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Abstract

Diffusion models form an important class of generative models today, account-
ing for much of the state of the art in cutting edge AI research. While numerous
extensions beyond image and video generation exist, few of such approaches ad-
dress the issue of explicit constraints in the samples generated. In this paper,
we study the problem of generating paths in a layered graph (a variant of a di-
rected acyclic graph) using discrete diffusion models, while guaranteeing that our
generated samples are indeed paths. Our approach utilizes a simple yet effective
representation for paths which we call the padded adjacency-list matrix (PALM).
In addition, we show how to effectively perform classifier guidance, which helps
steer the sampled paths to specific preferred edges without any retraining of the
diffusion model. Our preliminary results show that empirically, our method out-
performs alternatives which do not explicitly account for path constraints.

1 Introduction

Diffusion models have emerged as one of the most popular methods of generative AI particularly
with hyper-realistic image and video generation, often outperforming older methods like generative
adversarial networks. The recent years have seen much interest in replicating this success in other
domains. These domains include protein design (Frey et al., 2024), molecular conformations (Xu
et al., 2022), text generation (Li et al., 2022), robotics (Chi et al., 2023; Wang et al., 2024; Feng
et al., 2024; 2025), etc. Unlike image and video generation, These recent applications often require
the restriction that the generated samples belong to some discrete domain. On top of that, one
often requires samples to obey some form of predefined structural constraint, either for reasons
related to safety or simply because violating those constraints would make little physical sense. For
instance, certain robot poses or physical configurations cannot be achieved in the real world. Most
of the existing work adopt a “data-centric” approach towards “softly” enforcing such constraints
(Chi et al., 2023), relying on the assumption that such unsafe or non-physical samples do not appear
in the training set and that these structural constraints would be implicitly learned.

In this paper, we study how to explicitly enforce these structural constraints. We focus on trying to
generate paths in a layered graph, which are directed acyclic graphs organized in layers. Layered
graphs occur regularly in domains involving planning. For this reason, we seek to be able to sample
from such paths (learned from some dataset) via a diffusion model. This has applications ranging
from security to logistics(Černý et al., 2024; Černỳ et al., 2024; Zhang et al., 2017). However, this
requires that the generated samples from the diffusion model obey the constraint that they are indeed
valid paths in the layered graph, and not just an arbitrary subset of edges/vertices.

Our contributions are as follows. First, we formulate the path learning problem in a layered graph
via discrete diffusion models. We propose a simple representation of paths called padded adjacency–
list matrix (PALM), which guarantees that generated output will always be paths in the underlying
layered graph, unlike other diffusion based approaches. Second, we show how to perform training
and inference efficiently under PALM. Third, we show how one can perform guidance under our
proposed model, a variant of existing classifier guidance methods that allow us to favor paths which
contain certain distinguished edges during inference without retraining. Lastly, we show empirically
that our proposed method is superior in generating paths compared to naive alternatives. We also
examine the tradeoff between strength of guidance and adherence to the learned distribution.
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Figure 1: Example of a layered graph with
L = 4 layers. The first layer V1 is a single-
ton (|V1| = 1), while subsequent layers have
|Vl| = 3 for l = 2, 3, 4. Edges only exist be-
tween adjacent layers (l → l + 1). A specific
path (A, C, G, H) is highlighted in blue.
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Figure 2: The PALM representation (transposed)
for the path highlighted in figure 1. Columns cor-
respond to vertices: blue indicates on-path vertices
(A, C, G, H) and their specific one-hot vectors; gray
indicates off-path vertices. Each gray column vec-
tor is an arbitrary one-hot selection if the vertex has
outgoing edges. Faded entries are padding zeros.

2 Preliminaries and RelatedWork

In this paper, we work with paths in layered graphs. Loosely speaking, a layered graph is a directed
acyclic graph with the additional structure that the vertices can be ordered by layers (Černý et al.,
2024); see figure 1 for an example. Our goal is to learn and generate paths in a layered graph with
a diffusion model. Furthermore, we would like the generated paths to possess some user-specified
properties, e.g., passing through some preferred edges. As we will see later, this will be achieved by
employing discrete diffusion models and classifier guidance based posterior sampling.

