
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SKILL DISCOVERY USING LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language models (LLMs) possess remarkable ability to understand natural
language descriptions of complex robotics environments. Earlier studies have
shown that LLM agents can use a predefined set of skills for robot planning in
long-horizon tasks. However, the requirement for prior knowledge of the skill set
required for a given task constrains its applicability and flexibility. We present
a novel approach L2S (short of Language2Skills) to leverage the generalization
capabilities of LLMs to decompose the natural language task description of a
complex task to definitions of reusable skills. Each skill is defined by an LLM-
generated dense reward function and a termination condition, which in turn lead
to effective skill policy training and chaining for task execution. To address the
uncertainty surrounding the parameters used by the LLM agent in the generated
reward and termination functions, L2S trains parameter-conditioned skill policies
that performs well across a broad spectrum of parameter values. As the impact of
these parameters for one skill on the overall task becomes apparent only when its
following skills are trained, L2S selects the most suitable parameter value during
the training of the subsequent skills to effectively mitigate the risk associated with
incorrect parameter choices. During training, L2S autonomously accumulates a
skill library from continuously presented tasks and their descriptions, leveraging
guidance from the LLM agent to effectively apply this skill library in tackling novel
tasks. Our experimental results show that L2S is capable of generating reusable
skills to solve a wide range of robot manipulation tasks.

1 INTRODUCTION

In recent years, the integration of language models with robotics has opened up new avenues
for advancing autonomous learning in robotic systems. Large Language models (LLMs) possess
the remarkable ability to understand complex tasks and environments. Leveraging this capability,
researchers have explored the use of language models in various aspects of robotics, ranging from
task planning and navigation to manipulation and control. Previous work in this domain has primarily
focused on leveraging language models for robot planning, where a predefined set of skills is provided
to the model. However, this approach has limitations, as it assumes prior knowledge of the skill set
required for the given task, thus constraining its applicability and flexibility.

Automatic skill acquisition has long been studied in the context of hierarchical reinforcement learning
(Barto and Mahadevan (2003)) in the form of temporally extended actions Sutton et al. (1999).
Despite the proven effectiveness of skills in expediting learning (McGovern and Sutton (1998)),
a fundamental question remains: how can agents autonomously develop valuable skills through
interaction with their environment? There has been a significant body of work aimed at discovering
skills. For example, Option-Critic (Bacon et al. (2017)) learns skills by optimizing the skill policies as
well as their termination functions in a gradient-based manner, assuming all the skills can be applied
everywhere. However, it is known to be prone to inefficient task decomposition, such as learning
a sub-policy that terminates at every time step or discovering one efficient sub-policy that executes
throughout the entire episode. Vezhnevets et al. (2017); Nachum et al. (2018); Levy et al. (2019)
address this issue by automatically decomposing a complex task into subtasks and solving them by
optimizing the subtask objectives. These methods excel in learning multiple levels of policies in
sparse reward tasks. However, the low-level skills learned are tied to a specific environment and it is
unclear whether they are adaptable to new tasks. Skill chaining (DSC) (Konidaris and Barto (2009);
Bagaria and Konidaris (2020)) involves a sequential discovery and chaining of skills, starting from

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the end goal state and progressing backward to the initial state. However, as the agent generates new
skills using the initial states of the preceding skill on the skill chain as their goal states, this poses
challenges in robot manipulation tasks. For example, learning a skill π1 to move an object towards a
goal region cannot be learned well before mastering the skill π2 for object grasping, but skill chaining
would require learning π1 first.

We present a novel approach L2S (short for “Language to Skills") for skill discovery in robot learning
by leveraging large language models to overcome the limitations of prior methods. We aim to
empower robotic systems to autonomously discover and adapt skills to a wide range of tasks. L2S
harnesses the generalization capability of large language models (LLMs) to decompose the natural
language task description of a complex task to definitions of reusable skills. Each skill is defined by
an LLM-generated dense reward function and a termination condition, which in turn lead to effective
skill policy training and chaining for task execution. For example, consider the “turn faucet left" task
depicted in Fig. 1. The GPT-4 agent can break down this task into two skills: (1) positioning the
robot’s end effector near the right side of the faucet πo1 and (2) rotating the faucet handle to the left
πo2 . Chaining these two skills together successfully solves the task.

L2S excels in sequential task learning by autonomously building a library of parameterized skills
(explained below) as it encounters tasks during training. This accumulated skill library can then be
reused to tackle new tasks, guided by the LLM agent. For example, consider a scenario where the
agent is presented with the task of "turn faucet right" after it has already been trained on "turn faucet
left". The LLM agent identifies that the first skill πo1 in "turn faucet left" can be tuned to position the
end effector on the left side of the faucet handle (by adjusting its parameters). Thus, L2S only needs
to train a new skill π′o2 to rotate the faucet handle right. By reusing existing skills in this manner,
L2S significantly reduces the computational burden associated with learning new tasks from scratch,
enabling more efficient task solving over time.

The main challenge faced by L2S is that while LLMs can outline the overall structure of skills
necessary to tackle a task, they lack detailed insight into the specific low-level control intricacies of
the environment. For the "turn faucet left" task in Fig. 1, the reward function generated for the first
skill πo1 encourages the skill policy to guide the end effector towards the right side of the handle by
a distance of params[0] = 0.01m. However, training the policy using this reward function could
lead to an unforeseen outcome where the end effector ends up on the left side of the handle, rendering
the subsequent skill of rotating the faucet handle left unattainable (Fig. 1 top right). This discrepancy
arises from the norm function employed in the reward and termination functions of πo1 , which solely
emphasizes the proximity of the end effector to the target_position that is located too close to
the faucet handle (at a distance of params[0] = 0.01m). Consequently, the policy may position
the end effector on the left side of the handle and still achieves a high task reward and satisfies
the termination condition of this skill. To address the uncertainty surrounding the parameters used
by the LLM agent, L2S trains parameter-conditioned skill policies, denoted as πo(a∣s; params),
where the parameters params are akin to "goals" in goal-conditioned reinforcement learning. As
the impact of these parameters on the overall task becomes apparent only when subsequent skills
are trained, L2S adopts a strategy of training a skill policy that performs well across a broad
spectrum of parameter values and selects the most suitable parameter value during the training of
subsequent skills. For instance, the first skill πo1(a∣s; params) for "turn faucet left" is trained to
position the end effector around the faucet handle, with a distance to the handle at params[0].
Training the subsequent skill πo2 involves determining the correct policy parameter params[0]
- the target_position to move the end effector to - and appropriately setting its termination
condition parameters t_params[0] - determining how close the end effector should be to the
target position before transitioning to the next skill - to optimally achieve the highest reward during
the training of the second skill (Fig. 1 middle). In this way, L2S effectively mitigates the risk
associated with potentially incorrect parameter choices. The parameter-conditioned skill policies in
L2S facilitate seamless skill reuse. The parameter params[0] in the first skill πo1(a∣s; params)
trained for "turn faucet left" can be adjusted to position the robot’s end effector on the left side of the
faucet for the "turn faucet right" task.

Compared to state-of-the-art LLM-guided reward generation methods such as Text2Reward Xie
et al. (2023) and Eureka Ma et al. (2023), which generate dense reward functions to train single,
monolithic policies for each robotic task, L2S instead creates reusable, parameterized skills for
sequential task learning. These skills effectively generalize to new tasks through parameterization.
While previous work, such as Ahn et al. (2022), has explored decomposing complex tasks into

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: An example "Turn faucet left" to explain the workflow of L2S. The training of skill πo2
optimizes the policy and termination parameter of skill πo1 .

skills using LLMs’ semantic knowledge, it relies on manually engineered skill libraries, whereas
L2S autonomously learns such a library with parameterization to enable efficient generalization.
Our experimental evaluations on a suite of robotics manipulation tasks show that L2S not only
solves continuously presented tasks much faster but also achieves higher success rates compared to
state-of-the-art methods.

2 PROBLEM DEFINITION

Sequential decision-making problems can be formalized as Markov Decision Processes (MDPs). An
MDP is defined by a tuple e = ⟨S,A,T,R, γ, η⟩, where S represents the state space, A represents
the action space, T ∶ S ×A × S → [0,1] denotes the transition function, R ∶ S ×A→ R denotes the
reward function, 0 < γ < 1 is the discount factor, and s0 ∼ η(⋅) defines the initial states. At each
time step t, the agent selects an action at ∈ A in state st ∈ S, receives a reward rt = R(st, at) ∈ R,
and transitions to another state st+1 with a probability determined by T . We assume sparse reward
functions that provide signals only upon task success (1.0) or failure (0.0). The primary objective is
to learn a policy π ∶ S → A for e that maximizes the expected return, defined as the discounted sum
of rewards: maxπ∈ΠEπ [∑∞t=0 γtR(st, at)], where at = π(st).
Skills. A significant challenge for reinforcement learning (RL) algorithms lies in learning and
planning over long horizons, particularly in scenarios where rewards are sparse. The options
framework, proposed by Sutton et al. (1999), offers a formalism for temporal abstraction, which
aids in both exploration and credit assignment. The central concept is to decompose the overarching
problem that the agent seeks to solve into subtasks, each typically characterized by its own reward
function and capable of being accomplished by a distinct skill. Our method L2S is inspired by the
options framework and we define skills similar to options in the options framework. A skill o consists
of (a) its termination condition, βo(s), which determines whether skill execution must terminate in
state s and (b) its closed-loop skill policy, πo(s), which maps state s to a low level action a ∈ A.

