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ABSTRACT

Personalized machine learning models have gained significant importance in var-
ious domains, including healthcare. However, designing efficient personalized
models remains a challenge. Traditional approaches often involve training multi-
ple sub-models for different population sub-groups, which can be costly and does
not always guarantee improved performance across all sub-groups. This paper
presents a novel approach to improving model performance at the sub-group level
by leveraging bias and training a joint model. Our method involves a two-step
process: first, we train a model to predict group attributes, and then we use this
model to learn data-dependent biases to modulate a second model for diagnosis
prediction. Our results demonstrate that this joint architecture achieves consis-
tent performance gains across all sub-groups in the Heart dataset. Furthermore, in
the mortality dataset, it improves performance in two of the four sub-groups. A
comparison of our method with the traditional decoupled personalization method
demonstrated a greater performance gain in the sub-groups with less harm. This
approach offers a more effective and scalable solution for personalization of mod-
els, which could have positive impact in healthcare and other areas that require
predictive models which take sub-group information into account.

1 INTRODUCTION

Machine learning (ML) has revolutionized healthcare, particularly in the domain of personalized
medicine. Personalized medicine aims to tailor medical treatments to individual characteristics,
such as genetic profiles, environmental factors, and lifestyle, thereby improving patient outcomes
and reducing inefficiencies in care delivery (Johnson et al., 2021). However, achieving efficient per-
sonalization remains a challenge due to issues like model bias, sub-group disparities, and the com-
putational costs associated with training multiple models for diverse populations (Kostick-Quenet,
2025; Ricciardi & Boccia, 2017).

Recent advances in ML have shown promise in addressing these challenges. For instance, predic-
tive healthcare models now leverage multi-modal data to enhance disease diagnosis, risk prediction,
and treatment personalization (Peng et al., 2021). Despite these advancements, significant obsta-
cles persist. These include ensuring model generalizability across diverse populations, mitigating
biases that exacerbate health disparities, and addressing ethical concerns such as privacy and data
ownership (Brothers & Rothstein, 2015). Moreover, traditional ML approaches often fail to de-
liver consistent performance across all sub-groups within a population, highlighting the need for
innovative solutions that balance efficiency with equity (Kostick-Quenet, 2025; Peng et al., 2021).

This paper introduces a novel approach to personalized ML that leverages bias modulation to im-
prove sub-group level performance. By training a joint model capable of adapting to sub-group
specific characteristics without requiring multiple sub-models, this method addresses computational
efficiency, scalability and equity concerns. The proposed framework is evaluated on the Heart (De-
trano et al., 1989) and the Mortality (Johnson et al., 2016) datasets, demonstrating consistent perfor-
mance gains across most sub-groups.

This research contributes to the growing body of work aimed at making personalized healthcare
more accessible, equitable, and effective (Johnson et al., 2021; Peng et al., 2021).
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2 OUR PROPOSED METHOD

Existing personalization methods have several shortcomings, namely, computational inefficiency
with increasing sub-group granularity, lack of performance guarantees in federated learning, and
the risk of reduced accuracy in case of inappropriate personalization; detailed discussion can be
found in Appendix A. To address these limitations, we propose a novel neural network architecture
designed to enhance sub-group level performance by explicitly modeling and leveraging bias. Our
approach consists of a two-stage learning framework that incorporates both sensitive loss and target
loss, ensuring improved performance across different sub-groups.

2.1 A SENSITIVE ATTRIBUTE PREDICTOR

In the first stage, the model learns an embedding representation of sensitive variables. Given the
input features, a neural network predicts the sensitive attributes using a multi-layer architecture
comprising: linear layers with ReLU activation, batch normalization, dropout for regularization.

This component extracts K embedding vectors, capturing information about sub-group biases.
These embeddings are then transformed through a linear layer followed by a ReLU activation, pro-
ducing K bias vectors that represent sub-group specific information.

The sensitive loss is optimized using a softmax classifier on sensitive attributes, encouraging the
model to learn discriminative sub-group embeddings.

2.2 A LABEL PREDICTOR WITH CONDITIONAL BIAS

The second stage leverages the bias vectors to enhance prediction performance. The target model
follows a standard deep learning architecture with: linear layers, batch normalization, ReLU activa-
tion, dropout layers for robustness.

The learned K bias vectors are added to the last K layers of the target model, enabling it to ad-
just predictions based on sub-group specific variations. This modulation ensures that the model
can correct for biases present in different sub-groups while still maintaining high overall predictive
performance.

The target loss is optimized using a softmax classifier on the labels, with bias adjustments integrated
into the final layers.

