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ABSTRACT

Clinical prediction models are often personalized to target heterogeneous sub-
groups by using demographic attributes such as race and gender to train the model.
Traditional personalization approaches involve using demographic attributes in in-
put features or training multiple sub-models for different population subgroups
(decoupling model). However, these methods often harm the performance at the
subgroup level compared to non-personalized models. This paper presents a novel
personalization method to improve model performance at the sub-group level. Our
method involves a two-step process: first, we train a model to predict group at-
tributes, and then we use this model to learn data-dependent biases to modulate
a second model for diagnosis prediction. Our results demonstrate that this joint
architecture achieves consistent performance gains across all sub-groups in the
Heart dataset. Furthermore, in the mortality dataset, it improves performance in
two of the four sub-groups. A comparison of our method with the traditional de-
coupled personalization method demonstrated a greater performance gain in the
sub-groups with less harm. This approach offers a more effective and scalable so-
lution for personalized models, which could have a positive impact in healthcare
and other areas that require predictive models that take sub-group information into
account.

1 INTRODUCTION

Machine learning (ML) has revolutionized healthcare, particularly in personalized medicine. Per-
sonalized medicine aims to tailor medical treatments to individual characteristics, such as genetic
profiles, environmental factors, and lifestyle, thereby improving patient outcomes and reducing in-
efficiencies in care delivery (Johnson et al.l 2021)). However, achieving efficient personalization re-
mains a challenge due to issues like model bias, sub-group disparities, and the computational costs
associated with training multiple models for diverse populations (Kostick-Quenet, 2025} |Ricciardi
& Boccial 2017).

Recent advances in ML have shown promise in addressing these challenges. For instance, predic-
tive healthcare models now leverage multi-modal data to enhance disease diagnosis, risk prediction,
and treatment personalization (Peng et al.l 2021). Despite these advancements, significant obsta-
cles persist. These include ensuring model generalizability across diverse populations, mitigating
biases that exacerbate health disparities, and addressing ethical concerns such as privacy and data
ownership (Brothers & Rothstein, [2015). Moreover, traditional ML approaches often fail to de-
liver consistent performance across all sub-groups within a population, highlighting the need for
innovative solutions that balance efficiency with equity (Kostick-Quenet, [2025; |Peng et al., [2021)).

This paper introduces a novel approach to personalized ML that leverages bias modulation to im-
prove sub-group level performance. By training a joint model capable of adapting to sub-group
specific characteristics without requiring multiple sub-models, this method addresses computational
efficiency, scalability and equity concerns. The proposed framework is evaluated on the Heart (De-
trano et al.,|1989) and the Mortality (Johnson et al.,[2016)) datasets, demonstrating consistent perfor-
mance gains across most sub-groups.

This research contributes to the growing body of work aimed at making personalized healthcare
more accessible, equitable, and effective (Johnson et al.,|[2021}; |Peng et al., [2021}).
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2 BACKGROUND AND RELATED WORKS

Personalization involves various techniques that utilize personal data. Here, we use the term to
refer specifically to methods that target groups rather than individuals. Group attributes in modern
personalization approaches help enhance population-level performance by, for instance, integrating
higher-order interaction effects (Bien et al.|(2013)) or recursively partitioning data (EImachtoub et al.
(2021)). However, research rarely quantifies the benefits of personalization, and when it does, the
focus is usually on population-level improvements rather than the specific groups providing personal
data

Traditional approaches to personalized machine learning often employ decoupling personalization,
training separate models for predefined sub-groups (Zhu et al., 2024; (Cheng et al., [2024). While
effective in specialized domains like genomic medicine, this strategy becomes computationally
prohibitive as sub-group granularity increases. A recent work in federated learning demonstrates
that shared parameter architectures can maintain sub-group specificity while reducing resource
costs (Zhu et al.|, 2024} Jang et al [2024)), though without formal guarantees against performance
degradation.

Some personalization methods achieve subgroup-level performance equalization by imposing con-
straints on well-performing subgroups (Papadaki et al.l 2021} |Nakakita et al., |2024). However, this
approach highlights the inherent tension between personalization and fairness.

Unlike recursive partitioning approaches that risk over-specialization, we adapt the emerging
paradigm of bias-as-information - where sensitive attributes modulate predictions through learned
embeddings rather than hard constraints (Shi & Al Kontar, [2024). This aligns with neurological
risk prediction models that use bias-aware architectures to preserve sub-group performance, while
avoiding the computational overhead of ensemble methods (Lee et al.). Our two-stage architecture
extends these principles through conditional prediction layers (Zhu et al., [2024; |Song et al., |2023)),
addressing key gaps in resource-efficient personalization with performance guarantees.