2.1 Preliminaries

Definition 1 (Layered Graph, adapted from (Černý et al., 2024)). Let G = (V,E) be a directed
graph defined over a finite vertex set V and edge set E. G is a layered graph if all of the following
conditions are true: (1) Set V can be partitioned into L > 1 non-empty sets V1, . . . ,VL, which are
called layers; (2) each edge e ∈ E is in Vl × Vl+1 for some l ∈ [1, L − 1]; (3) the first layer is a
singleton: |V1| = 1; (4) every vertex v ∈ Vl for l < L with zero out-degree has zero in-degree.

Definition 2 (Path). A path in a layered graph is defined as an ordered sequence (v1, . . . , vL) ∈
V1 × · · · × VL of length L, such that (vl, vl+1) ∈ E for l = 1, . . . , L − 1.

Examples of layered graphs. In the work of Černý et al., each layer represented the possible loca-
tion of an agent (typically a security patrol) at a given time; the existence of an edge between adjacent
layers meant that moving between two physical locations is possible at a particular timestep. Hence,
each valid path represents a different duration route L. Another example is sequence prediction.
For instance, a fully connected layered graph with four vertices per layer can be used to represent
all possible combinations of length L DNA sequences. Here, edges can be used to forbid certain
adjacent nucleotide bases (e.g., “A” cannot be followed by “G” in the 4th and 5th location).

Discrete diffusion models. A discrete diffusion model involves with a forward Markov process
gradually corrupting the initial discrete data representation x0 with noise for a finite number of time
steps t = 1, . . . ,T , and a learned reverse Markov process gradually reconstructing x0 from xT . A
single step in the forward chain can be formalized as

q (xt | xt−1) = Cat(Qt xt−1) (1)

wherein Cat(p) is a K-dimensional categorical distribution parameterized by the probabilities in
p ∈ RK , xt ∈ R

K is a one-hot vector, and Qt ∈ R
K×K is a transition matrix at timestep t specifying

transition probabilities among the K categories. The diffusion model learns a backward process

pθ (xt−1 | xt) =
∑

x0

q (xt−1 | xt, x0) pθ (x0 | xt) . (2)

At inference time, clean samples can be generated by running the learned backward process Eq. (2)
for multiple timesteps t = T, . . . , 1, with xT ∼ pT (x) sampled from some prior distribution pT .
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2.2 RelatedWork

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019; Song et al.,
2021) first gained success in tasks in continuous domains like image generation (Dhariwal & Nichol,
2021; Rombach et al., 2022). Influenced by such success, more approaches have been proposed for
generating discrete data, e.g., text (Li et al., 2022), graphs (Niu et al., 2020; Vignac et al., 2023;
Yan et al., 2024), biological sequences (Yim et al., 2023; Avdeyev et al., 2023), etc. Diffusion
models operating on discrete state-space (Austin et al., 2021; Hoogeboom et al., 2021) are of our
interest. Campbell et al. (2022; 2024) also extended discrete diffusion models from discrete-time
setting to continuous time through the lens of Continuous-time Markov chain. There are also efforts
in diffusion models working on the continuous space of probabilistic simplex (Stark et al., 2024).

A favorable trait of diffusion models is their amenability to guidance (Dhariwal & Nichol, 2021;
Ho & Salimans, 2021), which allows users to generate samples with desirable properties and has
been widely exploited in tasks on continuous domains. For discrete diffusion, the technique of
guidance is less mature. One of the pioneer attempts might be Vignac et al. (2023) using guid-
ance in graph generation. More discrete guidance techniques were recently proposed for biological
sequence (Nisonoff et al., 2025), text generation(Schiff et al., 2025) and for discrete latent diffu-
sion models (Han et al., 2024; Murata et al., 2024). While most existing works approach guidance
from the perspective of either classifier guidance (Dhariwal & Nichol, 2021) or classifier-free guid-
ance (Ho & Salimans, 2021), recent emerging research explores a reinforcement learning approach
(Rector-Brooks et al., 2025; Li et al., 2024; Wang et al., 2025; Uehara et al., 2025).