3 EXPERIMENTS

In this section, we discuss the performance of our proposed bias-aware neural network on two
datasets: the Heart dataset and the MIMIC dataset. We compare our approach against a baseline
model and analyze its impact on sub-group performance.

3.1 SETUP

Datasets We used the Heart dataset (Detrano et al., 1989) and the Mortality dataset from MIMIC
III et al. (2016) for evaluation. Details on how we preprocessed the data can be found in Appendix
B.

Models In this work, three models are implemented: our two-stage model, a generic model and
a basic model. A full description of their architectures and hyperparameters can be found in the
Appendix C.

3.2 RESULTS AND DISCUSSION

We present here the summary results over the five cross-validation sets. Our results demonstrate the
effectiveness of this approach across different datasets, namely the Heart dataset and the Mortality
dataset, each revealing key insights into the benefits of using conditional bias to modulate model
behavior.
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In the Heart dataset, our method of conditional biasing consistently outperformed the generic model
across all subgroups, showcasing positive performance gains in every subgroup table3.2. Specif-
ically, the conditional bias model achieved significant improvements in the old female, old male,
and young female subgroups, with gains of 20.5%, 6.84%, and 16.12%, respectively. Even in the
young male subgroup, where the generic model had already performed well, our approach improved
accuracy by 6.07%. These results highlight the robustness of our method, as it successfully adapts to
various subgroup characteristics, ensuring consistent benefits across different demographic groups.
In contrast, the DCP approach, while showing improvements in some subgroups, also introduced
harm in the young male subgroup, where it experienced a substantial negative gain of -15.26%. This
indicates that the DCP method, which trains submodels for each subgroup, can lead to performance
degradation in certain populations. This highlights a key advantage of our approach: by learning a
unified model that incorporates bias, we mitigate the risk of such harms, ensuring that improvements
are achieved across the board.

The Mortality dataset results, as shown in table 3.2, further reinforce the advantages of our condi-
tional biasing approach. Our method delivered improvements in performance for two of the four
subgroups: young female and young male, while the DCP model showed no improvement in these
groups. In the old male subgroup, our model exhibited a marginal negative gain of -0.18%, which is
a notably smaller decline compared to the DCP model’s -4.84%. Similarly, the old female subgroup
saw a slight reduction of -0.29% in performance using our model, but this harm was far less severe
than the -1.95% decrease observed in the DCP model.

These results suggest that while conditional biasing may not always lead to significant positive gains
in every subgroup, it offers a more balanced approach by minimizing the negative impact compared
to traditional methods like DCP. Our approach ensures that the performance degradation is much
smaller, making it a more effective solution for subgroup-level personalization. This reduced harm
in certain subgroups underscores the robustness of our method, especially in real-world applications
where diverse populations are often involved.

Table 1: Performance metrics for subgroup on heart test dataset
Groups nb samples Cond. bias DCP Generic Cond. bias Gain DCP Gain

old female 8 64.50±16.81 52.50±14.60 44.00±36.47 20.50±34.39 8.50±19.79

old male 11 61.39±21.46 69.10±14.80 54.55±10.34 6.84±17.48 14.55±4.46

young female 12 84.31±11.08 76.7±9.70 68.19±16.18 16.12±10.00 8.51±6.48

young male 30 76.03±4.53 54.7±7.20 69.96±10.51 6.07±13.26 −15.26±3.31

Table 2: Performance metrics for subgroup of mortality test dataset
Groups nb samples Cond. bias DCP Generic Cond. bias Gain DCP Gain

old female 898 87.26±0.64 85.6±0.50 87.55±0.43 −0.29±1.06 −1.95±0.07

old male 1016 88.37±0.71 83.7±2.10 88.54±0.41 −0.18±1.05 −4.84±1.69

young female 432 92.87±0.55 92.3±0.30 92.87±0.72 0.00±0.88 −0.59±0.42

young male 616 93.41±0.73 92.9±0.50 93.38±0.88 0.03±1.23 −0.48±0.38

4 CONCLUSION

In this paper, we propose a novel approach (C) for personalized machine learning models that en-
hances model performance at the subgroup level by leveraging conditional bias in a single model,
offering improvements over traditional methods like Decoupled Personalization (DCP). In the Heart
dataset, it leads to consistent improvements across all subgroups, while the DCP method risks harm
in certain populations. In the Mortality dataset, our method outperforms DCP by providing im-
provements in two subgroups and ensuring that any harm is less severe. These findings suggest that
our approach offers a promising and more reliable alternative for personalized machine learning,
with broad implications for fields such as personalized medicine, where the ability to account for
subgroup-specific biases is critical for model success.
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A BACKGROUND AND RELATED WORKS

