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ABSTRACT

In this paper, we focus on learning-based methods for simulation. Most existing
particle-based simulators adopt graph neural networks (GNNs) to model the un-
derlying physics of particles. However, they force particles to interact with all
neighbors without selection, and they fall short in capturing material semantics,
such as viscosity or plastic deformations, for different particles, leading to unsat-
isfactory performance, especially in generalization. This paper proposes Simula-
tion Transformer (SiT) to simulate particle dynamics with more careful modeling
of particle states, interactions, and their intrinsic properties. Specifically, besides
the particle tokens, which encode the states of particles into latent space, SiT gen-
erates interaction tokens to extract high-level representations for interactions and
selectively focuses on essential interactions by allowing both tokens to attend to
each other. In addition, SiT learns material-aware representations by learnable
abstract tokens, which will participate in the attention mechanism and boost the
generalization capability further. We evaluate our model on diverse environments,
including fluid, rigid, and deformable objects, which cover domains of different
complexity and materials. Without bells and whistles, SiT shows strong abili-
ties to simulate particles of different materials and achieves superior performance
and generalization across these environments with fewer parameters than existing
methods. Codes and models will be released.

1 INTRODUCTION

Particle-based physics simulation is a classic and important topic in computer science. It not only fa-
cilitates the exploration of underlying principles in physics, chemistry and biology, but also enables
the creation of vivid visual effects such as explosion and fluid dynamic in films and games. Dif-
ferent from traditional simulators, such as grid-based (Guo et al., 2016) and mesh-based (Bronstein
et al., 2017) methods, particle-based simulators view a system, which is an example in one domain,
as a composition of particles and imitate system changes over time by predicting the changes of
particle-wise states according to current particle states and particle interactions, of which the latter
represents the influence of action-reaction forces, such as the collisions. Consequently, they follow
the same forward process without separately considering different constraints to simulate different
domains with varying materials, requiring no domain-specific physical priors. Moreover, since in
particle-based simulators the dynamics of a system is modeled by the states of particles and their
interactions, they also have the potential to possess a strong generalization ability, where they can
estimate the dynamics of a system with varying number and configuration of particles in a more
robust manner. After learning the dynamics of fluid water in a sandbox, the same particle-based
simulator can be used to simulate a waterfall and a river.

Recent particle-based simulators (Battaglia et al., 2016; Schenck & Fox, 2018; Mrowca et al., 2018;
Li et al., 2019; Sanchez-Gonzalez et al., 2020; Ummenhofer et al., 2020) often view a system as a
graph, and adopt graph neural network (GNN) (Kipf & Welling, 2016) as the basic network structure.
In these attempts, each particle is treated as a node in the graph, with edges linking it to all its
neighboring particles, assuming interactions mainly occur between particles that are close to each
other. Subsequently, state updates of particles are achieved by combining node features with the
summation of edge features. While such a GNN-based formulation obtains satisfying simulation
results, it faces two issues that affect efficiency and generality. First, it forces each particle to interact
with all its nearby particles without providing a selective mechanism, which leads to computational
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Figure 1: (a). Samples of the datasets. FluidFall contains two drops of water. FluidShake simulates a block
of water in a moving box. RiceGrip has a deformable object squeezed by two grippers. BoxBath contains a
rigid cubic washed by water. (b). Rollouts from generalizations of RiceGrip, where we increase the number of
particles. SiT with abstract tokens, marked by +, can still maintain the object’s shape, while DPI-Net (Li et al.,
2019) fail to simulate the deformable object.

redundancy and prevents the discovery of inherent patterns of particle interaction. Second, the
GNN-based formulation uses particle-wise attributes to capture both material characteristics, such
as viscosity or plastic deformations, and domain-specific semantics, such as the shape of a rigid
material. Therefore, it may regard the latter as part of the intrinsic material semantics and fail to
generalize to domains with the same materials but different particle amounts and configurations.

In this paper, we propose a novel Transformer-based framework, referred to as Simulation Trans-
former (SiT), for particle-based physics simulation. The model inherits the powerful multi-head
self-attention mechanism in Transformer (Vaswani et al., 2017) to capture particle interactions. To
further encourage efficient modeling of complex interactions, instead of treating particle interac-
tions as attention weights obtained by dot-product , we introduce the notion of interaction tokens,
which are high-dimensional representations for interactions, to model the rich semantics of particle
interactions, such as how the particle is restored after deformations. In addition, to disentangle local
material-specific characteristics from global domain-specific semantics, SiT further learns a high-
dimensional abstract token for each type of material to capture material semantics, forcing particles
of the same material to interact with their corresponding abstract token.

The proposed SiT is more appealing than previous methods in several aspects. First, through cap-
turing particle interactions explicitly with interaction tokens and allowing dynamic inter-token at-
tention, SiT dynamically focuses on essential particle interactions and reduces the computations
for redundant and noisy ones. This is crucial for particle-based simulation, especially for domains
containing hundreds and thousands of densely placed particles, where the modeling of all particle
interactions is redundant, expensive and noisy in practice. Second, thanks to the trainable abstract
tokens that disentangle intrinsic material characteristics from domain-specific semantics, we can
reuse them to apply SiT to unseen domains of the same materials without retraining. As shown in
our experiments, after training on one domain consisting of fluid water and a rigid cubic, SiT still
yields fairly faithful simulations when the cubic is replaced with a ball or a bunny comparing with
previous work.

To show the effectiveness of SiT, we perform extensive evaluations on four standard environments
commonly used in the literature (Li et al., 2019; Sanchez-Gonzalez et al., 2020), covering domains
of different complexity and materials. The proposed method achieves superior performance across
all these environments with fewer parameters compared to existing methods. We further demonstrate
the generalization ability of SiT by adjusting the environments to create new domains and applying
SiT to these domains without retraining. In all cases, SiT obtains more realistic simulation results
than previous methods, which tend to overfit to the training domains.

