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Abstract

Despite the recent success of machine learning (ML) in materials science, its
success heavily relies on the structural description of crystal, which is itself com-
putationally demanding and occasionally unattainable. Stoichiometry descriptors
can be an alternative approach, which reveals the ratio between elements involved
to form a certain compound without any structural information. However, it
is not trivial to learn the representations of stoichiometry due to the nature of
materials science called polymorphism, i.e., a single stoichiometry can exist in
multiple structural forms due to the flexibility of atomic arrangements, inducing
uncertainties in representation. To this end, we propose PolySRL, which learns
the probabilistic representation of stoichiometry by utilizing the readily available
structural information, whose uncertainty reveals the polymorphic structures of
stoichiometry. Extensive experiments on sixteen datasets demonstrate the supe-
riority of PolySRL, and analysis of uncertainties shed light on the applicability
of PolySRL in real-world material discovery. The source code for PolySRL is
available at https://github.com/Namkyeong/PolySRL_AI4Science.

1 Introduction

Recently, ML techniques have found their applications in the field of materials science to analyze
the extensive amount of experimental and computational data available [65, 57]. However, the
effectiveness of these ML models is not only influenced by the selection of appropriate models but
also reliant on the numerical descriptors used to characterize the systems of interest. Although it is
still an open problem to construct appropriate descriptions of materials, there is a general agreement
on effective descriptors that encompass the following principles [22, 17, 2, 55, 40]: Descriptors should
1) preserve the similarity or difference between two data points (preservativity), 2) be applicable
to the entire materials domain of interest (versatility), and 3) be computationally more feasible to
generate compared to computing the target property itself (computability).

Among various types of descriptors, there has been a notable surge of interest in using descriptors
based on the knowledge of crystal structure in materials science. In particular, as shown in Figure 1(a),
one can create graphical descriptions of crystalline systems by considering periodic boundary condi-
tions and defining edges as connections between neighboring atoms within a specific distance [59, 10].
However, these graphical descriptors depend on the structural details of crystals, which are usually
obtained through computationally demanding and, in some cases, infeasible Density Functional The-
ory (DFT) calculations [48]. As a result, graphical descriptors are limited by the same computational
bottleneck as DFT calculations, violating the principles of versatility and computability [15].
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Figure 1: (a) Crystal structure of NaCl. (b), (c) Graphical and stoichiometry description of NaCl,
respectively. (d) Diamond and Graphite share a single stoichiometry but have different structures.

An alternative approach to using graphical descriptors is to develop material representations from
stoichiometry2 alone, as shown in Figure 1(b), which generates the representation of material solely
based on its elemental composition [25, 20]. Despite its simplicity, stoichiometry-based models
have been shown to robustly offer a promising set of favorable elemental compositions for exploring
new materials with cheap computational cost [15]. However, this approach is inherently limited in
that it overlooks the structural information of crystals, leading to inferior performance compared
to graphical models [1] given that structural details strongly influence the crystal properties. This
naturally prompts a question: “Is it possible for stoichiometry-based models to also capture the
structural information of crystals?”

To answer the question, we propose a novel multi-modal representation learning framework for
stoichiometry that incorporates readily available crystal structural information (i.e., stoichiometry and
crystal structural information as multi-modal inputs), inspired by the recent success of multi-modal
contrastive learning approaches in various domains [18, 67]. For example, in computer vision,
CLIP [46] improves the zero-shot transferability of a vision model by matching captions and images.
Moreover, 3D Infomax [49] improves 2D molecular graph representation in quantum chemistry by
maximizing the mutual information with its corresponding 3D molecular representations.

However, naively adopting existing multi-modal contrastive learning approaches to the stoichiometry
representation learning task is non-trivial due to the intrinsic characteristics of crystal structures,
i.e., one-to-many relationship between stoichiometry and crystal structures stemming from the
flexibility of atomic arrangements, which is also known as polymorphism. In other words, solely
relying on stoichiometry would contradict the principle of preservativity, especially for polymorphic
materials with the same stoichiometry. More specifically, polymorphism refers to the nature of a
certain compound to exist in different crystallographic structures due to different arrangements of
atoms, resulting in totally different physical, and chemical properties [4]. An illustrative example
of polymorphism is seen in the distinct forms of carbon: diamond and graphite (See Figure 1(c)).
Diamond has a tetrahedral lattice structure with each carbon atom bonded to four others, resulting
in its exceptional hardness and optical properties [9, 31]. However, graphite has a planar layered
structure where carbon atoms are bonded in hexagonal rings, forming sheets that can easily slide past
each other, giving graphite its lubricating and conducting properties [58, 29]. Therefore, it is essential
not only to obtain qualified stoichiometry representations, but also to account for the uncertainties
stemming from polymorphism for real-world material discovery, which has been overlooked in
previous studies [20, 56].

To this end, we propose Polymorphic Stoichiometry Representation Learning (PolySRL), which
aims to learn the representation of stoichiometry as a probabilistic distribution of polymorphs instead
of a single deterministic representation [43, 14]. In particular, by assuming that polymorphs with an
identical stoichiometry follow the same Gaussian distribution, PolySRL models each stoichiometry
as a parameterized Gaussian distribution with learnable mean and variance vectors, whose distribution
is trained to cover the range of polymorphic structures in representation space. By doing so, we expect
the mean of Gaussian distribution serves as the representation of the stoichiometry, and the variance
reflects the uncertainty stemming from the existence of various polymorphic structures, enabling
PolySRL to assess the degree to which the representation adheres to the principle of preservativity.
In this work, we make the following contributions:

• Recognizing the advantages and limitations of both structural and stoichiometry descriptors, we
propose a multi-modal representation learning framework for stoichiometry, called PolySRL, which
incorporates structural information of crystals into stoichiometry representations.

2Stoichiometry refers to the ratio between elements involved in a chemical reaction to form a compound.
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• To capture uncertainties of stoichiometry stemming from various polymorphs, PolySRL learns a
probabilistic representation for each stoichiometry instead of a deterministic representation.

• Extensive experiments on sixteen datasets demonstrate the superiority of PolySRL in learning
representation of stoichiometry and predicting its physical properties. Moreover, we observe that
measured uncertainties reflect various challenges in materials science, highlighting the applicability
of PolySRL for real-world material discovery.

To the best of our knowledge, this is the first work that learns generalized representations of stoi-
chiometry by simultaneously considering the crystal structural information and the polymorphism as
uncertainty, which is crucial for the process of real-world material discovery.

2 Related Works

2.1 Graph Neural Networks for Materials

Among various ML methods, graph neural networks (GNNs) have been rapidly adopted by modeling
crystal structures as graphical descriptions inspired by the recent success of GNNs in biochemistry [19,
50, 27, 21, 38, 37]. Specifically, CGCNN [59] first proposes a message-passing framework based on a
multi-edge graph to capture interactions across cell boundaries, resulting in highly accurate prediction
for eight distinct material properties. Building upon this multi-edge graph foundation, MEGNet [10]
predicts various crystal properties by incorporating a physically intuitive strategy to unify multiple
GNN models. Moreover, ALIGNN [12] proposes to utilize a line graph, in addition to a multi-edge
graph, to model additional structural features such as bond angles and local geometric distortions.
Despite the recent success of graph-based approaches, their major restriction is the requirement of
atomic positions, which are typically determined through computationally intensive and sometimes
infeasible DFT calculations. As a result, their effectiveness is mainly demonstrated in predicting
properties for systems that have already undergone significant computational effort, restricting their
utility in the materials discovery workflow [15].

2.2 Stoichiometry Representation Learning

Material representations can be alternatively constructed solely based on stoichiometry, which indi-
cates the concentration of the constituent elements, without any knowledge of the crystal structure [15].
While stoichiometry has historically played a role in effective materials design [6, 45], it has been
recently demonstrated that deep neural networks (DNNs) tend to outperform conventional approaches
when large datasets are available. Specifically, ElemNet [25] takes elemental compositions as inputs
and trains DNNs with extensive high-throughput OQMD dataset [36], showing improvements in per-
formance as the network depth increases, up to a point where it reaches 17 layers. Roost [20] utilizes
GNNs for stoichiometry representation learning by creating a fully connected graph in which nodes
represent elements, allowing for the modeling of interactions between these elements. Instead of the
message-passing scheme, CrabNet [56] introduces a self-attention mechanism to adaptively learn the
representation of individual elements based on their chemical environment. While these methods
are trained for a specific task, PolySRL aims to learn generalized stoichiometry representations for
various tasks considering 1) the structural information and 2) polymorphism in crystal, both of which
have not been explored before.