To the best of our knowledge, there has not been much work on diffusion models that can guarantee
that paths are generated with certainty without significant post processing. For instance, Niu et al.
(2020) and Yan et al. (2024) learn continuous representations of graph adjacency matrices and per-
form discretization as a form of post processing to obtain a graph — this graph is not guaranteed to
be a path, even if the training data is so. More closely related to us is the work of (Shi et al., 2024),
which approach path planning problems by generating sequences of vertices to traverse. However,
there is no guarantee that vertices at adjacent timesteps are adjacent to each other, and the method
relies on a non-trivial beam-search post-processing algorithm in order to guarantee path validity.

3 Structured Discrete Representation of Paths

Choosing an appropriate data representation of paths is important for learning and sampling with
diffusion models. A direct and naive approach is to treat each path as a subgraph of the original
layered graph and learn the distribution of these sub-graphs with a diffusion model. This approach
may be implemented using standard continuous diffusion models to learn a continuous relaxation of
the adjacency matrix of a graph (Niu et al., 2020; Yan et al., 2024), the output of which may then
be truncated or rounded off to yield a sampled subgraph. However, as we will show in section 5.1,
such an approach results in the degradation of sample quality— many subgraphs do not correspond
to paths in the layered graph.The key drawback in this naive approach is that it is oblivious to the
underlying structural constraints distinguishing a path from a general (sub-)graph and instead relies
on this “pattern” in the data to be learned by the diffusion model itself. Our PALM representation
seeks to overcome this issue by explicitly perform learning on a representation that maps to paths.

Definition 3 (Padded Adjacency–List Matrix (PALM)). Given a layered graph G = (V,E) with L
layers, let V = |V| and V = {1, . . . ,V}. Dv = deg(v), where deg(·) refers to the out-degree of a
vertex. The edge set E can also be partitioned into exactly V sets {E1, . . . ,EV }, where each edge
e ∈ Ev originates at vertex v. For a path (v1, · · · , vL), its PALM representation is a collection of
vectors {x1, . . . , xV } where xv ∈ RDv is a one-hot vector indicating an edge e ∈ Ev for all v ∈ V.

At its core, a PALM is a stack of one-hot vectors recording a single outgoing edge of each vertex, as
demonstrated in figure 2. It is easy to see that the PALM-to-path mapping is many-to-one and onto,
which means (i) one PALM instance represents exactly one path, and (ii) all paths can be represented
by at least one PALM. The path-to-PALM conversion is trivial by Definition 3; the PALM-to-path
conversion is intuitive: starting by vl = v1 (which must be the first vertex appearing in any path per
Definition 1), follow the edge e = (vl, vl+1) represented by xl in the PALM and transit to vl+1, and
then repeat this process until reaching vL.
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Diffusion learning and inference with PALM. We employ the D3PM framework of (Austin
et al., 2021) to learn a PALM representation. We conduct training and inference with PALM as
the representation of paths. Concretely, a neural network is trained to take PALM as input and
predict the logits of a distribution: p̃θ (x̃0 | xt). We adopt the same parametrization as Austin et al.
(2021):

pθ (xt−1 | xt) ∝
∑

x̃0

q (xt−1, xt | x̃0) p̃θ (x̃0 | xt) . (3)

To learn path distributions, we make the following changes from D3PM. First, since our dataset only
stores paths but not PALM, we convert paths to PALM on the fly during training. Since the PALM-
to-path mapping is many-to-one, we assign one hot vectors uniformly in rows (corresponding to
vertices in the layered graph) that do not belong to the path. We adopt the uniform transition matrix
(Austin et al., 2021; Hoogeboom et al., 2021) in the forward diffusion process, but the transition
matrix at each timestep t for each node v is constructed differently according to their out-degrees,
catering the varied length of vectors in PALM (see details in Appendix B). We use the common
cosine noise scheduling (Nichol & Dhariwal, 2021) for the forward diffusion process. For training,
we follow the combined loss proposed by Austin et al. (2021):

Lγ = γLvb + E
q(x0)

[
E

q(xt |x0)

[
− log pθ (x̃0 | xt)

]]
, (4)

where Lvb is the variation bound loss commonly adopted in diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Austin et al., 2021) and γ is a weighting parameter. Since we are learning
distributions over paths rather than PALM, we only include losses incurred at vertices on the path.