2 RELATED WORK

Physics simulation by neural networks. There are many different kind of representations for
physics simulations. Grid-based methods (Lee & You, 2019; Thuerey et al., 2020; Wang et al., 2020)
adopt convolutional architectures for learning high-dimensional physical system, while mesh-based
simulations (Bronstein et al., 2017; Luo et al., 2020; Hanocka et al., 2019; Nash et al., 2020; Qiao
et al., 2020; Weng et al., 2021; Pfaff et al., 2021) typically simulate objects with continuous surfaces,
such as clothes, rigid objects, surfaces of water and so on.
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Many works (Battaglia et al., 2016; Schenck & Fox, 2018; Mrowca et al., 2018; Li et al., 2019;
Sanchez-Gonzalez et al., 2020; Ummenhofer et al., 2020) simulate physics on particle-based sys-
tems, where all objects are represented by groups of particles. Specifically, Interaction Network
(IN) (Battaglia et al., 2016) simulated interactions in object-level. Smooth Particle Networks (SP-
Nets) (Schenck & Fox, 2018) implemented fluid dynamics using position-based fluids (Macklin &
Müller, 2013). Hierarchical Relation Network (HRN) (Mrowca et al., 2018) predicted physical dy-
namics based on hierarchical graph convolution. Dynamic Particle Interaction Networks (DPI-Net)
(Li et al., 2019) combined dynamic graphs, multi-step spatial propagation, and hierarchical structure
to simulate particles. CConv (Ummenhofer et al., 2020) used spatial convolutions to simulate fluid
particles. Graph Network-based Simulators (GNS) (Sanchez-Gonzalez et al., 2020) computed dy-
namics via learned message-passing. Similar to particle-based systems, COPINGNet (Shao et al.,
2021) applies graph networks to simulate rod dynamics, where the discretized rod is the basic unit
similar to particle.

Previous work mostly adopted graph networks for simulations and required each particle to inter-
act with all its nearby particles without selective mechanism. In contrast, our SiT employs both
particle and interaction tokens and selectively focus on necessary particle interactions through atten-
tion mechanism. Experiments show that SiT surpasses existing GNN-based methods and has more
robust performances in generalizations.

Transformer. Transformer (Vaswani et al., 2017) was designed for machine translation and
achieved state-of-the-art performance in many natural langruage processing tasks (Devlin et al.,
2019; Radford et al., 2019; Brown et al., 2020). Recently, Transformer starts to show great expand-
ability and applicability in many other fields, such as computer vision (Wang et al., 2018; Carion
et al., 2020; Dosovitskiy et al., 2021; Wang et al., 2021; Liu et al., 2021), and graph representations
(Zhou et al., 2020; Zhang et al., 2020; Dwivedi & Bresson, 2020). To our knowledge, no attempt
has been made to apply Transformer on physics simulation.

Our SiT models the interactions between particles by trainable sub-network given corresponding
particle tokens. The same notion of extracting potential semantics between nodes is also applied in
Graph Transformer (Dwivedi & Bresson, 2020), which we refer as GraphTrans for short. However,
there are differences in our formulations. Specifically, GraphTrans adopts element-wise product
between node representations followed by multi-layer perceptron (MLP) to update the interaction
embeddings, which store the attention scores in each dimension and are reduced to a scalar for fur-
ther attention mechanism to update node embeddings. In contrast, our model learns semantic tokens
for interactions through sub-network instead of element-wise product. When updating the particle
tokens, which are referred as node representations in GraphTrans, both particle and interaction to-
kens will attend to each other. The interaction tokens are not weighted scores any more. We adopt
GraphTrans (Dwivedi & Bresson, 2020) in particle-based simulation and compare it with SiT in
experiments. The quantitative results show that SiT achieves better results than GraphTrans.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

For a particle-based system composed of N particles, we use X t = {xt
i}Ni=1 to denote the system

state at time step t, where xt
i denotes the state of i-th particle. Specifically, xt

i = [pt
i, q

t
i ,ai], where

pt
i, q

t
i ∈ R3 refer to position and velocity, and ai ∈ Rda represents fixed particle attributes such

as its material type. The goal of a simulator is to learn a model φ(·) from previous rollouts of a
system to causally predict a rollout trajectory in a specific time period conditioned on the initial
system state X 0. The prediction is run in a recursive manner, where the simulator will predict
the state X̂ t+1 = φ(X t) at time step t + 1 based on the state X t = {xt

i} at time step t. In
practice, we will predict the velocities of particles Q̂t+1 = {q̂t+1

i }, and obtain their positions via
p̂t+1
i = pt

i + ∆t · q̂t+1
i , where ∆t is a domain-specific constant.

3.2 SIMULATION VIA VANILLA TRANSFORMER

To accurately simulate the changes of a system over time, it is crucial to effectively model the
interactions among particles, as they indicate the energy transition of a system when constrained by
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Figure 2: Overview of our transformer-based model with abstract tokens, which are optional. SiT is composed
of an encoding layer, stacks of L blocks extended from Transformer encoder blocks, and a decoding layer.
Given the particles states at time t, the encoding layer will first encode the particles’ states and learnable
embeddings into particle tokens and abstract tokens, and initialize interaction tokens by particles’ states. In each
blocks, the sub-network first updates interaction tokens given particle tokens. Then all tokens will dynamically
attend to each other via uniform attention and update particle and abstract tokens. An MLP is attached after
attention. Finally, the decoding layer will predict the particles’ velocities at time t+1 given the particle tokens.

material characteristics and physical laws. However, it is infeasible to know a priori how should
particles interact with each other. Thus, a selective mechanism is needed to help the simulator focus
only on necessary interactions.

