1 and ¢ € [n]. Therefore, Lemma B.2 and E7_; imply
lwi|| < = Z a7 || < Aa —, (220)
Eqg [Hwﬁsz } < 1870, (221)

foralll =0,1,...,7 —landi € [n].

Upper bound for ©. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

2y u 2y u
Egg |:n<nlvwi,l>] = n <771aEg§ [wi,l]> =0.

T—-1,n
Moreover, for all [ = 0,...,7T — 1 random vectors {w}; }_; are independent. Thus, sequence {%(m, )}l o isa
martingale difference sequence. Next, the summands are bounded:
2y 2y (219),218) 12y1/V ) (204) 3V def
< — < < =
2t < - ) “E BN el )
Finally, conditional variances o7, = Egz [ (my, Wt )2} of the summands are bounded:
4?2 3672V
ot < By | Tl ot S I g [fut?). 23)

Applying Bernstein’s inequality (Lemma B.1) with X;; = %’(m,w}f[), constant ¢ defined in (222), b = 3¥, G =

10°
3V2
48n(K+1) , we get

2001In
T n
V2 b2 5
o< 3V 2 Lo - = :
{| |> o ;Z ~ 2001In 48"(?“)}_ eXp( 2G+20b/3) 24n(K +1)

The above is equivalent to

T

- 312 3V

. 2

P{E@} >1-— W, for Eg = {Clthel‘ E E 01 > W or |®| =70 } (224)
1=0 i=1 3

Moreover, Er_1 implies

T 23 36~2
DI S8 o) SNFNY

1=0 i=1 1=0 i=1
@2DTSK L 648W2VJQ(K LAz
n
(204) 648~v< \/V4_aa°‘(K +1)In*2 748"(2{“)
= 402-apa-1
2 3V (225)

- 200 In 748"(5 +1)
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Upper bound for @. Probability event Er_; implies

o < oYl ol L 6 T 2
@y 6407 27 4_9;_11 2 e T (K 4 1) ! (48””; ) > Ed % (226)
Upper bound for ®. Probability event Fr_; implies
o = LSS mg g CE AN K 1)
1=0 i=1
< ﬁpg%gﬁﬁ“¢i (K+1”ﬁ12<&m%§+LU(§”i;' (227)

Upper bound for ®. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

42
g |lwtll? — B [lwtil?]] =

Moreover, for all [ = 0,...,7 — 1 random vectors {w;‘l}?:l are independent. Thus, sequence

2 T—1,n )
{—47]2 (||w;‘l 12 —Egq [”W?z ||2} ) } is a martingale difference sequence. Next, the summands are bounded:
’ : : 1,i=0,1

=

Q18 3292)2
2

(204) Vv Vv
< def

20 " 4?
o lwtall? —Ee [l < T (lotil® +Eg [letl?]) < ==

20102 48n(é<+1) = 10l 4sn(é<+1) =¢ (228)
Finally, conditional variances
~2  def 167 u u 2
7 Sy | (il - By latal?])
of the summands are bounded:
~p 29 Vv 2 2%V u (|2
S e wa [l = By [letal”]|] < - g et (1461 (229)

Applying Bernstein’s inequality (Lemma B.1) with X;; = %2 <||cufl||2 — Eg [Hw;‘l|\2]>, constant ¢ defined in (228),

b,K,G—Vii,We et
10 Goﬂlnw g
V2 b p
@>— d - 1 <2 — = .
{| N ;%;; _6%h#%%4n}_ WP(2G+”WJ 24n(K +1)

The above is equivalent to

T n

. V2
]P){E@} Z 1-— W, for E@ = {elther ZZ W or |@| S 10} . (230)
=01 B

<
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Moreover, Er_1 implies

T n
(229) 292V (221) T<K+1 3672V (K +1) o
ZZUH = 522 48 K+1 ZZEfl e [17] = 5nln TRCESIR “o
=0 i=1 1=0 i=1 B
@) 9.40%/2" i-a _4 48n(K +1)
< VY K+1)o®*hnh** ———=
< Seooner VY (K4 Dot B
(203) V2
< — (231)
600 In 222LED
Upper bound for ®. Probability event Ep_, implies
2 - p2 POTSEAL ote o o>
® = 4’7 Z le || < 2 (K + 1) \20—2
12800« 2a 48n(K +1
(224) ,YQQ(K + 1) g — In2e—2 TL( + )
800 n2a—2./7 8
03 Vv
< —. 232
- 10 (232)
Upper bound for ®. This sum requires more refined analysis. We introduce new vectors:
j—1 j—1
TN 2% e || < Y
(;é — n Z; il n z; Wil = 2 (233)
0, otherwise,
forall j € [nJandl =0,...,T — 1. Then, by definition
Vi
511 < =~ (234)
and
8 T-1 n 8'y T-1 n ,yj—l
1=0 j= 1=0 j=2 i=1
@/
We also note here that E7_; implies
8~ T—1 n 8y In / j—1
S NEIITTLTNIEES N ED DT -
1=0 j=2 j=2 i=1

Upper bound for ®'. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional
expectations equal to zero:

Egl[ (5, ;ﬁ>]— 2 (80 Eg [wy]) =0.

T—-1,n
Moreover, foralll =0, ...,7 — 1 random vectors {w,}?_, are independent. Thus, sequence {% <5l wj l>} isa
' 1,j=0,2
martingale difference sequence. Next, the summands are bounded:
8y 4 8Y 11 u (234),218) 8~ VV vV def
(@i s Gl el s 5 2h s BT ¢ (237)
B
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64

Finally, conditional variances (07} ;)* = &ef Ee: { <5l u >2} of the summands are bounded:

642

)1672V
P lpal?] S 2 g [P

(@0 <Bg |2

V2
1501n 48n(K+1) , we get

P{|® > — andTE:lzn: V—2 <2exp | — s = b
arden 7id) 1501% =P TG rees ) T 2an(K 1)

2

The above is equivalent to

P{E /}>1—L for Eg = 1 either Tzli(al- )2 > V—Qor\@'\ < v
O =T (K + 1) © L e 150 In 8101 =%

Moreover, Ep_; implies

T-1 n T-1 n
(238> 16v2V u @2D),T<K+1 288(K + 1)y2V A2~ g
> (o) 2 2 B [lwpll’] < .
1=0 j=2 =0 j=2
2% 288(K + 1)y%cV?2~2 %) V2
T 402-a 20 Cpa-12e % ~ 1501n %'
T—1 . .
Upper bound for 2vv/V/ HZ =0 Wt||. We introduce new random vectors:
-1 -1
vy wr, if’var <VV,
Cl = r=0 r=0
0, otherwise
forl =1,2,...,T — 1. With probability 1 we have
Gl < VV.
Using this and (209), we obtain that F'7_1 implies
2
T—1
= \ 7 Z oo |2 + 2y Z <vzwr,wz>
T—1 T—1
= P20 P+ 29 ) (G wn)
=0 =0
T-1 n T—1
17) 27
< L
< (®+@+®+@ = MWl +2y Y (G
1=0 i=1 1=0
@

64

(238)

. . . . 1 . _ Vv _
Applying Bernstein’s inequality (Lemma B.1) with X, ; = %’ <§ > constant ¢ defined in (237), b = ¢, G =

(239)

(240)

(241)

(242)
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Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

2 2
]Egg [Z<<lvw;‘fl>] = % <CI,E§§ [wi‘z]> =0.

T—1,n
Moreover, for all [ = 0,...,7 — 1 random vectors {w}; };_; are independent. Thus, sequence {%(Q, >} isa
1,i=0,1
martingale difference sequence. Next, the summands are bounded:
2y " 2y u o GAD.QI8) 4y 04 1% def
‘n<Cl7wi,l> < ;HCZH Nl < ;R/\ < W =c (243)
Finally, conditional variances 82 . &t Eg [A‘ni; (& w}fﬁﬂ of the summands are bounded:
~2 4y 2 2 47
051 < Eg ?HQH Jlwill —5 VEg [llewis|I7] - (244)

Applying Bernstein’s inequality (Lemma B.1) with X;; =

%’Y(Qwﬁl), constant ¢ defined in (243), b = ¥, G =

5
V2
Tsn (R s We get
B

150 In
V2 b2 ﬂ
o>V o M coexp (- = :
{ |> " 220” 1501{%“”}‘ eXp( 2G+2d’/3> 2n(K +1)

The above is equivalent to

L& V2 1%
8 Y e 52
P{E@} Z 1-— m for E@ = {elther Z Zl W or |®‘ S 5} B (245)
1=0 i=1 — 5
Moreover, E_1 implies
T n T
R (244) 4y? u
Z ‘71‘2,1 < FVZEG [”Wl ||2]
1=0 i=1 1=0
<221>7T<§K+1 7272V (K + 1)\2~«
- n
(204) 9.20%/2" _ o 48n(K +1)
< aR4 A o[ 11 a—2
= 100 - no—1 ! ot (K +1)In B
(203) V2
< -
- 150 In 280D (240
Upper bound for ®. Probability event E'r_; implies
r by (2192200 T<K+1 oo
< 29> NGl el < 2 2°yR(K + %a
1=0
402/2° A8n(K +1) @03
(2&1) \/> ,yao,aRQ—a(K + 1) lnafl 71(7—’—) < (247)

ne=110v/2

That is, we derive the upper bounds for 2vv/V HZ;";_OI wy

8 = 5

ET_ 1 1rnphes
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T-1

D

=0

n j—1
(235) 8y vy T—1
© 2 e + -~ > <n > w0 ,w;{T1> ,
j=2 i=1

Ar = 4V+2y\f +D+@+B+D+ 6+,

T-1
(242) 1
29V V Zwl < 2\/V\/4(®+@+®+@)+®+,
(226) @27) (232) 47)
gﬂ, gﬁ,@agz,gK
100 100 10 5’
T—1 n T—1 n
(225) (231) V2
2 2
ZZUH < Br(K11) ZZGH = Bn(K11)
o 200 In ( — 600 In 220D
Tfli/\2 (216) V2 T—1 n ( ) )2 (210) V2
il = 1B(K+1)° 951 = 18n(K+1)
e 150 In 280UCED T 150 In 282D

In addition, we also establish (see (224), (230), (247), (239) and our induction assumption)

(T-1)B
P{Er_ 1} >1— ———
{Er1} = il
P{E@}>1—L P{E@}>1_L
- 24n(K +1)’ - 24n(K + 1)’
B B
P{Eg}>1—— 2 P{Ey}>1-— 2
{Fo'} 2 24n(K +1) {Eo} 2 24n(K + 1)
where
T-1 n
. 312 3V
E@ = {elther ZX; 72; W or |®‘ =70 }
T—-1 n
V2 v
_ . ~2
T—1 n
V2 \%4
_ : VI A noV
Eey = {elther lz;j 2(Ui,l) > om 48"(2(“) or [®] < 5 (0
T—-1 n
V2 v
_ . ~2

Therefore, probability event Er_1 N Eg N Ee N Eg N Eg implies
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T-1
Y Z wi
1=0

n j—1
3V VOV VvV V V 2 T T-1
<0+0+0+5>+++ <n wi,T—l_(Sj Y Wi

(248)

A
+
[\
)
.
NgE
/\
32
= .
[
£
~
—
\
b@q
N
S
~
—
\/

n j—1
2y T -1
Ar < AV +2V +2VV - 2; <n E;%Tﬂ — 8T Wi
j= i=
+ﬂ+ﬂ+ﬂ+z+v+x
10 100 100 10 5 5
B~/ -1
j=2 i=1
27 © T
< SV +2VV nz< Z%Tl—(s] jT1>
j=2 =1
8’y 1w
Z < Zw — o7 1ij,T—1> - (249)
In the final part of the proof, we will show that * Z w;' = (5?_1 with high probability. In particular, we consider

probability event ET,L ; defined as follows: inequahtles

r—1
VvV
ED BT B (250)
n 2
hold for » = 2,...,j simultaneously. We want to show that P{E;_; N ET_L]'} >1- (7;_:25 — (K+1) for all
7 =2,...,n. For j = 2 the statement is trivial since
(218) 2v )\ |4
ot 222 T
n n 2

Next, we assume that the statement holds for some j = m — 1 < n, i.e., P{E7r_1 N ET,Lm,l} >1- (7;(11{6 — ;:ZEI_(IJZ%

m—1
: 5 (r-18B mf : : Y u .
Our goal is to prove that P{Ep_1 N Ep_1m} > 1 — renmini-rroceny R First, we consider || 21 witp_q||:
1=
m—1 9 m—1 2
x Yy - | S
n 4 i, T—1 n2 4 i, T—1
i=1 =1
m—1 ,7 m—1 ’}/
_ 2
= 2 E w1 [* + — E E W p_1> Wiy
=1
’Y T 1m—1 27 m—1 ~y i—1
2
< 3 [l I +; E 55 Wyl Wity )
=0 i=1 i=1 r=1
Next, we introduce a new notation:
i—1 \F
s u
_J)n Zwr,Tfl’ Zer 1| =
Pi,T—1 = r=1
0, otherw1se
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fori =1,...,m — 1. By definition, we have
VV
sz‘,Tfln < CE (251)
~ 1—
fori=1,...,m — 1. Moreover, E7_1 ,,_1 implies p; 7—1 = 1 >~ wlp_ fori=1,...,m — 1 and
r=1 ’

< Vot @10,

where

It remains to estimate ®@.

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

2y u 27y w
]EEiT’l [n<Pi,Tlvwi,T1>] = o <Pi,T71’E£?—1[%,T71]> =0

m—1 . . .
since random vectors {w;'r_; };; are independent. Thus, sequence { (pir—1, W?T—1>}if , 1s amartingale difference
sequence. Next, the summands are bounded:

2y

(251),218) ~ (204) 14 def
2wt )| € Dol -l S VNS s e @52)

201n 48n([13(+1)

. . . ~ o def 42
Finally, conditional variances (5} ;_,)? = Eer { (pir—1,w ;LT_1>2} of the summands are bounded:

~ 2 4y? 2 2 v
(@ir1)" < Eer—1 | —ollpir—all” - iz B [llwiira 7] (253)
Applying Bernstein’s inequality (Lemma B.1) with X7_; ; = %(pw,h w}fT_1> constant ¢ defined in (252), b = 20,
2
G = W, we get

P \®|>Kand mz:l(&’ )2<V—2 <2exp | — b = b
2077 &Y 4001 BnEED P\72G v 2bfs ) T 2an(K + 1)

The above is equivalent to

m—1
B . ~ 5 V2 1%
PR gy o P e 2 Ol g e P Sy O30

Moreover, Er_1 implies

m—1
(253) 2V )1872V)\2 oA
~ 2
@0 S T DB (el <
=1
(204) 187“ oV2—% (203) V2

(255)

<
402—opo—1 1n27a 48n(§+1) = 24001n 48n(é(+1) ’
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Putting all together we get that E_1 N ET_Lm_l implies

~

-1 n
1=

l

I
o

(o

1

~2
i

m—1

u
E Wi -1

=1

3=

(231) V2

<VO+®@+0,

¢ s 600 In 52 (£D)

m—1

i=1

~/

2@

i,T—1)2

(227)
<
— 10

In addition, we also establish (see (230), (254) and our induction assumption)

P{Ee} >1—

where

Eq

Eg

P{Er_1 N ET—l,m—l} >1-

{
{

B

T—1 n

either Z Z 52-2’1 >

=0 =1

m—1

either Z @) r_1)°

i=1

24n(K +1)°

(T -

L

V2

= 2400 In %

(m—-1)8

V2

Therefore, probability event Fr_1 N ET—Lm—l N Eg N Eg implies

This implies ET,Lm and

P{Er_1 O Br_im} >

Y]

VQ
~ 2400 In %

P{Es} > 1

600 In %

B

or |® <

K+1 sn(K+1)

24n(K +1)°

\4
10 [’

|4
< — 5.
or |®@| < 20}

P{Er_1N ET71,m71 NEesNEs}
1=P{Br 1N Er_1;m1UBa U }
(T-1)p

mp

K+1

8n(K +1)

Therefore, for all m = 2, ..., n the statement holds and, in particular, P{ Er_1 N ET,Ln} >1-— (T-1)8

into account (248) and (249), we conclude that Ep_1 N ET,LR implies

T-1
Vzwl

=0

S\/Va AT§8‘/’

which is equivalent to (208) and (209) for ¢ = T'. Moreover,

P{Er}

>

K+1

P {ET,l N Er_1.n N Eo N Ee N Eg N Ex N E@}

1-— ]P{ET_l n ET—l,n UE@ UF@ UE@/ UE@ UE@}

(r-18

B

B

K+1

8(K +1)

8(K +1) —

__T5
K+1

B
S(K+1)

Taking

In other words, we showed that P{E} > 1 — ¥8/(k+1) forall k = 0,1,..., K + 1. For k = K + 1 we have that with

probability at least 1 — 8
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214 4V
K+1
Gap\/v(iﬂavg ) < m .