Skill Chaining for Single-Task Learning. Given a single task MDP e, and its task description
Le in natural language, L2S constructs a chain of skills Konidaris and Barto (2009); Bagaria and
Konidaris (2020) such that successful execution of each skill in the chain allows the agent to execute
another skill. A task description Le refers to a language command describing the desired goal
for the agent, like "turn faucet left". The inductive bias of creating sequentially executable skills
guarantees that as long as the agent successfully executes each skill in its chain, it can solve the
original task in e. Intuitively, skill chaining amounts to learning skills such that the termination

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: The L2S overall framework.

condition βoi of a skill oi induces an initiation condition of the skill that follows it in the skill chain.
We formally define skill chaining as follows. A skill chain ρ = o0 ○ o1 ○ . . . ○ ok defines a controller
πρ = (πo0 , βo0) ○ (πo1 , βo1) ○ . . . ○ (πok , βok) that navigates from an environment initial state of an
MDP e to a state where βok (the termination condition of ok) holds. In particular, πρ executes πoj
(starting from j = 0) until reaching βoj , after which it increments j ← j + 1 (unless j = k). Note that
πρ is stateful since it internally keeps track of the index j of the current skill policy.

Skill Library Construction in Sequential Task Learning. The main objective of L2S is to efficiently
tackle a sequence of related tasks by autonomously building a skill library from ongoing tasks and
reusing it for future tasks. Formally, given a sequence of tasks, where each task is represented as
an MDP e and accompanied by a description Le, L2S builds a skill library O ≡ {o,Lo} tailored for
solving these tasks. Each skill o within O is associated with a descriptive text Lo. The skill library
O starts out empty. As L2S encounters new tasks (e,Le) in the sequence, it progressively adds new
skills in the skill chains for solving these tasks to O, while also developing plans that make use of the
the existing skills in O whenever possible.

3 LANGUAGE TO SKILLS

The primary goal of L2S is to utilize LLMs to automatically build skill libraries O for sequential
task learning. Given the textual description of a new task, L2S uses LLMs to generate code that
defines both the reward function and termination condition for each new skill in the skill chain for
solving the task, facilitating the learning of the skill’s policy. These learned skills, along with their
LLM-generated descriptions, are subsequently added to O, enabling the LLMs to effectively reuse
them when building skill chains for future tasks.

3.1 PROMPT CONSTRUCTION

For a task MDP e and its natural language task description Le, L2S prompts an LLM agent with an
abstraction of e and Le to generate a skill chain for solving the task. The environment abstraction
is needed by the LLM agent to ground reward generation for understanding how object states are
represented, including robot and object configurations.We adopt a compact Pythonic representation,
similar to Xie et al. (2023), as illustrated in Fig. 2. This approach offers a higher level of abstraction
compared to listing all environment-specific information in a table or list format. The LLM agent is
instructed to generate a skill chain for e as ρ = o0 ○o1 ○ . . .○ok, and the reward functionRoi[ϕi](s, a)
and termination condition βoi[φi](s) (as python programs) for each skill oi in ρ, where ϕi and φi

are the parameters within the skill reward and termination functions for oi respectively. Additionally,
L2S asks the LLM agent to generate a description Lo for each skill o.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

For continuously presented tasks, as discussed in Sec. 2, L2S maintains a skill library O ≡ {(o,Lo)}
where each skill o is accompanied with its text description Lo (generated by the LLM agent). L2S
starts with no predefined skills, meaning the skill library O is initially empty. Skills within the skill
chain devised for one task are added to O for reusing them when building skill chains for future tasks.
Thus, it is possible part of a generated skill chain ρ = o0 ○ o1 ○ . . . reuses skills in O. To achieve this,
L2S prompts the LLM agent with the text description Lo of each skill o in O, along with a command
instructing the LLM agent to select and reuse existing skills whenever possible.

Although LLMs have good understanding of high-level task structures, we have found that they are
not yet reliable enough to generate correct rewards and termination conditions in a zero-shot manner
for complex tasks. To handle this, we also prompt LLMs with few-shot examples as Xie et al. (2023).
Detailed prompt examples can be found in the Appendix G.

3.2 SKILL CHAIN TRAINING

During training, L2S iteratively processes(learning and optimizing, if necessary) skills in a skill chain
ρ starting from the initial skill o0, continuing until it processes the final skill on ρ. It maintains the
property that for every skill oi it processes, it has already trained policies for all skills preceding oi.

The key challenge with this approach is that, although LLMs can define the overarching structure of
a skill chain for a given task, they often lack precise knowledge of the low-level control details within
the environment. As a result, the parameters used in the generated reward and termination functions
tend to be inaccurate, reflecting inherent uncertainties (as illustrated in the turn faucet example in
Sec. 1 and Fig. 1). An important aspect of L2S is that each skill policy is parameter-conditioned
(similar in concept to goal-conditioned reinforcement learning), denoted as πoi(a∣s; ϕi), where ϕi

represents the parameters in the reward functionRoi for oi. The training objective is for the policy
πoi(a∣s;ϕi) to maximize the expected rewards over a broad range of parameter values ϕi ∼ q̃ϕi ,
ensuring robust performance across varying conditions. The parameter distribution q̃ϕi for ϕi is
configured by the user. For example, one can set q̃ϕi as a Gaussian distribution N(vϕi , σ), where vϕi

is the mean centered at the LLM agent’s inferred parameter values for ϕi, and σ is the user-defined
variance. The execution of πoi is also influenced by the initial states of oi, which are determined
by both the skill policy πoi−1(a∣s; ϕi−1) and the termination condition βoi−1(φi−1) of its preceding
skill ok−1 in the skill chain. Thus, the training for πoi(a∣s ϕi) also needs to optimize the parameters
associated with oi−1, which involves finding the correct policy parameters for ϕi−1 and properly
setting its termination condition parameters φi−1:

max
ϕi−1,φi−1,πoi

Es0∼ηoi
[ϕi−1,φi−1],ϕi∼q̃ϕi

,τ∼πoi
(at∣st;ϕi) [

T

∑
t=0

γtRoi[ϕi](st, at)] (1)

where ηoi is the initial state distribution of oi.

A key choice L2S makes is what initial state distribution ηoi to choose to train the skill policy πoi .
Consider a prefix of a skill chain ρk = o0 ○ o1 ○ . . . ○ ok−1, where all policies for the skills πo0 through
πok−1 along the chain have been trained. L2S chooses the initial state distribution ηok = ηρk

for
training πok to be the distribution of states reached by the controller πρk

(Sec. 2) from a random
environment initial state s0 ∼ η. The induced distribution ηρk

is defined inductively on the length
of ρk. Formally, for the zero-length path ρk (so πok = πo0), we define ηρk

= η to be the initial state
distribution of the MDP e. Otherwise, we have ρk = ρk−1 ○ πok−1 . Then, we define ηρk

to be the state
distribution over βok−1 (the termination condition of ok−1) induced by any trajectory τ generated
using πok−1 from s0 ∼ ηρk−1

. Given an infinite trajectory τ = s0 → s1 → . . . if there exists i such that
βo(si) holds, we denote the smallest such i by i(τ, βo). Formally, ηρk

is the probability distribution
over βok−1 such that for any set of states S′ ⊆ βok−1 , the probability of S′ according to ηρk

is

Pr
s∼ηρk

[ϕk−1,φk−1]
[s ∈ S′] = Pr

s0∼ηρk−1
,τ∼πok−1

(at∣st; ϕk−1)
[si(τ, βok−1

[φk−1]) ∈ S
′].

We note that ηρk
is conditioned on the policy parameters ϕok−1 of the skill policy πok−1(⋅∣⋅; ϕok−1)

and the parameters φk−1 of the termination condition βok−1[φk−1], while ηρk−1
is unconditioned

because the training of πok−1 must have already optimized the parameters of skill ok−2 (for k ≥ 2).

Main Algorithm. We depict the overall skill training algorithm of L2S in Algorithm 1. It handles a
sequence of tasks T = {(e,Le)} each with task MDP e and text description Le. At line 3, it prompts

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 L2S LearningAlgorithm

Require: A sequence of tasks T = {(e,Le)} each with task MDP e and text description Le

Require: Code generating LLM LLMAgent
Ensure: Skill Library O, Task Controllers C

1: O ← ∅, C ← ∅
2: for each task (e,Le) ∈ T do
3: (ρ ≡ o0 ○ o1 ○ . . .), Ro, βo, Lo ← LLMAgent(prompt(encode(e),Le,O))
4: for k = 0,1, . . . , LEN(ρ) − 1 do
5: Train πok and update the policy parameters ϕk−1 and the termination condition parameters

φk−1 for the preceding skill ok−1 (when k > 1) based on Equation 1
6: O ← O ∪ {ok,Lok}
7: ▷ Optimize the parameters of the last skill oLEN(ρ)−1 using the sparse reward function Re in e
8: k ← LEN(ρ)
9: ϕk−1, φk−1 ← argmaxϕk−1,φk−1

Es∼ηρk
[ϕk−1,φk−1] [Re(s, πok−1(s))]

10: πρ ← (πo0[ϕ0], βo0[φ0]) ○ ⋯ ○ (πok−1[ϕk−1], βok−1[φk−1]) ▷ Skill chaining policy for e
11: C ← C ∪ {πρ}

the LLM agent with the pythonic representation of e, Le and the skill library O (initialized to empty)
to generate the skill chain ρ for e (Sec. 3.1). For each task, at line 5, it iteratively trains the skills in ρ
(Sec. 3.2). When the LLM agent selects a skill ok from the skill library O, the algorithm trains the
skill controller πok , beginning with the existing policy and value functions (and the replay buffer if
using an offline RL algorithm), which often leads to policy reuse or results in fast convergence. At
line 6, the algorithm incorporates the trained skill into the skill library O for reuse in future tasks. At
line 9, it optimizes the parameters of the last skill in the skill chain ρ using the sparse environment
reward Re from e. The final skill chaining controller πρ, constructed for ρ (line 10), is added to C,
which holds the controllers for all the tasks in the input sequence T (line 11).