We perform inference (sampling of paths) in PALM representation the same way as D3PM, with one
extra step at the end that converts the sampled paths x0 in PALM representation back to the common
sequence form defined in Definition 2. Our implementation of D3PM is adapted from (Ryu, 2024)
and (Niu et al., 2020; Yan et al., 2024).

4 Discrete Diffusion Guidance via Posterior Sampling

Guidance (Dhariwal & Nichol, 2021; Ho & Salimans, 2021) is a useful technique in diffusion-based
conditional generation for steering the sampling process to data modes with the desired properties,
e.g., a certain class of pictures, or in our case, a collection of paths that can achieve high rewards
under a reward function. In this work, we focus on the method of classifier guidance (Dhariwal &
Nichol, 2021; Nichol et al., 2022) for compatibility to different external conditions (e.g., different
reward function instances) without the need for retraining the diffusion model.

Concretely, our objective of guided sampling is to generate paths that contain some or all of a set
of prespecified “preferred” edges. This defines an implicit scalar reward function r over all possible
paths, i.e., the reward associated with a path is equal to the number of preferred edges it contains.

4.1 Guidance in Discrete Diffusion

There has not been an established principle for guidance in discrete diffusion. Unlike its counterpart
in continuous domain where guidance under a given condition y can be interpreted as a combination
of the Stein score ∇xlog p(x) and the likelihood score ∇x p (y | x). In discrete domains the (Stein)
score is undefined, rendering this approach unfounded. The discrete generalization of the score
(Meng et al., 2022; Lou et al., 2024), on the other hand, has not yet provided a principled way for
guidance either. As such, we take a step back and return to the (logarithmic) Bayes’ theorem per se
to derive the posterior in discrete diffusion as recent efforts (Nisonoff et al., 2025) have attempted:

log p (xt−1 | xt, y)︸               ︷︷               ︸
posterior

= log (p (y | xt, xt−1) /p (y | xt))︸                               ︷︷                               ︸
likelihood ratio

+ log p (xt−1 | xt)︸            ︷︷            ︸
prior

, (5)

where the prior p (xt−1 | xt) is approximated by a trained denoising diffusion model pθ (xt−1 | xt).
Different yet akin to guidance in the continuous domain, the key to the posterior boils down to a
reasonable and efficient approximation or direct computation of the log likelihood ratio log p(y|xt ,xt−1)

p(y|xt)
.
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Algorithm 1 Total Expected Reward Calculation

1: Inputs: PALM Logits z, Layered graph G = (V,E), Reward assignment PALM [u]
2: [pv]← get transit prob dp(G, z) ▷ Get transition prob. to each node v
3: for v ∈ V do
4: rv ← pv · 1⊤uv

5: R←
∑

v∈V rv

6: Return: R

Algorithm 2 DDPS Inference

1: Inputs: Diffusion model p̂θ Reward model R, Forward noise Q1, · · · ,QT , Guidance scale λ
2: xT ∼ Cat(1) ▷ Sample from uniform categorical distribution
3: for t = T,T − 1, . . . , 1 do
4: z← p̃θ(x̃0|xt) ▷ Predict x0 logits with diffusion model
5: r̄ ← R(z) ▷ Get expected rewards via Algorithm 1
6: gt ← ∇zr̄
7: x̃t−1 ← (

∏t
τ=1 Qτ)z ▷ Forward diffusion process

8: x̃′t−1 ← λgt + x̃t−1 ▷ Perform guidance to get posterior
9: xt−1 ∼ Cat(x̃′t−1) ▷ Sample from the guided posterior

10: Return: x0

4.2 Guidance Signal with PALM

Given a scalar reward function r we formulate condition y in terms of reward optimality to influence
edge selection probabilities. While directly increasing the sampling probabilities of preferred edges
appears intuitive, this approach is inadequate since edge selection depends on the choices made in
preceding layers. Consider a preferred edge e = (vl, vm) in a path p. When its preceding edges e′ =
(vk, vn), where k < l, have negligible selection probabilities, path p becomes effectively inaccessible
regardless of the selection probability of edge e.