Finally, if

v = min 1 < 1 ) ) VVniT
480¢ In 22UCED T\ 86400 (K +1)Foln s 4800t

then with probability at least 1 — 3

Q=

cap oty < A 4800V In 22U /964001 40f1n% Ao (1)
a z ———— =max 7 7
p\/V avg — V(K‘i’l) K+1 1 (K+1) .
g\/>hl 0’\/7111 o LD
= O | max ;
K )

To get Gap R(xﬁf,‘gl) < ¢ with probability at least 1 — /3 it is sufficient to choose K such that both terms in the maximum

above are O(e). This leads to

K=0 E—Vln—v 1<U\F> In 1<Uﬁ>a_l
ef 'n € B €

that concludes the proof. O

G.2. Quasi-Strongly Monotone case

Lemma G.3. Letr Assumptions C.3, C4 hold for Q = B gp(z*), where V. > [a% — ¥ +
9000000 In? (482Ut ) 9 1 B
n? Z [Fi(z")[|%, and 0 < v < 415000000, 12 (BEZOCET) 0 S 18000000 In? (20 ) If a7 lies

in B gy (x*) for all k = 0 1,..., K for some K > 0, then the iterates produced by DProx-clipped-SGDA-shift satisfy
27 K n
Vi < 1— K+1V =7 1— K-k .k _ *x F k _h* i
k1 < (1T—9p) ot SN (A=) @k — 2t — y(F () ) Wi k)

k=0 i=1

n K
> 0= ) Fwinl® 92> (= ) Ffw?, (256)
0:1=1 k=0

no

Eﬂw

L

e
Il

N H2 + 9000000~? In? ( 482UCHD

i s et B Y S
=1

where Vi, = ||z* — z

211)-(213).

2, hi = Fi(x*), and wg, w, wz,w};’i, w,l;)i are defined in

Proof. Using the update rule of DProx-clipped-SGDA-shift and w;, = F(2*) — g* we obtain

"t —a*|* = ||prox,q (2" — 7§k) — prox g (% —7h*) ||?

< lzf —a* — (g - )|
= |la* — 2" = 2y(z* — 2%, g* — n*) +7?|Ig" — h*|P
ka — ac*||2 — 2'7(:vk — CL‘*,F(gck) —h*) — 272<F(xk) — h*, wy)
+29(z" — 2%, wi) + PPIF () — B + 7w,

Next, let us recall that

P = A, AP = clip (Fg(ah) = BE ), GF=hE+ AF wip = Fi@®) - gk,
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Then, Vi € [n] we have

IR R = R = hg o AR = RE - B2 1 20t — b AR 4 2 AN
RS — B2+ 20(hE — b2 g — By o2t — B
1
T R STCI Y S S ATE
—RE = B2 @ B  BE— on)
(L= )k — 22 4+ vl — b
< (- D)RE = RIP + 2]t — B + 2] Bi(at) — a2

= A=v)lh = hi|? + 2w lwirl® + 20| Fi(a®) - B}

Let us consider the following stepsize condition

Lyapunov function

Vitr <

(257)
<

SN

I IN

1

o 48n(K+1) .
18000000 In? (2825 )
n

0<vy=<

l+

900000012 In2 (%) n

k
— PSR
i=1

||xk — 90*||2 — 27(:57“ — ¥, F(xk) —h*y — 272<F(a:k) — h* W)
+29(z® — 2%, wi) + 2 F (@) = 112+ 52 |wk ]
10642122 [ 48n(K+1) n

9-10%21n (75 )

Vi = ot — 2| +

+

n2 ;
=1

910092 In? (42U
. > k- ni

i=1
910542 In? (748“;‘“))

2 ~ n?2

lz* = 2*||* + (1 - v)

¥¢  vn

-2y 11 Cinax (xk - x*,F(a:k) — h*)

27 « . . 7’ -
+t Z(mk —a* = y(F(2¥) — "), wik) + 7 wrl® + 2 Z [lws i |I”
1=1 =1

9 . 106'.}/2 1n2 (4871(K+1)

) Sk - e P
i=1

l=* = 2*||* + (1 - v)

n2
—y(z* — 2z, F(a*) — h*)

2Y "~k a k , 2 2 LV 2

P ok = = (P) B i) + 2%l + L 3 sl
i=1 i=1

01007 (BREED) W
- S Ik = ]
i=1

2\ . 7\
+ D (b — ot =y (F(2*) = b7 win) + 9P lon® + 2 D lwiell?
i=1 i=1

(1= yz* —z*|* + (1 - )

71

S = vk = B + 20 )ws il + 20 Fila®) - 1]

(257)



High-Probability Convergence for Composite and Distributed Optimization with Heavy-Tailed Noise

Unrolling the recurrence, we obtain (49). O

Theorem G.4. Let Assumptions C.3, C4, hold for Q = B gy(z*), where V. > |2 — || +

900000072 1n2(48n(K+1)) n 2 and R > ||3;‘0 —x*

n2 - ; HFl(x*)

i

. 1 VR In(Bg)
0<y < min ; ; ; (258)
{40966 In 282UEED 7 3000¢, In 20D (K + 1)
2

\/5 o (K + 1) 2(01;1) MQVnZ(cx{;l)

Br = max 2’(3456 T 20D g (K 12 (259)
o2In"% (T)ln (Bx)

20a=1) 2(a—1)

— O |max{2, K = wvn (260)

2(a1) ) JULICES VR [ ’
02ln” = (%)111 max < 2, 2
o (o)

N = et H2)VY 261)
256+/2yIn EUIEL

for some K > 0 and B € (0,1]. Then, after K iterations the iterates produced by DProx-clipped-SGDA-shift with
probability at least 1 — (3 satisfy

Vi1 < 2exp(—yu(K + 1))V, (262)
2 1p2 48n(K+1) n

where Vi, = ||zF — 2*||% + 90000007 171/2( ) S |\kE — h2|% b = Fy(z*). In particular, V. < 2R2, and when
i=1

~ equals the minimum from (258), then the iteratesiproduced by Dprox-clipped-SGDA-shift after K iterations with
probability at least 1 — (3 satisfy

K JiRi\ ot () B
Vg =0 [ max{ R%exp | — a —c , R? exp _E nnK , 5D d S , (263)
gh’lT C:*ln? Kf/,l,ZnT

meaning that to achieve Vi < & with probability at least 1 — 3 DProx-clipped-SGDA-shift requires

B ¢ (R nl R @ R? Vg, . R?
KO<max{uln<5>ln(uﬁln5)’\/ﬁRuln(5)ln(RuB lng)7

1/ o2 BlCEay 1/ o2 -1 o
2 (=) 1“<ﬂ<u%-> )“”“BE’}) Y

iterations/oracle calls, where

Proof. The Lyapunov function has the following form

900000072 In2 (%) n

- TSR
i=1

Similar to previous results, our proof is induction-based. To formulate the statement rigorously, we introduce probability
event F, foreach k = 0,1,..., K + 1 as follows: inequalities

Ve= o = ot +

Vi < 2exp(—yut)V (265)
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< exp (—W(t2_ 1)) g (266)

hold fort = 0,1,...,kand r = 1,2,...,n simultaneously. We will prove by induction that P{E}} > 1 — ¥8/(kx+1) for
all k = 0,1,..., K + 1. The base of induction follows immediately by the definition of V. Next, we assume that the
statement holds for k =T — 1 < K, ie., P{Er_1} > 1 — (T-1)8/(k+1). Let us show that it also holds for k = T, i.e.,
P{Er} > 1—T8/(Kk+1).

Similarly to the monotone case, one can show that due to our choice of the clipping level, we have that Ep_; implies
z* € B s, () fort =0,...,T — 1. Indeed, for t = 0,1,...,T — 1 inequality (265) gives 2* € B, sy («*). This
means that we can apply Lemma G.3: Ep_; implies

~
-

2")/ - _ * *
Vi < (1—)'V T Z (L =) ot —a* = y(F(a) = h*), wis)
t=0 i=1

,_.
i
<

n T—1
L3S @ )T sl 42 3 (1= )T
t =1 t=0

[}
~

o
Il
=}

Before we proceed, we introduce a new notation:

¢ = ot —x* —y(F(xt) — h*), if ||zt — 2" — y(F(zt) — h*)| < 2v/2exp(—1t/2)\/V, (267)
b 0, otherwise,
fort =0,1,...,7. Random vectors {&;}7_, are bounded almost surely:
€]l < 2V2exp(—ut/2)VV (268)

forallt =0,1,...,T. In addition, & = 2t — 2* — y(F(z') — h*) follows from E7_; forallt = 0,1,...,T and, thus,
Er_; implies

27 T—1 n 2 T—1 n
Ve < exp(—pD)V+ 303 (=)™ g wl) nzz — ) TG Wl
t=0 i=1 t=0 =1
@ @
T—1
ﬁ - 1— T—1—t u 2—E u |12
+3 SN (- [lleogte eelllwplI”]]
t=0 i=1
®
T—1 n
42 i
+—5 (1 =) Bee [l ]I]
t=0 i=1
@
72 T—1 n
T Z (1 =) lwf )12
t=0 i=1
®
4 T-1 n j—1
D (1—w>T‘1‘f<szft,w;it>- (269)
t=0 j=1 i=1
®

To derive high-probability bounds for ®, @, ®, ®, ®, ® we need to establish several useful inequalities related to w}’,, wf’t.
First, by definition of clipping
[witell < 2Ac. (270)
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Next, we notice that E'7_; implies

(39)
1Fs(=") = Rill < NIFi(@") = Rl + (ki = R7|| < €2’ — 2™ +

PDETHE
i=1

< 0+ n VVi

B 3000~ In (748"%{ *”)

(265) (258),(261) )\
< Vale+ - Gy | eV ST 271)
30007 In (”T)

fort =0,1,...,7 — 1 and i € [n]. Therefore, one can apply Lemma B.2 and get

[Jwe]] < = Z lw? ]I < W’ 272)
Ee; [HwéftH } < 18X 0, (273)
forallt =0,1,...,7 — 1 and i € [n]. In addition, we require the following condition
1
Vs : (274)

18000000 In? (%)

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

2 i 2 !
B |20 - ™ t| = 2 exp (-onlT -1 0) {6 Bglotil) 0.
Moreover, for all [ = 0,...,7 — 1 random vectors {wj;};"; are independent. Thus, sequence
T—1,n
{277 exp (—yu(T — 1 =1)) (&, wiy) }z o is a martingale difference sequence. Next, the summands are bounded:

2’)/ u
< exp(ou(T = 1=D)&l - llwi]

(268),270) 8

2
< %vexp(—w(T —1=Y2)VVA
@ exp(—ypT)V gt

SIn 48n(§+1) - 275)
Finally, conditional variances Jfl = Egz [ b exp (—2yu(T — 1 —1)) (&, wzl>2} of the summands are bounded:
42 w
o} < Eg [n exp(~2yu(T — 1 1)) &]>- ||wi,l||2}
(268)  32~2
< L exp(—u(@T — 2 - D)VEg [l (276)

Applying Bernstein’s inequality (Lemma B.1) with X, ; = 2% exp (—yu(T — 1 = 1)) (&, wi'y), constant c defined in (275),

—ypT)V exp(—2yuT)V?
b = eV ,G = ——g-— we get
n +1)
8 384 In 222 UCED

T—1 n
exp(—yuT)V wT o2, _ exp(=2yuT)V? b? B
P< @ > d —— = <2 — = .
{| > an g ; ~ 3841In 4871(K+1) = 2P 2G + 2¢b/3 24n(K + 1)
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The above is equivalent to P{FEgp} > 1 — W for
T-1 n
exp(—2yuT)V? exp(—yuT)V
Eyp = {elther Z Z M or |@ < p(gﬂ)} 277
=0 i=1

Moreover, Ep_; implies

-1 n T-1Eq |[jw?|?
ZZ B < “—exp(-2yu(T -V Yy ———
2.2 n 2 “exp(—ud)
IS FT0 (o T — DV 3
< exp(=2yu(T = 1)Vo® ) —I——
= exp(—yul)
4—a
(221) 9(64v/2)* v exp(—2yu(T — )VV " 0%(K + 1) exp( 142K )
- \/ﬁ Tlail 1n2—(y 48n(g{+1)
(258) - 2
e @)
p A8n(K+1)
B
Upper bound for @. Probability event Fr_; implies
2y - &l - llw?, |
@ < -
< Zosour-n Yy B
(268),(272) . W anl 1
exXpl— — g
< v exp(—yu( ) ; e p——ry
@sn.TSK+ (128v2)c Vo exp(—=yuT — 1)) (K + 1) exp (W‘a )exp(wa)l ot %
= 16 na—17° 2
(258) —~uT
2 w 279)

Upper bound for ®. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

4"}/ 11— w u
B | T (1= )7 [lotal? ~ B [letl?]] | =0
Moreover, for all [ = 0,...,7 — 1 random vectors {w;fl}?zl are independent. Thus, sequence

2
{25 exp (—au( 1= 1)) (oI ~ Egy [[l}
are bounded:

T—-1,n
2} ) } is a martingale difference sequence. Next, the summands
1,i=0,1

(2;0) 327202 exp(—yuT)
- n? exp(—ypu(l+1))
e exp(—yu(T + 1)V

T 2561 8D

4v° T—1-1 u |12 u (12
(U= )™ gl = gy [flwi ]|

exp(=yuT)V qger

SIn 48n([13(+1) - (280)