3.3 REINFORCEMENT LEARNING FOR SINGLE SKILLS

We now describe how L2S learns a policy πok for a single skill ok based on Equation 1 once the
initial state distribution ηok = ηρk

is known (Line 5 of Algorithm 1). At a high level, it trains πok
based on the reward function Rok(ϕk) with the parameters ϕk ∼ q̃ϕk

sampled from a distribution
q̃ϕk

(akin to “goals" in goal-conditioned reinforcement learning). Specifically, it uses Equation 2 to
optimize the parameters of the preceding skill based on (freezed) πok , which can be solved using any
black-box optimization algorithms such as CEM.

max
ϕk−1,φk−1

Es0∼ηρk
[ϕk−1,φk−1],ϕk∼q̃ϕk

,τ∼πok
(a∣s;ϕk) [

T

∑
t=0

γtRok[ϕk](st, at)] (2)

It uses Equation 3 to learn πok based on the parameters of its preceding skill, which can be solved
using a standard RL algorithm such as SAC (Haarnoja et al., 2018).

max
πok

Es0∼ηρk
[ϕk−1,φk−1],ϕk∼q̃ϕk

,τ∼πok
(a∣s;ϕk) [

T

∑
t=0

γtRok[ϕk](st, at)] (3)

Our skill training algorithm iteratively optimizes both Equation 2 and Equation 3 until convergence.

4 EXPERIMENTS AND EVALUATION

Benchmarks. We demonstrate the capability of L2S across various environments and tasks within
the Meta-World Yu et al. (2019) and ManiSkill2 Gu et al. (2023) benchmarks. Meta-World is an
open-source simulated benchmark designed for meta-reinforcement learning and multi-task learning.
We conducted tasks within the LORL-Meta-World environment Nair et al. (2021) (Fig. 3 left), a
simulated domain built atop Meta-World. This environment features a Sawyer robot interacting
with a tabletop setup that includes a drawer, a faucet, and two mugs. As detailed in Table 1 left, we
evaluated five tasks: Open drawer, Turn faucet left, Turn faucet right, Push white mug backward, and
Push white mug left. Additionally, we introduced a multi-goal task that require a combination of two
basic tasks (Task 6).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

LORL-Meta-World Task Sequence

Task1: Open drawer
Task2: Turn faucet left
Task3: Turn faucet right
Task4: Push white mug backward
Task5: Push white mug left
Task6: Turn faucet left and Open drawer

ManiSkill2 Task Sequence

Task1: OpenDrawer
Task2: CloseDrawer
Task3: PickCube
Task4: StackCube
Task5: PlaceCubeDrawer
Task6: OpenDrawer, PlaceCubeDrawer and CloseDrawer

Table 1: Descriptions of tasks in the environments shown in Fig. 3. The left table outlines the
sequence of tasks executed in the LORL-Meta-World, while the right table details the task sequence
for ManiSkill2.

(a) LORL-Meta-World (b) ManiSkill2

Figure 3: Benchmark Environments

ManiSkill2 offers a diverse range of simu-
lated object manipulation tasks. We integrate
the cube and cabinet environments in Man-
iSkill2 (Fig. 3). Sawyer robots in this envi-
ronment can interact with two cubes and a
cabinet having drawers and doors. We eval-
uated five basic tasks, as summarized in Ta-
ble 1 (right). We also introduced a multi-goal
task (Task 6) that requires the robot to open
the cabinet drawer, place a cube inside, and
then close the drawer.

The full list of evaluated tasks and their cor-
responding instructions can be found in Ap-
pendix D. Detailed prompt examples can be
found in the Appendix G.

Baselines. We conducted a comparative analysis between L2S and two other state-of-the-art methods:
Text2Reward (T2R) Xie et al. (2023) and Eureka Ma et al. (2023). T2R utilizes LLMs to generate
dense reward functions for training a single, monolithic policy per robotic task, using the same
Python-based environment abstraction and task description as ours provided to the LLM. In contrast,
Eureka employs an evolutionary approach, where it inputs the environment script into the LLM to
generate multiple reward functions simultaneously for training policies in parallel. Batch success
rates are then used to guide the LLM in refining reward functions for the next iteration, creating a
feedback loop that iteratively improves the reward functions. L2S differs from T2R in its ability to
generate reusable skills for sequential task learning while iteratively refining the parameterization of
reward and termination functions based on skill chain training. While Eureka’s evolutionary approach
can adjust reward functions, it relies heavily on costly LLM interactions for environment feedback
and expensive policy training with each parameter update, and it lacks support for skill learning. For
our benchmarks, we ran Eureka for 3 rounds with 8 samples per round. This process resulted in
significantly higher training costs compared to L2S, measured by the environment steps required for
agent training. For Eureka, we conducted multiple runs and reported results only from those that had
at least one successful sample in each round.

Ablation. We also included a variant of L2S called L2S-fixed, which uses fixed LLM-generated
parameters in reward and termination functions, instead of optimizing them as in L2S , to assess the
impact of addressing potentially incorrect parameter choices made by LLMs.

Experiment setup. We use GPT-4 as our LLMAgent. For reinforcement learning of skill policies,
we employ Soft Actor-Critic (SAC, Haarnoja et al. (2018)) algorithms, maintaining consistent hyper-
parameters across all tasks and experiments within these benchmarks. To evaluate the robustness of
L2S , each task was conducted using 5 different random seeds. The hyperparameters for SAC are
detailed in Appendix C.

Overall Results. Fig. 4 illustrates the training results, showing the number of tasks that have
converged as the total training timesteps increase. Fig. 5 displays the average evaluation success
rates at convergence across all tasks. For the performance on the task sequence of 6 tasks, as shown
in Fig. 4: 1) In LORL, L2S solved an average of 5.44 tasks in a total of 1.1e7 time steps, while
L2S-fixed solved 4.98 tasks, and Text2Reward solved 4.9 tasks in a total of 1.5e7 time steps. 2) In

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
LORL task sequence total timesteps 1e7

0
1
2
3
4
5
6

of

 ta
sk

s f
in

ish
ed

Task1

Task1

Task2

Task2

Task3

Task3

Task4

Task4

Task5

Task5

Task6
Task6L2S

L2S-fixed
T2R

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
ManiSkill2 task sequence total timesteps 1e7

0
1
2
3
4
5
6

of

 ta
sk

s f
in

ish
ed

Task1

Task1

Task2

Task2

Task3

Task3

Task4

Task4

Task5

Task5

Task6

Task6

L2S
L2S-fixed
T2R

Figure 4: Given the sequence of tasks in Table 1, we report the average number of tasks trained to
convergence on LORL-Meta-World (left side) and ManiSkill2 (right side), averaged over 5 random
seeds. The policy is considered converged when its evaluation success rate converges to a value
significantly above zero. Eureka is omitted from here because its evolutionary reward function search
demands considerably more training steps than the other methods.

OpenDrawer TurnFaucetLeft TurnFaucetRight PushMugBack PushMugLeft TurnFaucetLeft-OpenDrawer
Tasks in LoRL

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s R

at
io

0.95 0.99 0.91 0.96 0.89
0.74

0.94 0.83
0.66

0.86
0.51

0.73
0.93 0.87

0.62
0.95 0.87

0.43
0.18 0.22 0.19 0.32 0.33

0.04

OpenDrawer CloseDrawer PickCube StackCube PlaceCubeDrawer OpenDrawer-PlaceCubeDrawer-CloseDrawer
Tasks in ManiSkill2

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s R

at
io

0.94 1.0 0.87
0.72

0.92 0.840.76
1.0

0.74

0.01

0.9
0.73

1.0 1.0
0.68

0.02 0.02 0.0

1.0 1.0

0.04 0.0 0.02 0.03

L2S L2S-fixed T2R Eureka

Figure 5: We report the average evaluation success rates at convergence across all tasks on LORL-
Meta-World (top) and ManiSkill2 (bottom), averaged over 5 random seeds.

ManiSkill2, L2S solved an average of 5.33 tasks in a total of 1e7 time steps, while L2S-fixed solved
4.14 tasks, and Text2Reward solved only 2.68 tasks in a total of 1.5e7 time steps. Overall, L2S
showed an improvement of 11.0% in LORL and 98.8% in ManiSkill2, while requiring 26.7% and
33.3% less training cost compared to the baseline Text2Reward. For the performance on single simple
or complex tasks, as shown in Fig. 5, L2S outperformed the baseline Text2Reward by 18.7% and
98.7% on average success rate in LORL and ManiSkill2 environments, respectively, demonstrating
a significant performance improvement with L2S. Additional experiment results can be found in
Appendix E.

Figure 6: An example of skill reusing. The first
skill πo1(a∣s;params) in task "Turn faucet left"
is reused for "Turn faucet right" with the parameter
value params optimized from [0.083] to [-0.095].