2.3 Probabilistic Representation Learning

First appearing in 2014 with the introduction of probabilistic word embeddings [53], probabilistic
representations got a surge of interest from ML researchers by offering numerous benefits in modeling
uncertainty pertaining to a representation. Specifically, in the computer vision domain, Shi & Jain
[47] proposes to probabilistically represent face images to address feature ambiguity in real-world
face recognition. Moreover, Oh et al. [43] introduces Hedged Instance Embeddings (HIB), which
computes a match probability between point estimates but integrates it over the predicted distributions
via Monte Carlo estimation. This idea has been successfully extended to cross-modal retrieval [14],
video representation learning [44], and concept prediction [32]. In this paper, we aim to learn a
probabilistic representation of stoichiometry, where the uncertainties account for various polymorphs
associated with a single stoichiometry, enhancing the reliability of the material discovery process.
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3 Preliminaries

3.1 Stoichiometry Graph Construction

Given a stoichiometry, we use E = {e1, . . . , ene
} to denote its unique set of elements, and R =

{r1, . . . , rne
} to denote the compositional ratio of each element in the stoichiometry. We construct

a fully connected stoichiometry graph Ga = (E ,R,Aa), where Aa ∈ {1}ne×ne indicates the
adjacency matrix of a fully connected graph [20]. Then, we adopt GNNs as the stoichiometry encoder
fa, which aims to learn the stoichiometry representation by capturing complex relationships between
elements via the message-passing scheme. Additionally, Ga is associated with an elemental feature
matrix Xa ∈ Rne×F where F is the number of features.

3.2 Structural Graph Construction

Given a crystal structure (P,L), suppose the unit cell has ns atoms, we have P =
[p1,p2, . . . ,pns

]
⊺ ∈ Rns×3 indicating the atom position matrix and L = [l1, l2, l3]

⊺ ∈ R3×3 repre-
senting the lattice parameter describing how a unit cell repeats itself in three directions. Based on the
crystal parameters, we construct a multi-edge graph Gb = (V,Ab) that captures atom interactions
across cell boundaries [59]. Specifically, vi ∈ V denotes an atom i and all its duplicates in the infinite
3D space whose positions are included in the set {p̂i|p̂i = pi + k1l1 + k2l2 + k3l3, k1, k2, k3 ∈ Z},
where Z denotes the set of all the integers. Moreover, Ab ∈ {0, 1}ns×ns denotes an adjacency matrix,
where Ab

i,j = 1 if two atoms i and j are within the predefined radius r and Ab
ij = 0 otherwise.

Moreover, a single stoichiometry graph Ga is associated with a set of polymorphic crystal structural
graphs PGa

, i.e., PGa

= {Gb
1, . . . ,Gb

np
}, where np is the number of polymorphs for the stoichiometry.

Note that each node in Gb is associated with a learnable feature xb ∈ RF , which is shared across all
crystals, to make sure we utilize only structural information. We provide further details on structural
graph construction in Appendix A.

3.3 Task Descriptions

Given the stoichiometry graph Ga and the structural graph Gb of a single crystal, our objective is to
acquire a stoichiometry encoder denoted as fa, alongside mean and variance modules referred to as
faµ and faσ , which associate structural information of Gb into latent representation of stoichiometry
Ga. Then, the modules are applied to a range of downstream tasks, a scenario frequently encountered
in real-world material science where solely stoichiometry of material is accessible.

4 Methodology: PolySRL

In this section, we present Polymorphic Stoichiometry Representation Learning (PolySRL), which
learns the representation of stoichiometry regarding polymorphic structures of crystals. Overall
model architecture is illustrated in Figure 2.

4.1 Structural Graph Encoder

While structural information plays an important role in determining various properties of crystals,
previous studies have overlooked the readily available crystal structures [23] for stoichiometry rep-
resentation learning [25, 20, 56]. To this end, we use a GNN encoder to learn the representation
of crystal structure, which is expected to provide guidance for learning the representation of stoi-
chiometry. More formally, given the crystal structural graph Gb = (xb,Ab), we obtain a structural
representation of a crystal as follows:

zb = Pooling(Zb), Zb = f b(xb,Ab), (1)

where Zb ∈ Rns×F is a matrix whose each row indicates the representation of each atom in the
crystal structure, zb indicates the latent representation of a crystal structure, and f b is the GNN-based
crystal structural encoder. In this paper, we adopt graph networks [3] as the encoder, which is a
generalized version of various GNNs, and sum pooling is used as the pooling function. We provide
further details on the GNNs in Appendix B.1.
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Figure 2: Overall model architecture.

4.2 Probabilistic Stoichiometry Encoder

Deterministic Representation. After obtaining the structural representation zb, we also compute the
stoichiometry representation from the stoichiometry graph Ga as follows:

za = Pooling(Za), Za = fa(Xa,Aa), (2)

where Za ∈ Rne×F is a matrix whose each row indicates the representation of each element in a
stoichiometry, za ∈ RF indicates the stoichiometry representation of a crystal, and fa is a GNN-based
stoichiometry encoder. By utilizing GNNs, the stoichiometry encoder effectively learns intricate
relationships and chemical environments related to elements, thereby enhancing the stoichiometry
representation in a systematic manner [20]. For the stoichiometry encoder fa, we adopt GCNs [35]
with jumping knowledge [60], and weighted sum pooling with the compositional ratio (i.e., R in
Section 3.1) is used as the pooling function.

One straightforward approach for injecting structural information into the stoichiometry representation
would be adopting the idea of recent multi-modal contrastive learning approaches, which have been
widely known to maximize the mutual information between heterogeneous modality inputs (two
modalities in our case: stoichiometry and structure) [46, 49]. However, such a naive adoption fails
to capture the polymorphic nature of crystallography: A single stoichiometry can result in multiple
distinct structures due to the diverse atomic arrangements, leading to significantly different physical,
and chemical properties [4]. That is, the relationship between the representations za and zb constitutes
a one-to-many mapping rather than a one-to-one mapping, leading to inherent uncertainties in the
stoichiometry representation za.

Probabilistic Representation. To this end, we propose to learn a probabilistic representation of
stoichiometry za, which naturally exhibits uncertainties of the representation, inspired by the recent
Hedge Instance Embeddings (HIB) [43]. The main idea here is to learn the Gaussian representation
of stoichiometry, which reveals the distribution of polymorphic structures Pa in representation space.
Intuitively, the variance of this distribution reflects the range of diversity within these structures,
giving us an idea of how well the representation adheres to the principle of preservativity. More
formally, we model each stoichiometry as a parameterized Gaussian distribution with learnable mean
vectors and diagonal covariance matrices as follows:

p(z̃a|Xa,Aa) ∼ N (zaµ, z
a
σ), where zaµ = faµ(Z

a), zaσ = faσ (Z
a). (3)

Here, zaµ, z
a
σ ∈ RF denote the mean vector and the diagonal entries of the covariance matrix,

respectively, and faµ and faσ refer to the modules responsible for calculating the mean and diagonal
covariance matrices, respectively. During training, we adopt the re-parameterization trick [34] to
obtain samples from the distribution, i.e., z̃a = diag(

√
zaσ) · ϵ+ zaµ, where ϵ ∼ N (0, 1). While mean

and variance are obtained from the shared Za, we utilize different attention-based set2set pooling
functions for faµ and faσ [54], since the attentive aspects involved in calculating the mean and variance
should be independent from each other. We provide further details on the probabilistic stoichiometry
encoder in Appendix B.2.

4.3 Model Training via Representation Alignment

To incorporate the structural information into the stoichiometry representation, we define a matching
probability between the stoichiometry graph Ga and its corresponding set of polymorphic crystal
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structural graphs PGa

in the Euclidean space as follows:

p(m|Ga,PGa

) ≈
∑
p∈Pa

1

J

J∑
j=1

sigmoid
(
− c∥z̃aj − zbp∥2 + d

)
, (4)

where z̃aj is the sampled stoichiometry representation (Section 4.2), zbp is the structural graph
representation (Section 4.1), c, d > 0 are parameters learned by the model for soft threshold in
the Euclidean space, J is the number of samples sampled from the distribution, and sigmoid(·) is the
sigmoid function. Moreover, m is the indicator function of value 1 if PGa

is the set of polymorphic
structures corresponding to Ga and 0 otherwise. Then, we apply the soft contrastive loss [43, 14] as:

Lcon =

{
− log p(m|Ga,PGa′

), if a = a′,

− log (1− p(m|Ga,PGa′
)), otherwise.