3 OUR PROPOSED METHOD

Existing personalization methods have several shortcomings, namely, computational inefficiency
with increasing sub-group granularity, lack of performance guarantees in federated learning, and the
risk of reduced accuracy in case of inappropriate personalization (Suriyakumar et al., 2023)); detailed
discussion can be found in Section[2] To address these limitations, we propose a novel two-stage
learning framework in which, in the first step, we train a group attribute predictor to obtain a bias
embedding vector. In the second step, we utilize the bias embedding vector to modulate the training
of the label predictor. Figure [3|shows an overview of the proposed architecture.

3.1 THE GROUP ATTRIBUTE PREDICTOR

In the first stage, we train an embedding representation of the group attributes using the input fea-
tures. The embedding model uses a multi-layer perception architecture comprising linear layers with
ReLU activation, batch normalization, and dropout for regularization. This the attribute predictor
extracts K embedding vectors, capturing information about sub-group biases. These embeddings
are then transformed through a linear layer followed by a ReLU activation, producing K bias vectors
that represent group-specific information. The sensitive loss is optimized using a cross-entropy loss
on sensitive attributes, encouraging the model to learn discriminative sub-group embeddings.

3.2 LABEL PREDICTOR WITH CONDITIONAL BIAS

The second stage leverages the bias vectors to enhance prediction performance. The target model
follows a standard deep learning architecture with linear layers, batch normalization, ReLU acti-
vation, and dropout layers for robustness. The learned K bias vectors are added to the last K
layers of the target model, enabling it to adjust predictions based on group-specific variations. This
modulation ensures that the model can correct for biases present in different sub-groups while still
maintaining high overall predictive performance. The target loss is optimized using a cross-entropy
loss classifier on the labels, with bias adjustments integrated into the final layers.
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Figure 1: Overview of the architecture of the proposed model.

4 EXPERIMENTS

4.1 SETUP

Datasets We used the Heart dataset (Detrano et al.| [1989)) and the Mortality dataset from MIMIC
III (et al., 2016) for evaluation. Details on how we preprocessed the data can be found in Ap-
pendix[A] On both datasets, we use gender ({male, female}) and age ({old, young}) as group
attributes (Suriyakumar et al. |2023) and subgroups are defined based on their intersection, i.e.,
{male, female} x {old, young}.

Models We compare our personalized model (Cond. bias) to the Decoupled Personalization (DCP)
model, which trains a different model for each sub-group (Suriyakumar et al., 2023 |Ustun et al.).
We measure the population level performance gain against the generic model trained without group
attributes. A full description of model architectures and hyperparameters can be found in Ap-
pendix [B] We evaluate performance in term accuracy and measure personalization gains in terms
subgroup level accuracy improvement between the generic and the personalized model.

4.2 RESULTS AND DISCUSSION
Tables [4.2] and [4.2] summarize the main experimental results over a five-fold cross-validation on

the Heart the Mortality datasets, respectively. These results demonstrate the effectiveness of the
proposed approach in reducing harm and improving performance across subgroups.

Table 1: Performance metrics for subgroup on heart test dataset

G Generic DCP Cond. bias (OURS)
roups nb samples

Accuracy Accuracy Gain Accuracy Gain
old, female 8 44.00+36.47 52.50+14.60 = 8.50+19.79  64.50116.81 | 20.50+34.39
old,male 11 54.55+10.3¢  69.10+1480 = 14.551446  61.39+21.46 & 6.84417.48
young, female 12 68~19i16.18 76.70i9.70 8~51i6.48 84~31i11.08 16.12i10‘00
young,male 30 69.9611051 954.701790 —15.261337 76.031453 6.07113.26
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Table 2: Performance metrics for subgroup of mortality test dataset

G Generic DCP Cond. bias (OURS)
roups nb samples

Accuracy Accuracy Gain Accuracy Gain
old, female 898 87.551043 85.601050  —1.9540.07 87.264064 —0.2941 06
old,male 1016 88.54i0441 83.70i2.10 _4~84j:1469 88‘37i0.71 _0~18i1.05
young, female 432 92.87i0_72 92.3010_30 —0.5910_42 92.87i0_55 O-OO:EO.SS
young, male 616 93.38:{:()‘38 92.90;&0,50 *0.48:(:0‘38 93.413:0‘73 0.03:(:1‘23

In the Heart dataset (Table .2), our personalization method consistently outperformed the generic
and decoupled (DCP) model across all sub-groups, providing a positive accuracy gain for all sub-
groups. More specifically, our method provides an accuracy gain of 20.5% for the worst-performing
subgroup (01d, female) from a previous accuracy of less than 44% on the generic model. We also
observe that the best-performing subgroup (young, male) in the generic model experiences an ac-
curacy gain of 6.07% from a previous accuracy of 69.96%. On the other hand, the DCP model, while
improving the worst-performing subgroup by 8.5%, harms the best-performing subgroup with a de-
crease in accuracy of —15.26%. This shows that the decoupled model can harm certain subgroups,
thereby hindering the expected benefits of model personalization for all subgroups (Ustun et al.).
These results demonstrate a key advantage of our approach: by learning a unified model that incor-
porates bias, we mitigate the risk of such harms, ensuring that improvements are achieved across all
subgroups.