Skill Reusing. Specifically, in the LORL en-
vironment, L2S leverages skills learned from
"Turn faucet left" and "Push white mug back-
ward" to expedite training for "Turn faucet right"
and "Push white mug left" respectively. As
shown in Fig. 6, the first skill of the "Turn
faucet left" task, πo1(a∣s;params), guides
the robot’s end-effector to the right side of
the faucet handle at a target location with
params[0] = 0.083m away from the han-
dle. This parameter-conditioned skill was reused
with params[0] = −0.095m to guide the end-
effector to the opposite side of the faucet in the
"Turn faucet right" task. In Task 6 of the LORL
environment, although the LLM agent recog-
nizes that this combination of tasks can be ad-
dressed by reusing existing skills, L2S still requires several training steps to fine-tune these skills
for adaptation to the environment due to shifts in the initial state distributions. Similarly, in the
ManiSkill2 environment, L2S leverages the skill for approaching the handle in the "Open Drawer"
task for the "Close Drawer" task. It also reuses the skill for grasping the cube in the "Pick Cube" task
for the "Stack Cube" and "Place Cube Drawer" tasks, thereby expediting sequential task learning.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Total timesteps 1e6Ini

tia
te

Gras
p

Pic
k

Pr
og

re
ss

Stage-wise progresses on PickCube
L2S

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Total timesteps 1e6Ini

tia
te

Gras
p

Sta
ck

Pr
og

re
ss

T2R

0.0 0.5 1.0 1.5 2.0 2.5
Total timesteps 1e6Ini

tia
teGras

p(r
eu

se)

Lift

Sta
ck

Pr
og

re
ss

Stage-wise progresses on StackCube
L2S

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Total timesteps 1e6Ini

tia
te

Gras
p

Lift

Sta
ck

Pr
og

re
ss

T2R

Figure 7: Left: the progress of training the task "PickCube" in ManiSkill2 measured by 2 stage-wise
evaluation functions: (1)grasp cube and (2) place cube. Right: the progress of training the task
"Stackcube" in ManiSkill2 measured by 3 stage-wise evaluation functions: (1)grasp cube, (2) lift
cube, (3) stack cube. In sequential task learning, L2S reuses the skills for grasping cubes from
"PickCube" in training "StackCube".

Training progress evaluation. As summarized in Fig. 5, L2S significantly outperforms the baseline
T2R on challenging tasks like Stack Cube. To further illustrate this performance, we present the
training curves of both L2S and T2R in Fig. 7 for the PickCube and StackCube tasks. We utilized
functions from the ManiSkill2 library to design evaluation functions that assess the progress of
the learning agent in achieving specific key subgoals of each task. In the case of StackCube, the
evaluation function gauges whether the agent has consistently mastered the abilities to grasp, lift,
and stack a cube. Although T2R can generate step-wise reward functions, combining rewards across
different steps proves to be difficult. In the case of PickCube or StackCube, a high grasping reward
combined with a relatively lower stacking reward leads the policy to prioritize holding the cube, as
ineffective stacking actions can easily result in losing contact with the cube, thus yielding a lower
reward. T2R also requires significantly more training steps than L2S to achieve convergence (Fig. 4),
as it learns a single monolithic policy that lacks the flexibility for easy reuse. In contrast, Fig. 7
demonstrates that L2S quickly acquires the ability to grasp a cube in StackCube by effectively reusing
the grasp skill learned during the PickCube task. Eureka faces similar challenges as T2R in generating
effective step-wise reward functions, with performance declining as the complexity of the required
reward functions increases.

Ablation Study. In Fig. 4, although the ablation L2S-fixed demonstrates a similar convergence
rate to L2S for tasks in the LORL-Meta-World environment, Fig. 5 reveals that it converges to
sub-optimal policies compared to L2S . In the ManiSkill environment, L2S-fixed struggles to solve
more challenging tasks, such as StackCube, underscoring the necessity of optimizing LLM-generated
parameters in the reward and termination functions to address the inherent uncertainty of LLM agents
when dealing with low-level environmental control intricacies.

5 RELATED WORK

LLM Planning for Robotics. Recent research has highlighted the integration of Large Language
Models (LLMs) in robotic task and motion planning (TAMP) (Firoozi et al., 2023). Huang et al.
(2022a) investigated LLMs for direct trajectory planning, revealing limitations in spatial and nu-
merical reasoning that necessitate frequent re-prompting to align with task constraints. Following
works aim to mitigate the gap on feasibility and correctness when applying LLM-generated plans to
simulated or real-world robotic environments. Inspired by the in-context learning ability of LLMs,
Inner Monologue (Huang et al., 2022b) allows robotic systems to integrate real-time environmental
feedback into LLM-generated plans. This strategy significantly enhances the adaptability and effec-
tiveness of robotic agents by using continuous feedback to adjust planning strategies. Text2Motion
(Lin et al., 2023) goes a step further by not only generating feasible task plans (a sequence of skills)
but also ensuring these plans are geometrically executable before initiation. Another direction is to

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

utilize LLMs for translating natural language into intermediate formal task representations, NL2TL
(Chen et al., 2024a) and AutoTAMP (Chen et al., 2024b) significantly enhancing task completion
through auto-regressive error correction of both syntax and semantics. The planning ability of LLMs
plays a great role in L2S for generating skill chains and make plan on it to complete robotic tasks. To
finish wider range of tasks, BOSS(Zhang et al., 2023) leverages LLM to build skill library with large
amount of complex and useful skill chains generated from a set of primitive skills. Also, SayCan
(Ahn et al., 2022) ranks all the possible skills by the task-grounding probability (usefulness) and
world-grounding probability (feasibility) and select the one with highest probability at each step for
LLM decision making within a given embodiment.

LLM-Based Code Generation. L2R (Yu et al., 2023) introduces a new paradigm that harnesses
flexibility of reward function representations by utilizing LLMs to define reward parameters that can
be optimized and accomplish variety of robotic tasks. To generate RL reward function for robotics
tasks, Zeng et al. (2024) includes self-align ranking to improve the quality of generated reward
function using samples ranked by both LLMs and reward function. Text2Reward (Xie et al., 2023)
generates interpretable, free-form dense reward functions as an executable program grounded in
a compact representation of the environment either by zero-shot or few-shot. Eureka (Ma et al.,
2023) generates dense reward function without any task-specific prompting or pre-defined reward
templates (zero-shot). Both Text2Reward and Eureka leverage LLM’s in-context ability to improve
reward function by providing human-involved feedback or automated feedback, respectively. In
League++ (Li et al., 2024), the reward functions are generated by the LLM through selecting and
weighting pre-defined metric functions provided by human experts. Our method differs from it in
two key aspects:1)Free-form Reward Generation and 2)Reduced Human Expert Effort. Another two
studies explores using LLMs for robot-centric policy generation, termed ProgPrompt (Singh et al.,
2022) and Code as Policies (Liang et al., 2023), which involves generating control code directly
from language instructions. Our L2S differs from the aforementioned works in several ways: 1) it
decomposes tasks into chain of skills, 2) it learns skills as primitives and building skill library based
on the skill chains, 3) it optimizes parameters in generated functions to enhance task performance,
and 4) it reuses skills and skill chains from the library to improve learning efficiency.

Due to the limitation of pages, more related work can be found in Appendix A.

6 LIMITATIONS

L2S has been evaluated solely in robotic manipulation domains. Applying LLM-based skill discovery
to other task types, such as navigation, would necessitate more advanced reasoning about environmen-
tal structures, which we leave as an avenue for future research. Additionally, L2S currently operates
within state-based environments, as the LLM-generated termination functions require explicit state
information to assess whether termination thresholds are met. Extending this approach to vision-based
tasks may require training a supervised model that learns from state-based termination conditions,
an aspect we plan to explore in future work. As for the assumption that each skill reply on the
performance of the skill before, to let the framework figure out which skills need to be optimized
might be a great extension. Lastly, LLM hallucinations present challenges in generating robust
free-form reward and termination function code. Constraining code generation within a structured
intermediate representation, possibly defined by a domain-specific language, might offer a balance
between generation stability and the exploration of the reward space.

7 CONCLUSION

We present L2S that leverages Large Language Models (LLMs) to autonomously construct a skill
library for sequential task learning. L2S progressively builds a skill library guided by LLMs and
efficiently reuses them across new tasks, enabling the learning algorithm to effectively handle
increasingly challenging environments. To handle the uncertainty in LLM-generated reward and
termination functions, L2S trains a parameter-conditioned policy that perform well across a broad
range of parameter values for each skill and selects the most suitable parameter values during
the training of its subsequent skills, mitigating the risk of incorrect parameter choices by LLMs.
Experimental results demonstrate that L2S outperforms baselines in solving complex, multi-step
tasks, largely due to its ability to automatically construct a skill library for sequential task learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning. Discret.
Event Dyn. Syst., 13(1-2):41–77, 2003. doi: 10.1023/A:1022140919877. URL https://doi.org/10.
1023/A:1022140919877.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artif. Intell., 112(1-2):181–211, 1999. doi: 10.1016/S0004-3702(99)
00052-1. URL https://doi.org/10.1016/S0004-3702(99)00052-1.