(5)

Intuitively, the above loss aims to minimize the distance between a sampled stoichiometry representa-
tion and its associated polymorphic structural representations, while maximizing the distance between
others. By doing so, PolySRL learns a probabilistic stoichiometry representation that considers
the structural information and its associated uncertainties, which tend to increase when multiple
structures are associated with a single stoichiometry, i.e., polymorphism.

In addition to the soft contrastive loss, we utilize a KL divergence loss between the
learned stoichiometry distributions and the standard normal distribution N (0, 1), i.e., LKL =
KL(p(z̃a|Xa,Aa) ∥ N (0, 1)), which prevents the learned variances from collapsing to zero. There-
fore, our final loss for model training is given as follows:

Ltotal = Lcon + β · LKL, (6)

where β is the hyperparameter for controlling the weight of the KL divergence loss. During the
inference, we use the mean vector zaµ as the stoichiometry representation and the geometric mean of
diagonal covariance matrices zaσ as uncertainty [14].

5 Experiments

5.1 Experimental Setup

Datasets. For training PolySRL, we collect 80,162 unique stoichiometries and their corresponding
112,183 DFT-calculated crystal structures from Materials Project (MP) website 3. However, since
DFT-calculated properties often deviate from real-world wet-lab experimental properties [26], we
primarily evaluate PolySRL using wet-lab experimental datasets. Specifically, we use publicly
available datasets containing experimental properties of stoichiometry, including Band Gap [66],
Formation Enthalpies [33], Metallic [39], and ESTM [41]. Moreover, we conduct experiments
on seven Matbench [16] datasets that are related to DFT-calculated properties. We provide further
details on the datasets in Appendix C.

Baseline Methods. Since PolySRL is the first work that learns stoichiometry representation without
any label information, we construct competitive baseline models from other domains. Rand init.
refers to a randomly initialized stoichiometry encoder without any training process. GraphCL [62]
learns the stoichiometry representation based on random augmentations on the stoichiometry graph
Ga, without utilizing structural information. MP Band G. and MP Form. E. learn the stoichiometry
representation by predicting the DFT-calculated properties, which are available in MP database 3,
i.e., band gap and formation energy per atom, respectively. 3D Infomax [49] learns stoichiometry
representation by maximizing the mutual information between stochiometry graph Ga and structural
graph Gb with NTXent (Normalized Temperature-scaled Cross Entropy) loss [11]. We provide further
details on baseline methods in Appendix D. In addition, we also compare PolySRL with supervised
stoichiometry representation learning methods, i.e., Roost [20] and CrabNet [56] in Appendix F.2.

Evaluation Protocol. We first train all models in an unsupervised manner without any use of wet-lab
experimental data. Then, we evaluate PolySRL in two evaluation schemes, i.e., representation
learning and transfer learning. We further provide the detailed evaluation protocols in Appendix E.

3https://materialsproject.org/
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Table 1: Representation learning performance (MAE) (Prop.: Property / Str.: Structure / Poly.:
Polymorphism / Band G.: Band Gap / Form. E.: Formation Entalphies / E.C.: Electrical Conductivity
/ T.C.: Thermal Conductivity).

Model
DFT

Poly. Band G. Form. E. Metallic
ESTM 300K ESTM 600K ZT̄

Prop. Str. E.C. T.C. Seebeck E.C. T.C. Seebeck 300K 600K

Rand init. ✗ ✗ ✗
0.439 0.671 0.211 1.029 0.225 0.451 0.714 0.218 0.437 0.099 0.261
(0.014) (0.066) (0.023) (0.119) (0.030) (0.031) (0.113) (0.024) (0.087) (0.017) (0.160)

GraphCL ✗ ✗ ✗
0.437 0.677 0.212 1.057 0.229 0.459 0.695 0.206 0.440 0.121 0.211
(0.022) (0.030) (0.019) (0.115) (0.040) (0.044) (0.119) (0.027) (0.077) (0.027) (0.043)

MP Band G. ✓ ✗ ✗
0.403 0.690 0.212 1.008 0.225 0.443 0.690 0.217 0.436 0.129 0.251
(0.011) (0.043) (0.028) (0.081) (0.026) (0.074) (0.085) (0.023) (0.075) (0.044) (0.161)

MP Form. E. ✓ ✗ ✗
0.416 0.619 0.203 1.121 0.228 0.441 0.784 0.220 0.444 0.093 0.328
(0.017) (0.062) (0.022) (0.137) (0.024) (0.078) (0.078) (0.021) (0.091) (0.008) (0.075)

3D Infomax ✓ ✓ ✗
0.428 0.654 0.201 0.969 0.217 0.432 0.692 0.212 0.428 0.105 0.171
(0.015) (0.032) (0.032) (0.110) (0.040) (0.070) (0.102) (0.013) (0.076) (0.030) (0.023)

PolySRL ✓ ✓ ✓
0.407 0.592 0.194 0.912 0.197 0.388 0.665 0.189 0.412 0.070 0.168
(0.013) (0.039) (0.017) (0.121) (0.020) (0.059) (0.126) (0.017) (0.043) (0.014) (0.021)

5.2 Empirical Results

Representation Learning. In Table 1, we have the following observations: 1) Comparing the
baseline methods that take into account structural information (Str. ✓) with those that do not (Str.
✗), we find out that utilizing structural information generally learns more high-quality stoichiom-
etry representations. This is consistent with the established knowledge in crystallography, which
emphasizes that structural details, including crystal structure and symmetry, play a crucial role in
determining a wide range of physical, chemical, and mechanical properties [4, 5]. 2) Moreover, we
observe PolySRL outperforms baseline methods that overlook polymorphism in their model design.
This highlights the significance of our probabilistic approach, which not only offers insights into
polymorphism-related uncertainties but also yields high-quality representations. 3) On the other
hand, we notice that utilizing DFT-calculated values contributes to the model’s understanding of a
specific target property (see Prop. ✓). For instance, when the model is trained with a DFT-calculated
band gap (i.e., MP Band G.), it surpasses all other models when predicting experimental band gap
values. This highlights that knowledge acquired from DFT-calculated properties can be applied to
wet-lab experimental datasets. However, these representations are highly tailored to a particular target
property, which restricts their generalizability for diverse tasks. We also provide empirical results
on Matbench datasets that contain DFT-calculated properties in Appendix F.1 and transfer learning
scenarios in Appendix F.2.

Physical Validity of Predicted Properties. To further verify the physical validity of predicted
properties, we theoretically calculate the figure of merit ZT̄ 4 of thermoelectrical materials with
the predicted properties in ESTM datasets in Table 1. More specifically, given predicted electrical
conductivity (E.C.) σ, thermal conductivity (T.C.) λ, Seebeck coefficient S, we can compute the figure
of merit ZT̄ as follows: ZT̄ = S2σ

λ T̄ , where T̄ indicates a conditioned temperature, i.e., 300 K and
600 K. In Table 1, we have following observations: 1) Looking at the general model performance on
ESTM datasets and ZT̄ , we find that performing well on ESTM datasets does not necessarily indicate
the predictions are physically valid. 2) In contrast, models that incorporate structural information
tend to produce physically valid predictions in both ESTM datasets, underscoring the importance
of the crystal structural information. 3) Moreover, PolySRL consistently outperforms baseline
methods, demonstrating that PolySRL not only learns accurate representations of stoichiometry but
also ensures the physical validity of the predictions. We provide further analysis on the predicted ZT̄ ,
and high throughput screening results of thermoelectrical materials in Appendix F.3.

5.3 Uncertainty Analysis

Number of Structures. In this section, we examine how uncertainties vary according to the
number of possible structures. To do so, we first collect all possible structures of stoichiometry
in Band Gap dataset from MP database3 and Open Quantum Materials Database (OQMD)5.
Subsequently, we compute the average uncertainties for stoichiometry groups with the same
number of possible structures. In Figure 3 (a), we have the following observations: 1) In

4In thermoelectric materials, the figure of merit ZT̄ plays a fundamental role in determining how effectively
power can be generated and energy can be harvested across various applications [42].