Thus, we opt for utilizing the expectation of total rewards R given a distribution of PALM, involving
all the probabilities of selecting each edge in the graph. These probabilities are all encoded in the
categorical distributions’ logits z yielded by the diffusion model p̃θ (x̃0 | xt). Further, we propose to
leverage the gradient of the expected total rewards with respect to the logits z, to approximate the
log likelihood ratio as guidance signal:

log (p (y | xt, xt−1) /p (y | xt)) ≈ ∇zR(z). (6)

Approximation (6) results in the reward-guided sampling process

log pθ (xt−1 | xt, y) = λ∇zR(z) + log pθ (xt−1 | xt) , where z = p̃θ (x̃0 | xt) . (7)

Algorithm 2 describes this guided sampling procedure.

5 Experiments

In this section, we address the following research questions:

RQ1: In terms of quality of generated samples, how does our proposed PALM representation com-
pared to alternatives like adjacency matrix learning (Niu et al., 2020; Yan et al., 2024)?

RQ2: Is the proposed DDPS method effective for reward improvement?
RQ3: When utilizing guidance, what is the tradeoff between reward improvement and adherence to

the original learned distribution?

Problem instances and data. We ran experiments on the following 3 problem instances.

• Toy was synthetically generated by randomly truncating edges on a layerwise-fully-connected
layered graph. It features 11 layers and 41 vertices.
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Method Valid Rate (VR) % ↑
EDP-GNN 0.00
SwinGNN 99.7
DDPS (Ours) 100

Table 1: Valid rate comparisons in unconditional
path generation. Each method generates 8192
samples for validity check.
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Figure 3: Valid rates for baseline and our
method under different guidance strengths.

• Heights and Ridge are layered graphs converted from real-world city maps using the method
of (Černý et al., 2024). Heights is a middle-scale graph with 12 layers and 423 vertices while
Ridge is larger, with 13 layers and 4293 total vertices. These graphs are relatively sparse, with
out-degree of each vertex mostly being less than 6.

The Toy dataset comprises all unique paths in the graph, while the dataset for Heights (∼120k
paths) and Ridge (∼347k paths) were obtained by sampling them nonuniformly over all paths. Note
that in both cases, the number of paths are orders of magnitude higher. We employ UNet-like neu-
ral networks (Ronneberger et al., 2015) as the backbone of the diffusion models, use 256 diffusion
timesteps and train them with the AdamW optimizer (Loshchilov & Hutter, 2017). All experi-
ments were run on an AMD Ryzen Threadripper PRO 5995WX 64-Core CPU, 504 GB RAM, and
2 NVIDIA RTX A6000 GPUs each with 48GB GPU memory using PyTorch (Paszke et al., 2019).

5.1 Structured Discrete Representation for Generation Quality

To address RQ1, we compared the sample quality of our proposed method to diffusion baselines
that operate on the continuous relaxation of the discrete data domain. By sample quality, we refer
to the proportion of valid paths that are generated. Recall from section 3 that by construction, our
proposed method generates valid paths with certainty.

Unconditional path generation. We compared our method to baselines EDP-GNN (Niu et al.,
2020) and SwinGNN (Yan et al., 2024). Both EDP-GNN and SwinGNN generate adjacency matrices
rather than paths.1 Thus, there is non-zero probability where the edges included in the adjacency
matrix do not form a single path in the layered graph. For each of the 3 methods, we trained a
denoising diffusion model using the same training data, with the only difference in how paths were
represented internally. For this part, no guidance was used, i.e., only unconditional sampling was
tested. To evaluate sample quality, we generated a set S of N samples and report the valid rate (VR):

VR ≜
∑

s∈S 1
[
s is a path

]
N

× 100%. (8)

We used a dataset of size 1350 with at 80-20 train-validation split. The results are reported in Table 1.
As expected, our method yields a VR of 100% since our approach by construction guarantees a
valid path. EDP-GNN yields a VR of 0, meaning that essentially no valid paths were generated.
Surprisingly, SwinGNN generates valid paths almost all the time.