Amy McGovern and Richard S. Sutton. Macro-actions in reinforcement learning: An empirical analysis. 1998.
URL https://api.semanticscholar.org/CorpusID:5821100.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Satinder Singh and Shaul
Markovitch, editors, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA, pages 1726–1734. AAAI Press, 2017. doi: 10.1609/AAAI.V31I1.
10916. URL https://doi.org/10.1609/aaai.v31i1.10916.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David Silver, and
Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages 3540–
3549. PMLR, 2017. URL http://proceedings.mlr.press/v70/vezhnevets17a.html.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforcement
learning. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi,
and Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 3307–3317, 2018. URL https://proceedings.neurips.cc/paper/2018/
hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html.

Andrew Levy, George Dimitri Konidaris, Robert Platt Jr., and Kate Saenko. Learning multi-level hierarchies with
hindsight. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=ryzECoAcY7.

George Dimitri Konidaris and Andrew G. Barto. Skill discovery in continuous reinforcement learn-
ing domains using skill chaining. In Yoshua Bengio, Dale Schuurmans, John D. Lafferty, Christo-
pher K. I. Williams, and Aron Culotta, editors, Advances in Neural Information Processing Sys-
tems 22: 23rd Annual Conference on Neural Information Processing Systems 2009. Proceedings of
a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada, pages 1015–1023. Cur-
ran Associates, Inc., 2009. URL https://proceedings.neurips.cc/paper/2009/hash/
e0cf1f47118daebc5b16269099ad7347-Abstract.html.

Akhil Bagaria and George Konidaris. Option discovery using deep skill chaining. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=B1gqipNYwH.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and Tao Yu.
Text2reward: Automated dense reward function generation for reinforcement learning, 2023.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke
Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding large language
models, 2023.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu, Julian
Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jesmonth, Nikhil J
Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee, Sergey Levine, Yao Lu, Linda Luu,
Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego Reyes, Pierre
Sermanet, Nicolas Sievers, Clayton Tan, Alexander Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng
Xu, Sichun Xu, Mengyuan Yan, and Andy Zeng. Do as i can, not as i say: Grounding language in robotic
affordances, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor, 2018.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-
world: A benchmark and evaluation for multi-task and meta reinforcement learning. CoRR, abs/1910.10897,
2019. URL http://arxiv.org/abs/1910.10897.

11

https://doi.org/10.1023/A:1022140919877
https://doi.org/10.1023/A:1022140919877
https://doi.org/10.1016/S0004-3702(99)00052-1
https://api.semanticscholar.org/CorpusID:5821100
https://doi.org/10.1609/aaai.v31i1.10916
http://proceedings.mlr.press/v70/vezhnevets17a.html
https://proceedings.neurips.cc/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html
https://openreview.net/forum?id=ryzECoAcY7
https://proceedings.neurips.cc/paper/2009/hash/e0cf1f47118daebc5b16269099ad7347-Abstract.html
https://proceedings.neurips.cc/paper/2009/hash/e0cf1f47118daebc5b16269099ad7347-Abstract.html
https://openreview.net/forum?id=B1gqipNYwH
http://arxiv.org/abs/1910.10897

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone Tao, Xinyue
Wei, Yunchao Yao, Xiaodi Yuan, Pengwei Xie, Zhiao Huang, Rui Chen, and Hao Su. Maniskill2: A
unified benchmark for generalizable manipulation skills, 2023. URL https://arxiv.org/abs/2302.
04659.

Suraj Nair, Eric Mitchell, Kevin Chen, Brian Ichter, Silvio Savarese, and Chelsea Finn. Learning language-
conditioned robot behavior from offline data and crowd-sourced annotation, 2021.

Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu, Yuke Zhu, Shuran
Song, Ashish Kapoor, Karol Hausman, Brian Ichter, Danny Driess, Jiajun Wu, Cewu Lu, and Mac Schwager.
Foundation models in robotics: Applications, challenges, and the future, 2023.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents, 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda Luu, Sergey Levine,
Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning through planning with language
models, 2022b.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion: from
natural language instructions to feasible plans. Autonomous Robots, 47(8):1345–1365, November
2023. ISSN 1573-7527. doi: 10.1007/s10514-023-10131-7. URL http://dx.doi.org/10.1007/
s10514-023-10131-7.

Yongchao Chen, Rujul Gandhi, Yang Zhang, and Chuchu Fan. Nl2tl: Transforming natural languages to temporal
logics using large language models, 2024a.

Yongchao Chen, Jacob Arkin, Charles Dawson, Yang Zhang, Nicholas Roy, and Chuchu Fan. Autotamp:
Autoregressive task and motion planning with llms as translators and checkers, 2024b.

Jesse Zhang, Jiahui Zhang, Karl Pertsch, Ziyi Liu, Xiang Ren, Minsuk Chang, Shao-Hua Sun, and Joseph J.
Lim. Bootstrap your own skills: Learning to solve new tasks with large language model guidance, 2023. URL
https://arxiv.org/abs/2310.10021.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Arenas, Hao-
Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, Brian Ichter, Ted Xiao, Peng Xu, Andy
Zeng, Tingnan Zhang, Nicolas Heess, Dorsa Sadigh, Jie Tan, Yuval Tassa, and Fei Xia. Language to rewards
for robotic skill synthesis, 2023.

Yuwei Zeng, Yao Mu, and Lin Shao. Learning reward for robot skills using large language models via
self-alignment, 2024. URL https://arxiv.org/abs/2405.07162.

Zhaoyi Li, Kelin Yu, Shuo Cheng, and Danfei Xu. LEAGUE++: EMPOWERING CONTINUAL ROBOT
LEARNING THROUGH GUIDED SKILL ACQUISITION WITH LARGE LANGUAGE MODELS. In
ICLR 2024 Workshop on Large Language Model (LLM) Agents, 2024. URL https://openreview.
net/forum?id=xXo4JL8FvV.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse
Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using large language
models, 2022.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and Andy Zeng.
Code as policies: Language model programs for embodied control, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners, 2020.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir
Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake
Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd,
Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie
Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis

12

https://arxiv.org/abs/2302.04659
https://arxiv.org/abs/2302.04659
http://dx.doi.org/10.1007/s10514-023-10131-7
http://dx.doi.org/10.1007/s10514-023-10131-7
https://arxiv.org/abs/2310.10021
https://arxiv.org/abs/2405.07162
https://openreview.net/forum?id=xXo4JL8FvV
https://openreview.net/forum?id=xXo4JL8FvV

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry,
Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet,
Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha
Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin,
Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider,
Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim,
Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin,
Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine
McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey
Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati,
Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo,
Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam
Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri,
Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross,
Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry,
Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica
Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina
Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie
Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian,
Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun
Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward,
Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave
Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang,
Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4
technical report, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny
Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners, 2023.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann. Stable-
baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

13

http://jmlr.org/papers/v22/20-1364.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A MORE RELATED WORK

LLM for Reasoning. Recent studies on large language models (LLMs), e.g. GPT-3 (Brown et al.,
2020), GPT-4 (OpenAI et al., 2024), have demonstrated significant advancements of its reasoning
capabilities. Prompting proposed by Chain-of-Thought (CoT) (Wei et al., 2023), has shown efficacy
in improving reasoning by eliciting detailed reasoning paths in LLMs, which helps in tasks involving
multi-step reasoning. Similarly, ReAct (Yao et al., 2023) combines reasoning with actions, enhancing
performance on tasks by enabling dynamic reasoning and interactions with external information,
demonstrating significant improvements. Additionally, Zero-shot-CoT (Kojima et al., 2023) has
been proved effective in enhancing the zero-shot reasoning abilities of models across various tasks,
enhancing the potential of LLMs in tasks requiring complex multi-hop thinking without the need for
task-specific fine-tuning. These advancements suggests a promising direction for further enhancing
the reasoning powers of LLMs through advanced prompting techniques and integrated reasoning-
action paradigms. We leverage such reasoning ability to make LLMs understand the semantics of
robotic tasks and follow the instructions from human correctly.

B DISCUSSION

Our tool demonstrates that decomposing natural language tasks into skill chains significantly enhances
performance across a broad range of robotic tasks while reducing the cost of neural policy learning.
One associated open problem is the instability caused by the hallucinations of LLMs, which can lead
to unreliable code generation. Without fine-tuning LLMs, effective methods to address this issue
include reducing the randomness of the next token generated by LLMs or iteratively sampling code
via feedback prompts. The reward and termination functions can principally be used by RL agents to
train control policies using visual inputs and to terminate when specific visual conditions satisfy the
termination criteria. Extending L2S to vision-based environments is left for future work. We hope
our work represents a meaningful effort to apply LLMs to code generation across various research
domains, not limited to reinforcement learning, and contributes valuable insights to the development
of this field.

C HYPER-PARAMETERS

We document the hyper-parameters used for LLM code generation and RL learning algorithms in
this section. For generating dense reward function code and termination condition function code,
we utilized GPT-4 as the LLM agent with the sampling temperature set to 0.2 and the top_p (the
cumulative probability of next token candidates) set to 0.1 for each experiment in L2S . The baseline
(T2R) maintained the default values for temperature and top_p at 0.7 and 1, respectively.

For the reinforcement learning algorithm, we employed the implementation from Stable-Baselines3
(Raffin et al. (2021)) with the hyper-parameters listed in Table 2.