5https://oqmd.org/
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general, the uncertainty of stoichiometry that has polymorphic structures (# possible struc-
tures ≥ 2) was higher than that of the stoichiometry with a single structure (# possible struc-
tures = 1), demonstrating that PolySRL learns uncertainties regarding polymorphic structures.
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(a) # Possible structures (b) Datasets

Figure 3: Uncertainty analysis.

2) On the other hand, an increase in the number of possible struc-
tures in OQMD leads to an increase in the uncertainty, demon-
strating that PolySRL learns uncertainties related to the diverse
polymorphic structures. Note that this trend is mainly shown in
the OQMD dataset due to the fact that OQMD encompasses not
only realistic but also theoretically possible structures, indicating
that PolySRL acquires knowledge of theoretical uncertainties in
materials science. 3) Furthermore, we notice high uncertainties
when there are no potential structures available (i.e., when #
possible structures = 0) in comparison to stoichiometry with
a single possible structure, suggesting that uncertainty contains
information about the computational feasibility of the structure.

Impurity of Materials. Next, we investigate how impurities in materials influence the uncertainty in
stoichiometry. Specifically, we compare the average stoichiometry uncertainty between groups of
doped or alloyed materials (i.e., Impure) and their counterparts (i.e., Pure) in thermoelectric materials
datasets, i.e., ESTM 300K and ESTM 600K, where doping and alloying are commonly employed to
enhance their performance. In Figure 3 (b), we notice a substantial increase in the uncertainty within
impure materials compared with their pure counterparts. This observation is in line with common
knowledge in materials science that doping or alloying can lead to chaotic transformations in a
conventional structure [30, 28], demonstrating that PolySRL also captures the complexity of structure
as the uncertainty. In conclusion, uncertainty analysis highlights that PolySRL effectively captures
the uncertainty related to the presence of polymorphic structures within a single stoichiometry and
the computational challenges associated with crystal structures.
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Figure 4: Case studies.

Case Studies. While our previous analysis on uncertain-
ties generally aligns with our expectations, we do observe
some instances where PolySRL exhibits high uncertainty
in non-polymorphic stoichiometries and minimal uncer-
tainty in polymorphic stoichiometries. First, we observe
the stoichiometry of HgCl and CaS exhibit high uncer-
tainty, even though they only have one possible structure
(Figure 4 (a)). We attribute this phenomenon to the limited
availability of element combinations in the MP dataset,
which occurred due to several factors, including the rar-
ity of certain elements and the difficulty in synthesizing
substances with specific combinations of elements [8, 24]. On the other hand, we observe the
learned distribution of ScN and AgSO4 collapsed to zero even though each of them has three possible
polymorphic structures (Figure 4 (b)). This behavior arises from the structural similarity among the
polymorphic structures, where all three polymorphic structures of each stoichiometry fall within
the same cubic and monoclinic structural system, respectively. In conclusion, PolySRL acquires
detailed insights concerning polymorphic structures beyond mere quantitative counts. Additionally,
we include further analysis on the correlation between uncertainty and model performance, along
with supplementary case studies that are in line with our anticipated results in Appendix F.5.

6 Conclusion

This paper focuses on learning a probabilistic representation of stoichiometry that incorporates poly-
morphic structural information of crystalline materials. Given stoichiometry and its corresponding
polymorphic structures, PolySRL learns parameterized Gaussian distribution for each stoichiometry,
whose mean becomes the representation of stoichiometry and variance indicates the level of uncer-
tainty stemming from the polymorphic structures. Extensive empirical studies on sixteen datasets,
including wet-lab experimental data and DFT-calculated data, have been conducted to validate the
effectiveness of PolySRL in learning stoichiometry representations. Moreover, a comprehensive
analysis of uncertainties reveals that the model learns diverse complexities encountered in materials
science, highlighting the practicality of PolySRL in real-world material discovery process.
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[9] Che, J., Çağın, T., Deng, W., and Goddard III, W. A. Thermal conductivity of diamond and
related materials from molecular dynamics simulations. The Journal of Chemical Physics, 113
(16):6888–6900, 2000.

[10] Chen, C., Ye, W., Zuo, Y., Zheng, C., and Ong, S. P. Graph networks as a universal machine
learning framework for molecules and crystals. Chemistry of Materials, 31(9):3564–3572,
2019.

[11] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A simple framework for contrastive learning
of visual representations. In International conference on machine learning, pp. 1597–1607.
PMLR, 2020.

[12] Choudhary, K. and DeCost, B. Atomistic line graph neural network for improved materials
property predictions. npj Computational Materials, 7(1):185, 2021.

[13] Choudhary, K., Kalish, I., Beams, R., and Tavazza, F. High-throughput identification and
characterization of two-dimensional materials using density functional theory. Scientific reports,
7(1):5179, 2017.

[14] Chun, S., Oh, S. J., De Rezende, R. S., Kalantidis, Y., and Larlus, D. Probabilistic embeddings
for cross-modal retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8415–8424, 2021.

[15] Damewood, J., Karaguesian, J., Lunger, J. R., Tan, A. R., Xie, M., Peng, J., and Gómez-
Bombarelli, R. Representations of materials for machine learning. Annual Review of Materials
Research, 53, 2023.

[16] Dunn, A., Wang, Q., Ganose, A., Dopp, D., and Jain, A. Benchmarking materials prop-
erty prediction methods: the matbench test set and automatminer reference algorithm. npj
Computational Materials, 6(1):138, 2020.

[17] Faber, F., Lindmaa, A., Von Lilienfeld, O. A., and Armiento, R. Crystal structure representations
for machine learning models of formation energies. International Journal of Quantum Chemistry,
115(16):1094–1101, 2015.

9



[18] Gan, Z., Li, L., Li, C., Wang, L., Liu, Z., Gao, J., et al. Vision-language pre-training: Basics,
recent advances, and future trends. Foundations and Trends® in Computer Graphics and Vision,
14(3–4):163–352, 2022.

[19] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. Neural message passing
for quantum chemistry. In International conference on machine learning, pp. 1263–1272.
PMLR, 2017.

[20] Goodall, R. E. and Lee, A. A. Predicting materials properties without crystal structure: Deep
representation learning from stoichiometry. Nature communications, 11(1):6280, 2020.

[21] Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C. W., Xiao, C., Sun,
J., and Zitnik, M. Artificial intelligence foundation for therapeutic science. Nature chemical
biology, 18(10):1033–1036, 2022.

[22] Huo, H. and Rupp, M. Unified representation of molecules and crystals for machine learning.
arXiv preprint arXiv:1704.06439, 2017.

[23] Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D.,
Skinner, D., Ceder, G., et al. Commentary: The materials project: A materials genome approach
to accelerating materials innovation. APL materials, 1(1), 2013.

[24] Jang, J., Gu, G. H., Noh, J., Kim, J., and Jung, Y. Structure-based synthesizability prediction of
crystals using partially supervised learning. Journal of the American Chemical Society, 142
(44):18836–18843, 2020.

[25] Jha, D., Ward, L., Paul, A., Liao, W.-k., Choudhary, A., Wolverton, C., and Agrawal, A. Elemnet:
Deep learning the chemistry of materials from only elemental composition. Scientific reports, 8
(1):17593, 2018.

[26] Jha, D., Choudhary, K., Tavazza, F., Liao, W.-k., Choudhary, A., Campbell, C., and Agrawal, A.
Enhancing materials property prediction by leveraging computational and experimental data
using deep transfer learning. Nature communications, 10(1):5316, 2019.

[27] Jiang, D., Wu, Z., Hsieh, C.-Y., Chen, G., Liao, B., Wang, Z., Shen, C., Cao, D., Wu, J., and
Hou, T. Could graph neural networks learn better molecular representation for drug discovery?
a comparison study of descriptor-based and graph-based models. Journal of cheminformatics,
13(1):1–23, 2021.

[28] Jin, R. and Nobusada, K. Doping and alloying in atomically precise gold nanoparticles. Nano
Research, 7:285–300, 2014.

[29] Jorio, A., Dresselhaus, G., and Dresselhaus, M. S. Carbon nanotubes: advanced topics in the
synthesis, structure, properties and applications, volume 111. Springer, 2008.

[30] Kawai, T., Nakazono, M., and Yoshino, K. Effects of doping on the crystal structure of poly
(3-alkylthiophene). Journal of Materials Chemistry, 2(9):903–906, 1992.

[31] Kidalov, S. V. and Shakhov, F. M. Thermal conductivity of diamond composites. Materials, 2
(4):2467–2495, 2009.