Since Transformer (Vaswani et al., 2017) is capable of modeling the dynamical attention scores
between tokens via the self-attention module, we can regard the attention weights as the intensity
of connectivities and the importance of interactions, where the larger the attention weight the more
important the interaction is. Thus, it is naturally a good backbone of building an efficient particle-
based simulator. To apply vanilla Transformer in particle-based simulation, we first encode the states
of particles into corresponding particle tokens V = {vt

i} by

vt
i = f encV (xt

i), (1)
where vt

i ∈ Rdh is a dh dimensional vector and f encV (·) is an encoding layer implemented as a MLP.
Subsequently, particle interactions are achieved by L blocks of self-attention modules, where in the
l-th block, particle tokens will attend to each other selectively as:

vl+1,t
i =

∑
j

ŵv
ijv

l,t
j , (2)

ŵv
ij =

exp(wv
ij)√

dh ·
∑

j exp(wv
ij)
, (3)

wv
ij = (vl,t

i )>vl,t
j . (4)

Since a system usually contains hundreds of particles and the interactions among particles occur
within the neighbors in our settings, considering all possible interactions, of which the number
quadratically increases with respect to the number of particles, is computationally redundant and in-
efficient. Therefore, we follow previous literature Li et al. (2019); Sanchez-Gonzalez et al. (2020) to
assume that interactions of distant particles can be omitted, which is realized by a window function:

g(pt
i,p

t
j) = I

(
||pt

i − pt
j ||2 < R

)
, (5)

where I(condition) is a indicator function that returns 1 if the condition is satisfied, and R defines
the extent of the window. This window function will generate a mask to retain only interactions
between neighboring particles as potential candidates in the self-attention modules.

To predict particle states in the next time step, a decoding layer is applied to the updated token of
i-th particle to obtain its velocity:

q̂t+1
i = fdecV (vL,t

i ), (6)

where fdecV (·) is implemented by another MLP.

3.3 SIMULATION TRANSFORMER (SIT)

Although the vanilla Transformer provides a flexible approach for particle-based simulation, directly
applying it leads to inferior simulation results as shown in our experiments. In particular, a vanilla
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Transformer uses attention weights, which are scalars obtained via dot-product, to represent particle
interactions. A single scalar is insufficient to reflect the rich semantics of particle interactions. For
example, in the case of fluid water, when two particles get closer and closer, their interaction will at
first act as surface tension to push them towards each other. And when they are sufficiently close, the
repulsion between them will dominate the interaction and stop them from further moving towards
each other. In addition, since the semantics of one domain is scattered in the tokens of different par-
ticles, domain-specific semantics, such as the shape of rigid cubic, are mixed with domain-agnostic
semantics, such as the stickiness attribute of materials. In such cases, the former may be misinter-
preted as the latter, leading to poor generalization ability. To overcome the limitations of vanilla
Transformer, we propose a novel Transformer-based simulator, referred to as Simulation Trans-
former (SiT), that extends vanilla Transformer with two new types of tokens, namely interactions
tokens and abstract tokens. An overview of SiT is included in Figure 2.

Interaction Tokens. To capture the rich semantics of particle interactions, instead of a scalar, SiT
assigns an interaction token to each potential particle interaction. Specifically, the token for the
interaction between particles xt

i and xt
j is initialized by

ut
ij = f encI (xt

i,x
t
j), (7)

where ut
ij ∈ Rdh is a dh dimensional vector and f encI (·) is the encoding function for interactions.

Subsequently, in each self-attention block SiT will update the interaction tokens as

ul+1,t
ij = ψ

(
vl,t
i ,v

l,t
j ,u

l,t
ij , g(pt

i,p
t
j)
)
, (8)

where ψ(·) is a learnable sub-network shared for all interaction tokens. Inspired by GNN-based
methods (Mrowca et al., 2018; Li et al., 2019; Sanchez-Gonzalez et al., 2020) , SiT adopts the
learnable sub-network to enlarge its capacity for handling complex particle interactions. In practice,
the sub-network is implemented as

ψ
(
vl,t
i ,v

l,t
j ,u

l,t
ij , g(pt

i,p
t
j)
)

= MLP([vl,t
i ,v

l,t
j ,u

l,t
ij ]) · g(pt

i,p
t
j). (9)

As is shown in Figure 6, the update of particle tokens in the self-attention module is thus achieved
by

vl+1,t
i = α

∑
j

ŵv
ijv

l,t
j + β

∑
k

ŵu
iku

l+1,t
ik , (10)

ŵv
ij =

exp(wv
j )

√
dh ·

(
α
∑

j exp(wv
j ) + β

∑
k exp(wu

ik)
) , (11)

ŵu
ik =

exp(wu
ik)

√
dh ·

(
α
∑

j exp(wv
j ) + β

∑
k exp(wu

ik)
) , (12)

wv
ij = (vl,t

i )>vl,t
j , (13)

wu
ik = (vl,t

i )>ul+1,t
ik , (14)

where α, β ∈ {0, 1} are the gate controllers, j and k are the indexes of particles within the recep-
tion window defined by Equation 5. Equation 13 computes the attention scores between particle
tokens, and Equation 14 computes the attention scores between particle and interaction tokens. Sub-
sequently, these attention scores are normalized by Equation 11 and Equation 12. They are then used
by Equation 10 to aggregate semantics of particle and interaction tokens, where the gate controllers
α, β are hyper-parameters that work as balancing coefficients. When α = 1, β = 0, Equation 10
becomes the original self-attention formula in vanilla Transformer. The multi-head attention version
of Equation 10 can be found in Appendix 6.1.2.

It is worth noting that SiT provides a more flexible way for further extensions when compared to
vanilla Transformer. Specifically, we can change the value of α and β in Equation 10 to adjust the
significance of different tokens. And changing the window function in Equation 5 allows SiT to
consider different interaction patterns. Finally, by adjusting the learnable sub-network, we can also
generalize SiT to consider more complex particle interactions such as interactions beyond a pair of
particles and interactions of interactions.
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Abstract Tokens. To improve the generalization ability of SiT and disentangle domain-specific se-
mantics from its domain-agnostic counterparts, we further apply SiT with material-specific abstract
tokens.