Conditional path generation with reward guidance. To further investigate this phenomenon,
we consider the more complex task of conditional path generation, i.e., diffusion with guidance and
compare our method to SwinGNN for various levels of guidance scales λ. We utilize the models
trained earlier for sampling under reward predictor guidance as condition generation, following the
general idea of classifier guidance (Dhariwal & Nichol, 2021). We adopt a simple reward setup: a
path obtains 1.0 reward if it contains a specific edge in the layered graph. Since SwinGNN does
not originally support guidance, we adopt a simplified approach described by Ma et al. (2024) and

1EDP-GNN learns distributions of adjacency matrices of graphs by training a graph neural network via score
matching and sampling with annealed Langevin dynamics. SwinGNN improves upon EDP-GNN by leveraging
a graph transformer to learn the score of adjacency matrices distributions and perform sampling from the the
perspective of diffusion stochastic differential equations.
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(a) Toy (b) Heights (c) Ridge

Figure 4: Average reward values under various guidance scales for different reward configurations.
Error bars denote standard deviations.

leverage the gradients of rewards achieved by noisy samples as guidance signals. Guided sampling
with DDPS is implemented as described in Algorithm 2. 2

The results for this setting are reported in Figure 3. When λ is small, both methods generated
valid paths almost all the time, but as λ increases, SwinGNN’s performance drops (surprisingly, not
monotonically in λ) to zero. In contrast, our method guarantees perfect valid rate by construction
regardless of λ. These results point toward the brittle nature of continuous-state approximations for
inherently discrete variables.

5.2 Discrete Posterior Sampling for Reward Improvement

To assess the ability of DDPS in reward improvement, we train diffusion models for all 3 problem
instances, Toy, Heights, Ridge.3 We follow the approach in section 4 by assigning binary rewards
to edges in a layered graph. An edge with a reward of 1 indicates that paths containing it are
favored, and DDPS should guide the sampling process into including these favored edges. We
adopt 4 reward configurations, each specified by the maximum possible reward a path can ever
achieve. For example, in Toy, these four configurations correspond to a maximum reward of 1,2,4,
or 7 (figure 4(a)). For each problem instance, we took each configuration and ran guided sampling
with different reward function instances, 20 for Toy and Heights, and, 10 for Ridge.These classes
of configurations characterize a range of reward sparsity— from nearly half of all possible paths
achieving maximum rewards to the case where a path chosen u.a.r. achieves it with odds poorer than
one over ten million.

For each layered graph, we used the trained discrete diffusion model as the base sampler, and per-
form guided sampling with DDPS. We evaluate reward improvement by taking the empirical means
of rewards with 65536 samples for Toy, 4096 for Heights and 2048 for Ridge.

We present in figure 4 the average rewards for different reward functions and under different guid-
ance scales of DDPS. The trends observed in figure 4 agree with what we expect: with stronger
guidance, the higher reward one obtains eventually plateauing at the maximum obtainable reward.
The “S”-shaped curve (note the logarithmic x-axis) suggests that when λ is small then the gradient
of the obtained reward with respect to λ is small as well. Overall, our results suggest that DDPS
leads to reward improvement as long as a sufficiently large guidance scale is selected.

5.3 Trade-offs between Reward Objective and Learned Distribution

While rewards obtained are highest with a large enough guidance scale λ, this comes at the expense
of deviating from the original (i.e., without guidance) distribution. We examine this tradeoff em-
pirically by examining path distributions as λ varies. To do so, we introduce the idea of a target
distribution. A desirable target distribution in our case for reward-guided sampling would be the
posterior distribution of paths given the true likelihood of our desired property (i.e., obtaining max
rewards) and the learned prior (without guidance). In our context, we look at the distribution of

2Since SwinGNN uses an internal representation distinct from PALM, guidance scale technically cannot be
compared across both methods.