[32] Kim, E., Jung, D., Park, S., Kim, S., and Yoon, S. Probabilistic concept bottleneck models.
arXiv preprint arXiv:2306.01574, 2023.

[33] Kim, G., Meschel, S., Nash, P., and Chen, W. Experimental formation enthalpies for intermetal-
lic phases and other inorganic compounds. Scientific data, 4(1):1–11, 2017.

[34] Kingma, D. P. and Welling, M. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[35] Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

10



[36] Kirklin, S., Saal, J. E., Meredig, B., Thompson, A., Doak, J. W., Aykol, M., Rühl, S., and
Wolverton, C. The open quantum materials database (oqmd): assessing the accuracy of dft
formation energies. npj Computational Materials, 1(1):1–15, 2015.

[37] Lee, J., Kim, S., Hyun, D., Lee, N., Kim, Y., and Park, C. Deep single-cell rna-seq data
clustering with graph prototypical contrastive learning. Bioinformatics, 39(6):btad342, 2023.

[38] Lee, N., Hyun, D., Na, G. S., Kim, S., Lee, J., and Park, C. Conditional graph information
bottleneck for molecular relational learning. arXiv preprint arXiv:2305.01520, 2023.

[39] Morgan, D. Machine Learning Materials Datasets, 9 2018. URL https://figshare.com/
articles/dataset/MAST-ML_Education_Datasets/7017254.

[40] Musil, F., Grisafi, A., Bartók, A. P., Ortner, C., Csányi, G., and Ceriotti, M. Physics-inspired
structural representations for molecules and materials. Chemical Reviews, 121(16):9759–9815,
2021.

[41] Na, G. S. and Chang, H. A public database of thermoelectric materials and system-identified
material representation for data-driven discovery. npj Computational Materials, 8(1):214, 2022.

[42] Nozariasbmarz, A., Collins, H., Dsouza, K., Polash, M. H., Hosseini, M., Hyland, M., Liu,
J., Malhotra, A., Ortiz, F. M., Mohaddes, F., et al. Review of wearable thermoelectric energy
harvesting: From body temperature to electronic systems. Applied Energy, 258:114069, 2020.

[43] Oh, S. J., Murphy, K., Pan, J., Roth, J., Schroff, F., and Gallagher, A. Modeling uncertainty
with hedged instance embedding. arXiv preprint arXiv:1810.00319, 2018.

[44] Park, J., Lee, J., Kim, I.-J., and Sohn, K. Probabilistic representations for video contrastive
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14711–14721, 2022.

[45] Pauling, L. The principles determining the structure of complex ionic crystals. Journal of the
american chemical society, 51(4):1010–1026, 1929.

[46] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,
A., Mishkin, P., Clark, J., et al. Learning transferable visual models from natural language
supervision. In International conference on machine learning, pp. 8748–8763. PMLR, 2021.

[47] Shi, Y. and Jain, A. K. Probabilistic face embeddings. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 6902–6911, 2019.

[48] Sholl, D. S. and Steckel, J. A. Density functional theory: a practical introduction. John Wiley
& Sons, 2022.

[49] Stärk, H., Beaini, D., Corso, G., Tossou, P., Dallago, C., Günnemann, S., and Liò, P. 3d infomax
improves gnns for molecular property prediction. In International Conference on Machine
Learning, pp. 20479–20502. PMLR, 2022.

[50] Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M., MacNair,
C. R., French, S., Carfrae, L. A., Bloom-Ackermann, Z., et al. A deep learning approach to
antibiotic discovery. Cell, 180(4):688–702, 2020.

[51] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. Attention is all you need. Advances in neural information processing systems,
30, 2017.
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This is an Appendix for the paper Stoichiometry Representation Learning with Polymorphic
Crystal Structures, which is organized as follows: Section A provides details on constructing
structural graph representation of crystalline materials. Section B elaborates on the implementation
details of our method. Section C details all the datasets we use. Section D details the experimental
setup of all the baseline methods. Section E describes evaluation protocol. Section F provides
additional experimental results. Section G lists important notations used during the main manuscript.

A Structural Graph Construction

In this section, we provide the detailed structural graph construction process with a figure. Overall,
this structural graph is the same as previous works [59, 61]. Given a crystal structure (P,L), suppose
the unit cell has ns atoms, we have P = [p1,p2, . . . ,pns

]
⊺ ∈ Rns×3 indicating the atom position

matrix and L = [l1, l2, l3]
⊺ ∈ R3×3 representing the lattice parameter describing how a unit cell

repeats itself in three directions. Since the crystal usually possesses irregular shapes in practice,
l1, l2, l3 are not always orthogonal in 3D space [61]. For clear visualization, we provide examples of
periodic patterns in 2D space in Figure 5 (a).

Based on the crystal parameters (P,L), we construct a multi-edge graph Gb = (V,Ab) that
captures atom interactions across cell boundaries [59]. Specifically, vi ∈ V denotes an atom i
and all its duplicates in the infinite 3D space whose positions are included in the set {p̂i|p̂i =
pi + k1l1 + k2l2 + k3l3, k1, k2, k3 ∈ Z}, where Z denotes the set of all the integers. More-
over, Ab ∈ {0, 1}ns×ns denotes an adjacency matrix, where Ab

i,j = 1 if two atoms i and j are
within the predefined radius r and Ab

ij = 0 otherwise. Specifically, nodes vi and vj are con-
nected if there exists any combination k1, k2, k3 ∈ Z such that the euclidean distance dij satisfies
dij = ∥pi + k1l1 + k2l2 + k3l3 − pj∥2 ≤ r (see Figure 5 (b)). For the initial feature for edges, we
expand the distance dij between atom vi and vj by Gaussian basis following previous works [59].
Moreover, for each node in Gb is associated with a learnable feature xb ∈ RF , which is shared across
all crystals, to make sure we utilize only structural information.

l!

l"

𝒓

(b) Multi-edge graph(a) Periodic pattern in 2D

𝑛! = 3
Unit cell

Figure 5: Structural graph construction.

B Implementation Details

In this section, we provide implementation details of PolySRL.

B.1 Structural Graph Encoder

Our structural graph encoder comprises two components: the encoder and the processor. The encoder
acquires the initial representation of atoms and bonds, while the processor is responsible for learning
how to pass messages throughout the crystal structure. More formally, given an atom vi and the bond
eij between atom vi and vj in crystal structure, node encoder ϕnode and edge encoder ϕedge outputs
initial representations of atom vi and bond eij as follows:

h0,b
i = ϕnode(X

b), b0,b
ij = ϕedge(B

b
ij), (7)

where Xb ∈ Rns×F is the atom feature matrix whose i-th row indicates the input feature of atom
vi, Bb ∈ Rns×ns×F is the bond feature tensor. As previously explained in Section 3.2, we employ
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a common xb for all atoms across all crystals, resulting in every row in Xb being identical to xb.
With the initial representations of atoms and bonds, the processor learns to pass messages across the
crystal structure and update atom and bond representations as follows:

bl+1,b
ij = ψl

edge(h
l,b
i ,h

l,b
j ,b

l,b
ij ), hl+1,b

i = ψl
node(h

l,b
i ,

∑
j∈N (i)

bl+1,b
ij ), (8)

where N (i) is the neighboring atoms of atom vi, ψ is a two-layer MLP with non-linearity, and
l = 0, . . . , L′. Note that hL′,b

i is equivalent to the i-th row of the atom embedding matrix Zb in
Equation 1. In this paper, we use a 3-layered structural graph encoder, i.e., L′ = 3.

B.2 Probabilistic Stoichiometry Encoder

Stoichiometry Graph Encoder fa. For the stoichiometry graph encoder fa, we utilize the archi-
tecture of GCNs [35] and Jumping Knowledge Network [60]. Specifically, given elemental feature
matrix Xa and adjacency Aa, GCN layers pass the messages to obtain latent elemental feature matrix
as follows:

hl+1,a
i = GCNl(hl,a

i ,Aa), (9)

where h0,a
i indicates i-th row of elemental feature matrix Xa, and l = 0, . . . , L′. After L′ step

message passing steps, we obtain a final representation of stoichiometry as follows:

Za
i = W(Concat[h0,a

i , · · · ,hL′,a
i ]), (10)

where W ∈ RF×L′F is a learnable weight matrix that reduces the dimension of concatenated
representations. Note that Za

i is equivalent to the i-th row of the element embedding matrix Za

in Equation 2. We also use L′ = 3 for stoichiometry encoder fa. After obtaining the elemental
representation matrix Za, we obtain stoichiometry representation za by employing weighted sum
pooling, which takes into account the compositional ratio.