Table 2: Hyper-parameter of SAC algorithm applied to tasks in two benchmarks

SAC Hyper-parameters LORL(Meta-World) ManiSkill2

Discount factor γ 0.99 0.95
Target update frequency 2 1
Learning rate 3e−4 3e−4

Train frequency 1 8

Soft update τ 5e−3 5e−3

Gradient steps 1 4
Learning starts 4000 4000
Hidden units per layer 256 256
of layers 3 2
Batch Size 512 1024
Initial temperature 0.1 0.2
Rollout steps per episode 500 100/200
Replaybuffer size 5e5 5e5

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

D TASK LIST

In this section, we list all tasks examined in both LORL and ManiSkill2 benchmarks separately in
Table. 3 and Table. 4, accompanied by their corresponding natural language instructions. Note that
these instructions constitute part of the task prompt explicitly.

Table 3: List of tasks in LORL

Single-goal Task Instruction

Push mug backward Move the white mug backward 0.1 meter.
Push mug left Move the white mug left 0.1 meter.
Turn faucet left Turn the faucet handle left π

4
radian distance.

Turn faucet right Turn the faucet handle right π
4

radian distance.
Open drawer Open the drawer until the position of drawer box is greater

than target value.

Multi-goal Task

Push mug backward and open drawer.
Open drawer and turn faucet left.
Push mug backward and turn faucet left.
Push mug backward and open drawer and turn faucet left.

Table 4: List of tasks in ManiSkill2.

Task Instruction

Pick cube Pick up cube A, move it to goal position and hold it.
Stack cube Pick up cube A and place it on top of cube B.
Open cabinet drawer A single-arm mobile robot needs to open a cabinet drawer.
Close cabinet drawer A single-arm mobile robot needs to close a cabinet drawer.
Open drawer, Place cube and
close drawer

Open the cabinet drawer, place cube it into the drawer and
close the drawer.

E ADDITIONAL EXPERIMENT RESULTS

In this section, we show the results of:

• The error analysis on LLM-generated functions.

• Optimizing function parameters with different parameter variances.

• Performance of L2S on more long-horizon tasks.

E.1 ERROR ANALYSIS ON GENERATED FUNCTIONS.

For the reward generation experiment in the LORL and ManiSkill2 environments, we selected
5 simple tasks from each environment(LORL: "OpenDrawer, TurnFaucetLeft, TurnFaucetRight,
PushMugBack, PushMugLeft"; ManiSkill2: "OpenDrawer, CloseDrawer, PickCube, StackCube,
PlaceCubeDrawer"), as shown in Figure 5 in the paper, and queried the LLM for 20 samples per task.
Across these 10 tasks, the number of skills generated ranged from 2 to 5. The reported results reflect
the success rate for completing the entire tasks.

As shown in Table 5, L2S achieves a higher execution success rate for each generated skill compared
to the whole-task reward function generated in Text2Reward. This is because generating free-form
function code for individual skills is inherently simpler than generating a single function for the entire
task. Each skill represents only a portion of the overall task, reducing complexity.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Error Analysis on generated functions. We evaluated the LLM’s performance in generating
correct function code for both LORL and ManiSkill2 environments more than 100 samples each.

LLM(GPT-4) LORL ManiSkill2

Correct 92% 87%
Syntax/Shape Error 8% 13%

The results highlight the effectiveness of L2S in breaking down complex tasks into manageable
components and improving the reliability of code generation.

E.2 OPTIMIZING PARAMETERS WITH DIFFERENT VARIANCES.

As we provided information about the environment and additional knowledge that connects the
semantics of real-world instructions to the robot environment and specifies the task’s successful
conditions (see Appendix E), the LLM gains some understanding of the environment’s scale and
selects reasonable (though not necessarily optimal) parameter mean values. By default, we set the
variance of the parameters to be twice the maximum mean value generated by the LLM for the current
task (a heuristic). We conducted experiments with varying alternative parameter value variances,
while keeping the parameter mean value fixed. The results were obtained using three different random
seeds and demonstrate that L2S consistently achieves optimal parameter values across the default
setting and all tested variants.

E.2.1 LORL-TURN FAUCET LEFT

For this task, we examined three different parameter variance combinations—variants 1, 2, and 3—to
analyze their effects on reward and termination parameters. The first skill in the task is trained to
position the end effector around the faucet handle, with the reward function parameter defining the
acceptable distance to the handle. The termination condition parameter specifies how close the end
effector must be to the target position to transition to the next skill. Results are shown in Table 6.

• Variant 1: The variance of the termination condition parameter is increased.

• Variant 2: The variance of the reward function parameter is increased.

• Variant 3: The variance of both parameters is increased.

Table 6: Optimizing parameters with different variances in LORL.

Reward Func Parameters
/ Termination Func Pa-
rameters

Initial Parame-
ters Mean Value

Initial Parame-
ters Variance

Optimized Params/(Std) Success
Rate/(std)

Training Cost
(Timesteps)

Default [0.01]/[0.01] [0.2]/[0.02] [0.107/(0.02)]/[0.013/(0.001)] 0.99/(0.01) 1e6
Variant1 [0.01]/[0.01] [0.2]/[0.05] [0.118/(0.04)]/[0.027/(0.005)] 0.89/(0.13) 1.5e6
Variant2 [0.01]/[0.01] [0.5]/[0.02] [0.16/(0.01)]/[0.015/(0.0003)] 0.97/(0.04) 1e6
Variant3 [0.01]/[0.01] [0.5]/[0.05] [0.114/(0.01)]/[0.031/(0.001)] 0.93/(0.05) 1e6

E.3 MANISKILL2-OPEN DRAWER

For this task, the parameter in the termination condition of the first skill specifies the required
proximity of the robot’s end effector to the target position above the drawer handle. In the variant, we
increase the variance of this parameter from the default value of 0.02 to 0.05 to evaluate its impact on
performance. Results are shown in Table 7.

Table 7: Optimizing parameters with different variances in ManiSkill2.

Reward Func Parameters Initial Parame-
ters Mean Value

Initial Parame-
ters Variance

Optimized Params/(Std) Success
Rate/(std)

Training Cost
(Timesteps)

Default [0.01] [0.02] [0.026(0.003)] 0.94/(0.06) 1e6
Variant [0.01] [0.05] [0.031(0.006)] 0.97/(0.02) 1.5e6

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E.3.1 LONG-HORIZON TASKS

We report results on complex, meaningful tasks in both the LORL and ManiSkill2 benchmarks in
Table 8. Notably, we prompted GPT-4 in both L2S and Text2Reward to reuse policies learned from
prior single tasks whenever possible, ensuring a fair comparison between the two approaches.

Table 8: Performance of L2S on more long-horizon tasks.

Benchmark Task Text2Reward(Std) L2S(Std)

LORL PushMugBack-OpenDrawer 0.91(0.043) 0.93(0.030)
OpenDrawer-TurnFaucetRight 0.89(0.096) 0.93(0.062)
MugBack-OpenDrawer-TurnFaucetRight 0.76(0.071) 0.90(0.044)

ManiSkill2 OpenDrawer-PlaceTwoCubesDrawer-
CloseDrawer

0.01(0.002) 0.72(0.056)

OpenDrawer-PlaceThreeCubesDrawer-
CloseDrawer

0.01(0.001) 0.54(0.032)

F SKILL REUSE AND REFINEMENT ON COMPLEX TASK

In this section, we show the result of reusing skills or skill chain from basic single-goal task to
complete complex tasks in Fig. 8. We showcases the effectiveness of skills refinement in L2S when
necessary. For example, the Task4 "Turn faucet left and open drawer" performs only 12% success
ratio with directly reusing skills from skill library. However, with refinement by L2S , the performance
can be greatly improved to close to perfect, with evaluation curve shown in Fig. 9.

Task Task Description

Task1 Push mug backward and open drawer
Task2 Open drawer and turn faucet left
Task3 Open drawer and push white mug backward
Task4 Turn faucet left and open drawer
Task5 Push mug backward and turn faucet left
Task6 Push mug backward and open drawer and turn

faucet left

Figure 8: Complex task instruction(left) and success ratio on complex tasks in LORL environ-
ment(right).

G LLM PROMPT

A prompt used in L2S consists of following components: introduction, environment description,
additional environmental knowledge, tips and tricks, instruction hint, and learned skill library. Here
we use an example of the prompt for ManiSKill2 manipulation tasks to demonstrate how each
component is formatted:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 9: Success ratio on refining reused skill in task "Turn faucet left and open drawer".

Listing 1 Introduction.
introduction = """
You are an expert in robotics, reinforcement learning, task decomposing, task planning and code
generation. We are going to control a robotic arm to complete some given tasks. The robotic arm is a
7-DoF Fetch Mobile Manipulator with a two-fingered parallel gripper. The robotic arm is controlled by
small displacements of the gripper in Cartesian coordinates and the inverse kinematics are computed
internally by the MuJoCo framework. The gripper can be opened or closed in order to perform the
grasping operation of pick and place.

The action space of the robot is Box(np.array([-1, -1, -1, -np.pi, -1]), np.array([1, 1, 1, np.pi, 1]),).

Num	Action	Unit
0	Displacement of the end effector in the x direction dx	position (m)
1	Displacement of the end effector in the y direction dy	position (m)
2	Displacement of the end effector in the z direction dz	position (m)
3	Angular displacement of the end effector	position (m)
4	Positional displacement per timestep of each finger of the gripper	position (m)

Now I want you to help me
1) decompose the robotic task into sequences of skills
2) write dense reward functions and termination conditions of reinforcement learning for each skill.
3) make plan on the skills to finish the robotic task.