For Na types of materials, SiT adopts Na abstract tokens A = {ak}Na

k=1, each of which is a learn-
able vector of the same length of particle tokens. Ideally, the abstract token ak should capture the
domain-agnostic semantics of k-th material. They act as particle tokens for additional abstract par-
ticles, following the same update formula as particle tokens. Therefore with Na abstract tokens SiT
will have N + Na particle tokens in total: {a1, · · · ,aNa

,xt
1, · · · ,xt

N}, as is show in Figure 2.
Although abstract tokens share the same update formula as particle tokens, unlike particle tokens
that decide their potential interactions via the window function in Equation 5, abstract tokens are
forced to interact with all particle tokens of its corresponding material, which is achieved by setting
the reception field of abstract tokens to the particles of the same material.

Once abstract tokens capture domain-agnostic semantics, they can be reused by SiT when general-
izing to domains that have same materials but vary in particle amount and configuration.

3.4 TRAINING OBJECTIVE

To train SiT with previous rollouts, the standard mean square error (MSE) loss is applied on the
output of our SiT:

MSE(Q̂t+1, Qt+1) =
1

N

∑
i

||q̂t+1
i − qt+1

i ||22, (15)

where Q̂t+1 = {q̂t+1
i }Ni=1 is the estimated velocity , Qt+1 = {qt+1

i }Ni=1 is the ground truth, and
|| · ||2 is L2 norm.

While the MSE loss works well for cases with relatively low complexity, in practice some domains
often contain multiple types of materials with imbalance numbers of particles. In such cases, the
MSE loss will be biased to the material with more particles. Therefore, we further apply a material
weighted MSE (WMSE) loss to reduce the effect of imbalance:

WMSE(Q̂t+1, Qt+1) =
1

K

∑
k

1

Nk

∑
i

||q̂t+1
i,k − qt+1

i,k ||
2
2, (16)

whereK is the number of material types,Nk is the number of particles belonging to the k-th material
and N =

∑
kNk, Q̂t+1

k = {q̂t+1
i,k }

Nk
i=1 and Qt+1

k = {qt+1
i,k }

Nk
i=1 denote the estimated velocity and

ground truth for k-th material, and Q̂t+1 = {Q̂t+1
k }Kk=1, Q

t+1 = {Qt+1
k }Kk=1,

4 EXPERIMENTS

4.1 BASE ENVIRONMENTS

We adopt the environments commonly used in the literature (Li et al., 2019; Sanchez-Gonzalez et al.,
2020; Ummenhofer et al., 2020). Samples are displayed in Figure 1. There are four environments
in total: FluidFall is a basic simulation for two drops of water; FluidShake is more complex and
simulate the water in a randomly moving box; BoxBath simulates the water washing a rigid cubic
in fixed box; RiceGrip simulates the interactions between deformable rice and two rigid grippers.
More details of data generalization can be found in Appendix 6.1.3.

We compare SiT with 4 recent approaches: DPI-Net (Li et al., 2019), CConv (Ummenhofer et al.,
2020), GNS (Sanchez-Gonzalez et al., 2020), and GraphTrans (Dwivedi & Bresson, 2020). For fair
comparison, we adopt similar training schedules. Quantitative results and model parameters are in
Table 5. Qualitative results are in Figure 3. More details can be found in Appendix 6.1.3 and 6.2.2

SiT achieves superior performance on all environments with fewer model parameters. The effec-
tiveness of abstract tokens are more obvious for RiceGrip and BoxBath, which are more complex.
Quantitative results show that SiT can better simulate the dynamics on different environments.

Comparison with DPI-Net and GNS. DPI-Net (Li et al., 2019) and GNS (Sanchez-Gonzalez et al.,
2020) adopt message-passing graph networks for particle-based simulation. As shown in the results,
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Table 1: Quantitative results and model parameters on four environments. SiT achieves superior and rea-
sonable performance with less model parameters on all environments. When adding trainable abstract tokens,
which introduce a few more parameters, SiT, marked by +, further improves performance in complex envi-
ronments. As CConv is designed for fluid dynamics, we report the results on BoxBath for reference of the
simulation on fluid parts, which is marked by *.

Methods FluidFall FluidShake RiceGrip BoxBath

MSE Params MSE Params MSE Params MSE WMSE Params

DPI-Net 0.12±0.06 0.62M 1.43±0.52 1.02M 0.11±0.21 2.17M 1.91±0.08 1.52±0.33 1.98M
CConv 0.08±0.02 0.84M 1.34±0.45 0.84M N/A N/A 1.98 ±0.11* 3.06±0.47* 0.84M
GNS 0.05±0.02 1.59M 1.45±0.55 1.59M 0.38±0.25 1.60M 1.77±0.87 2.62±0.87 1.59M

GraphTrans 0.12±0.03 0.49M 8.77±3.97 0.96M 0.36±0.27 0.96M 3.17±0.07 2.33±0.47 0.97M

SiT (Ours) 0.05±0.02 0.40M 1.08±0.36 0.77M 0.15±0.12 0.82M 1.74±0.08 1.42±0.29 0.77M
SiT+ (Ours) 0.04±0.01 0.40M 1.08±0.39 0.77M 0.07±0.07 0.82M 1.57±0.06 1.39±0.31 0.77M

Figure 3: Qualitative results on FluidFall and BoxBath. When the two drops are getting closer in FluidFall but
not close enough to merge, previous methods are likely to mix them together due to the newly added neighbors
from different drops and incorrect interactions. But SiT can still predict faithful rollouts.