Finally, conditional variances

16

~9  def —2_9] 2
aimu—wﬁzzwa%&mwmu}
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of the summands are bounded:

(280)
~2
03,1

4y* exp(=2ypT)V

8n2 exp(—

IN

u |2 u |2
ypu(1 + 1)) In 2Bt B H”%J” —Eg [l ]H
B

v exp(=2yuT)V

n?exp(—yu(l+1))In

Applying Bernstein’s inequality (Lemma B.1) with X, ; = 47%

(it 1%] - (281)

1 48n(E+1) B
B

(1 —yp) T {mez —Eq [||w;-fl||2H,constant c defined

— Y Xp(—2vp 2
in (280), b = STV G xe( il&?& , we get
p{jo)> SRCWIV g S5, < CPCIUDL (L
e 384In 2O [ = S\ ToG g ) T 2an(K + 1)
The above is equivalent to P{Eg} > 1 — W for
T—1 n
2yuT)V? —yuT)V
Ey = Jeither 335, % or [0 < PPV (282)
=0 =1 384 1n
Moreover, Ep_; implies
T—1 n T—1 n
Zgizl Q%l) 2 exp(—yu(2T — 1))V Z ng [”Wz (I ]
=0 i=1 n? In 220 KH =0 i=1 P (=yul)
@HTK+ 1872 oxp(— w(2T —1)Vo® EK: Ao
- nln 48n(K+1) = exp ’Yﬂl
4—
@b 9(64v2)>  7* exp(—yu(2T — DWVV "o (K + 1) exp(1eE)
o 4096 na—11p3—¢ %
@58) exp(=2yuT)V?
< e ET (283)
384 1n —5
Upper bound for @. Probability event E'r_; implies
4,7 T—1 n
® = oy DS =) B et )1%]
=0 =1
@713) 7272 exp(— i AZe
- n (=yul)
COTSKHL 9(64v/2)" 7° VZ*"“exp<—w<T — 1))o (K + 1) exp( 1K)
- 1024 a1 g2 %
258) _
< M 284)
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Upper bound for ®. Probability event E'r_; implies

472 T—1 n
® o Z Z(l — )" w12
=0 =1
T—1
@72 1
< 4- 2%y exp(—ypu(T — 1))o> e
; AF2 exp(—ypul)
(261),T<SK+1 (128\/§)a 7201 exp(_,yu(T _ 3))0.2(1 1112(&71) %(K + 1) exp(/}/'uaK)
- 2048 n2a—Dya—1
@s8) exp(—yuT)V
——

Upper bounds for ®. This sum requires more refined analysis. We introduce new vectors:

1

0l U :
slodn > wis if
i = i=1

0,

-1
ol u
Py > Wil
=1

otherwise,

Sexp(‘%#)‘%5

forall j € [nJandl =0, ...,T — 1. Then, by definition

and

We also note here that £ implies

N VV
105 < exo (- 74°) %5

T—1 n
4 u
© = — > > exp (T —1-1) (5w
1=0 j=2
@/
4/_}/ T—1 n v Jj—1
S oot 10 (1wt ).
1=0 j=2 i=1

n j—1
YN v
Do exp(—u(T —1-1) <n > i 5§awj,1>
1=0 j—2 i=1

YWy T—1

/_1
1 - TN 1
:nZGXP(—“W(T—l—t))<nzwz‘,T—1_5jT ! :
=2 i=1

(285)

(286)

(287)

(288)

(289)

Upper bound for ®'. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional
expectations equal to zero:

4 “ 4 w
Eg | —exp(—yu(T —1-1) <6§7wj,l>:| = —exp (—yuT ~1-1)) <5§-,E§; [Wj,l]> =0.
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Moreover, for all I = 0,...,7 — 1 random vectors {w;‘ l}?:l are independent. Thus, sequence
T—1,n
{4% exp (—yu(T —1-1)) (5 wiy) }l on is a martingale difference sequence. Next, the summands are bounded:

4y
< ;eXP(—w(T— L=D) 164 - [[wt |

(287),(270) 4 — T—1 l
5 VVyexp (—yu( ) exp (v;t > A\
n

‘? exp (—yu(T — 1 =1)) (8}, w))

261) exp (—yT)V
= 48n(K+1)
16v/21In =452

exp (=pT) Vet
81n48n(g(+1) =&

IN

(290)

Finally, conditional variances (07} ;)* = &f Ee: { (=yp(2T — 2 = 21)) (8}, w? Z)Q} of the summands are bounded:

2

16~ “
@0 = By |k ep(comr -2 ) 8P il

@8 472V exp (—yp (2T — 2 —

l
))Egg (st 1] - (291)

n2
Applying Bernstein’s inequality (Lemma B.1) with X; ; = 7 exp (—yu(T —1-=1)) <6§, wj';), constant ¢ defined in (291),

_ exp(=yuT)V exp(=2yuT)V?
b=—=—.G= 3841n oD > WO get

T—1 n

exp (—yT)V wT _ &Xp (=2yuT) V? b?
P{|®] > and < — " < 2exp|l————
zz; Jzz WS () 2G + 2b/3
- __ B8
24n(K +1)°
The above is equivalent to P{Eg/} > 1 — W for
T—-1 n 2
. exp (=2yuT)V exp (—yuT)V
E@/ = < either Z O'I- 2 > W or |@/| < f . (292)
1=0 j=2 B
Moreover, Er_1 implies
e @91) 472Vexp( w (2T —2))
> (o} < ZeXp vul) ZEgl (==
=0 j=2
273), T<K+1 2 — —
z 7292V exp (—yp (2T — 2)) Zexp (yul) X2~
" 1=0
ar/2—< T—1
(221> 72v*V4" % exp (—2yuT) o v,uloz
- D —1 12— 48n(K+1 ZGXP
(64+/2)2—apo—11n o
727°V?7 5 exp (—2yuT) o (K + 1) exp (WK“)
<

(64\/§)Q_ana_1 11127& 48n(é(+1)

Cs8) exp (—2yuT) V?

3841n 748"(5“) ' (299
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That is, we derive the upper bounds for @, @, ®, ®, ®, ®. More precisely, Fr_; implies

(269)
Vi < exp(ypT)V+O0+@0+0@+@+6+®,

n j—1
(288) dy Y u -1
® = © + r E exp (—yu(T' —1-1)) <n E WiT—1— 5jT 1ij,T1> )
=2 i=1

(279) — (284) _
@D e () V o 8 exp () V

— ) — )

8
® (2%5) exp (—gMT) V,
TZI zn: o2, % (278) exp (—2yuT) V? Til i 52, (223) exp (—2yuT) V?
i 48n(K+1) ° gl = 48n(K+1) °
i 3841n 22D T 384 1n 280D

TZI Z": 2 %) exp (=2ypT) V?

— 48n(K+1) °
== 384 In 480D

In addition, we also establish (see (277), (282), (292), and our induction assumption)

P{ET—l} >1— M

K+1 "~
P{E®}>1—L P{E@}>1—L ]P’{E@/}>1—L
- 24n(K + 1)’ - 24n(K + 1)’ - 24n(K + 1)’
where
T—1 n
_ o (2T ) exp (—ypI)V
Esy = either — —or || < ————— 5,
T—1 n
. o _ exp (—2wT) V? exp (—yuT)V
Es = either 52> — T or|@ < — 2T %
prd 7:22 gl 384]nw ] 8
T—1 n
. exp (=2yuT) V? exp (—yuT)V
E@/ = elther 2(021)2 > (T(I()Jrl) or |@/| S %
=0 j—2 384 In —F
Therefore, probability event Er_1 N Fg N Eg N Eg implies
1 1 1 1 1 1
Vi < —yuTYVI(l+=-+=-4+=-+=-+=-+=
T < exp(—yuT) ( +8+8+8+8+8+8>
<2
Ary n 'Yj_l
+— > exp (T —1-1t) <n D Wi - 6?‘1,w;*,T_1> : (294)
j=2 i=1

-1
To finish the proof, we need to show that X Z witp_y = 5T ! with high probability. In particular, we consider probability

event ET_L ;j defined as follows: 1nequaht1es

r—1
T (T =1\ VV
hold for r = 2,...,j simultaneously. We want to show that P{Er_; N ET_L]'} >1- (7;;25 — 8n&?+1) for all
7 =2,...,n. For j = 2 the statement is trivial since
Q70 2y Ap_ T-1 \%4
[l 2 275 <o (D)
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Next, we assume that the statement holds for some j = m

—1<n,ie, P{ET,1 n ETfmel} >1-

Tr-up
K+1

_ (m-1)B
8n(K+1)"

m—1
s u .
n 21 Wi T—1||*
1=

i—1

gl u
E :wanh

Our goal is to prove that P{Er_1 N ET,Lm} >1-— U;jiﬁ — Sn{?{in' First, we consider
’7m71 72 m—1 2
— D wira|| = \ w2 > Wi
i=1 i=1
72 m—1 2’}/ m—1 5 1—1
_ 2 4
= ) Z ”sz—1|| n <nz f,T—laW;‘fT—1>
i=1 i=1 r=1
72 T-1 m— 27 m—1
< g e (T —1-1) Z [
t=0 i=1 i=1

Next, we introduce a new notation:

— w .
<Tl l,T1>

i—1 i—1
. T—1
P w2 wiros 1S 2wl || Sexp (_L(z )> R
PiT—1 = r=1 r=1
0, otherwise
fori =1,...,m — 1. By definition, we have
Y VvV
il < eXp( 2wl - 1) 5 )> =N (295)
~ i—1
fori =1,...,m — 1. Moreover, Eq_1 ,—1 implies p; 7y = >  wip fori=1,...,m —1and
r=1
m—1
Iy wy) < Votro+0,
i=1
where

’}/ m—
u
; E Pz,T—17wi,T—1>-

It remains to estimate ®@.

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations

equal to zero:

]E);_-inl

Thus, sequence {%(

27,
7<pi,T717w7,T71> <
n
(295),(270)
<
261)
<

80

2y, 2y <
—{o , w = ’]E Yo > =0.
|: n <pz,T—1 wz,T—1>:| n Pi, ,T—1 g [WZ,T 1]

/ u noo ; H .
Pir—15 wi7T_1>}i: , is a martingale difference sequence. Next, the summands are bounded:

2y
||PZT 1l ||W1T 1]l

2\/>’yexp( w(T 1))

A1
n
exp (—ypI)V
32y/21n %

exp (—ypT) V. et

3 Iy ABn(K+1) (296)
B
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2 def

Finally, conditional variances (¢} r_;)° = Eg;l"—l [%Q);)Til, W?,T71>2} of the summands are bounded:
Gir? < B [Tl lutr ]
(2%5> v2V exp (;LZM(T — 1))E€;T71 [”sz_l”Q] ' (297)
Applying Bernstein’s inequality (Lemma B.1) with X; = %’Y <p§7T71 , Wiz 1), constant ¢ defined in (296), b = M,

_ exp(=2yT)V?
G= 384 I BRELD we get
B

exp (—yuT)V wT _ exp(=2yT)V? b?
P |@ d _— < 2 _
{| ‘ > an Z 94,17 1 ~ 3%41n 48n(g+1) - exp 2G + 25b/3
_ B
24n(K +1)°

The above is equivalent to P{Ep} > 1 — m for

, N exp (—2yuT) V? exp (—yuT)V
By = Jcither (7 y)? > SRC2IVT o gy, SR WDV AL (298)
= 3841n =g 8

Moreover, Ep_1 implies

LN 297 v2V exp
S @) < - D) S Eer [tz
1=1 i=1

@7 1872Vexp( p(T=1)0% 5o

= " T—1

eoh 18y VS exp (T — D)o (T = Da
= (64\/§)2*‘1n°"1 1n2—a 4871([[;+1) 4

r-1<k 189V 2 exp (—yu(T — 1)) 0% exp (”"2’“‘)
(64y/2)2-pa~1 n?~ o 250U

(258) _ 2
< %. (299)
3841n 280U

Putting all together we get that Er_1 N ET_Lm_l implies

T—1 n
@8 exp (—ypI)V _y @3 exp (=2yuT)V
= S ’ ZZJU < 384 | ABn(K+D)
1=0 i=1 n 3
-1
KK &) < O (20T) V2
R VI NSO

In addition, we also establish (see (282), (298) and our induction assumption)

_ (T-1)8 (m-1)8
P{Er 1N Ero1ma} 21— "% F1  8n(K+1)

B B
P{Ea} 21— 24n(K + 1) PlBo} 21— 24n(K + 1)
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where
E either %iﬂ > exp (~2yuT) V2 or [® < exp () V
s = 0i1 > <———0—7,
piar YY) ln% 8
e NS 2 exp (=2 V2 exp (—yuT)V
Ep = {elther ;(ai’Tfl) > 81l 4871([};“) or |@| > 5 .

1 (-1 /77
y yu(T —1) L 1 _%P ( )

L g w < — VVA =4+ =<

n & Wir-1)| = XP ( 2 8 8~ 2

This implies ET_Lm and

P{Er_1 N ET—l,m} > P{Er_iN ET—l,m—l N Ee N Eg}
= 1-P {ET—l NEp_1m1UEs UE@}

L @-18 mp
- K+1 8n(K +1)

(T-1)8 ,
eSS m, 1.€.,

(266) holds. Taking into account (294), we conclude that Ep_; N ET,L” N Eg N Eg N Eg N Eg implies

Therefore, for all m = 2, ..., n the statement holds and, in particular, P{E7r_1 N ET,Ln} >1-—

Vr < 2exp (—yuT)V

that is equivalent to (265) for ¢ = T'. Moreover,

P{ET} > P{ET 1ﬂET 1,LﬂE®ﬂE@ﬁE@/

_ g, &= B
B K+1 8(K+1) C24n(K +1)

S I8
+1) — K+1

IP’{ET \NE, UE@UE@UE@/}
B
K

In other words, we showed that P{E}} > 1 — ¥8/(x+1) forall k = 0,1,..., K + 1. For k = K + 1 we have that with
probability at least 1 — 3

a5+ — 27? < 2exp(—yu(K + 1)V.

Finally, if

L min{ 1 ViR In(Bx) }

4096¢In 22D 7 3000¢, In 280D (K +-1)

2 _ a—
(‘/5>0 (K+1)% uQVnz(al)

Bx = 2 :
oo o (SO 1 5y

2(a 2(a—1)

K w2vn

2(a—1) X ) K2(o¢71) oy 2(a—1)
« «

o2ln~ = (”T)ln max { 2, STy
o (25
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then with probability at least 1 — 3

25 — 2|2 < 2exp(—yu(K + 1))V

w(K +1) pynREK 1
= 2V max<{exp| — 1sn(K41) | 0 &P 30000, In 88K | "B
4096¢ In 22D 3000 In =5 K

) K ) py/nRK o?1n” By
= O|max{ R exp (fh’l nk > ,R exp ( C In nk ) 2(1—a) i 2(a—1) 9 2(a—1)
B * B In" = (7 )K « puPnT e

To get |25+ — 2*||? < & with probability > 1 — 3, K should be
2 2 2 2
K = 0O max £ In = In nt lnR— , & In s In Vg lnR— ,
1 € uB € VnRpu € Rup €

1 2\ 36D 1 2\ @D .
N Inl = o lna—-1 (Bs) ,
n \ p3e B \ p2e

where

This concludes the proof.
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H. Missing Proofs for DProx-clipped-SEG-shift

In this section, we give the complete formulations of our results for DProx-clipped-SEG-shift and rigorous proofs. For the
readers’ convenience, the method’s update rule is repeated below:

r = Prox. g (x — ’yg Z:gz . g =hk+ Ai“, hf'*'l = bk 4 Z/Af,

" = proxy (8 —45"), G Zgl , GF =hE 4+ Ak R =P L VAR

AF = Clip(FEi“i(z ) — hi,)\k), Al = clip(Fggi(fk) —Ef,/\k).