I'll give you the attributes of the environment and robotic arm itself. You can use these class attributes
to write the reward function.
"""

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Listing 2 Environment description.
environment_description = """
The following classes provide the information about the robotic arm and all objects in the environment.

class BaseEnv(gym.Env):
self.robot : SawyerRobot # the robot in the environment
self.white_mug : MugObject # the white mug in the environment
self.black_mug : MugObject # the black mug in the environment
self.faucet : FaucetObject # the faucet object in the environment
self.drawer : DrawerObject # the drawer object in the environment

class SawyerRobot:
self.ee_position : np.ndarray[(3,)] # indicate the 3D position of the end-effector
self.gripper_finger_distance : numpy.float64

indicate the distance between the gripper fingers away from the initial position
range between 0 and 0.1.
The closer the grippers, the smaller the value

self.init_ee_position : np.ndarray[(3,)] # indicate the initial 3D position of the end-effector
self.init_gripper_finger_distance : numpy.float64

indicate the initial distance between the gripper fingers away from the initial position,
range between 0 and 0.1

class MugObject:
self.position : np.ndarray[(3,)] # indicate the 3D position of the rigid object
self.init_position : np.ndarray[(3,)] # indicate the initial 3D position of the rigid object

class FaucetObject:

self.faucet_handle_postion : np.ndarray[(3,)] # indicate the 3D position of the handle of faucet
self.faucet_handle_angular_position : numpy.float64

indicate the angular position of the handle with respect to the faucet in radians.
Faucet moving clockwise makes this value smaller.

self.init_faucet_handle_postion : np.ndarray[(3,)]
indicate the initial 3D position of the handle of faucet

self.init_faucet_handle_angular_position : numpy.float64
indicate the initial angular position of the handle with respect to the faucet in radians.
Faucet moving clockwise makes this value smaller.

class DrawerObject:
self.box_handle : np.ndarray[(3,)] # indicate the 3D position of the handle of drawer box
self.drawer_box_position : numpy.float64 # indicate the 1D relative position of the drawer box.

The position range is between [-0.16, 0] meter.
self.init_box_handle : np.ndarray[(3,)] # indicate the initial 3D position of the handle of drawer box
self.init_drawer_box_position : numpy.float64 # indicate the initial 1D relative position of

the drawer box
"""

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Listing 3 Additional environment knowledge.
env_additional_knowledge = """
Additional knowledge:
1. For the robotic arm gripper and all the objects in the environment, the direction words in the
following task are defined as:

1) "Left" or "right" means towards the positive or negative x-axis with respect to the related object
position, respectively. X-axis is corresponding to the first value in the 3D position with form
"np.ndarray[(3,)]". For example, x-axis of mug is "mug.position[0]".
2) "Forward/Front" or "backward/Back" means towards the positive or negative y-axis with respect to
the reference object position, respectively. Y-axis is corresponding to the second value in the
3D position with form "np.ndarray[(3,)]". For example, y-axis of a mug is "mug.postion[1]".
3) "Above" or "below" means towards the positive or negative z-axis with respect to the reference
position, respectively. Z-axis is corresponding to the third value in the 3D position with
form "np.ndarray[(3,)]".
For example, z-axis of mug is "mug.position[2]".
4) Specially, for the object faucet, "turn left" or "turn right" means turning faucet that increases
or decreases the faucet handle angular position.

2. In order to compare the replative positions of different items in the environment, including
the robotic arm gripper and all the objects, you must first identify the attributes that represents
the 3D-positions, and then use these attributes for computation. In practice, the relative position
words in the following task are defined as:

1) "One item is on the left or on the right of the other item" means the item is on the positive or
negative x-axis direction with respect to the other item, respectively. X-axis is corresponding
to the first value in the 3D position with form "np.ndarray[(3,)]".
2) "One item is in front of or at the back of the other item" means the item is on the positive or
negative y-axis direction with respect to the other item, respectively. Y-axis is corresponding
to the second value in the 3D position with form "np.ndarray[(3,)]".
3) "One item is above or below the other item" means the item is on the positive or negative z-axis
direction with respect to the other item, respectively. Z-axis is corresponding to the third value
in the 3D position with form "np.ndarray[(3,)]".

3. Tasks about moving mug are considered successful when mug is moved at least 0.1 meter towards the
correct direction compared with the object's initial position.
4. Tasks about turning faucet are considered successful when faucet is turned at least np.pi/4 radian
towards the correct direction compared with the object initial position.
5. Tasks about opening or closing drawer are considered successful when drawer box is fully open or
fully closes. Drawer fully open means drawer box position is smaller than -0.15 meter.
Drawer fully closed means drawer box position is greater than -0.01 meter.
"""

Listing 4 Instruction hint.
instruction_hint = """
Task to be fulfilled: {instruction}.
Here is the instruction:
Please think step by step and finish the following requirements one by one in order:

1. Tell me what does this task mean. If it is a complex task, identify how many simple task you can
identify.
2. Decompose a whole task into a set of possible skills and plan on the skills to finish each simple
task. You can refer to the above examples if provided after the intruction part.
3. Identify which example you are referring to, if any.
4. Identify the index of skill that terminate each simple task as you have answered above. Save the
index of skill in "simple_task_termination_skill = [...]"
5. For each skill, design a pair of dense reward function and terminition condition function based
on the purpose of the skill. Write down the pair of functions one by one with the following format:

1) Make each pair of reward function and termination function a separate python code piece
"```python ```".
2) Dense reward function is used in reinforcement learning, here are the requirements:

a. Create a list "params = [...]" containing extra parameters that never exist for computing
reward (if any). But you should not include any threshold value, reward term weight
or attributes that already exist in the above environment information in the list "params",
e.g, termination threshold value, reward term weight, the position information of any item.
Make sure every parameter in list "params = [...]" is used in the dense reward function.
b. Define the reward term one by one and explain the purpose of each reward term as comment.
c. This function starts with `def compute_dense_reward_skill_NUM(self, action, obs) -> float`.
It only returns variable `reward : float`. Replace 'NUM' with the number of skill.

3) Terminition condition function decides whether the skill is successful, here are the
requirements:

a. Copy list "params = [...]" from dense reward function and paste it into the terminition
condition function. Any value in list "params" shuold not be used as termination threshold.
b. Create a list "t_params = [...]" containing the value used as termination threshold if the
corresponding skill is not in "simple_task_termination_skill". Make sure every parameter
in list "t_params = [...]" is used later in terminition condition function.
c. Make lists "params = [...]" and "t_params = [...]" don't conflict with each other because
they are used for different purposes.
d. This function starts with `def termination_skill_NUM(self, obs) -> bool`. It only returns
variable `done : bool`. Value of `done : bool` should be decided before it is returned.
Replace 'NUM' with the number of skill.

"""

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Listing 5 Few-shot example.

Instances of Few-shot Examples:
1.Task to be fulfilled: Turn an object with a handle left.
Corresponding skills and sequence of skills for accomplishing the task:

Skill 1: Align the robot arm end-effector to a 3D position on the right of the object handle with
some offset.
Skill 2: Move robot arm end-effector and turn the object handle left.
The sequence for accomplishing the task could be: Skill 1 -> Skill 2.

2.Task to be fulfilled: In the MuJoCo PickAndPlace environment, pick up a box and move it to the 3D
goal position and hold it there.
Corresponding skills and sequence of skills for accomplishing the task :

Skill 1. Navigate gripper to the box.
Skill 2. Grasp the box and move the box to the goal position and hold it.
The sequence for accomplishing the task could be: Skill 1 -> Skill 2.

Skills library prompt. A complete L2S prompt is the ordered concatenation of the above components.
Additionally, we could also ask the LLM to generate response considering reusing given library
of skills (in listing 6). Such a prompt makes it possible for L2S to reuse either skills generated by
language model or reference skills given by human experts in the code generation process, thus
potentially facilitate the skill discovery and training.

Listing 6 Skills library prompt.
skills_lib_prompt = """
After finishing the job above, I have one more job for you.
Now we have a skills library which store the already trained skills in a list format, each element in the
list mapping the stored skills number and the discription of the skills.
skills_library=[

"1":"Navigate to the position on the left side of the faucet handle and keep some distance away
from it. This skill has paramters as safe distance between gripper and faucet handle that can
be tuned.",
"2":"Navigate gripper to the intermediate position on the forward direction of the white mug
and maintain a safe distance from the white mug.",
"3":"Move gripper and push the faucet to the right. This skill can not be modified.",
]

What you should do is:
1) First, think the meaning of each skills. You should clarify the following attributes of each skill:
the objects involved in the skill, the relation between objects and the goal that the skill finally
should achieve.
2) Then, with the decomposed skills of current task and your understanding of the skills in skill
library, please think about which skill in the library do the exact same work as some skill(s) in
current task and can be reused.
3) Lastly, Please give back the pair-wise mapping from current skill number to the skill number in
skills library with python JSON format. Each pair of skill models selected must have the same
attribute. That's means even if two skills are very similar but not the same, you should not select
them because it need extra training. And you should explain the reason why you make such pairing.

"""

H EXAMPLES OF REWARD FUNCTIONS AND TERMINATION CONDITION
FUNCTIONS

In this section, we provides example pairs of generated reward functions and termination functions
generated by LLM to solve given tasks. Each figure includes one dense reward function and its
corresponding termination function to constitute a complete skill. Numbers in the suffix of the
function names denote the indices of the skills.