SiT achieves better performance, as the selective mechanism can eliminate the unnecessary interac-
tions, which is further demonstrated by the heat map in Appendix 6.2.1. SiT with abstract tokens
further improves the performances especially on RiceGrip and BoxBath, suggesting the effective-
ness of abstract tokens in modeling complex deformations and multi-materials interactions. For
FluidFall, though the MSEs are close to each other, SiT can better maintain the shape of drops while
DPI-Net and GNS fail because they do not have selective mechanism and equally treat the incorrect
interactions, which are introduced by the newly added neighbors from different drops when they get
closer but not close enough to merge.

Comparison with CConv. CConv (Ummenhofer et al., 2020) designs convolutional layers carefully
tailored to modeling fluid dynamics, such as an SPH(Monaghan, 1992)-like local kernel, different
sub-networks for fluid and boundary particles. Without modeling interactions, CConv propagates
information only among particles weighted by distances. On the other hand, SiT assigns high-level
tokens for interactions and achieves better results, suggesting the necessity of interaction tokens.
Notice that CConv is not suitable for rigid box, we only report result on BoxBath for reference of
simulation on fluid parts.

Comparison with GraphTrans (Dwivedi & Bresson, 2020). The GraphTrans is also a Transformer-
based method and updates the interactions using element-wise product from node representations.
We represent particles by nodes and adopt layers in GraphTrans as our backbone, which and use the
same hidden dimensions and number of blocks. Other settings are completely the same as SiT for
better comparison. As is shown in experiments, GraphTrans fails to simulate particles on all cases
with much higher errors. This is because our SiT directly models the interactions by interaction
tokens generated by sub-network, which is necessary to capture high-level semantics.

4.2 GENERALIAZTIONS

To challenge the robustness of our model on more complex settings, we add more particles for
RichGrip and FluidShake, and change the size and shape of rigid object for BoxBath. Table 5 shows
the upper and lower bound for the number of particles in training set and generalization validation
set, as well as the shapes of rigid object.

We mainly compare SiT with DPI-Net, which has fairly good and reasonable performance on all
environments. Quantitative results are summarized in Table 5, while qualitative results are depicted
in Figure 4 and Figure 1 (b). As is shown, SiT with abstract tokens can better simulate particle dy-
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Table 2: MSEs on generalizations. The lists of numbers in FluidShake and RiceGrip are the range of particles,
while the tuples in BoxBath denotes number of fluid particles, number of rigid particles, and shape of rigid
objects respectively. Training settings are marked by *. We compare SiT with abstract tokens and DPI-Net.
SiT+ achieves the best results on all cases.

Methods FluidShake [450,627]* RiceGrip [570,980]*

[720,900] [924,1080] [1104,1368] [1060,1345] [1347,1640]

DPI-Net 2.14±0.36 2.78±0.58 3.53±0.71 2.33±30.64 0.87±4.00
SiT+ (Ours) 1.54±0.37 1.90±0.63 2.30±0.69 0.14±0.10 0.17±0.15

Methods BoxBath (960,64,cubic)*

(1280,64,cubic) (960,41,bunny) (960,125,cubic) (960,136,ball) (960,120,cuboid)

DPI-Net 4.28±0.11 2.49±0.23 2.75±0.42 2.71±0.35 2.97±0.38
SiT+ (Ours) 2.64±0.11 1.72±0.08 1.74±0.14 1.67±0.13 1.92±0.32

Figure 4: Rendered rollouts on generalized FluidShake and BoxBath. More particles participate in simulations.
SiT with abstract tokens (SiT+) can still faithfully predict the wave of fluid in FluidShake and the positions of
rigid cubic in BoxBath.

namics in generalized environment. suggesting that the abstract tokens and the selective mechanism
involving interaction tokens can provide more stable and robust performance. More details about
the results and rollouts can be found in Appendix 6.2.3.

4.3 ABLATION STUDIES

We comprehensively analyze our SiT and explore the effectiveness of our model in the following
ways: (a) the necessity of interaction tokens; (b) the architectures of sub-network, which generates
interaction tokens; (c) the values for gate controllers α, β; (d) the usage of multi-head in uniform
attention; (e) the sensitiveness of SiT to radius R; (f) the effectiveness of abstract tokens. We
conduct our experiments on FluidShake for (a) to (e). We verify (f) on BoxBath and RiceGrip. The
quantitative results are in Table 3 and Table 4.

Necessity of interaction tokens. We apply vanilla Transformer encoder by configuration A, which
uses the same hidden dimension and number of blocks as SiT, and SiT by configuration B, which
only changes the output of sub-network to one dimension. As shown in Table 3, both configuration A
and B have low performance, suggesting the scalars are insufficient to describe complex interactions.

Architectures of sub-network. Configuration C adopts element-wise product between particle
tokens, which follows the GraphTrans (Dwivedi & Bresson, 2020); configuration D adopts self-
attention blocks, where q is the interaction token from previous layer, k and v are the neighbor
particle tokens. As shown in Table 3, configuration C and D have worse performance than SiT,
which suggests that the element-wise product is insufficient to model complex interactions, while
self-attention block introduces more parameters and complexities, making it harder to train.

Hyper-paramters for α, β. We set α = 1, β = 0 in configuration E, α = 1, β = 1 in configuration
F, and α = 0, β = 1 in configuration H, Consequently, both configuration E and H achieve good
results, suggesting that the participants of interaction tokens are the key to boost the performance.
In practice, we use configuration H for SiT which shows the best results.

Multi-head uniform attention. We apply multi-head mechanism in configuration G and set head
number as 8. The results show that multi-head mechanism can bring us some improvement. But it
also introduces more parameters and consumes lots of memory when computing.

Sensitiveness to R. Quantitative results are reported on FluidShake. As shown in Table 4, SiT is
more robust when varying the radius R, suggesting the effectiveness of selective mechanism and
robustness of SiT.
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Table 3: Ablation studies. We comprehensively explore the effectiveness of SiT, including the necessity of
interaction tokens, the structure of sub-network, the value of α, β, and the usage of multi-head in uniform
attention. We report MSEs(1e-2) on FluidShake, which is a complex environments involving outer forces.