H.1. Monotone Case
The following lemma is the main “optimization” part of the analysis of DProx-clipped-SEG-shift.
Lemma H.1. Ler Assumptions C.I and C.2 hold for Q = B, (x*), where V. > |2 — z*[* +

4096002 In? 25U ED)

— oy | Fs(a®)|? and 0 < v < V/visL. If % and T% lie in By, sq7(xz*) for all k = 0,1,..., K
for some K > 0, then for all uw € B, q7(x") the iterates produced by DProx-clipped-SEG-shift satisfy
0 _ 2 K+1 _ ”2
S et i Cnt”
(F(u), 75, — )+ WK, () < e
(3||wr||* + 4]0
K+1Z [l [I” + 4[16x 1)
S
- k_
e > Ok, ¥ — u), (300)
k=0
def 1 K
~K  ddf ~k
xavg - K+ 1 Zm ) (301)
k=0
6. £ F@E@") -7, (302)
w, 2 F(ak) - gt (303)

Proof. Since % = prox,q (2% —~g*) and 2**! = prox g (2% —~g"). we have 2% — vgF — % € 40U (Z*) and

¥ — ygk — okt € 40U (2F*1). By definition of the subgradient, we have Vu € RY
<5§k _ ,Tk + ’ng, $k+1
<xk+1

_ 5k>’
k+1>'

IN

7 (P@E") - w(h)

v ((2FTh) — W(u)) — "+ u -

IN

Summing up the above inequalities, we get

o (\I/(ik) —VU(u) < A B Y T )
(g = gF M =T £y (G u - 7). (304)
Since
- . 1 1, 1 -
I ot (e L P
1 1 1
R T L L i
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we can rewrite (304) as follows

ko~ ~ 1 1 1,
TAFPE) T )+ )~ w) < gl —ul® - S — ) - ) - bR

2
1, . _ e _

—S I = TP o (g" - g2 - 3

+v(0g, T — u). (305)

Next, we upper-bound (g* — g*, z¥*1 — Z*) using Young’s inequality, stating that {(a, b) < %Haw + Z||b]|* for all
a,b € R? and n > 0, and Jensen’s inequality for the squared norm:

i I | N
-3 < gt -Gt et -3

~ 1 ~
= ’YQHF(xk)—F(xk>_wk+9k”2+i||xk+1 _wkHQ

7<§k - /g\k7 xk

~ 1 ~
< BPIFEH) — FEIP + 302 nl + 397106] + 7l - 742
39 272k _ k2 2 2 2 2, Ly k1 ~kgp2
< 3y Ll = 2T A 3y wnll” A 3970k (17 4 et = 20 (306)
Plugging (306) in (305), we derive for all u € R¢

(R, 3 — )+ UE) W) < gl —ul? — [ —ul?

2
1 1
_5 (1 _ 6’)/2.[/2) Hik o £L'k||2 _ Z||xk+1 o fk”Q
+372[lwr® + 372 10kl|* + {0k, T — ). (307)

We notice that the above inequality does not rely on monotonicity. Next, we apply monotonicity and get that for all
u € By, s7(T*):

(P ), — ) + UG~ W) < gl —ul? St~ u?
—% (1—692L?) 7% — 2F|? + 7(0%, 2" — 2*)
397k + 39210412 + 7B 2* — w)
< gl —ul? — et — P
f% (; _ 672L2> 17 — 2|2

+372||wr|1? + 49211 0k]|® + 7 (Ok, 2" — w),
where in the last step we apply v(0*, 3" — 2*) < ¥?[|0%||* + ;[|Z* — 2*||*. Since v < 1/vT2L, we have
N _ 1 1
Y ((F(u),xk - u> + \Ij(l'k) - \I/(u)) § ink _ U||2 _ 5||xk+1 o 'LL||2
+372 |wr ||? + 49210k )12 + ¥(Or, 2* — u),
Summing up the above inequalities for k = 0,1,..., K and dividing both sides by 7(K + 1), we obtain

K+1

S ((Fu), 3 —u) + 9@ — W(u) <

k=0

1 K+1 _

K+1

|2 — ul® — ||z ul®
2y(K +1)
K+1

Y 2 2
T 2 Gl + 410l

K+1
1 +

k_
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Applying Z( (u), T — u) = (F(u), 25, —u) and U(ZK ) — U(2*) < 25 > W(Z*), we get the result. [

=1

Next, we proceed with the full statement of our main result for DProx-clipped-SEG-shift in the monotone case.

Theorem H.2 (Case 2 from Theorem C.7). Let Assumptions 1.1, C.1 and C.2 hold for Q = B,, s7(v*), where V >
409600~2 In? 28n(KH1)

2 2 |” + 0 | Fa(a")|? and
1 60°5% VVn s
7 < min ; = : (308)
1920L In 220D 979002 (K 4 1)# o I 450(KED)
_ WV
A=A = 607 In 2T (309)
vo=0 (310)

forsome K > 1 and 8 € (0, 1]. Then, after K iterations of DProx-clipped-SEG-shift, the following inequality holds with
probability at least 1 — f3:

9V
Gap\ﬁ( avg) S m and {.’L‘k}K“”l C Bg\/»( *) { k}K+1 C B4n\/*< ) (311)

where TX _ is defined in (301). In particular, when ~ equals the minimum from (308), then after K iterations of DProx-

avg

clipped-SEG-shift, we have with probability at least 1 — 3

LV In 2 oV In s nk

Gap (T avg) = O | max == , (312)

i.e., to achieve Gap /(T < € with probability at least 1 — 3 DProx-clipped-SEG-shift needs

avg)

K =0 | max

%ln nlLV 1 (O’\/V) O'\/i (313)

B 'n € eB

iterations/oracle calls per worker.

Proof. The key idea behind the proof is similar to the one used in (Gorbunov et al., 2022a; Sadiev et al., 2023): we prove by
induction that the iterates do not leave some ball and the sums decrease as !/k+1. To formulate the statement rigorously, we

introduce probability event £y, foreach k = 0,1,..., K + 1 as follows: inequalities
t—1 t—1
max < [l2% —ul? + 27 (@' —w,00) + 47> (8]16:° + 6l|wi]|?) < 9V, (314)
u€B (%) —o —o
Ay
t—1
Yy 0| <VV, (315)
1=0
r—1 r—1
v vV ly VvV
A gy <X L w < 316
H n ; it—1|| = 2 ) n ;wz,tfl = 9 ( )
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hold fort =0,1,...,kandr = 1,2, ..., n simultaneously, where
0 =601 + 00, w=w'+uwl, (317)
"de”zom bd“lZo?l, wl“dglzw bdeflzw (318)
02, dinglzyi 6] —dl. 0hERGE)-Eg [¢] Yien), (319)
wh SRy [G] -5, Wb ER@) By (6] Vien). (320)

We will prove by induction that P{E},} > 1 — *k8/(x+1) for all k = 0,1,..., K + 1. The base of induction follows
immediately for allu € B j7(z*) we have [|2° — u|® < 2[|2° — 2| 4 2[|2* — u|* < 4V < 9V and for k = 0 we

have ||y S350 6] = 0, HV S 01l = 122002 llwl p_1ll = 0since 0 | = wi* ;| = 0. Next, we assume that the
statement holds fork=T-1 < K.ie. IP’{ET 1} > 1= (T=-1DB/(K+1). Let us show that it also holds for k = T, i.e.,
P{Er} >1— TB/(K+1).

To proceed, we need to show that Er_; implies ||2* — 2*|| < 3v/V forall t = 0,1,...,T. We will use the induction

argument as well. The base is already proven. Next, we assume that [|2* — z*|| < 3v/V forall t = 0,1,...,# for some
t’ < T. Then
. VvV
IF@E) = VIF@)]? < Z [Fi(z*)]? < W <A (321)

i=1

and fort =0,1,...,t

I2° — 2"l = [[prox,y (2" —9g") — prox,q (a” — vF(z"))]|
< o' =2 =@ = F@)| < [l2" = 2" + 715" — ()]
§ N Lo (309,32 nvV
< et =2 (g IEED]) < 3VV A+ 29A <3VV 301 8K+
B
< 4nVV. (322)

This means that 2%, 7" € B, s-(2*) fort =0,1,...,t and we can apply Lemma H.1: Er_; implies

max_ {2y(t' + 1) ((F(u), 3, — u) + U(F, ) — T(w)) + a1 —ul?
{ ( ) }

B 7 (z*)
t—1
< jmax fla” —ull? +27) (2! —u,6)
z*)

=0
t—1
+92 ) (8116:]17 + 6lwi]|?)

=0

(314)

< 9V

that gives
Jot =2 < max {29+ 1) ((F), 7 = w) + B(@E,) = (W) + 2"+ — uf2
Bﬁ(x*)
< 9V

That is, we showed that B, implies ||z — z*| < 3VV, ||#¢ — 2*|| < 4n\/V and

S {24 1) (P, &g — ) + () — W) + 2™ —uf} <0V (323)
vvie?
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forallt =0,1,...,T. Before we proceed, we introduce a new notation:
Jat =z, if |2t — 27| < 3VV,
= {0, otherwise,
forallt =0,1,...,7. Random vectors {n;}}_, are bounded almost surely:
lnell < 3v'V (324)

forallt =0,1,...,T. In addition, 1; = x* — z* follows from Ep_; forallt = 0,1,...,7 and, thus, E7_; implies

T-1 -1
Ar 2 e {|x0—u||2+zvz<x*—u7el>}+272<x‘—w*,9z>

B (2
ueB v (@) 1=0 1=0
T-1

+° ) (81161* + 6llenl|?)
=0

T-1 T-1 T—1
4V +2y  max {<$* —u, Y 9l>} + 29 (00 + 92> (811041 + 6w ?)

B *
ueB v (=) 1=0 1=0 1=0

IN

T-1

T—1
+29 ) 00+ (811617 + 6lwn|?) -
= =0

T-1

S0
=0

= AV +29VV

Using the notation from (317)-(320), we can rewrite ||0;]|? as

2
16117 +207)?

IN

2016111 +2016711* =

n

Z<29“z7 5‘z>+2||9?||2 (325)

and, similarly, it holds for ||w;||2. Putting all together, we obtain that F7_; implies

T-1

T-—1 — n
Ap < AV 42V ;el J;Z m, 0, +2vlz; m,0p)
6} @
27r}/2T—1 n s -
3 (8 104 17) + 6By [l ]?])
=0 =1
®
2,}/2 T—1 n ) ) w2
+ 2 DTS (B0 + Bllel® — 8By [16:]1%] — 6Bgy | [l ]?])
=0 =1
@
T-1 3272 T-1 n Jj—1
+292 Y (867112 + 6wt 2) + =3 ZZ<Z%,9;&>
1=0 =0 j=2 \i=1
® ®
2 T—1 n —
24
v ZZ<Z”' jl> (326)
=0 j=2

@
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To finish the proof, it remains to estimate 2y+/V HZ;F:_ol 6,

,0,@,8,®,®,®,® with high probability. More precisely,
the goal is to prove that 27/V’ HZzT:_ol 0, H +O+@+@+ @+ &+ ®+ @ < 5V with high probability. Before we

proceed, we need to derive several useful inequalities related to 6", w}';, 0%, wh. First of all, we have
107l < 22, Jlwiyll < 2A (327)

by definition of the clipping operator. Next, probability event E'r_1 implies

(36)
IF:zHl < IF(@") = F@)| + |1 F@)| < L2’ -2 +

S IF )P

Vv (308) 1% A
= 3L\/‘7+ ”\4/;(](“) < n\Al/E;(K+1) = PX
160y In === 120y In =457 2
~1 ~1 * * (36) ~ * . *) 1|2
IF@E) < I1FGE) - F@)l+ 1R < LIE -2+ | Y IFi@)]
=1
VvV (308) V A
< aae— Y WV aw

K = K ~ 9
160y In 282UCEY 120 In 280UCEY) 2

forl =0,1,...,7 — 1 and ¢ € [n]. Therefore, Lemma B.2 and E7_; imply

2¢
o] < Z It < 2mr bl < Z bl < 222, (328)
B, [H%H | <1800, By [sz&H } < 18N 0", (329)
foralll =0,1,...,7 —1landi € [n].

Upper bound for ©. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

27 w 2’}/ u

Moreover, for all I = 0,...,T — 1 random vectors {6}, }"_; are independent. Thus, sequence {%’(m, 01 }lT;loi isa
martingale difference sequence. Next, the summands are bounded: S
2 ota| < Doz ET S S 3V(§*> Se (330)
Finally, conditional variances ai ! e Eglé,i [4% (m, 0 l>2} of the summands are bounded:
0% < By [4” Il 2] 2 250V gy Tlo) @31)

Applying Bernstein’s inequality (Lemma B.1) with X, ; = 2%(771, 0;), constant ¢ defined in (330), b = 31‘6, G =
2

3V
we get
48n(K+1)
200 In %

T—1 n
3V 3V2 b2 3
@ > =— and 2 <= 1< — = ,
{' > 3g an Z"“ = 2001114871(2@1)} = eXp( 2G+2cb/3) 24n(K + 1)
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The above is equivalent to

P{Ep} >1— __B8 for Eg = 1 either T_lioz > L or |®| < v (332)
e (K +1) v ST 2001 BrEED =10 [
Moreover, Ep_; implies
T-1 n (331) 367 yLitn (?29) T<K+1 648(K + 1)y2V A 2~ %g®
Syon 2 LSS e o) :
1=0 i=1 1=0 i=1
GO G48(K + 1)y*0 V25 (09 312 133)
T G02mepert Iy HERUEED T 900 | 28D (
Upper bound for @. Probability event Er_; implies
T-1
(324),328), T<K+1 6 . 2% (K + 1)7\/7(7“
@ < 272 | - 11671 < o1
(309) 6-2%- 60" (K +1)y%0* In"~ 1% 6% 3V (334)
no-lys-1 = 100
Upper bound for ®@. Probability event E7_; implies
1672 Tzlz”:E o2 GOTZKAL 2882 (K + DA 0% o) 2889° (K + 1)o V'8
=0 i=1 G B n 602—ana—1]p2~° 748”%”1)
(328) 3 V. 335
= ﬁ ) ( )
1272 TzliE (et 2] (329)’T<SK+1 21672(K + 1)A2~%0® @309) 2167 (K + 1)0“Vi=%
1 wl ~ =
—0 i=1 E ! n 6027o¢na711n2_0¢ 48”([}3{+1)
(328) ! V. (336)
— 50 b
(3352(336) V 337
<o (337)