Turn faucet left. Fig. 10 and 11 show the generated skills. In this task, the language model proposes
a simple yet effective two-stage solution. Specifically, the first skill is responsible for aligning the
robot arm end-effector to a 3D position on the right of the faucet handle. Then the second skill moves
robot arm end-effector and turn the faucet handle left and finally solve the task.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

def compute_dense_reward_0(self, action, obs, params) -> float:
params = [0.01]
Reward term 1: The negative distance between robot's end-effector and the target
position on the right of the faucet handle.
target_position = obs['current_state'][10:13] + np.array([params[0], 0, 0])
distance = np.linalg.norm(obs['current_state'][:3] - target_position)
reward = -distance

Reward term 2: Regularization term on the action, to encourage smaller actions
for smoother movements.
action_reg = 0.1 * np.linalg.norm(action)
reward -= action_reg

return reward

def termination_0(self, obs, params, t_params) -> bool:
params = [0.01]
t_params = [0.01]
The skill is successful if the robot's end-effector is close
enough to the target position
target_position = obs['current_state'][10:13] + np.array([params[0], 0, 0])
distance = np.linalg.norm(obs['current_state'][:3] - target_position)
done = distance < t_params[0]
return done

Figure 10: Skill 0 for turn faucet left.

def compute_dense_reward_1(self, action, obs, params) -> float:
params = []
Reward term 1: The negative difference between current and initial angular
position of faucet handle.
angular_difference = obs['current_state'][13] - obs['initial_state'][13]
reward = -angular_difference

Reward term 2: Regularization term on the action, to encourage smaller
actions for smoother movements.
action_reg = 0.1 * np.linalg.norm(action)
reward -= action_reg

return reward

def termination_1(self, obs, params, t_params) -> bool:
t_params = [0.78]
The skill is successful if the faucet handle has been turned more than 0.78 radian
to the left
angular_difference = obs['current_state'][13] - obs['initial_state'][13]
done = angular_difference < -t_params[0]
return done

Figure 11: Skill 1 for turn faucet left.

Open drawer. Fig. 12, 13 and 14 demonstrate the three skills in the open drawer task decomposition.
Concretely speaking, the response from LLM is:

Skill 1: Move the robot arm end-effector to a 3D position above the drawer box handle.

Skill 2: Align robot arm end-effector with the drawer box handle.

Skill 3: Move robot arm end-effector to open the drawer.

The sequence for accomplishing the task could be: Skill 1 -> Skill 2 -> Skill 3.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

def compute_dense_reward_0(self, action, obs, params) -> float:
params = [0.01]
Reward term 1: The negative distance between the robot's end-effector and the
target position above the drawer box handle.
reward_term_1 = -np.linalg.norm(obs['current_state'][:3] - \

(obs['current_state'][14:17] + np.array([0, 0, params[0]])))
Reward term 2: Regularization term on the robot's action.
reward_term_2 = -np.linalg.norm(action)
The total reward is the weighted sum of the reward terms.
reward = 1 * reward_term_1 + 0.1 * reward_term_2
return reward

def termination_0(self, obs, params, t_params) -> bool:
params = [0.01]
t_params = [0.01]
The skill is considered successful if the distance between the robot's
end-effector and the target position is less than a threshold.
done = np.linalg.norm(obs['current_state'][:3] - \

(obs['current_state'][14:17] + np.array([0, 0, params[0]]))
) < t_params[0]
return done

Figure 12: Skill 0 for open drawer.

def compute_dense_reward_1(self, action, obs, params) -> float:
params = []
Reward term 1: The negative distance between the robot's end-effector and the
drawer box handle.
reward_term_1 = -np.linalg.norm(obs['current_state'][:3] - \

obs['current_state'][14:17])
Reward term 2: Regularization term on the robot's action.
reward_term_2 = -np.linalg.norm(action)
The total reward is the weighted sum of the reward terms.
reward = 1 * reward_term_1 + 0.1 * reward_term_2
return reward

def termination_1(self, obs, params, t_params) -> bool:
t_params = [0.01]
The skill is considered successful if the distance between the robot's
end-effector and the drawer box handle is less than a threshold.
done = np.linalg.norm(obs['current_state'][:3] - \

obs['current_state'][14:17]) < t_params[0]
return done

Figure 13: Skill 1 for open drawer.

def compute_dense_reward_2(self, action, obs, params) -> float:
params = []
Reward term 1: The negative difference between the current state of the drawer
box and its goal state.
reward_term_1 = -np.abs(obs['current_state'][17] - (-0.16))
Reward term 2: Regularization term on the robot's action.
reward_term_2 = -np.linalg.norm(action)
The total reward is the weighted sum of the reward terms.
reward = 1 * reward_term_1 + 0.1 * reward_term_2
return reward

def termination_2(self, obs, params, t_params) -> bool:
t_params = []
The skill is considered successful if the drawer box is fully open.
done = obs['current_state'][17] < -0.15
return done

Figure 14: Skill 2 for open drawer.

Stack cube. The stack cube task in the ManiSkill2 is one of the most complicated task in our
experiments. To solve this task, the LLM provides a chain of skills from skill 0 all the way to skill 4
(see Fig. 15, 16, 17, 18 and 19). The corresponding response from LLM is:

The skills and sequence of skills for accomplishing each simple task are:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

- Skill 1: Navigate gripper to cube A.

- Skill 2: Grasp cube A.

- Skill 3: Lift cube A in the air.

- Skill 4: Move cube A to the position above cube B.

- Skill 5: Release cube A.

The sequence for accomplishing the task could be: Skill 1 -> Skill 2 -> Skill 3 -> Skill 4 -> Skill 5.

def compute_dense_reward_0(self, action, obs, params) -> float:
import numpy as np
Reward term 1: the distance between robot's gripper and cube A
dist_to_cubeA = np.linalg.norm(self.tcp.pose.p - self.cubeA.pose.p)
Reward term 2: regularization of the robot's action
action_reg = np.linalg.norm(action)
reward = -dist_to_cubeA - 0.1 * action_reg
return reward

def termination_0(self, obs, params, t_params) -> bool:
t_params = [0.01]
dist_to_cubeA = np.linalg.norm(self.tcp.pose.p - self.cubeA.pose.p)
done = dist_to_cubeA < t_params[0]
return done

Figure 15: Skill 0 for stack cube.

def compute_dense_reward_1(self, action, obs, params) -> float:
import numpy as np
Reward term 1: the distance between robot's gripper and cube A
dist_to_cubeA = np.linalg.norm(self.tcp.pose.p - self.cubeA.pose.p)
Reward term 2: regularization of the robot's action
action_reg = np.linalg.norm(action)
reward = -dist_to_cubeA - 0.1 * action_reg
return reward

def termination_1(self, obs, params, t_params) -> bool:
done = self.agent.check_grasp(self.cubeA)
return done

Figure 16: Skill 1 for stack cube.

def compute_dense_reward_2(self, action, obs, params) -> float:
import numpy as np
Reward term 1: the height of cube A
height_of_cubeA = self.cubeA.pose.p[2]
Reward term 2: regularization of the robot's action
action_reg = np.linalg.norm(action)
reward = height_of_cubeA - 0.1 * action_reg
return reward

def termination_2(self, obs, params, t_params) -> bool:
t_params = [0.1]
done = self.cubeA.pose.p[2] > t_params[0]
return done

Figure 17: Skill 2 for stack cube.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

def compute_dense_reward_3(self, action, obs, params) -> float:
import numpy as np
Reward term 1: the distance between cube A and the position above cube B
dist_to_above_cubeB = np.linalg.norm(self.cubeA.pose.p - \

(self.cubeB.pose.p + np.array([0, 0, 0.02])))
Reward term 2: regularization of the robot's action
action_reg = np.linalg.norm(action)
reward = -dist_to_above_cubeB - 0.1 * action_reg
return reward

def termination_3(self, obs, params, t_params) -> bool:
t_params = [0.01]
dist_to_above_cubeB = np.linalg.norm(self.cubeA.pose.p - \

(self.cubeB.pose.p + np.array([0, 0, 0.02])))
done = dist_to_above_cubeB < t_params[0]
return done

Figure 18: Skill 3 for stack cube.

def compute_dense_reward_4(self, action, obs, params) -> float:
import numpy as np
Reward term 1: the openness of robot gripper
gripper_openness = self.agent.robot.get_qpos()[-1] / \
self.agent.robot.get_qlimits()[-1, 1]
Reward term 2: if coub A is on cube B
cubeA_on_cubeB = 1 if self.check_cubeA_on_cubeB() else -1
Reward term 3: regularization of the robot's action
action_reg = np.linalg.norm(action)
reward = gripper_openness + cubeA_on_cubeB - 0.1 * action_reg
return reward

def termination_4(self, obs, params, t_params) -> bool:
done = not self.agent.check_grasp(self.cubeA) and \

self.check_cubeA_on_cubeB() and check_actor_static(self.cubeA)
return done

Figure 19: Skill 4 for stack cube.

25

	Introduction
	Problem Definition
	Language to Skills
	Prompt Construction
	Skill Chain Training
	Reinforcement Learning for Single Skills

	Experiments and Evaluation
	Related Work
	Limitations
	Conclusion
	More Related Work
	Discussion
	Hyper-parameters
	Task list
	Additional Experiment results
	Error Analysis on generated functions.
	Optimizing parameters with different variances.
	LORL-Turn faucet left

	ManiSkill2-Open drawer
	Long-horizon tasks

	Skill reuse and refinement on complex task
	LLM prompt
	Examples of reward functions and termination condition functions