Configurations Interaction modeling α β Multi-head FluidShake

A(Transformer) Scalar by dot product 1 0 X 21.03±10.54
B Scalar by MLP 0 1 300.43±70.16
C Tokens by element-wise product 0 1 17.70±6.99
D Tokens by self attention 0 1 3.17±0.81
E Tokens by MLP 1 0 14.27±42.08
F Tokens by MLP 1 1 1.19±0.44
G Tokens by MLP 0 1 X 1.04±0.36
H(SiT) Tokens by MLP 0 1 1.08±0.36

Table 4: Ablation studies on sensitiveness to radius R and abstract tokens. The left parts are MSEs(1e-2) on
FluidShake, which suggest that SiT is more robust within small range of R. Our default setting on all domains
is marked by ∗. The right parts are MSEs(1e-2) on RiceGrip and BoxBath. We replace abstract tokens with
dummy tokens, which are fixed value vectors but have same connectivities as abstract tokens.

Methods R = 0.07 R∗ = 0.08 R = 0.09 Methods RiceGrip BoxBath

DPI-Net 2.60±0.56 1.43±0.52 1.66±0.48 SiT w dummy tokens 2.12±0.46 3.98±0.09
SiT 1.38±0.36 1.08±0.36 1.37±0.35 SiT + 0.07±0.07 1.57±0.06

Effectiveness of abstract tokens. We replace the abstract tokens with dummy tokens, which are
randomly initialized vectors with fixed values but have same connectivities as abstract tokens. As
shown in 4, SiT with dummy tokens fails on both domains, suggesting the abstract tokens are able
to learn the materials semantics and boost SiT’s performances.

4.4 FEW SHOTS LEARNING

As shown in Figure 5, we conduct few shots learning experiments on FluidShake using SiT without
abstract tokens. Even when trained on 60% of data, SiT achieves similar MSEs comparing with
DPI-Net trained on 100% of data. When trained with further less data, SiT learns not well enough.
As the number of particles differs in each rollout, SiT does not have enough training on all possible
cases. On the other hand, the weights are not shared in SiT and would not learn enough on less data
comparing with the shared-weight blocks in DPI-Net. SiT is more robust with no less than 60% of
the whole training data, but is sensitive to extremely less data.

Figure 5: Few shots learning on FluidShake. Figure (a) shows the rollouts. Figure (b) draws the MSE curves
as the number of training examples increases. Our model are robust even with only 60% of training examples.

5 CONCLUSION

In this paper, we propose Simulation Transformer (SiT) and introduce interaction tokens and abstract
tokens to simulate domains of different complexity and materials, including hundreds and thousands
of particles. Our experimental results show the necessity and effectiveness of interaction and abstract
tokens as well as selective mechanism in attention for particle-based simulation. Generalization
results further suggest the robustness of SiT. SiT is also flexible for extensions and applications,
such as more complex and efficient architectures for sub-network, changing the particle dynamics
by attending to alternative abstract tokens with different materials semantics. Finally, SiT makes a
successful attempt to apply Transformer into physics simulation and achieve superior performances
over existing methods.
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6 APPENDIX

6.1 MODEL DETAILS

6.1.1 UNIFORM ATTENTION

Figure 6: Overview of our uniform attention. The abstract tokens are optional. The tokens will
attend to each other and update accordingly.

Figure 6 illustrates how our uniform attention works. Our uniform attention extend self-attention
(Vaswani et al., 2017) by additional tokens. The queries are the abstract tokens, which are optional,
and particle tokens, while the keys and values are all three types of tokens. Each token will attend to
tokens within its reception fields defined by the window function 5. For the abstract tokens, they are
forced to attend only to the particles belonging to the same material. The output of uniform attention
is the updated tokens except interaction tokens.

6.1.2 MULTI-HEAD UNIFORM ATTENTION

The multi-head version of uniform attention is formulated by

vl,t
i = W l [SA1,SA2, · · · ,SAM ]
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where m ∈ 1, 2, · · · ,M is the index of head, W l ∈ Rdh×dh is the output weight for the concate-
nation of M heads; Qm,l,Km,l, V m,; are the projection weights of query, key, value for head m at
block l. The rest symbols are the same with those in uniform attention.

6.1.3 IMPLEMENTATION DETAILS

Inputs and outputs details. For FluidFall, FluidShake, and BoxBath, we only use particles’ states at
time t as inputs and output the velocities at time t+ 1. For RiceGrip, we concatenate particles states
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from t−2 to t as inputs and output 6-dim vector for the velocity of the current observed position and
the resting position, which is the same setting as DPI-Net for better comparison. For BoxBath, we
output 7-dim vectors, where 3 dimensions for the predicted velocities, and 4 dimensions for rotation
constrains. The rotation constraints are applied only on rigid particles which predict the rotation
velocities. We use particles’ states at time t as inputs and output the velocities at time t + 1 except
RiceGrip, where we concatenate particles states from t− 2 to t as inputs for better comparison with
DPI-Net (Li et al., 2019). All states of particles, such as the positions, velocities, and accelerations,
are first normalized by mean and standard deviations calculated on corresponding training set.

SiT details. We set R = 0.08 across all environments. All hidden dimensions in SiT are 128
for default. The MLP after uniform attention has two layers with dimensions 512 and 128. We
use 2 blocks shown in Figure 2 for FluidFall and 4 blocks for the other three environments. We set
α = 0, β = 1 in our model for default, which show the best results in ablation studies. The learnable
embeddings for abstract tokens have the same dimensions as inputs.