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

QH—”;E%,&;J (81624112 + 6llwiy |12 — 8Egy | [164]17] — 6By [leotl)] = 0.
Moreover, for all [ = 0,...,7 — 1 random vectors {0};}}';, {wj,}7_; are independent. Thus, sequence
{27%2 (8|\9§fl||2 + 6w |I* = 8Eq; . [||9 ol } — 6B [HW?ZHQD}ZT;Z? is a martingale difference sequence. Next, the
summands are bounded:
2 80242+ Ol — 85y [10241) — 6y [ltal]|

16
<190 (o) + Bqy, Tlez1) +

(327) 232
> 2247 A

127

(ot + e, [llot12])

n2

(309) |4 def

< —— = (338)
61n 48n(g(+1)
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Finally, conditional variances

~ df47 u
7 DBy g[S + ol

2
- 88qy, [I624°) - 08, )|

of the summands are bounded:

_ (338) vV
121 < WEgg,i,ggi H8H9 s +6||%l||2 SEggvi [HH 1l ] —GEgllyi [||W31||2]H
B
472‘/ u |12 u |12
3n21n 48n(K+1) Efli'i,élz.’i [4||91l|| + 3||wi,lH ] . (339)
B
Applying Bernstein’s inequality (Lemma B.1) with X; ; = (8H9 2+ 6w I - 8E: . [HF);‘lHQ} — 6B, [||w;‘l||2D

. 2
constant ¢ defined in (338), b = %, G= mm‘YW’ we get
B

T—1 n ) V2 b2 B
P<|®] > — and 0F < — 3 <2 — = .
@] an ; ;%l = 9161 0D [ = P < 2G + 2cb/3) 24n(K + 1)
The above is equivalent to
T—-1 n
B . — V2 1%
>1— = ‘ _— < — 5.
P{Es} > 1 20n(K 1) for Eg either ; i:Zlal’l > om 48n(§+1) or |®| < G (340)
Moreover, Ep_; implies
T-1 n T-1 n
(339)
~9 2
2% s W D D e, 4L + Bkl
1=0 i=1 1=0 i=1
(329),T<§K+1 168(K + 1)y2V \2—2g
= nln 48n([13(+1)
(309) 168(K 4+ 1)y*V2= 252 (308) V2
S ( )3— 48n(K+1) S 48n(K+1) ° (341)
602—na—1In°~¢ —5 216In —5—
Upper bound for ®. Probability event Ep_, implies
T—1
(328),T<K+1 98 . 22a 2 2a(K +1)
® = 27 (@erIF+6lepl?) < \2a2
1=0
309) 28 . 22a . 602a—2,y2a02a(K 4 1) 1n20¢72 48n(g(+1) (308)
B n2a—2y/a-1 <3 (342)
Upper bounds for ® and @. These sums require more refined analysis. We introduce new vectors:
Za i 25 on || < @ 25 e 25 | < @
,if |2 Al < 5, x wity, if 1L wi|| £ %5,
(b= ol = 20, o= = = 2 (343)
0, otherwise, 0, otherwise,
forall j € [n]andl = 0,...,T — 1. Then, by definition
VvV VvV
IGI < == 1551 < =5~ (344)
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and
— T—1 n Jj—1
2y 327 Y u
©® = TZ J’ 37 T <’I’L Ql,l C_]v ]l> (345)
1=0 j 1=0 j=2 i=1
@l
T-1 n T-1 n j—1
24y 2 gl u _ sl
@ = 2SS ) 120 T3 (15 - ). w10
=0 j=2 =0 j=2 i=1
®/

We also note here that £ implies

j—1 n
= Z<ZZ921—<§7%> = 32,?2< Z@Tl ¢ 0 1> (347)
i=1 j=2

=0 j=2
i LY VR 2y = [y ¢
u u T— u
WSS (1S ) = (ISt ).
=0 j=2 1=1 Jj=2 =1

Upper bound for ®'. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional

expectations equal to zero:
327 I pu 327 l u
Ee, | [ (G j,z>] = < i Eel [ej’l]> =0.

T—1,n
Moreover, forall [ = 0,...,T — 1 random vectors {6},}7_, are independent. Thus, sequence {% < Jl-, 0 z> }l isa
' ' ,§=0,2
martingale difference sequence. Next, the summands are bounded:
32y 327 . 344,327 32y \V (309) 4v def
< — - —2A — =c 349
(¢ 051)] < G- No5 0 < 09 = 511148n(é(+1) ¢ (349)
Finally, conditional variances 8?.’ . &f Eel 1]_ [103@2 ( jl, %)) ] of the summands are bounded:
_ 1024~2 49 256721/
< By, | oI o] S Eq, 16217 . (350)

Applying Bernstein’s inequality (Lemma B.1) with X;; = —7 <CJ, i l> constant ¢ defined in (349), b = %, G =

8v?
Tsn(kTD) » WE get
B

751In
T—1 n
812 b? 153
P! |® > d _— 3 <2 — = .
©]> 5 an zz;] . S LU eXp( 2G+2cb/s> 24n(K + 1)
The above is equivalent to
T—1 n
153 812 4V
P{Eg} >1— —————— for Eg = ith _ @< — 5. 351
{ ® } - 247’1(K+1)’ or ® ciner g;ail 751 4871(K+1) 0r| ‘ 5 ( )
Moreover, Er_1 implies
T—1 n (350) T—1 n 2 22—
9 2567 (329> T<K+1 4608(K + 1)y*VA* %0
2D T < SO Eg ol < !
=0 j=2 =0 j=2

%) 4608(K+1)70‘a°‘V2*% (308) 8V2

<
402—apo—1 1n27o¢ 48n(§+1) = 75In 48n(é(+1) ’ (352)
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Upper bound for @'. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional
expectations equal to zero:

) J l

Ee {247 (5 “>] _247 (8, Eg lwia)) =0.

Moreover, foralll = 0, ...,T — 1 random vectors {w}" l} *_, are independent. Thus, sequence {247 <5§, w}fl> }Z_:Oz isa
martingale difference sequence. Next, the summands are bounded:
) e 1 % B f 2 m;;‘:gm e (353)
Finally, conditional variances (0 ;)* = & Bei [57527 : (at, w;{l>2} of the summands are bounded:
@507 < g, [T 10 hol?] € MV kg gl st

Applying Bernstein’s inequality (Lemma B.1) with X, ; = 247"’ <5§-, w;‘}l>, constant ¢ defined in (353), b = % G =

3v?
50 I BELD > we get
B

T—1 n 3V2 b2 B
P |@ > and 2 A< %exp| — — '
@] ZZ; ; i) < 501n 4871,(§(+1) = p < 2G + 2cb/3> 24n(K +1)

The above is equivalent to

P{Esy}>1— __B for Eg = { either Tzli(o’. )2 > L or |@'] < 3V (355)
TIET T (K 1) ? == o 50 In 222U =5 [

Moreover, Ep_; implies

T-1 n

~
L
3

(354) 14472V (*29>’TSK+1 2592(K + 1)y2V A\2—2g®
() =< oD Ba [lepl?] < -
1=0 j=2 1=0 j=2
(09 2592(K + 1)y¥o*V2=5 (08 32
y (K +1)y% > 2 , (356)
602—apa—1 1n27o¢ 48n(£)(+1) 50 In 48n(g(+1)
T—1 .
Upper bound for 2V HZ o O H We introduce new random vectors:
- -1
/ v 2 O, if‘729r S\/Va
m= r=0 r=0
0, otherwise
forl =1,2,...,T7 — 1. With probability 1 we have
Il < VV. (357)
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Using this and (315), we obtain that E7_; implies

T—1 2

S

=0

27\/V = 2V

T—1 -1
= 2V QZ||91||2+272<729T,91>
r=0

T—1 T—1
= 2VV (2D 102 +2y > (G 00)
=0 =0

(319) O+D+B+® 27 = . =
< gy |2HOTERE gzz«;,ei,mzvz«;,en. 35%)

=0 i=1 =0

©)]

Upper bound for ®. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

27 w 2’}/ U
Eglw |:n<<l/7 i,l>:| = n <C;’Efé,i[9i7l}> =0

T—1,n
Moreover, for all I = 0,...,T — 1 random vectors {0}, }; are independent. Thus, sequence {%(Cl, k l>}l o isa
martingale difference sequence. Next, the summands are bounded:
7, (357,(327) 4y (309) 1% def
‘n«:l’ i | < ”ClH 0 < ‘F W =c. (359)
Finally, conditional variances (7} ;)* = & ey | [%2«{ , 9ﬁ1>2} of the summands are bounded:
~r \2 2 2 472V
(071) §E§l“ ||Cz|| 116311 E§2 [H9 AP (360)
Applying Bernstein’s inequality (Lemma B.1) with X, ; = %’(({,9}‘7[), constant ¢ defined in (359), b = 1—‘6, G =
2
GOOIHEKW’ we get
B
T-1 n
V2 b2 8
®| > {5 and S A - - .
{' T ;; 60011148n<K+1)} = eXp( 2G+2cb/3) 24n(K + 1)
The above is equivalent to
ﬂ T—1 n ) V2 174
[ — i 5! - _
P{Eg} >1— ST for Eg = { either lz; ;(am) > P 48“?“’ or [®] < ol (361)
Moreover, Ep_; implies
T-1 n 2 (%60) 4721/ T-1 n (%29) T<K+1 72(K + 1)y 21/ \2—a y
>, SN By [lonP) < L
1=0 i=1 1=0 i=1
(309) UK + 1o V2—5  (308) 2
< T2(K + 1)y*o*V="z v (362)

<
602—apa—1 1n27a 48n(2(+1) ~ 6001n 4871(2)(—&-1) :
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Upper bound for @. Probability event Er_; implies

T—1
(357),(328), T<K+1 2. 2%(K + 1)7\/17004
® < 2y Il lel < =

oo 2+2% - 60°7 (K 4 1)y70 In® ! 2L oW V.
B Vel = 100

(363)

That is, we derive the upper bounds for 2y/V HZsz_ol 0

,0,0,8,®,®,®,®. More precisely, Ep_; implies

T-—1
Ap < 4V+27\f Y O|+0+2+0+@+60+ 6+,
=0
(345) 327 = /7 =
345 / u T—1 pu
® = @+T, <n ei,Tfl_Cj ?9]7 >a
j=2 =1
1

n J—
(346) 24~ Y u -1,
@ = ®/+T E <n E :wi,T—li(;JT 17wj7T—1>’

=2 i=1
(358) ®+@®+6+®
2T Zel 2o 1010
a3 3V @(327) Vv @(312) Vv a8y v
- 100’ - 20’ - 6’ — 100’
T—1 n T—1 n T—1 n
(m) (341) (352) 8V2
ZUJ Ba(K+1) ZZUH < Ba(KiL) ZZ EER Ba(K+1)
1=0 i=1 2001In n( ' 0 i=1 2161n ( ' 0 j=2 %
o51)° < 48n(K+1 48n(K11)
zojz 501n 10z1 6001n p )

In addition, we also establish (see (332), (340), (351), (355), (361) and our induction assumption)

P{Er_1}>1- T8

K+1"~
p p p
PEp}t>1— ——FFrr, HEe}>21— —r—, PEg}>21— —r—
{Eo} = 24n(K + 1) {Eo} 2 24n(K + 1)’ {Eo'} 2 24n(K + 1)’
B B
PlEy}>1— ——, PlEgt>1— ————
(o} 2 24n(K +1) {Ea} 2 24n(K + 1)
where
T—1 n
312 3V
Es = {either 0% > —_or|® < S
v 5,520t > ot b <
T—-1 n
) V2 v
E@ {elther ; ; W or |@| S 6} )
T—1 n
8V2 4V
E@I = either Z (/7\121 > T A8n(K+1) or ‘@ ‘ < — ,
; n +1
{ == 75 In 80D 5
T—1 n
. 3V? 3V
Eq either Z Z(a;,l)Q > —— i O |@'| < =
=0 j—2 501In —5
T—-1 n
V2 v
. ~/ 2
E {elther Z(O—i’l) W or |.| S 10}
=0 =1
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Therefore, probability event Er_; N Eg N Eg N Egr N Eg N Eg implies

i=1
327 ’yj_l
< VWV |5 <n 0 py —C 08 1> (364)
j=2 i=1

and

n

n j—1
32y 'VJ u -1 pgu
Ap < AV 42V 4+ 20V S <n 0ty —CF 1»9jT1>

<
Il
_

ot
~—

327 o= /7% !
S WS WO ST
J

24~y - ’yj_l
=D (D Wi - Jor 1>
=2 i=1

32~ n 'yj_l
R Z <n Oir 1 —¢ ;T1>
j=2 i=1
Uy Cn [y A
T Z <n Wir—1 — 5?_17w;,T—1> ) (365)
j=2 i=1

In the final part of the proof, we will show that * Z Oir_1 = QT ! and I Z wip_q = 5T ! with high probability. In
=1

particular, we consider probability event ET,L j deﬁned as follows: 1nequa11tles

-1
ol VV |l s VvV
ZG’LT 1 Siv nzngfl ST
i=1
hold for r = 2,...,j simultaneously. We want to show that P{Er_; N ET_LJ-} >1-— (7;;3[3 — 8n(][?+1) for all
7 =2,...,n. For 7 = 2 the statement is trivial since
(327) 24\ v (327)
oy, 222 < vV | zngH DN _ YV
n 2 n n 2

Next, we assume that the statement holds for some j = m — 1 < n, i.e., P{E7r_1 N ET,Lm,l} >1- (2;526 — 8(:;[_(2%
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~ m—1
Our goal is to prove that P{Er_1 N Ep_1 n} > 1 — (:’;a_liﬁ — Sn(’?(il). First, we consider Z 91 T_1

m—1 2

u
E , 9i,T-1
i=1

-2
S

3
o

v m—1
u
E § Hz,T—l
i=1

9 m— [

- n2 Z i %+ :Z< 21 w10 1>

‘ =

72 —1m— ’ym ~y i—1
< EE S 25 (1)
1=0 i=1 =1 =
Similarly, we have
’7m71 72 m—1 2
o dowira|| = \ w2 > Wi
i=1 i=1
2R 2y 2 <~ /7
= EZHWZT ol ;Z Zer 1WiT—1
=1
i — /7
SES v aRYIER- Wi €5 wiEe >
Next, we introduce a new notation:
= Nia
. _ % Z HT,T717 Z erT 1 < 2
Pi, T—1 = r=1 )
0, otherw1se
i—1 i—1
/ _ T Wi, T Wrp_q|| < @»
PiT—1 = r=1 r=1
0, otherwise
fori =1,...,m — 1. By definition, we have
VV VV
loir-1ll < == il < —5- (366)
2 2
~ 11— 11—
fori=1,...,m — 1. Moreover, E7_1 ,,,—1 implies p; 71 = L > 01, p;7T_1 =13 wep_qfori=1,....m—1
r=1 r=1
and
m—1
J bl £ VO+@+ 0,
n i=1
m—1
INwyl < Veot+o+@,
n =1
where
-1 m—1
27 . 2y
®:; <PzT 17911'7T 1> ®/:; <P§,T71a i, T 1>
=1 =1
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It remains to estimate ® and @',

Upper bound for ®@. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

Eﬁ;;I |:n<pi’T_1’ 9i,T—1>:| = ; <pi7T—1aE5§;1 [ei,T—1]> = O’