The results on the mortality dataset are, however, more nuanced in terms of performance gains
(Table[d.2). Our method delivered accuracy gain for two of the four sub-groups: (young, female)
and (young, male), while the DCP model showed accuracy decrease in all sub-groups.

On this dataset, most subgroups have sufficiently good performance, with the worst-performing sub-
group (old, female) having 87.55% accuracy. The results align with recent studies suggesting
personalization can not always benefit all subgroups (Suriyakumar et al., 2023), yet, our method
minimizes the harm compared to the DCP model. More specifically, in the worst case, the DCP
model incurs a —4.84% performance drop on (01d, male) subgroup while our method only re-
duces it by —0.18%. To avoid harm, the generic model should be used to make predictions for the
subgroups that do not benefit from personalization.

In sum, these results suggest that while our conditional biasing may not always lead to positive
subgroup-level accuracy gain in all tasks, it offers a more balanced approach by minimizing the
negative impact compared to traditional methods like DCP. In challenging tasks, our approach can
ensure that the performance degradation is much smaller, making it a more effective solution for sub-
group-level personalization. This reduced harm in certain sub-groups underscores the robustness
of our method, especially in real-world applications where diverse populations are often involved.
Investigating the failure cases of personalization remains an open and under-explored research di-
rection.

5 CONCLUSION

In this paper, we propose a novel approach for personalized machine learning models that enhances
model performance at the sub-group level by leveraging a conditional bias model, offering improve-
ments over traditional methods like Decoupled Personalization (DCP). In the Heart dataset, our pro-
posal provides consistent improvements across all sub-groups, while the DCP method harms certain
demographic groups. In the Mortality dataset, our method outperforms DCP by improving two sub-
groups and minimizing harm in the two other groups. These findings suggest that our approach
offers a promising and more reliable alternative for personalized machine learning, with broad im-
plications for fields such as personalized medicine, where the ability to account for group-specific
biases is critical for model success.
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A DATA PREPROCESSING

We evaluate our model on the Heart dataset (Detrano et al., |1989) and the Mortality dataset from
MIMIC Il et al.[(2016). The heart dataset is hosted on the UCI ML Repository under an Open Data
license and consists of 303 samples with 13 features. We preprocess it by removing missing values
and applying ordinal encoding to categorical variables(cp, thal, ca, slope, and restecq). The
target variable (num) is converted into a binary classification task, where values greater than zero
are mapped to 1 (presence of heart disease) and O otherwise. We define age groups as young (<60
years) and old (>= 60 years), while sex is encoded as male/female. Each sample is assigned a
sub-group label combining age and sex (e.g., young-male). We split this dataset into a training:
test ratio of 80:20.

The mortality dataset is made of a cohort of patients for in-hospital mortality. We selected from
MIMIC-III (Johnson et al., 2016)) patients with first ICU stay longer than 48 hours and predicted
in-hospital mortality for this visit. We included all the 600 features of the database. The training
set consists of 14 681 samples and the test set of 3236 samples. The age groups, sex groups, and
sub-group labels are defined similarly to the heart dataset.

The heart dataset is publicly accessible, but the mortality dataset is private and requires approved
accreditation to be downloaded from the MIMIC 3 database.

B EXPERIMENTAL DETAILS

Our two-step model. Our model was trained on the training dataset using five-fold cross-
validation across five seeds (1 to 5) to ensure result stability using the following hyperparameters:

* The Group Attribute Predictor learns bias-related embeddings using a 50-layer architec-
ture, where each hidden layer has 64 neurons with ReLLU activation and batch normaliza-
tion. Regularization includes dropout (0.2) and early stopping, with optimization via Adam
(learning rate = 0.001), producing a single embedding.

* The Conditional Bias Label Predictor integrates these embeddings for label prediction
using a 6-layer network, with hidden layers structured identically (64 neurons, ReL U, batch
normalization). It applies the same regularization (dropout 0.2, early stopping) and opti-
mizer (Adam, learning rate = 0.001), generating one biased vector using the single embed-
ding as the step one.

The evaluation was conducted on the various sub-groups of the test dataset, and the accuracy of each
sub-group was reported.

Generic model. To evaluate the gain in personalization of both our model and the baseline model
in the various sub-groups, we considered a generic model with the same configuration and hyperpa-
rameters as the Conditional Bias Label Predictor but without the addition of a biased vector. This
model was trained on the training dataset within a five-fold cross-validation framework with seeds(
1 to 5) and evaluated on the sub-groups of the test dataset.

Decoupling (DCP) Model. We implemented the decoupling (DPC) method as a baseline for com-
parison. DCP implements personalization by training a separate model for each sub-group. More
specifically, we train each model using only the data of the corresponding subgroup (Ustun et al.;
Suriyakumar et al., [2023). At test time, for a given data point from subgroup a g, the model cor-
responding model is used for predictions. To ensure a fair comparison, we used the same neural
network architecture and hyperparameters of the label predictor in our model.
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