Mean faµ and Variance faσ Module. After obtaining the elemental representation matrix Za, we
utilize set2set [54] pooling function to obtain the mean vector and diagonal entries of the covariance
vector. More specifically, given Za, we obtain mean vector zaµ and diagonal covariance vector zaσ as
follows:

zaµ = ẑaµ + za, ẑaµ = Set2setµ(Za), (11)

zaσ = ẑaσ + za, ẑaσ = Set2setσ(Za). (12)

By obtaining mean and diagonal covariance vectors with separate pooling functions, i.e., Set2setµ
and Set2setσ , the model learns different attentive aspects involved for each module.

B.3 Training Details

We also describe the implementation details to enhance the reproducibility. Our method is imple-
mented on Python 3.7.1, PyTorch 1.8.1, and Torch-geometric 1.7.0. All experiments are conducted
using a 24GB NVIDIA GeForce RTX 3090. Model hyperparameters are given in Table 2. During
training, we clip the gradient to the maximum value of 2 for stability [63].

Table 2: Hyperparameter specifications of PolySRL.
# Layers Hidden Learning Batch Epochs Number of

β
Initial

fa f b dim (F ) Rate (η) Size Samples (J) c d

3 3 200 5e-05 256 100 8 1e-08 20 20

C Datasets

In this section, we provide further details on the dataset used for experiments. We first introduce the
datasets utilized for the main manuscript, which is mainly based on wet-lab experiments.
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• Materials Project [23] is an openly accessible database that provides material properties calcu-
lated using density functional theory (DFT). We have gathered 80,162 distinct stoichiometries
along with their corresponding 112,183 crystal structures computed using DFT, with up to 32,021
stoichiometries having multiple potential structures.

• Band Gap [66] dataset comprises experimentally determined band gap properties for non-metallic
materials. It encompasses 2,482 distinct stoichiometries and a total of 3,895 experimental band gap
values. Within this dataset, 1,413 instances of duplicate experimental band gap measurements for
stoichiometries were identified. Consequently, our task involves predicting the band gap properties
for these 2,482 stoichiometries, with the average value being computed in cases where duplicate
experimental results exist for a given stoichiometry.

• Formation Enthalpies [33] dataset consists of experimentally determined formation enthalpy
values for intermetallic phases and other inorganic compounds. It includes 1,141 unique stoi-
chiometries and a total of 1,276 experimental formation enthalpy values. Within this dataset,
135 cases of duplicate experimental formation enthalpy measurements for stoichiometries were
identified. Therefore, our objective is to predict the formation enthalpy properties for these 1,141
stoichiometries, calculating the average value when duplicate experimental results are present for a
particular stoichiometry. We report MAE values multiplied by a factor of 10 for clear interpretation
during all experiments.

• Metallic [39] dataset contains reduced glass transition temperature (Trg) for 584 unique metallic
alloys. We report MAE values multiplied by a factor of 10 for clear interpretation during all
experiments.

• ESTM 300 K [41] dataset contains various properties of 368 thermoelectric materials that are mea-
sured in the temperature range of 295 K to 305 K, which is widely recognized as room temperature
in chemistry. Among the properties, we mainly target electrical conductivity (S/m), thermal
conductivity (W/mK), and Seebeck coefficient (µV/K). Regarding electrical conductivity and
thermal conductivity, we apply a logarithmic scaling to the target values because they exhibit
significant skewness. Additionally, for the Seebeck coefficient, we use min-max scaling on the
target values due to their wide range and report MAE values multiplied by a factor of 10 for clear
interpretation during all experiments. When calculating the figure of merit (ZT̄ ) with predicted
properties, we reverse the scaling to return the original scale and then compute it.

• ESTM 600 K [41] dataset contains various properties of 188 thermoelectric materials that are mea-
sured in the temperature range of 593 K to 608 K, which is widely recognized as high temperature
in chemistry. The properties we are targeting and the preprocessing steps applied are identical to
those used for the ESTM 300 K dataset.

In addition to the wet-lab experimental datasets, we use following seven Matbench datasets that
contain properties from DFT calculation.

• Castelli Perovskites [7] dataset contains formation energy of Perovskite cell of 18,928 materials.
• Refractive Index [23] dataset contains a refractive index of 4,764 materials, provided in MP

database.
• Shear Modulus [23] dataset contains shear modulus of 10,987 materials, provided in MP database.
• Bulk Modulus [23] dataset contains bulk modulus of 10,987 materials, provided in MP database.
• Exfoliation Energy [13] dataset contains exfoliation energy 636 materials.
• MP Band gap [23] dataset contains band gap of 106,113 materials, provided in MP database.
• MP Formation Energy [23] dataset contains formation energy per atom in 132,752 materials,

provided in MP database.

Following previous work [56, 20], we choose the target value associated with the lowest formation
enthalpy for duplicate stoichiometries found in both the MP datasets, while we use the mean of the
target values for other datasets.

D Baseline Methods

In this section, we elaborate on baseline methods. For a fair comparison, all these baseline methods
leverage the same neural network architecture and only differ in training objective function.
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• Rand init. refers to the randomly initialized stoichiometry encoder without any training process.
• GraphCL [62] is a general graph-level contrastive learning strategy that uses random augmentation

to construct positive and negative samples. In this paper, it learns the stoichiometry representation
based on the random augmentation on the stoichiometry graph Ga, without utilizing structural
information. For the n-th data in the minibatch (N data points), the loss function is defined as
follows follows:

ln = − log
exp{sim(zn, zn)/τ}∑N

n′=1,n′ ̸=n exp{sim(zn, zn′)/τ}
, (13)

where sim(·, ·) indicates cosine similarity between two latent vectors. τ > 0 denotes temperature
and is a hyperparameter. zi is the representation of the i-th data.

• MP Band G. and MP Form. E. learn the stoichiometry representation by predicting the DFT-
calculated properties, i.e., band gap and formation energy per atom, respectively. More formally,
model is trained with MAE loss for n-th data point in the minibatch (N data points) as follows:

ln = |Yn − Ŷn|, (14)

where Yn and Ŷn denote DFT-calculated property and model prediction, respectively.
• 3D Infomax [49] proposes to enhance model prediction on 3D molecular graphs by integrating 3D

information of the molecules in its latent representations. Instead of 2D molecular graphs, we learn
the representation of stoichiometry graph Ga by maximizing the mutual information with structural
graph Gb. More specifically, we train the model with NTXent (Normalized Temperature-scaled
Cross Entropy) loss [11], which is defined for n-th data point in minibatch of size N as follows:

ln = − log
exp{sim(zan, z

b
n)}∑N

n′=1,n′ ̸=n exp{sim(zan, z
b
n′)}

, (15)

where sim(·, ·) indicates cosine similarity between two latent vectors.

Even though the primary focus of this paper is to introduce training strategies for stoichiometry
encoders without any label information, we also conduct a comparative analysis of our proposed
approach with previous supervised stoichiometry representation learning methods [20, 56]. Note that
these works propose sophisticated model architectures for stoichiometry representation learning, not
training strategy.

• Roost [20] first proposes to utilize GNNs for stoichiometry representation learning by presenting
stoichiometry as a fully connected graph, whose nodes are unique elements in stoichiometry. This
approach allows the model to acquire distinct and material-specific representations for each element,
enabling it to capture physically meaningful properties and interactions.

• CrabNet [56] designs a Transformer self-attention mechanism [51] to adaptively learn the repre-
sentation of individual elements based on their chemical environment.

E Evaluation Protocol

Evaluation Metrics. We mainly compare the methods in terms of Mean Absolute Error (MAE)
following previous work [20]. Moreover, we provide the model performance in terms of R2 in
Appendix F, which provides an intuitive measure of the fraction of the overall variance in the data
that the model can account for.

During evaluation, we evaluate models in two different settings, i.e., representation learning and
transfer learning. In both scenarios, we evaluate the model under a 5-fold cross-validation scheme,
i.e., the dataset is randomly split into 5 subsets, and one of the subsets is used as the test set while the
remaining subsets are used to train the model.

Representation Learning. For representation learning scenarios, we fix the model parameters (i.e.,
fa, faµ , and faσ ) and train a three-layer MLP head with LeakyReLU non-linearity to evaluate the
stoichiometry obtained by various models. Following previous works [52, 62], we train the MLP
head with Adam optimizer with a fixed learning rate of 0.001 for 300 epochs.