. . m—1 . . .
since random vectors {0%7_, }7_, are independent. Thus, sequence { %X (p; 7_1,0%7_;) }Z__ | is a martingale difference
sequence. Next, the summands are bounded:

2y

(366),(327) 2 (309) 14 def
21,00 < Dlpirall Nl S DVTAR e oD

- - 30 In 227D

. . . . def 2
Finally, conditional variances (7 _;)* = E.r—1 {%(pi,T,l, 9$T71)2} of the summands are bounded:

2,i

~ 364) 42V
@) <Beros | Llpuroall 1022 7] € L Eer s 1) (368)
Applying Bernstein’s inequality (Lemma B.1) with X; = 2%<pi7T—17 9ng4> constant ¢ defined in (367), b = 30,
2
G = W’ we get
m—1
v V2 b2 8
P< |® > — and ol C . S—— ] - = .
{ > 3580 ;(UZ»T*) = 540011&48"(51@1)} = eXp( 2G+2cb/3> 24n(K + 1)
The above is equivalent to
P{Ep}>1— __B8 for Eg = { either mzl(c?’- )2 > V—2 or |®@ < v (369)
T (K 1) ! T T 5400 I 50D 30 [
Moreover, Ep_; implies
m—1
a6 A2V & ) 629 1872V \2=2g®
RICTINI GRS S PR (i
=1 =1
(309) 18+ g/ 2~ % (308) V2
< R (370)

e e e = 5400 In 22CED

Upper bound for ®@'. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

27y 2y
Eg}j;l {H@Q,TUW?,TQ] = <pzT 1,E£ [W?,Tfl]> =0,

. . -1, . .
since random vectors {w;'z_; };.; are independent. Thus, sequence {& (Pir—1,wWir_1) }:1 , is a martingale difference
sequence. Next, the summands are bounded:
2y (366),(327) 27 7y OO V def
< = ”pzT lH ||W’LT 1” < VA 48n(K+1) =c (371)
30In —5—

PiT—1,W sz1>

. . . ~ def 2
Finally, conditional variances (5] ;-_;)? = ]Eé-zji—l {% (i1 w}fT_1>2] of the summands are bounded:

~ 442 >'y2V u
@hr s < B | Dplirall - Tt all| € LB ot 1P a7
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Applying Bernstein’s inequality (Lemma B.1) with X; = %(P;j—l,w;&_l), constant ¢ defined in (371), b =

2 %’
= W’ we get
V2 b2 B
g > — and ———— 7 <2 — = .
{| > 35 an Z Tiz-1) 54001114871([31@1)} = eXp( 2G+2cb/3> 24n(K + 1)
The above is equivalent to
m—1
/8 . ~/ 2 V2 / V
’ _——_— ;7= . _— < —_—
P{Eg} >1 (K 1) for Eg either ;(O’Z,T_l) > 00T 48n(§+1) or |®@) < 30 (- (373)
Moreover, Er_1 implies
m—1 n
(372) (329) 18’72‘/)\2 ag o
S T T Y g ety )
=1 i=1
(309 agay2—5 (308) 2
<) 18y*c*V="2 2 \% . (374)
602_(171(1_1 ln2_a 48’!7.(2(4»1) - 5400 In 48n(é(+1)

Putting all together we get that Ep_1 N ET_Lm_l implies

m—1
gl gl i &V
0 <VO+®+®, |— e I <VO+D+@, @ < —,
an,x/ + @+ n;wz,m,v + @+ <
T-1 2 m—1 2
Z 2 (311) i/S (K+1) ) (/O-\: T—l)2 S ‘28 (K+1) )
=0 i 216 1In "T = 5400 1n "T
i, T 1) 48n(K+1)
— = 51001 Lnrd)
In addition, we also establish (see (340), (369), (373) and our induction assumption)
= (T-1)B  (m-1)B
P{Er 1 NEr_1m_1}>1— — ,
{Br-1 0 Broam-} 2 K+1 8n(K+1)
P{E@}>1—L ]P’{E®}>17L P{E®/}>17L
- 24n(K + 1)’ - 24n(K + 1)’ - 24n(K +1)
where
T—1 n
V2 \%
Eg = [ either Gl > ——————or |® < — 5,
{ 1=0 i=1 ! 2161“% “ 6 }
", V2 1%
_ : ~/
E@ = either ; (Ui,l) > W or ‘@l S 30
m—1
V2 \%4
_ . ~/ 2
E@/ = {elther £ (O—'L,Tfl) > W or |® | < 30}
Therefore, probability event Ep_1 N ET_Lm_l N Ee N E@ N Eg implies
m—1
v Vv V. vV WV
£ o ry X _vv
n;”—l Va6 T30 2
7N V.V V_W
et = V20 T 630 2
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This implies ET_Lm and
P{Er_ 1N Ep_1m} > P{Ep 1NEr_1m 1NEgNEgNEg}
—P {ET_1 NEpr_1m-1UEeUEgU E@}
(T-1)p mp3

1-— — .
- K+1 8n(K +1)
Therefore, for all m = 2, ..., n the statement hglds and, in particular, P{Er_1 N ETA,n} >1- (71“(113[3 Eces) +1) Taking
into account (365), we conclude that Er_1 N Er_y , N Eg N Eg N Egr N Egr N Eg implies
T—1
YO SVV. Ap <9V
1=0
that is equivalent to (314) and (315) for t = T'. Moreover,
P{E;} > P {ET,l A Er_1.n N Eg N Ee N Eg N Egy N E}
= 1 —IP{ET_1 NE,UFEsUEsUEg UFEs UE}
o, T-vs_ 8 B T8
K+1 8(K+1) 24n(K +1) K+1

In other words, we showed that P{E}} > 1 — ¥8/(k+1) forall k = 0,1,..., K + 1. For k = K + 1 we have that with
probability at least 1 — 3

Gap p(@h,) = max {(F(u), @, - u) + W(@,,) — ¥(u) |
B (x*)
1 / /
S R o) e {2 t/+1(FU7ftv + (@, —\I/u)Jr xtﬂ—uQ}
S K1) s ()’Y( ) ((F(u), g — u) + W (Tq) — U(u) ) + || |
(323) ["\%
< —_—.
- 29(K+1)
Finally, if
1 605"V Vn s
~ = min ,
1920 In 22D " 979005 (K+1)agln%%
then with probability at least 1 — 3
Gy o< W 8640LV In 2D 9. 60%5 . g RIn T %
Gap v < ————— = max ,
vV iFave 29(K +1) K+1 29720051 (K 1 1)°5
LV In 2% oV In“s 2K
= O | max , — %1
K na Ko
To get Gapr(ZL,,) < & with probability > 1 — 3, K should be
K—o ﬂl nLV 1 (oV/V " af
sﬁ € 55
that concludes the proof. O
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H.2. Quasi-Strongly Monotone Case

We start with the following lemma.

. _ ES 0 * (|2
Lemma H.3. Ler Assumptions C.I and C.3 hold for Q = B, m(x*), where V. > [2° — z*||* +
3600000072 In?2 48nUE+D) .
B " (2%)||2 = 1 Vvn 1
n? Yozt [F@OI v = yp and 0 < v < min g, 15000L In 252D 2 720000004 In? 2E2UEED

If 2% and T lie in By, v (x*) forallk = 0,1,..., K for some K > 0, then the iterates produced by DProx-clipped-
SEG-shift satisfy

K
Vi < exp (=K +1)) V29 Y exp (— 22 (K = k) (02" —a%)
k=0

s S e (=25 — 1)) (18] + 14 ])

k=0 i=1

K n
2 Y exp (<2 (K — k) (18]1004 2 + 141wt 1)

k=0 i=1

327 Zzexp( —k)) <]§j G}fk,e;{k>

k032

247 ZZexp (-— (K —K)) <sz,€, Jk> (375)

k=0 j=2

3600000072 In? 48nUC+D)

2| + Sy (I = Fi(@) 2+ B = Fi (7)) and 6, 6%, 600 o,
wgk are defined in (302), (303), and (319)-(320)

where Vj, = ||z¥ —

Proof. From (307) with u = x* we have

v ((F@), 3" —2%) + 0@ - (")) < %lek — |2 - %WH — 2|2
*% (1-6+2L7) [|7" — ") - i”zkﬂ — 72
+372||wr |12 4 372|012 + {0k, Z° — 2*).
Using quasi-strong monotonicity of F, the fact that — F'(z*) € 0¥ (z*), and convexity of ¥(x*), we derive
2vulE — a*||2 < 29(F@EF) — F(a*), 7" — 2¥)
< 29 ((F@),7 - 2%) + ¥(@*) - U(a"))

o — 2| = 2+ = 72 = (1 - 692L) |7 — o

ININA

1 ~ ~ *
_§||ﬂfk+1 = 37+ 69°[lw | + 67710k ]| + 27(0k, T — z¥).

Next, we apply [|7% — z*||* > gja* — 2| — [|7* — 2|2

and rearrange the terms:
* TH * ~ % ~
okt =2 < (1= )l =P = yulld® — 2|2 = (1 = = 692L2) [ — 2|2
+67°lwrl|* + 692 [16xlI* + 2v(0k, T° — 2).

Since 27(0%, % — a*) = 2y(0%, 2% — ) 4 2(0F, T — 2¥) < 29%(|6% |2 + L[|Z* — 2*||%, we have

2
+672Jwil® + 872 |0k )|* + 2v(Ok, 2 — 7). (376)

~ 1 ~
ot =t < (1 ) et P ol - P (- - 6972 [ -t
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Now, we move on to the shifts: for all ¢ € [n] (for convenience, we use the new notation: h} = F;(z*) for all i € [n])

[RETE — B2

297"

IRE = B2 + 20 (AR RE = By ) + v AF)?

= Ik = B 20 (GF — BERE — By )+ 2t - R

v<1 ~
SRk = IR 2w (GF - BERE - BY) + vl - P

= IRk = BpP v (GF T+ RE - 2h7)

S L e e

< (= w)IRE = B2+ 205 - Filab) | + 20| Fi(a®) - b2
< (1= w)IRE = BIP + 20wkl + 20| Fi(a*) — B

= (L= )R = 1P + 2ypllen kP + 2vm] Fi(a®) — b2

(6 7 * *

< (= a)lBE = P+ 2ypllwi P + 29uL? et - 22

< (L=l = BiIP + 2ypllwipl® + 4yl |7 — 2|2

HAypL? ||z — 2P
and, similarly,
IRy =Bl < (L= y)llhf = Bi 1P + 2yul0ik]|* + 2yul Fi(Z*) — 7|

(36) ~ B .
< (A=A — B+ 2yp)|05,k )1 + 2L |3 — =¥,

Summing up (376), (377), and (378), we derive

Vin < (1= ) et o)

36 - 106,.)/2 In? 48n(K+1) n

+(1—p) > (IR — B2 + 1B — n11?)
=1
6.3 27..2 48n(K+1)
216 - 10°y°uL lnﬁ ~k o2
Y — [EAE |
n
1 144 - 10643y L2 In? 280D -
- (2 — = 6y°L* — - 7% — 22
n

+69°[|wrl* + 89210k ]|* + 2v(0k, 2* — 2*)
72 - 10643 1n? Bn(K+1) n

ST (104012 i i1

i=1

n

< (1= ) i+ 69 el + 89260 + 2v(6x, 2* — o)
7 - 2 2
+;Z(H9i,k|| )
i=1
(325),317) o ,y n
< oxp (=0 Vi+ 29(0k, 0k — a) n—; 181674 7 + 14]fi )

n 2 n Jj—1
+7 Y (18[167 417 + 14]|w? 1 ]I) Z <Z9m jk>
i=1 =2
4 n
2 ’Y Z<sz ko W Jk>
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Unrolling the recurrence, we get the result. O

Next, we proceed with the full statement of our main result for DProx-clipped-SEG-shift in the quasi-strongly monotone
case.

Theorem H.4 (Case 1 from Theorem C.7). Let Assumptions 1.1, C.1 and C.3 hold for QQ = B3n\/v(x*), where V. >

3600000072 In2 48nUC+D)
> | Fi(a®)|)? and

l2® — 2*)* +

n2

. 1 1 vn 21n(Bg)
0<vy <  —, , , 379
T mm{72-106uln248”<g”1> 61" 15000L In 220D p(K + 1) G
2(a—1) 2(a—1)
(K 4+ 1) 2V
Bk = max{2, i (K +1) a (380)
2 2=1 (48n(K+1) 2
31104002 02 In~ = (T) In®(Br)
2(a—1) 2(a—1)
TKT 2V
= 0| max{2, “2( — , (381)
o2 ln2(aa_1) (%) In? <max {2, "?(Ij_l)TnKqu })
o2In" e (25)
v = nep(cyu(l )WY 380
ko = Br(k1) (382)
30071nT
Vo= Y (383)

Sfor some K > 1 and 8 € (0,1]. Then, after K iterations of DProx-clipped-SEG-shift, the following inequality holds with
probability at least 1 — [3:

K+1
B+ — 2% < 2exp (—W(2H> V. (384)

In particular, when ~ equals the minimum from (308), then after K iterations of DProx-clipped-SEG-shift, we have with
probability at least 1 — 3 that

K uK
K+1 * (|2
||£U + — T || = (’)(maX{VeXp <_1n2né(> ,Vexp (_L>,
2e=D) (1K 2
Vep< M\/HK> 02ln” « (T)ln BK}>
X - ) )

L ln % n2(o¢(;1) K2(aa—1) ’uz

i.e., to achieve ||z — x*||? < ¢ with probability at least 1 — 3 DProx-clipped-SEG-shift needs

K= O(max{(\/%ﬂ +1In (Zélnt) ) In (Z) In (/iéln‘gf),
L V\ 1/[¢2\%@D n (o2 \ 70D _a_
o (2)a ) (3 (=) ) e }) o

iterations/oracle calls per worker, where

B: = max < 2,
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Proof. Similar to previous results, our proof is induction-based. To formulate the statement rigorously, we introduce
probability event Ej, foreach £ = 0,1,..., K + 1 as follows: inequalities

V, < 2exp (_72‘“‘) % (386)
r—1
T ut = 1)\ VV
ED R E (- =) (387)
t—1 Vv
7 sz (1|l L exp <_W(4)) g (388)

hold fort = 0,1,...,kand r = 1,2,...,n simultaneously. We will prove by induction that P{Fy} > 1 — k8/(k+1) for
all k = 0,1,..., K + 1. The base of induction follows immediately by the definition of V. Next, we assume that the
statement holds for k =T — 1 < K, i.e., P{Er_1} > 1 — (T-1)8/(k+1). Let us show that it also holds for k = T, i.e.,
P{ET} > 1—TB8/(Kk+1).

Similarly to the monotone case, one can show that due to our choice of the clipping level, we have that Er_; implies
zt, 7" € By, s7(x*) fort =0,...,T — 1. Indeed, fort = 0, 1,...,T — 1 inequality (386) gives z* € B, ;-(z*). Next,
forzt,t=0,...,T — 1 event Ep_, implies

="

— a7 I prox, g (z" — 7g") — prox, g (a" — yF(z"))]|

< 2t =2t = (G — F(z)]|
* 1 S~ * 1 .
<t —a e L E - REy + L34
i=1 —
<

1 ~ ¥ L.
WV | S0 IR = B+ L3 AY
i=1

i=1

N
< 2WV+ 6000 In =L ¥ Vet A

(386) 2 V2
< (2 + On+n> VV < nVV.