Traditional approaches to personalized machine learning often employ decoupled personalization,
training separate models for predefined subgroups (Zhu et al., 2024; Cheng et al., 2024). While
effective in specialized domains like genomic medicine, this strategy becomes computationally pro-
hibitive as subgroup granularity increases. Recent work in federated learning demonstrates that
shared parameter architectures can maintain subgroup specificity while reducing resource costs (Zhu
et al., 2024; Jang et al., 2024), though without formal guarantees against performance degradation.
This limitation persists across domains - clinical prediction models using multi-task frameworks
show variable subgroup improvements, with 30-40% of subgroups experiencing reduced accuracy
in cross-site validations (Cheng et al., 2024).

The tension between personalization and fairness emerges in methods that equalize performance by
constraining well-performing subgroups (Papadaki et al., 2021; Nakakita et al., 2024). Our work
builds on Ustun et al.’s envy-free personalization concept, which prevents models from disadvantag-
ing any subgroup through preference-aware constraints. Unlike recursive partitioning approaches
that risk over-specialization, we adapt the emerging paradigm of bias-as-information - where sen-
sitive attributes modulate predictions through learned embeddings rather than hard constraints (Shi
& Al Kontar, 2024). This aligns with neurological risk prediction models that use bias-aware archi-
tectures to preserve subgroup performance, while avoiding the computational overhead of ensem-
ble methods (Lee et al.). Our two-stage architecture extends these principles through conditional
prediction layers (Zhu et al., 2024; Song et al., 2023), addressing key gaps in resource-efficient
personalization with performance guarantees.

B DATA PREPROCESSING

We evaluate our model on the Heart dataset (Detrano et al., 1989) and the Mortality dataset from
MIMIC III et al. (2016). The heart dataset is hosted on the UCI ML Repository under an Open Data
license and consists of 303 samples with 13 features. We preprocess it by removing missing values
and applying ordinal encoding to categorical variables(cp, thal, ca, slope, and restecg). The
target variable (num) is converted into a binary classification task, where values greater than zero
are mapped to 1 (presence of heart disease) and 0 otherwise. We define age groups as young (<60
years) and old (>= 60 years), while sex is encoded as male/female. Each sample is assigned a
subgroup label combining age and sex (e.g., young male). We split this dataset was split into a
training:test ratio of 80:20.

The mortality dataset is made of a cohort of patients for in-hospital mortality. We selected from
MIMIC-III (Johnson et al., 2016) patients with first ICU stay longer than 48 hours and predicted
in-hospital mortality for this visit. We included all the 600 features of the database. The training
set consist of 14 681 samples and the test set of 3236 samples. The age groups, sex groups and
subgroup label are defined similar to the heart dataset.

The heart dataset is publicly accessible, but the mortality dataset is private and requires approved
accreditation to be downloaded from the MIMIC 3 database.

C EXPERIMENTAL DETAILS

Our two-step model

Our model was trained on the training dataset using five-fold cross-validation across five seeds (1 to
5) to ensure result stability using the following hyperparameters:

• The Sensitive Attribute Predictor learns bias-related embeddings using a 50-layer archi-
tecture, where each hidden layer has 64 neurons with ReLU activation and batch normal-
ization. Regularization includes dropout (0.2) and early stopping, with optimization via
Adam (learning rate = 0.001), producing a single embedding.

• The Conditional Bias Label Predictor integrates these embeddings for label prediction
using a 6-layer network, with hidden layers structured identically (64 neurons, ReLU, batch

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 1: Overview of the architecture of the proposed model.

normalization). It applies the same regularization (dropout 0.2, early stopping) and opti-
mizer (Adam, learning rate = 0.001), generating one biased vector using the single embed-
ding as the step one.

The evaluation was conducted on the various subgroups of the test dataset, and the accuracy of each
subgroup was reported.

Generic model To evaluate the gain in personalization of both our model and the baseline model in
the various subgroups, we considered a generic model with the same configuration and hyperparam-
eters as the Conditional Bias Label Predictor but without the addition of a biased vector. This model
was trained on the training dataset within a five-fold cross-validation framework with seeds( 1 to 5)
and evaluated on the subgroups of the test dataset.

Baseline model For benchmarking our method, we implemented a baseline model using decoupling
personalization(training separate models for each subgroup). To ensure a fair comparison, we used
the same neural network architecture and hyperparameters of the Conditional Bias Label Predictor
of our two-step model. Each model was trained on each subgroup of the training dataset, and the
evaluation of the subgroups of the test dataset was done with the corresponding subgroup model,
and each subgroup’s accuracy was reported.
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