Transfer Learning. For transfer learning scenarios, we allow the model parameters (i.e., fa,
faµ , and faσ ) to be trained with labels in downstream tasks, jointly with a three-layer MLP head
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with LeakyReLU non-linearity. During the transfer learning stage, we train the model parameters
and head with the Adam optimizer for 500 epochs. We tune the learning rate in the range of
{0.005, 0.001, 0.0005, 0.0001} with a validation set which is a subset (20%) of the training set. Due
to the lack of data, we select the learning rate that yields the optimal performance on the validation
set. Subsequently, we retrain the model using both the training set and the validation set, with the
corresponding learning rate.

F Additional Experiments

F.1 Experiments on DFT-Calculated Datasets

Although DFT-calculated properties frequently differ from actual wet-lab experimental properties [26],
we have included experimental outcomes for seven DFT-calculated properties from the Matbench
dataset [16]. These Matbench datasets were assessed using a five-fold cross-validation approach
with train/validation/test splits set at a ratio of 72/8/20, as given in previous work [56]. In Table 3,
we have following observations: 1) In the DFT-based dataset, we observed significant disparities
in trends compared to the experimental datasets in Table 1, demonstrating the inherent difference
between the experimental data and DFT-calculated data. For instance, we noticed that the MP
Form. E. model consistently outperforms the MP Band G. and 3D Infomax models. 2) Furthermore,
given that the datasets are designed to pick the target value linked to the lowest formation enthalpy
among different polymorphic structures for a single stoichiometry, we find that models trained with
specific DFT-calculated values (i.e., Prop. ✓) do not outperform models trained on corresponding
datasets. This discrepancy is attributed to properties derived from non-lowest formation enthalpy
polymorphic structures, which can introduce confusion to the model. 3) However, we observe
PolySRL generally outperforms baseline models, demonstrating its effectiveness in not only wet-lab
experimental datasets but also in DFT-calculated datasets.

Table 3: Representation learning performance on DFT-calculated datasets (MAE).

Model
DFT

Poly.
Castelli Refractive Shear Bulk Exfoliation MP

Prop. Str. Perovskites Index Modulus Modulus Energy Band G. Form. E.

Rand init. ✗ ✗ ✗
0.140 0.394 0.115 0.850 0.393 0.354 0.119
(0.004) (0.091) (0.003) (0.030) (0.044) (0.005) (0.002)

GraphCL ✗ ✗ ✗
0.145 0.386 0.117 0.844 0.411 0.351 0.121
(0.006) (0.094) (0.002) (0.021) (0.060) (0.004) (0.001)

MP Band G. ✓ ✗ ✗
0.141 0.399 0.116 0.851 0.397 0.354 0.119
(0.004) (0.085) (0.002) (0.042) (0.041) (0.007) (0.002)

MP Form. E. ✓ ✗ ✗
0.134 0.379 0.108 0.801 0.382 0.338 0.115
(0.004) (0.093) (0.002) (0.029) (0.037) (0.002) (0.001)

3D Infomax ✓ ✓ ✗
0.147 0.388 0.117 0.880 0.408 0.354 0.116
(0.004) (0.094) (0.003) (0.040) (0.043) (0.005) (0.002)

PolySRL ✓ ✓ ✓
0.132 0.394 0.107 0.837 0.378 0.328 0.112
(0.007) (0.092) (0.002) (0.033) (0.021) (0.005) (0.003)

F.2 Transfer Learning

In addition to evaluations on the learned stoichiometry representations, we also compare the models’
performance in transfer learning scenarios in Table 4, where the encoder parameters are fine-tuned
along with the MLP head. We have the following observations: 1) Although the overall performance
enhancement is observed due to the additional training of the encoder when compared with the results
reported in Table 1, we sometimes observe that negative transfer occurs when comparing the Rand
init. model and baseline methods in Table 4. This indicates that without an elaborate design of the
tasks, pre-training may incur negative knowledge transfer to the downstream tasks [64]. 2) However,
by comparing to Rand init. in Table 4, we observe that PolySRL consistently leads to positive transfer
to the model. We attribute this to the probabilistic representation, which maintains a high variance for
uncertain materials, thereby preventing the representations of the materials from overfitting to the
pretraining task.

Given that the primary objective of this paper is to propose a training approach for stoichiometry
representation learning rather than introducing a new model architecture, previous supervised learning
methods, i.e., Roost [20] and CrabNet [56], are not directly relevant to our research. Nevertheless,
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we include a comparison with these previous works in this section to offer additional insights into our
model’s performance. For the experiment, we used publicly available codes provided by the authors 6

7. In Table 4, we observe that our simple stoichiometry encoder composed of GCNs and Jumping
Knowledge Network (i.e., Rand init.) exhibits comparable or superior performance compared to the
previous works that are elaborately designed for supervised stoichiometry learning. While previous
works are elaborately designed for predicting properties of stoichiometry, they train the models from
large-scale DFT-calculated properties of lowest enthalpy structures, giving up polymorphic structures
of a single stoichiometry. However, in real-world scenarios, large-scale wet-lab experimental data is
seldom available, which restricts their utility in the materials discovery process.

Table 4: Transfer learning performance including supervised learning baselines (MAE).

Model Band G. Form. E. Metallic
ESTM 300K ESTM 600K

E.C. T.C. Seebeck E.C. T.C. Seebeck

Supervised Learning

Rand init. 0.390 0.599 0.204 0.849 0.202 0.425 0.659 0.209 0.402
(0.012) (0.053) (0.014) (0.174) (0.027) (0.048) (0.098) (0.019) (0.082)

Roost 0.384 0.743 0.199 0.851 0.216 0.406 0.684 0.240 0.402
(0.008) (0.069) (0.023) (0.126) (0.037) (0.046) (0.180) (0.048) (0.054)

CrabNet 0.427 0.759 0.253 1.206 0.332 0.576 0.868 0.353 0.691
(0.012) (0.052) (0.023) (0.042) (0.046) (0.080) (0.138) (0.040) (0.057)

Transfer Learning

GraphCL 0.391 0.607 0.193 0.862 0.198 0.412 0.643 0.205 0.412
(0.011) (0.026) (0.018) (0.236) (0.031) (0.006) (0.098) (0.021) (0.077)

MP Band G. 0.382 0.604 0.193 0.829 0.210 0.405 0.632 0.197 0.402
(0.012) (0.036) (0.025) (0.187) (0.038) (0.006) (0.095) (0.028) (0.081)

MP Form. E. 0.391 0.582 0.197 0.822 0.195 0.410 0.641 0.209 0.428
(0.013) (0.015) (0.019) (0.167) (0.031) (0.041) (0.102) (0.043) (0.086)

3D Infomax 0.391 0.606 0.194 0.844 0.210 0.402 0.633 0.207 0.391
(0.006) (0.027) (0.019) (0.195) (0.032) (0.005) (0.133) (0.018) (0.077)

PolySRL 0.386 0.576 0.191 0.822 0.189 0.386 0.626 0.195 0.390
(0.021) (0.042) (0.024) (0.162) (0.037) (0.069) (0.161) (0.015) (0.077)

F.3 Physical Validity

Further Analysis. In this section, we delve deeper into the physical validity of predicted properties
for thermoelectrical materials by observing scatter plots that compare the actual ground truth values
of ZT̄ with the values obtained by the model predictions. For clearer visualization, we select one
baseline model from models that consider DFT-calculated properties (i.e., MP Band G.) and structures
(i.e., 3D Infomax). In Figure 6, we notice that the predictions produced by PolySRL consistently
yield accurate calculations of ZT̄ without any outliers. This observation underscores the model’s
ability to predict physically valid properties for thermoelectrical materials. Additionally, we observe
that the model, specifically MP Band G., which lacks consideration of the structural information
within stoichiometry, tends to produce outliers more frequently when contrasted with models that
incorporate structural information. More specifically, three outliers made by MP Band G. in Figure 6
(a) are Co9S8, Cu5Sn2S6.65Cl0.35, and Cu5.133Sn1.866S6.65Cl0.35. In case of Co9S8, there exist only
one possible structure in MP dataset, and there was no existing structure for Cu5Sn2S6.65Cl0.35,
and Cu5.133Sn1.866S6.65Cl0.35. This suggests that MP Band G. encounters difficulty in acquiring
accurate physical properties for materials where obtaining structural information is computationally
challenging. On the other hand, in Figure 6 (b), two outliers made by MP Band G. are GeTe and
SnTe, each of which has three possible structures in MP dataset. This indicates that MP Band G.
suffers from obtaining valid physical properties from polymorphic structures. In conclusion, we argue
that this finding underscores the significance of incorporating structural information for accurate
predictions.