3For Toy, the model was trained separately from section 5.1.
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(a) dL1 ↓ (b) dTV ↓ (c) SFD ↓ (d) KL ↓

Figure 5: Metrics in path distributions for the small-size graph Toy. The error bars represent stan-
dard deviations across different reward function instances within the reward configuration class (20
instances per configuration). The sample size is 65536.

paths when λ = 0, conditioned on them receiving the maximum achievable reward (e.g., 1,2,4,7 for
Toy in figure 4(a)) and compare that to the distribution of paths obtained when λ > 0.

We appeal to the following metrics between probability distributions to show the gap between the
target and generation distributions ptar (x) and pgen (x),

• KL divergence DKL

[
ptar (x) ∥ pgen (x)

]
;

• L1 distance: dL1 [ptar (x), pgen (x)] =
∑

x

∣∣∣ptar (x) − pgen (x)
∣∣∣;

• Total Variation distance: dTV

[
ptar (x), pgen (x)

]
= supx

∣∣∣ptar (x) − pgen (x)
∣∣∣;

• Spearman’s Footrule Distance: SFDπ
[
ptar (x), pgen (x)

]
. See Definition 5 in Appendix B.3 for a

formal definition. This metric covers the relative significance of elements in terms of probability.

However, as the size of layered graph increases, the number of total possible paths and the support
of path distributions grows exponentially. This makes it computationally intractable to estimate
ptar (x) and pgen (x) by sampling. Therefore, for such large graphs we evaluate distributions of certain
features of the sampled paths, where these features are much lower-dimensional:

• Fréchet layered graph distance (FLGD) is an adaptation of the Fréchet Inception distance (FID)
in image generation. The feature vector of a sample path is obtained by flattening the PALM
representation of the sample and zeroing out all entries belonging to vertices outside the path.
• Layer Imitation Score (IS-L) aggregates across layers the marginal distributions over vertices in

the each layer. We employ four variants based on the measure: IS-L-L1, IS-L-KL, IS-L-TV, and
IS-L-SF, each corresponding to the metrics used on path distributions as discussed above. A
formal definition of IS-L is in Definition 4 in Appendix B.3.

Figure 5 shows our results for Toy for all 4 metrics. The same trend is observed: as λ increases, we
see the distributions getting closer. This trend decreases until around λ = 100, after which distances
rise and eventually plateau. The shapes of the curves suggest a “sweet spot” balancing the reward
objective and adherence to the learned prior distribution.

Figure 6 in Appendix C shows our results using feature distributions for Toy, Heights, and Ridge.
By and large, they reveal a similar pattern— except for scores calculated using the SFD, the scores
decay as the λ increases and achieve a “sweet spot” before rising and eventually plateauing. With
the exception of IS-L-SF, the “sweet spots” are marked by the golden dashed lines, whose location
approximately agree. This value of λ achieves near-optimal reward. This suggests that with the right
amount of guidance, DDPS achieves a good tradeoff between reward and adherence to the original
distribution (conditioned on attaining optimal reward).

6 Conclusion

In this paper we propose DDPS, which utilizes the PALM representation to guarantee that samples
from a discrete diffusion model do indeed correspond to paths in a layered graph. Our preliminary
results look favorable and we show that with classifier guidance, we are able to achieve high rewards
given some reward function while still maintaining reasonable adherence to the learned distribution.
Future work includes extending this to more general problems beyond path generation, or involving
more elaborate constraints or rewards on the generated paths.
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B Experiment Details

B.1 Data

Datasets used in section 5 was generated synthetically. The two small layered graphs (one used in
section 5.1 and Toy) were obtained by first construct a layerwise-fully-connected graphs and then
pruning 50% of all the edges within. The pruning process is to choose edges in the graph uniformly
at random, and then remove it. Checks were performed to ensure the resulting pruned graph meets
definition of layered graphs and there exists paths from the first layer to the last layer. All possible
unique paths in the two pruned graphs were included in the datasets. For Heights and Ridge, we
first obtain all possible unique paths in the layered graphs by searching, and then sample paths from
all possible paths uniformly at random without replacement. After that, we duplicate the chosen
paths by different numbers for each to create the nonuniform pattern in the dataset.