Training. We train four models independently on these four environments. For common settings,
we use Adam optimizer with initial learning rate 0.0008 and plateau scheduler with patience 3 and
decreasing factor 0.8. We choose batch size 16 for all environments and train the models for 5
epochs on FluidShake, 5 epochs for BoxBath, 13 epochs for FluidFall, and 20 epochs for RiceGrip.
No augmentation is involved, such as adding noises to particles states during training. We adopt
WMSE loss on BoxBath and MSE loss on the rest environments for training.

Evaluation. We evaluate the positions between predictions and ground truths by MSE as is shown
in equation 15. For BoxBath, we also report the WMSE results by equation 16 to better show the
performance of simulating different materials.

Baseline details. For fair comparison, the following settings are the same with SiT: inputs for
models, number of training epochs on different environments, learning rate schedules, and training
loss on velocities. On BoxBath, all baselines adopt the rigid constraints except CConv, which is
designed specifically for fluid dynamics and we use it to mainly compare the fluid simulations. The
model-related hyper-parameters for baselines are the same as the original papers, such as the number
of message passing is 10 for GNS. Other hyper-parameters for baselines are first chosen the same as
their original papers, and then fine-tuned within a small range of changes. For example, in terms of
the initial learning rate, 0.0001 works better on GNS while others adopt 0.0008.

6.2 EXPERIMENTS

6.2.1 ADDTIONAL ABLATION STUDIES

We also visualize the attention scores in each block for a specific particle on BoxBath in Figure
7. The red dot in the center is the given particle. Other dots are the neighors. The red particle
will attend selectively to its neighbors rather than treating them equally. Different layers focus on
different aspect of semantics. Specifically, the particle will focus mainly on closer neightbors in the
first layer as is shown in Figure 7 (b).

6.2.2 BASE ENVIRONMENTS

Dataset details. We use the same setting for our datasets as mentioned in previous work (Li et al.,
2019). FluidFall contains two fluid drops with different sizes. The size for each drop are randomly
generated with one drop larger than the other. Position and viscosity for drops are randomly ini-
tialized. This environment contains 189 particles with 121 frames for each rollout. There are 2700
rollouts in training set and 300 rollouts in validation set. FluidShake simulates the water in a mov-
ing box. The speed of the box is randomly generated at each timestamp. In addition, the size of the
box and the number of particles are various for different rollouts. In basic training and validation
sets, the number of particles changes from 450 to 627. This environment has 301 frames for each
rollout. There are 1800 rollouts in training set and 200 rollouts in validation set. RiceGrip contains
two grippers and a sticky rice. The grippers’ positions and orientation are randomly initialized. The
number of particles for rice changes from 570 to 980 with 41 frames for each rollout in training and
validation sets. There are 4500 rollouts in training set and 500 rollouts in validation set. BoxBath
simulates a rigid cubic washed by water in a fixed container. The initial position of fluid block and
rigid cubic are randomly initialized. This environment contains 960 fluid particles and 64 rigid par-
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(a) Sample in BoxBath at time t = 42.

(b) Attention scores at
block 1.

(c) Attention scores at
block 2.

(d) Attention scores at
block 3.

(e) Attention scores at
block 4.

Figure 7: (a) is a sample frame on BoxBath. We select one particle in the center of red circle to show
its attention scores on interactions from neighbors. (b)(c)(d)(e) show the heat maps from uniform
attention in each block of SiT. The attention scores on interactions are assigned to the corresponding
neighbors, which are shown by different colors. The darker the color, the lower attention score on
particles.

ticles with 151 frames for each rollout. There are 2700 rollouts in training set and 300 rollouts in
validation set.

Results. We display some rollouts for all experiments in this section. The results on RiceGrip for
CConv are not available because CConv was designed specifically for fluid dynamics. The results
on BoxBath for CConv are only used as reference of the simulation on fluid parts. And we compare
CConv with SiT mainly on the fluid simulations.
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Figure 8: Rollouts on FluidFall. Here we display the settings where the larger drop is above the smaller drop.
DPI-Net and GNS are likely to mix the drops together, while CConv alters the shape of the upper drop before
falling on the floor. GraphTrans has worse performance of maintaining the shape of water drops. SiT changes a
little for the shape of the upper drop. When using abstract tokens, which is marked by +, SiT can achieve better
results which are closer to the ground truth.
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Figure 9: Rollouts on FluidShake. DPI-Net still has some artifacts in predicting the wave of water, such as the
rollout at t = 63. CConv, which is designed specifically for fluid dynamics, rollouts fairly good results, such as
the surface of water, in this domain. GNS has artifacts when predicting the waves (t = 63) and predicts overly
smooth surfaces of fluid (t = 90). GraphTrans fails in this domain, suggesting the insufficiency of capturing
the complex interactions from outer forces. SiT can also achieve compatible results with less parameters.
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Figure 10: Rollouts on RiceGrip. For the surface of the rice, we can see at t = 38 that DPI-Net seems to put
more pressure to the rice; GNS and GraphTrans has difficulties in maintaining the smooth surfaces of the rice.
SiT is capable of predicting faithful rollouts , while SiT with abstract tokens can better simulate the deformable
object.
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Figure 11: Rollouts on BoxBath. As CConv is designed for fluid dynamics, it treats all particles as fluid
and fails in this domain. GNS is able to handle the rotations of rigid box, but has difficulties in modeling the
motions of rigid box when pushed by the waves of fluid, suggesting the insufficient abilities of dealing with
interactions between different materials. SiT with abstract tokens achieves more faithful results in terms of the
rotation of rigid cubics, the interactions between fluid particles.
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Table 5: MSE and WMSE results from all models on generalizations. The lists of numbers in
FluidShake and RiceGrip are the range of particles, while the tuples in BoxBath denotes number of
fluid particles, number of rigid particles, and shape of rigid objects respectively. Training settings
are marked by *.