High Throughput Screening. As described in the main manuscript, the figure of merit ZT̄ deter-
mines how effectively power can be generated and energy can be harvested across various real-world

6Roost: https://zenodo.org/record/4133793
7CrabNet: https://github.com/anthony-wang/CrabNet
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Figure 6: Scatter plot between true and predicted ZT̄ .

applications. To discover novel materials of high ZT̄ , we perform high-throughput screening based
on the predicted ZT̄ in Figure 7. In particular, for thermoelectrical materials at room temperature
(300 K), we establish a threshold of ZT̄ = 0.8, and for high-temperature scenarios (600 K), we
use a threshold of ZT̄ = 1.1. We observe that PolySRL outperforms all other baseline methods
in ESTM 300K datasets, while performing competitively with 3D Infomax in ESTM 600K. This
again demonstrates the importance of structural information in stoichiometry representation learning,
which has been overlooked in previous works [20, 56].
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Figure 7: High throughput screening results.

F.4 Model Analysis

Ablation Studies. In this section, we conduct ablation studies on our model by removing the
sampling process described in Equation 3, which is denoted as "w/o Sampling" in Table 5. To
clarify, rather than utilizing the sampled representations ẑaj in Equation 4, we directly employ the
mean vector of stoichiometry, denoted as zaµ, for the soft contrastive loss. By doing so, the model
transitions from learning a probabilistic representation of stoichiometry to learning a deterministic
representation of stoichiometry. To compare with methods that don’t incorporate polymorphic
structural information, such as 3D Infomax, we also present the performance of 3D Infomax in
Table 5. We have the following observations: 1) Considering polymorphic structure is crucial in
stoichiometry representation learning by comparing 3D Infomax and w/o Sampling. 2) Additionally,
the sampling process typically leads to improved performance, underscoring the advantage of learning
a probabilistic representation of stoichiometry. While w/o Sampling outperforms PolySRL in two
datasets, the absence of the sampling process means the model can no longer estimate uncertainty in
stoichiometry, thereby losing its practicality in real-world materials discovery. In summary, we argue
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that PolySRL learns a probabilistic stoichiometry representation, which not only enables accurate
uncertainty estimation but also enhances model performance.

Table 5: Ablation studies in representation learning scenarios (MAE).

Model
DFT

Poly. Band G. Form. E. Metallic
ESTM 300K ESTM 600K

Prop. Str. E.C. T.C. Seebeck E.C. T.C. Seebeck

3D Infomax ✓ ✓ ✗
0.428 0.654 0.201 0.969 0.217 0.432 0.692 0.212 0.428
(0.015) (0.032) (0.032) (0.110) (0.040) (0.070) (0.102) (0.013) (0.076)

w/o Sampling ✓ ✓ ✓
0.410 0.618 0.198 0.864 0.208 0.407 0.679 0.198 0.396
(0.006) (0.060) (0.030) (0.192) (0.027) (0.054) (0.084) (0.011) (0.033)

PolySRL ✓ ✓ ✓
0.407 0.592 0.194 0.912 0.197 0.388 0.665 0.189 0.412
(0.013) (0.039) (0.017) (0.121) (0.020) (0.059) (0.126) (0.017) (0.043)

Sensitivity Analysis on β. In this section, we verify the empirical effect of the hyperparameter β,
which controls the weight of the KL divergence loss computed between the learned distributions
and the standard normal distribution, in Equation 6. We have the following observations from
Figure 8 (a): 1) As the hyperparameter β increases, the average variance of the learned distributions
(i.e., uncertainty) also increases, and the dimension of the variance vectors that collapse to zero
(i.e., collapsed ratio) decreases. This indicates that the KL divergence loss effectively prevents the
distributions from collapsing. 2) On the other hand, the performance of PolySRL deteriorates as β
increases, indicating that emphasizing the KL divergence loss too much causes PolySRL to struggle
in learning high-quality stoichiometry representations. However, reducing β does not always result
in improved performance, as collapsed distribution may not effectively capture information from
polymorphic structures. Hence, selecting an appropriate value of β is vital for learning high-quality
stoichiometry representations while maintaining a suitable level of uncertainty.

Sensitivity Analysis on Various Hyperparameters. In addition, we provide an analysis on various
hyperparameters in PolySRL, i.e., initial values of c, d and number of samples J in Equation 5.
We have the following observations: 1) While we made c and d learnable parameters to allow the
model to adjust them adaptively to an optimal point, we’ve also found that setting the initial values
for c and d is crucial in model training. This indicates that initial value plays a significant role in
guiding the model correctly from the outset of the training process, ultimately contributing to good
performance. 2) On the other hand, we observe PolySRL shows robustness in various numbers of
samples, suggesting that it can be trained effectively without a large number of samples, which will
demand an extensive amount of computational resources.
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Figure 8: Additional sensitivity analysis results.

F.5 Additional Uncertainty Analysis

Uncertainty and Model Performance. In this section, we analyze how the model performance varies
regarding the uncertainties of the stoichiometry. To achieve this, we initially categorize stoichiometry
based on MAE into intervals such as 0.0 to 1.0, 1.0 to 2.0, · · · , and 4.0 to 5.0. For example, Group
1 in Figure 9 (a) contains the group of MAE in the range 0.0 to 1.0. We then calculate the average
uncertainties of the model for each group. As observed in Figure 9 (a), as the MAE values increase,
the level of uncertainty also increases, demonstrating that the model effectively estimates uncertainties
associated with MAE values.

Additional Case Studies: Low Uncertainty with Multiple Structures. In addition to the case
studies in Section 5.3, we further provide cases where the stoichiometry with multiple possible
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structures exhibits low uncertainty. In Figure 9 (b), we observe two stoichiometries with collapsed
uncertainty, even though they possess four distinct possible structures. This phenomenon occurs
because these structures share highly similar polymorphic arrangements, with only one unique
structure in each stoichiometry. For instance, ZrC and NdF2 predominantly adopt cubic and hexagonal
structures, respectively, with only one distinct possible structure for each stoichiometry.

Additional Case Studies: High Uncertainty with Multiple Structures. In this section, we present
additional case studies that align with our expectations. Figure 9 (c) illustrates two stoichiometries
with the highest uncertainty among those possessing three polymorphic structures. For example,
NaI can exist in three distinct structures (i.e., cubic, orthorhombic, and tetragonal), and AlP also
exhibits three different structures (i.e., cubic, hexagonal, and tetragonal). Given that varying atomic
arrangements within materials lead to entirely distinct physical and chemical properties, it becomes
crucial to convey the extent of structural diversity that stoichiometry can exhibit during the material
discovery process. Therefore, these additional case studies highlight the practicality of PolySRL in
real-world material discovery.
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Figure 9: Additional uncertainty analysis.

G Notations

In Table 6, we provide mathematical notations that are used in the main manuscript.

Table 6: Mathematical notations.
Notations Explanations

ns Number of atoms in crystal structure
Xb An elemental feature matrix of structural graph
Ab An adjacency matrix of structural graph

Gb = (Xb,Ab) A crystal structural graph
zb A latent representation of a crystal structural graph
f b A GNN-based crystal structural encoder

ne Number of unique elements in a stoichiometry
E = {e1, . . . , ene

} A unique set of elements in a stoichiometry
R = {r1, . . . , rne

} A compositional ratio of each element in a stoichiometry
Ga = (E ,R,Aa) A fully-connected stoichiometry graph

Xa A elemental feature matrix of stoichiometry graph
Aa An adjacency matrix of stoichiometry graph
z̃a A sampled representation from latent distribution of stoichiometry
fa A GNN-based stoichiometry graph encoder
faµ A mean module for stoichiometry graph
faσ A variance module for stoichiometry graph

J Number of samples from latent distribution of stoichiometry (Equation 4)
c Learnable parameters for scaling the Euclidean distance (Equation 4)
d Learnable parameters for shifting the Euclidean distance (Equation 4)

Lcon Soft contrastive loss (Equation 5)
LKL KL divergence loss
β Hyperparameter that controls the weight of KL divergence loss

Ltotal Total loss function (Equation 6)
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