B.2 DiffusionModel Implementation Details

We provide implementation details regarding training and inference of discrete diffusion models
with PALM.

Transition matrix construction For vertices v with positive out-degree(s) (Dv > 0):

[Qv
t ]i j =


1 −

Dv − 1
Dv
βt, if 1 ≤ i = j ≤ Dv

1
Dv
βt, if 1 ≤ i , j ≤ Dv

0, otherwise.

(9)

For vertices with zero out-degree (Dv = 0):

Qv
t = ID. (10)

Note that for each transition matrix Qv
t , its upper-left Dv × Dv block is a doubly stochastic square

matrix.

Inference with PALM The only difference between the inference process of DDPS and that of
D3PM lies in that for each node v, we only take the first Dv logits (corresponding to the Dv edges
originating at v) to construct the categorical distribution for sampling at each time step, since other
entries are merely paddings and do not represent valid edges in the graph.

B.3 Metrics

We define here some metrics we used in the experiments in section 5.3.

Definition 4 (Layer Imitation Scores (IS-L)). Let p
(
v(l)
)
, ∀l ∈ {1, . . . , L} be the marginal distri-

bution of vertices within layer l of a layered graph with L layers in total. Given a path x, let the
likelihood of vertices be the Dirac delta on the vertex on this path x(l) for each layer:

p
(
v(l) | x

)
= δ
(
v(l) − x(l)

)
, ∀l = 1, . . . , L. (11)

Then, for a statistical dissimilarity measure d[p, q] : P × P → R between two discrete probability
distributions, the IS-L is defined as

IS-L ≜
L∑

l=1

d
[
E

w∼ptar(x)

[
p
(
v(l) | w

)]
, E

w′∼pgen(x)

[
p
(
v(l) | w′

)]]
. (12)
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Definition 5 (Spearman’s Footrule Distance (SFD), adapted from (Diaconis & Graham, 1977) 4).
Given two discrete probability distributions p and q over a finite support S = {1, . . . , n}, let πp
and πq be the permutations of S induced by sorting p and q in descending (or ascending) order by
probability mass, respectively. Specifically:

• πp(i) represents the position of support element i in the sorted ordering of p;

• πq(i) represents the position of support element i in the sorted ordering of q.

The Spearman’s footrule distance between distributions p and q is then defined as:

SFDπ
[
p, q
]
≜

1
M(n)

∑
i∈S

∣∣∣πp(i) − πq(i)
∣∣∣ , (13)

where M(n) is the maximal possible distance, which occurs when one permutation is the reverse of
the other:

M(n) =

 n2

2 , if n is even
n2−1

2 , if n is odd

Remark 1. We acknowledge the SFD is not invariant to permutations of elements with same prob-
abilities. As such, we utilize the same tie-breaking mechanism across all experiments to make fair
comparisons.

C Additional Experiment Results

We include experiment results involving all feature-based metrics in this section.

4The SFD defined in Definition 5 is adapted from, but slightly different to the Spearman’s footrule in
(Diaconis & Graham, 1977, Eq.(1.1)) which is defined over two non-parametric permutations. In contrast, the
two permutations involved in the SFD herein are parameterized by two probability distributions.
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(a) Reward ↑ Toy (b) Reward ↑ Heights (c) Reward ↑ Ridge

(d) IS-L dL1 ↓ (e) IS-L dL1 ↓ Heights (f) IS-L dL1 ↓ Ridge

(g) IS-L dTV ↓ (h) IS-L dTV ↓ Heights (i) IS-L dTV ↓ Ridge

(j) IS-L SFD ↓ (k) IS-L SFD ↓ Heights (l) IS-L SFD ↓ Ridge

(m) FLGD ↓ Toy (n) FLGD ↓ Heights (o) FLGD ↓ Ridge

Figure 6: Additional experiments with guidance on Toy, Heights and Ridge. The first row contains
the rewards obtained. The next 4 rows are based on FLGD and IS-L metrics.
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