- 6000 In 748”“? +1)

This means that we can apply Lemma H.3: Er_; implies

Vp < exp(—’YQ'uT)V+27Tz:1exp(—w(T—1—t)) (s, 2" — 2*)

t=0
2T 1 n , ,
+ﬁzze xp (DA = 1= 1)) (18101 + 4] 1)
t=0 i=1
T—-1 n

+ Zzexp (— 5 @=1=10)) (181071 + 1] )
t=0 i=1
(—7 —1—t)<26m jt>
exp (~ 2T —1-1)) <]§_:w;ft,w;{t>.

Before we proceed, we introduce a new notation:

{ztz*, if |2t — ¥ < exp (—2L) V2V,
Nt =

0, otherwise,
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forallt =0,1,...,7. Random vectors {nt}tho are bounded almost surely:
t
7] < exp < 75 ) V2V (389)

forallt = 0,1,...,7. In addition, n; = 2t — x* follows from Ex_, forallt = 0,1,...,T and, thus, Er_; implies

T-1

2

TH

> S exp (<247~ 1-0) (00

=0 i=1

Vr < exp(— T)V—i—

@

T-1
+27) exp (—%(T —1- l)) (07 m)
=0

2T 1 n
+ LY Y e (<@ —1-0) (8B, (16712 + 14Eg; [Jwt4]?])
1=0 i=1
©]
’VQT 1 n
+ Y exp (<@ —1-0) (1811612 + 14ty |2 — 18y, [1674]12] — 14Eg; | [Jwt4ll?])
=0 =1
@
72 T—1 n i
+ 3 Y e (T = 1-0) (186212 + 1]t 1)
=0 =1
®
32 2o T—1 n j—1
’Y ZZeXp (—— —1—l)) <Z€Z1,9;l
=0 j=2 i=1
®
2T 1 n
247 S e (—— ~1-1) ) <Zw”, > (390)
=0 j=2
@

To derive high—probability bounds for @, @,®, @, ®,®, @ we need to establish several useful inequalities related to
01 91 Wi wf’l. First, by definition of clipping

102511 < 22X, lwiyll < 2. (391)

Next, we notice that F'r_; implies

IFi(a') = Rill < |IF(a") = F(@™)l| + |3 = Fy(a”)]

(36)
< Ll -2t + lehl ol
Jj=1

nv/Vi
< LV +
6000y In 252D

(386) (379),(382) )\,

n yul i
< V2(L+ exp <> Vo< 2
< 6000~ 1n48"(BK+1)> 4 2
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and

IF:(@) —hill < IF(@) = Fi(a)|| + [hi = Fy(z")]

(36) .
< L)@t -2 + Zth )2

v . . n/Vi
< L|prox,g(z' —7g') — prox g (z* — vF(z*))|| +

6000 In 222LEEL

< L||xl—x*—V(EI—F(x*))||+6000 I 48n(K+1)
n 1< 'V,
< Llla! =2t Loy || 23— Fie) 2O AY +
; n; 600071n%§+1)
Ly
1 2 4 L
< <L+600071 18n K+1)> VVi+ Ly Z”h I+ ZHA |
<

60007 In

(386) n—+ LW\/E ~yul (379),(382) ),
S \/5 L + 4871(K+1) exp (_4 \/‘7 + L’7>\l é 5
6000 In —5

n+ Lyy/n
(L + Bn(K+1) ) VVi+ Ly
B

forl =0,1,...,7 — 1 and ¢ € [n]. Therefore, one can apply Lemma B.2 and get

(392)

loel < - Zueznwal, ot = lew

Eg , [101]°] < 1837007, Eq, [Hw;tln } < m%-%a, (393)
foralll =0,1,...,7 —1landi € [n].

Upper bound for ©. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

2y T u 2y T u
Eg, [nexp (-2 =1-0) m, 02| = exp (< 2T — 1= 1)) (m, By [04]) = 0.
Moreover, for all [ = 0,...,7 — 1 random vectors {0}, are independent. Thus, sequence
T—-1,n
{27 exp ( L(Tr-1- l)) (i, 9;&) }l s is a martingale difference sequence. Next, the summands are bounded:

2y 8y u 2y glg
Teop (@ -1-0) o) < Tew (=@ -1-0)Inl- 64

o) 2v/2Vy exp (_W) <wl>
oxp { == Al
n

—auT
@ oo (-4)V e (394)
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Finally, conditional variances UZ . &f Eei [%2 exp (—yu(T — 1 =1)) {m, 0&)2} of the summands are bounded:

2 < R 472 T-1-1 2.6, 12
o < Eg | —5 exp (—yu( D = - 1163 1

(329) 8v2V exp (—’yu (T -1-

L
2)) E&éj [Hau,

2. (395)

n2

Applying Bernstein’s inequality (Lemma B.1) with X, ; = 7 exp (—&(T —1-1)) (m, 03;), constant c defined in (394),

_ (=) o exp(—uT)V?
b= 100 G = 60000 In 25U > we get

wT )y, 1 n
P¢ D] > —eXP( ) Z Z exp (—yuT) V2 < 2exp (—b2 )
o i

600001 48n(K+1) 2G + 2¢b/3
- B
24n(K + 1)
The above is equivalent to P{Ep} > 1 — W for
SN o _exp(—yul) V? exp (-57) V
FEq = | either oy > or || < ——————~— 3, (396)
lz:; ; L 60000 1n % @ 100
Moreover, Er_1 implies
T—-1 n T-1 n
(395) 82V exp( -1)) yul
> < Zexp 5 ZE@ [167:41%]
1=0 i=1 I=
(393), T<K+1 14442V exp (—yu (T Yo o

= 7”1 2—a
< E
- n Oexp(2>>\

=

622) 144y*V2=% exp (—yuT) o® = exp (’y,ula)
< 60002—ana—1 2@ 48n(§+1) - 4

1447°V2=% exp (—ypT) o%(K + 1) exp ( uKa)

= 60002 -ope—1 I~ 280D
(379) — 2
g exp (—yul) V= (397)
60000 In 222UCEL
Upper bound for @. Probability event E7_, implies
-1
T_-1-1] (389),(392)
o < Y e (-2 o (395)
1=0
T—1
« a TH T-1 lylul 1
< 29M1a0%V2V exp (—(2)> Z exp (4) o
1=0 l
a2 2°T1-120 lexp (—%) (K +1)exp ( “KQ) 7o In®"! 748n(g(+1)
S na—lvgfl
(379) 3exp (—#) Vv
< - (399)

- 100
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Upper bound for ®. Probability event E'r_; implies

1842 T=1 n 1 (397) €xp _auT )
R () g CE

— 2 100
and, similarly,
— ypT
1472 — (T —1-1) w2y &0 oxp (7T> v
D e L e (A

that give
exp (7%> 14

50 (400)

®<

Upper bound for @. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

27 X3 u u u
S By e, 1810807 + 14wy |2 - 18K | [169]7] — 14Bgy  [Jeotl?]] = 0.

Moreover, for all l = 0,...,7 — 1 random vectors {6},};_;, {w;;};; are independent. Thus, sequence
T—1,n
{27 exp (= 2(T —1-1)) (18||9“1H2 + 14]Jwy |2 — 18Egy [||9 I } ~ UEg [”%”2})}”:01 is a martingale dif-

ference sequence. Next, the summands are bounded:

2,‘/2 T u |12 u |12 u |12 u |12
S exp (= NI = 1- 1)) 181027 + 14]wis|1* — 18Bqq  [10;1%] — 14Eqq [t |

(331) 256 exp (— (T — 1 — 1)) v2A?
= 2

n

T
o) oXP (—%) Vet 401
~ 6In 48n(K+1) ¢ ( )
B

Finally, conditional variance
o def 47* 2 2 w21]?
Tl = TGXP( (T =1 —l))]Eg’iyi,g’zr,i ‘18”9 Q17+ 14 fwi|” - 18E§2 U|9 1l ] - 14]E§gﬂ. [szz” ]‘

of the summands are bounded:

5, (421) Yiexp (m (2T —-1-1))V
2 — 2 In 487L(K+1)

xEqg q, [\18”0 P + 14wty - 18Egy  [1624)1%] — 14Egy  [llwial?] ]

Ay exp (mL(2T —1-1)V

= 3n21n 748”%{“)

Eet e, [O10317 + 7llwity 7] - (402)

Applying Bernstein’s inequality (Lemma B.1) with
Xiy = Zexp (T —1-1)) (18||9ulu2+14||w;fl||2 — 18E¢; [||9 a } ~ U4Eg [||w§fl||2D, constant ¢ defined

. exp(— 2LV ™V
in (401, = T2V g et BT we get

exp( wT)V T-1

"~y _ exp (D) V? ( B2 )
S R and 9 T 8K+l < 2exp|———
|@| 1:01:21 1S 91610 48n(K+1) 3G+ 23

_ B

2n(K + 1)
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The above is equivalent to P{Fg} > 1 — W for

= o &Xp () V2
@ = ( either Z Z W or |@| < 6
1=0 i=1 — 5

Moreover, Ep_; implies

T—1 n

1=0 i=1 3n? IHT 1=0
G exp (ypT)V

2161n%'

Upper bound for ®. Probability event £ implies

(392)

< 32’72Z€Xp (—— —1—1))W <

l

Upper bounds for ® and @. These sums require more refined analysis. We introduce new vectors:

j—1
: ol [ yul\ VV
= Zgzl’ if Ezlgi,l <exp< T) 2
] 1= )
0, otherwise,
ol I ol I e 1%
u 1 u
g J AT e i |2 ey <exp (<4)
i = i=1 i=1
0, otherwise,

forallj € [n]and! =0,...,T — 1. Then, by definition

exp (—%) \%

(402) dexp (—yu(T — % 'VQVT_l u
Ty, @ deelwdl-s) (% )Zﬂzf o 90160212 + Tl

T
22(10_204 (382),(379) exp (7%) V

6

N\ VvV N\ VvV
I < exp (-20) 5L 3l < exp (- 20)
and
T—1 n
32
® = —’YZZeXp(—w(T—l—Z))<j7 ;‘l>
1=0 j=2
@/
B SS (- 1-0) (250 -G,
n p ]’ 7,0
=0 j=2
T—1 n
24’}/ YH u
=0 j=2
@/
24~ T—1 n -~ ’yj—l
+T Zexp (—7(T—1—l)) <Zw1"l 61 Jl>
1=0 j=2 i=1

(403)

(404)

(405)

(406)

(407)

(408)

(409)

(410)
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We also note here that E7_; implies

T—-1 n

2SS e (T )<Zejw>
327
—n”;< 129” -0 1> @1
24 TH Y e s
TZ exp<—7(T—l—l)) ﬁ;w, _5-,OJ-7I

-2 Z < Zw 6?‘1,w;iT_1> - 412)

Upper bound for ®'. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional
expectations equal to zero:

32y Y 32y T u
Eg, [nexp (-2 -1-0) €| = Lexp (- LT -1-0) (¢ Eqg 5:]) = 0.
Moreover, for all I = 0,...,7 — 1 random vectors {9“ 7—y are independent. Thus, sequence

T-1,n
{327 exp (—%(T —1-1)) ( Jl, 0%1) }l o is a martingale difference sequence. Next, the summands are bounded:

,J=0,

32 32
Sop (- -1-0)(¢ ol < Zlew (-5 @—1-0) G- 5]

n

(408),(391) 16\F’yexp( w(T 1)) l
Y
) AT
n

_ouT
an o () V o

l0m B~ © (413)
B8

Finally, conditional variances 57, &f Ee [10%72 exp (—yu(T =1 =1)) (¢, 0% l>2} of the summands are bounded:
: y :

~ 102442
G < By {nz

exp (—yul(T — 1~ D)) L2 - 0 ﬂ

@08) 25672V exp (—yu (T — 1 — L)) u
= ( - ( 2B [110507] (414)
Applying Bernstein’s inequality (Lemma B.1) with X ; = 22% exp (= 3(T — 1 — 1)) (¢!, 0%,), constant ¢ defined in (413),
b= exp(— 257 )V G = exp(=ypT)V? we get
10 > 600 1n 48n(é{+1) s g
,  &XP ( wf) 4 i exp (—yuT) V? b2
P<|®| > 02 < N TP 7 < 2 _
|©] and Z Z = 60010 48n(K+1) > 4exp < 2G + 2cb/3)
-
24n(K + 1)

The above is equivalent to P{Fg/ } > 1 — W for

T—-1 n

~ T)V?
Eg = { either ZZ 2 % or |®'| <
it 600 In 25

exp (—%) v

0 (415)
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Moreover, Er_1 implies

N @14) 25672V ) —
ZZUJQ‘J < Y exp(

! 2 n? zz: o <72Ml) ZE&ZZ”
=0 j= |

=0
(393),T<§K+1 460872V exp (—yu (T

[16317]

) oo T-1 I
Z exp <’VM > )\2 @
n —o
682 4608y*V?~% exp (—yuT) o® 1exp (Wlo‘>
- 30027ana71 11’12 « % =0 4
4608y*V?~% exp (—yuT) o (K + 1) exp (wxa)
< 3002—anpa—1 1n2*a %
S exp (—yuT) V2

600 In 252D '

(416)
Upper bound for @'.