Methods FluidShake [450,627]* RiceGrip [570,980]*

[720,900] [924,1080] [1104,1368] [1060,1345] [1347,1640]

DPI-Net 2.14±0.36 2.78±0.58 3.53±0.71 2.33±30.64 0.87±4.00
CConv 1.86±0.42 2.23±0.72 2.50±0.77 N/A N/A
GNS 2.06±0.75 2.82±1.93 2.98±1.22 0.56±0.31 0.57±0.29
GraphTrans 10.24±3.58 12.27±4.80 12.72±3.75 0.63±0.28 0.68±0.37
SiT+ (Ours) 1.54±0.37 1.90±0.63 2.30±0.69 0.14±0.10 0.17±0.15

Methods BoxBath (960,64,cubic)*

(1280,64,cubic) (960,41,bunny) (960,125,cubic) (960,136,ball) (960,120,cuboid)

DPI-Net 4.28±0.11 2.49±0.23 2.75±0.42 2.71±0.35 2.97±0.38
CConv 4.30±1.73 3.03±0.18 3.21±0.82 3.80±0.22 3.05±1.55
GNS 2.87±0.19 2.22±0.28 1.97±0.28 2.08±0.22 1.81±0.18
GraphTrans 3.87±0.08 3.55±0.07 3.92±0.15 3.86±0.17 3.56±0.13
SiT+ (Ours) 2.64±0.11 1.72±0.08 1.74±0.14 1.67±0.13 1.92±0.32

Methods BoxBath WMSE (960,64,cubic)*

(1280,64,cubic) (960,41,bunny) (960,125,cubic) (960,136,ball) (960,120,cuboid)

DPI-Net 3.14±0.39 3.65±1.72 3.42±0.90 3.13±0.68 3.96±1.39
CConv 4.30±1.09 3.59±0.51 4.09±0.62 4.43±0.35 3.43±0.90
GNS 4.55±1.53 8.09±3.32 3.40±1.06 3.60±0.74 2.18±0.66
GraphTrans 3.37±0.75 3.59±0.76 5.31±0.73 5.38±0.69 3.81±0.75
SiT+ (Ours) 1.82±0.21 1.81±0.64 1.94±0.51 1.76±0.35 2.86±1.41

Table 6: Details of generalization settings.

Environments Number of training particles Number of generalization particles

FluidShake Large [450, 720] [720, 1500]
RiceGrip Large [558, 1060] [1060, 1798]
BoxBath Large Fluid Fluid: 960. Rigid: 64 Fluid: 1280. Rigid 64
BoxBath Bunny Fluid: 960. Rigid: 64 Fluid: 960. Rigid: 41
BoxBath Large Cubic Fluid: 960. Rigid: 64 Fluid: 960. Rigid: 125
BoxBath Large Ball Fluid: 960. Rigid: 64 Fluid: 960. Rigid: 136
BoxBath Large Cuboid Fluid: 960. Rigid: 64 Fluid: 960. Rigid: 120

6.2.3 GENERALIZATION DETAILS

We report WMSE results on BoxBath and other models’ generalization performance for references
in Table 5. SiT with abstract tokens achieves reasonable and superior performance.

We release the details of generalization settings in Table 6. For the generalizations of FluidShake
and RiceGrip, we display the range of particle numbers. For the generalizations of BoxBath, we
change the shape of rigid box into bunny, ball, cuboid, and larger cubic. Specifically, the generalized
RiceGrip contains particles from 1060 to 1640, while the training set contains particles from 570
to 980; the generalized FluidShake contains particles from 720 to 1368, while the training set has
450 to 627 particles; For BoxBath, the training set has 960 fluid particles and 64 rigid particles. We
first separately increase the fluid particles and rigid particles to 1280 and 125 respectively. Then,
we change the shape of rigid object into bunny, ball, and cuboid with particles 41, 136, and 120
respectively. The followings are the rollouts on all environments.
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Figure 12: Rollouts on generalized FluidShake. DPI-Net achieves fairly good performance, while it still
has difficulties to correctly predict the waves, such as the rollout at t = 123. CConv and GNS have similar
problems, such as the rollout at t = 215 and t = 123 respectively. GraphTrans still fails in this environment.
Our SiT+ can still achieve better performance.
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Figure 13: Rollouts on generalized RiceGrip. DPI-Net fails and cannot maintain the shape of the deformable
object, as is shown in the prediction at t = 38. GNS tends to rotate the corner of the rice, as is shown at
t = 38, the left lower corner is twisted when the grippers do not have contact with the rice’s surface. Our SiT+
has better rollouts than GraphTrans, suggesting the effectiveness and robustness of our method.
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Figure 14: Rollouts on generalized BoxBath, where we add more fluid particles. DPI-Net misses the cubic
at the end. While GNS is able to simulate the rotations of rigid box, it fails to make further predictions of the
rigid after it falls into the water. While SiT+ predicts wrong motions of several fluid particles at the beginning,
it still achieve better results compared with other models.
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Figure 15: Rollouts on generalized BoxBath, where we add more rigid particles. DPI-Net starts to predict
wrong rollouts for fluid particles at the beginning, and worse results for the rigid cubic. GNS seems overfit to
the rotations of rigid box. SiT+ achieves better results comparing with other models.
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Figure 16: Rollouts on generalized BoxBath, where we change the shape from cubic to bunny. The shape of
bunny is more challenging, as the ears of the bunny do not have direct connections to the body. While DPI-Net
fails in this scene, the bunny is submerged in the rollouts of GNS. SiT+ predicts rollouts as correctly as possible.
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Figure 17: Rollouts on generalized BoxBath, where we use a rigid ball. For simple comparison, the positions
of the rigid ball suggest models’ abilities of simulation. SiT+ predicts more faithful positions of the ball and
overall shapes of the fluid.
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Figure 18: Rollouts on generalized BoxBath, where we use a rigid cubiod. It seems that the cuboid is harder
to move. DPI-Net fails in this scenes by predicting wrong rotations for the cuboid, GNS overfits to the rotations
of rigid box. SiT+ still achieves better results.
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