To estimate this sum, we will use Bernstein’s inequality
expectations equal to zero:

. The summands have conditional
24y gty u 24y Y

Eg {exp( Tr-1- z)) (s, m} = =exp (_7(7’_ 1 l)) <5 Eg [} ]> —0.
0,....,7 — 1 random vectors {w};}

‘/}j=1 are independent.
24y L TS
{ exp( T(T—l—l)) (63, Jl>}

Moreover, for all [

Thus, sequence
is a martingale difference sequence. Next, the summands are bounded
,=0,1

'247 ( Y
22 exp (=M
n 2

IN

2 e (<2 1= ) 151 o]
(408),(391) 12\Fvexp< el 1)> Sl

: o ()
n 4
_auT
® exp( 2 ) V. ger

10 1n BnE+D =c
B

(417)
Finally, conditional variances (¢’

ai)? = &f Eei [5767 exp (—yu(T — 1 —1)) (85, w}fﬁﬂ of the summands are bounded

2 <« R 56’72 T 1 -2 u (|2
(J,l) > 38 TBXP(—WL( —1=0) ]|| '||°Jj,l||

@08) 28872V exp (—yu (T —1— % u
< ( — ( 2)>E§llyj [||ijH2] ) (418)
Applying Bernstein’s inequality (Lemma B.1) with X;; = 22 exp (- 2(T — 1 1)) (8}, w
@13),b = SRV o emlannyv

;»w), constant c defined in
we get
A8n(KF1) »
600 In ZE2EED)

eXp( WT)V A exp( yuT) V2 b?
P{|@]> ———"— and E i) S kT D < 2Zexp <_)
n(K+1 — cb
— = 600 In 222D 2G + 2¢b/3
B
2Un(K + 1)
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The above is equivalent to P{Fg/ } > 1 — W for
= exp (—yuT) V? exXp (_%) 4
_ : / \2 — /
E®/ = either Z Z(O-]vl) W or ‘@ ‘ S 1—0 (419)
=0 j=2 B
Moreover, Ep_1 implies
T—1 n T 1 n
418) 28872V exp (— T
(03,1)2 < ) exp 7 Z ||9 l”
1=0 j=2 1=0 i=1
o 1
(393),T§SK+1 51842V exp (—yp (T — 1))(7 ex (u) e
n P 2
(322> 518442V 2~ % exp (—yuT) o® = ( ula)
< €Xp
3002-apo—1]p%=@ 748"(2”” —
5184y*V2~% exp (—yuT) o%(K + 1) exp ( f )
<
- 3002—apo—1p2=@ 748’“;} +1)
(379) —~uT)V?
< W. (420)
600 In 252LED
That is, we derive the upper bounds for ©, @, @, ®, ®, ®, @. More precisely, Fp_1 implies
(390) Y
Vr < exp ?T)V—I—®+®+®+@+®+©+®,
327 o/ v =
409) u T-1 pu
©® =@ + TZ <nZQLT1 =G j,T1>7
=2 i=1
2y o [y i
oPa 77 Z <ZL wip_1 — 5JT_1aW;‘L,T—1 ;
j=2 i=1
(399) 3 €xXp (—%) v (400) €XP ( %) |4 s (405) €XP (— ”éT) 14
N 7 < N 7
- 100 ’ - 50 ’ - 6 ’
T—-1 n (397) 2 T-1 n 404
o OO exp (T V ~o U0 exp (—pT)V
Zgi,l = 60000 In BrE+D Z Zgi, = 516 BeEED
1=0 i=1 =5 1=0 i=1 n—ms—
T—1 n (416) 2 T—1 n 420 2
52 W9 exp () V o 420 exp (—yuT) V
st = 48n(K+1) Jil = 48n(K+1) °
— = 600 In 20D T 600 In 222D
In addition, we also establish (see (396), (396), (415), (415), and our induction assumption)
(T -1)B B
P{Er_1}>1——1——, PlEgp}>1— —von——
{Bra} = ki1 [ibelz 24n(K + 1)
P{Es} >1— L, P{Eg}>1— L7 P{Ezx}>1-— L,
- 24n(K + 1) - 24n(K + 1) - 24n(K + 1)
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where

exp (—%) 1%

. — exp ( ’yuT)V
e $ 30t LA o
1=0 i
exp (——73T>V

, . e () V
E@ = {elther Z Z m or |@| < T s
1=0 i B

2161In
_ _auT )y,
. L exp (- V eXp( 2 )
Eer = either Z Z 6001 48n(K+1) or ] < 10 ’
=0 j
— _ K \%4
. L e () vV eXP( 2 )
Ey = either E g > ——— ey of o< ———
n +1
= 600 In 220D 10

Therefore, probability event Er_; N Ep N Eg N Eg N Eg implies

YL 1 3 1 1
Ve < (——T) V({l+— 4= —
To= SPATY <+100+100+50+6+6+10+10
<2
32y - gl = U T—-1 pu
+TZ gZ%,m G 0ira
j=2 i=1
24 n Jj—1 -
+TV > <Z Wiy =0 1vW;fT—1> - (421)
j=2 i=1
To finish the proof, we need to show that X Z O = C;?F L and I Z Wity = 6 ! with high probability. In

particular, we consider probability event ET,L j deﬁned as follows: 1nequahtles

VZGzT 1

< exp (_w(i’;— 1)) g

< exp (_w(T4—l)> g

~ r—1
u
n E WiT-1
=1

hold for r = 2,...,j simultaneously. We want to show that P{Er_; N ET_L]-} >1-— (TK_ﬂﬁ — (K+1) for all
7 =2,...,n. For 7 = 2 the statement is trivial since

~y (9 2yAp_ (T — 1)\ VV
200 S B <o () L
leu H L VIS R (R V1Al vV
n LT - n 4 2

Next, we assume that the statement holds for some j = m — 1 < n, i.e., P{E7r_1 N ET,Lm,l} >1- (2;526 — 8(:;[_(2%
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m—1

Zale:

Our goal is to prove that P{Ep_1 N ET,Lm} >1- (:’;a_liﬁ — Sn(’?(il). First, we consider

ZezT 1

ZezT 1

’Y m— 27771 1 5 i—1
= ) Z T 1||2 N : <n 0 ,T—1’9?T 1>
i=1 =1 r=1
’Y - ’mel ~y 1—1
= n2 Z < ) Z ||6ul||2 o <n GZf,T—lvoz T—1>
=0 i=1 r=1
Similarly, we have
rym—l ")/2 m—1 2
w2 @il = g || 2 Wi
i=1 i=1
’Y m— 2’7 m—1 ~y i—1
= w2 Z zT71||2+? <n ZWﬁT1»W§fT1>
— i=1 =
2T—1 5 m—1 ’}/"L 1 5
e S s B DL D M ) DT
1=0

Next, we introduce a new notation:

< exp (_ ’YH(Z*U) @

i—1
0 u
72 0
r=1

i—1

0 u

n Z 07’,T—1’
r=1

Pi,T—1 = )
0, otherwise
0 = u : 0 L u yw(T-1)\ vV
/ _Jn > wrp_q, if 5 > Wer_1|| < exp (—f) 3
PiT—1 = r=1 r=1
0, otherwise
fort =1,...,m — 1. By definition, we have
(T — 1)\ VV (T — 1)\ VV
llpi 1|l < exp ~wl=1) 5 lpirall <exp _wlT D) VY (422)
4 2 4 2
i—1 i—1
fori =1,...,m — 1. Moreover, Ep_1 ,,_1 implies p; 71 = X Z e P =gy Wi fori=1,... m—1
=1 r=
and
m—1
T Ll < VO+@+®,
n ;
i=1
m—1
IS wy| < Vet+a+@,
n i=1
where
27 m—1 ’Y m—
:; <pzT 1791T 1> / ;Z pzT 1% T 1>
1=1 i=1

It remains to estimate ® and ®'.
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Upper bound for ®. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional expectations
equal to zero:

E£§:1 |:n<pi,T—1? i,T—1>:| = ; <pi7T—1)E5;;1[0i,T—l]> = O

Thus, sequence {2% (piT—1, HZT—1> }j: L is a martingale difference sequence. Next, the summands are bounded:

2y 2y ]
;(Pz r—1,0i7_1) < ;Hpi,Tle [y
(422),(391) 2\/>76Xp< W(T 1))
< AT—1
n

_an(T-1)
a®) exp () VL

80 In S8 - ¢ (423)
Finally, conditional variances (5, ;- ,)? &f Eer— [%(pi’T, 1, QfT_1>2} of the summands are bounded:
; Hr ;
G < B | Lol 102 7]
(422) 72Vexp (—W)
< 7 ero (1087l (424)

n

Applying Bernstein’s inequality (Lemma B.1) with X; = %(pin,l,HﬁT_ﬁ, constant ¢ defined in (423), b =

ex _au(T=1) Vv <D (— _ 2
p( - ) ,G = m%,weget
(r-1)
e ()Y o exp (—yp(T — 1)) V2 b
P > d Gl 2 < a < 2 -7
|®| 20 an Z(Jl,Tq = 5400 % < 2exp{—gam s
= L
24n(K +1)°
The above is equivalent to P{Eg} > 1 — W for
n _a(T=1) Vv
. L exp(cu(T = 1)V exp (2441
B = ether 2 Ghr)* > = Bl > o= 80 (425)
Moreover, Er_1 implies
S (424) vV exp( .
Y @ira)? < ZEQ (11621 ]12]
i=1 =1
6 187V exp (—yu (T — 1)) o™ \za
n
(322) 1870“/2_% exp (_’YM(T _ 1)) oo - ’Y,U(T - l)a
>~ 30027ana71 1n27a % 4
roaci 1877V exp (<9u(T 1)) 0% exp (24
- 3002-opa—l Jn?~ B0
(379) 2
D exp (T -D)VE @6

38400 In %
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Upper bound for ®'. To estimate this sum, we will use Bernstein’s inequality. The summands have conditional
expectations equal to zero:

2y u 2y u
ngi—l {n<p;,T—1ﬁwi,T—l>:| = <pzT 1,E5 [Wi,T—1]> =0.

n . . .
Thus, sequence {2% (oh 1 wier_ 1) }i_ , is a martingale difference sequence. Next, the summands are bounded:

2y 2y
;<p;,T—1’sz—l> < ||/01T 1l ||W1T 1l
(422),(391) 2\/>7€XP( W(T 1)>
< " AT_1
(T-1)
exp (_wf) \%4
2 ere. 427)

801n 48n(K+1)
B
Finally, conditional variances (5] ;_,)* = =Er { i (Pir—1s ;fT_1>2} of the summands are bounded:

4
@y < E [”

crt | Wral? stz

(422) 72‘/ exXp (—W) E

= n? et [sz‘fTﬂHﬂ . (428)

Applying Bernstein’s inequality (Lemma B.1) with X; = %(p;j_l,w;fT_l), constant ¢ defined in (427), b =

PG exp(—an(T-1)V?
80 > 384001n 28nUCHD @

exp (7 w(zfl)) 1%
80

exp(= we get

A

n _ V2
P |/‘ > and Z(U£7T_1)2 S eXp( ’)/‘LL( ))

bQ
38400 In LSM;; EmY) = 2ep <_ 2G + 2cb/3>

5
24n(K + 1)

The above is equivalent to P{Fg/ } > 1 — W for

n

(T-1)
exp (— w(T 1))V xp (_w 2 )V

Eg = { either G 1) > r|® > (429)
Moreover, Ep_; implies
n - (428) 2V exp( “
Z(UQ,T—l)Q < ZEgz ‘9 T— 1l }
=1 i=1
(%) 18vQVexp< W =1)0" ,_,
< ” A
(322) 18v*V2=% exp (—yu(T — 1)) o yu(T — 1o
- 3002-apa—1 In>~* SnEED o 1
o<k 187V exp (—ypu(T — 1)) 0% exp (”“K“)
< 3002—apa—1 11127& 48n(é(+1)
(379) 2
< exp (—yu(T -1)V ) (430)

38400 In %
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Putting all together we get that E_1 N ET_Lm_l implies

m—1 _ T Vv
v ; (400) €Xp )
Zele <VO+®@+6, ﬁZw;fT_l SVO+®+6, © < ——
i=1
T—1 n m—1
Sy 5 @09 exp (—uT) V Y < oxp (T — 1) V2
S 48n(K+1 Tir-1)” < 48n(K+1)
= = 2161n DT 38400 In <ﬂ+>
m—1
Z exp( (T - 1)) V2
p Tir) < 38400 In 748"%{ +1)
In addition, we also establish (see (403), (425), (429) and our induction assumption)
= (T-1)p (m—-1)B
P{Er_1NEr_1m_1}>1— — ,
{Bra N Brym-} 2 K+1 8n(K+1)
P{E@}>1—L P{E}>1—L }P’{E./}>1—L
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where
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n _au(T-1)
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38400 In %

Therefore, probability event Fr_1 N Em_l N Eg N Eg N Eg implies

m—1 =D 7
(T — 1) 1 1 1 eXP( 1 )
0 < CIEE TNV = <
Z”l —eXp( 4 5 76 80" 2 ’
m—1 _awT=1\ /7
Y u (T — 1) 11 1 exp( a )
L , < _IPE TNV s — < .
n;w“T_l —eXp< 4 Viiso 6 a0 2

This implies ET, 1,m and

P{Er 1N Er_1m} > P{Er_1NEr_1,m, 1N EaNEsNEg}
—-P {ETfl N ET,mel U E@ U E U El}

T mp
= K+1 8u(K+1)

(T-1)B B ;
eSS m, 1.€.,

(387) and (388) hold. Taking into account (421), we conclude that E7_1 N ET,Ln N Ee N Eg N Egr N Eqy N Eg implies

Therefore, for all m = 2, ..., n the statement holds and, in particular, P{E7_1 N ET,Ln} >1-—

Vr <26Xp( VQMT)V
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that is equivalent to (386) for ¢ = I". Moreover,
P{Er} > P {ET,l A Er_1.,N Eg N Ep N Eg/ N E@/}
1-— P{ET_l ﬂEn UE@ UE@ UE@/ UE@'}

_ . T=v5 5 B T8
K+1 B8(K+1) 24n(K + 1) K+1

In other words, we showed that P{E}} > 1 — ¥8/(x+1) forall k = 0,1,..., K + 1. For k = K + 1 we have that with
probability at least 1 — 3

25 — 2*||? < Vg1 < 2exp (W) V.
Finally, if
1 1 21n(B
Voo { 72+ 106 In? B2 L 15000Lfr{ﬁ%m’ u(;f(fl)) } ’
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Kt —

IN

Lln nkK

To get |5 +1 — 2*||? < & with probability > 1 — 3, K should be
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I. Numerical Experiments

In this section we provide numerical experiments for the following simple problem:

' 431
Louin f(x), (431)

where a radius 7 = 1, a central point & = (3,3,...,3)" € R!9, and f(z) = 1|z|]?, fe(z) = $[|z[|* + (£, x), where ¢
comes from the symmetric Levy a-stable distribution o = % We use the following parameters: v = 0.001, 2° = & + rﬁ,

where e = (1,1,...,1)". We tried three values of \: 0.1, 0.01 and 0.001.

A=01 A=0.01 A=0.001

10° —t Prox-clipped-SGD 10° T —— Prox-clipped-SGD 10° —— Prox-clipped-SGD
Prox-clipped-SGD-shift Prox-clipped-SGD-shift —§+——+——F—+——+ 4 Proxclipped-SGD-shift
4 Prox-clipped-5GD-star 102 \ —<- Prox-clipped-SGD-star 1072 —<- Prox-clipped-SGD-star
1072
e e oo 107t
x[x x[x 1074 \ x|
=|=10-4 == == 19-6
1|1 [ 6 | 1|1
ol clg 10 <& 10-8
= =10-6 S| L x|% 107
=
1078 e W\ RN _
WM 7"[\4\,&#‘ LM {‘W’“N A i/ > 10-10
1078 WWWW*WWWM 107101 fVhAM-rr MR DX b e i 10722| g YRl
0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000
Number of iterations Number of iterations Number of iterations

Figure 1: Comparison between performances of Prox-clipped-SGD, Prox-clipped-SGD-star, Prox-clipped-SGD-shift in
solving problem (431) with fixed clipping level for each of them A € {0.1,0.01,0.001}.

In our numerical experiments (see Figure 1), we observe that the naive Prox-clipped-SGD converges slower than Prox-
clipped-SGD-star and Prox-clipped-SGD-shift. Moreover, when the clipping level is small Prox-clipped-SGD converges
extremely slow, while Prox-clipped-SGD-shifts takes some time to learn the shift and then converges to much better
accuracy. We also see that the smaller clipping level is, the better accuracy Prox-clipped-SGD-star achieves. For Prox-
clipped-SGD-shift we observe the same phenomenon when we reduce A from 0.1 to 0.01 . We expect the improvement in
the accuracy even further if we decrease the stepsizes v and v .
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