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ABSTRACT

Recent success of AlphaFold2 (Jumper et al., 2021) in predicting structures of
proteins from multiple sequence alignments (MSA) raises the question: can we
generalize this approach to other important types of molecules? The positive answer
to this question opens a door to overcoming the lack of structural data needed to
train the model for predicting structures of RNA, proteins with non-standard amino-
acids and proteins with post-translational modifications. In this work we presented
a new model for predicting molecular structures, that generalizes AlphaFold2
approach to predicting structures of proteins. Two key contributions this work
provides is a new representation of molecules as a collection of neighborhoods that
behave as rigid bodies and a way to encode the bonds between rigid bodies into a
prediction algorithm. We test this approach on the task of predicting ground-state
structures of small molecules. Code available at AlphaMol repository.

1 INTRODUCTION

The overarching goal of computational structural biology is to develop precise predictive models
capable of elucidating all chemical and structural transformations occurring within a cell. Similarly,
the ultimate goal of machine learning is the development of a generally intelligent model capable of
operating with comprehensive and various modalities of physical reality. The cutting edge research
is currently centered on the creation of multi-modal large language models, leveraging diverse
data sources such as audio, images, or even active robotic arm manipulators Driess et al. (2023);
Huang et al. (2023). These seminal studies underscore the remarkable capacity of models trained on
cross-modal datasets to transfer knowledge to novel tasks. Over the past decade, the application of
machine learning has driven significant advancements in computational structural biology. Notably,
the recent breakthrough in protein structure prediction by AlphaFold2 Jumper et al. (2021) is based
on the transformer architectures which have emerged as dominant architectures in deep learning.
Subsequent research focused on refining and extending AlphaFold2’s capabilities, for example,
predicting of protein-protein complexes Evans et al. (2021), utilizing single sequences as inputs
instead of multiple sequence alignments (MSA) Lin et al. (2022), and implementing diffusion-based
learning Ingraham et al. (2022); Watson et al. (2022). Moreover, recent successes in predicting
the structures of non-coding RNA Pearce et al. (2022) and elucidating protein-ligand interactions
based on AlphaFold2 descriptors Hekkelman et al. (2023) highlight the possibility of constructing a
multi-modal model that works across various molecular domains. Given physico-chemical diversity
of macromolecules (proteins, nucleic acids) as well as small molecules, the researches have also
attempted to unify atomic description of aminoacid residues, drug-like organic molecules (ligands),
nucleic acids and non-standard residues Krishna et al. (2023). However, in practice, protein and
nucleic acid representations are typically retained as sequences of tokens, while ligands and non-
standard amino acids are represented as atom graphs. This problem forced the authors to perform
atomization of residue tokens by representing aminoacids or nucleotides as ligands. On the other
hand, one of the remarkable features of AlphaFold2 is the coarse-grain protein representation, where
each amino acid residue is described as a rigid body, while the inner degrees of freedom are predicted
separately. This coarse-graining method allowed extracting the orientation of aminoacid residues
from MSA, that plays a big role during the co-evolution of the neighboring protein residues, and
used in the structural module of AlphaFold2 to predict structures more accurately compared to the
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other methods. In this work we provide foundation for consistent model architecture that allow one to
eliminate token-based representation of polymers, including proteins and nucleic acids. We proposed
a novel representation of an arbitrary type molecule as a set of rigid bodies with additional constraints
and demonstrated the utility of this representation by considering one of the most complex chemical
type, namely, small molecular structures. We further improved the Evoformer block architecture
from AlphaFold2, such that it incorporates explicit positions of rigid bodies eliminating the need
for a separate structural module. We have tested our method on the task of predicting ground-
state molecular structures using the curated dataset Molecule3d Xu et al. (2021c) extracted from
PubChemQC Nakata and Shimazaki (2017) of 4 ·106 molecules. Our model achieves the average root
mean square deviation (RMSD) of 0.83 over 7 · 105 molecules in the testing subset of the Molecule3d
dataset, outperforming RDKit Landrum (2020) and other published methods. More specifically, the
mean average error of the predicted distance matrix between the heavy atoms of the molecules is
0.30 versus 0.53 for the RDKit ETKDG algorithm Riniker and Landrum (2015) and 0.66 for the
DeeperGCN-DAGNN + DistanceXu et al. (2021c).

1.1 PREVIOUS WORK

Existing methods to predict small molecule structures typically rely on graph-based methods, which
treat molecules as a graph of nodes (atoms) connected by edges (bonds). One of the first such works
is CVGAE Mansimov et al. (2019), however, the quality of structure predictions was impractical and
required further optimization using molecular dynamics force fields. Another work, GraphDGSimm
and Hernández-Lobato (2019), extends the molecular graph to the second and third atomic neighbors
and transforms the graph into a distance matrix. Such graph extension was needed to fix the dihedral
angles in the molecule. The prediction target of this method is the extended distance matrix of the
conformer, and the 3D structure is then obtained by a non-differentiable Euclidian distance geometry
method (EDG, Riniker and Landrum (2015)). This method relies on a standard message-passing
neural network in conjunction with a conditional variational autoencoder and works entirely in the
internal coordinates of a molecule. Thus, it generates predictions that are invariant with respect to
rotation and translation. The following work CGCFXu et al. (2021b) improved training by using
energy-based learning and neural ordinary differential equation approach, while using the same
molecular representation. The next improvement, ConfVAE Xu et al. (2021a), was achieved by
allowing gradient propagation through the EDG step using bilevel programming approach. This was
the first method that allowed end-to-end training coupled with translational and rotational invariance.
The ConfGF method Shi et al. (2021) utilized a different approach: they estimate the gradient of the
logarithm of the probability distribution of the interatomic distances using an energy-based method
and then derive an atomic gradient field using the chain rule. This work proposed the first equivariant
end-to-end differentiable structure prediction algorithm for small molecules. However, because of the
difficulties in training energy-based models, one forced to additionally sample structures perturbed
using Gaussian noise. The other approach for end-to-end differentiable molecular structure prediction,
GeomolGanea et al. (2021), directly predicts local neighborhoods of atoms and then assembles the
whole structure by predicting torsion angles along the shared bonds between neighborhoods. Of note,
this was the first method, that accounted for enantiomers of a molecule and still invariant with respect
to the rotations and translations. One of the most recent methods, DMCG Zhu et al. (2022), that
directly predicts the atomic coordinates, was the first to consider molecular graph isomorphisms in
the loss function. Another branch of methods rely on diffusion-based learning to directly generate
coordinates of atoms in molecules started by GeoDiffXu et al. (2022). SDEGen Zhang et al. (2023)
applies diffusion to the distance matrices and Jing et al. (2022) in the torsional angle space. Finally,
EC-Conf Fan et al. (2023) improves the sampling efficiency of the diffusion method for this task.
Despite the considerable efforts that went into this field of machine learning, it is important to note,
that the utility of the methods and evaluation metrics are still questionable. For example, Gengmo
Zhou Zhou et al. (2023) and coauthors showed that the standard EDKTG algorithm implemented in
RDkit with minor modifications outperforms all the previously mentioned methods on the GEOM-
QM9 and GEOM-DRUGS datasets. Appendix Table 2 provides a list of the previously developed
methods for small molecular structure prediction.
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Input molecule Geometry Neighborhood Prediction

Figure 1: The outline of our approach to the problem of molecular structure prediction. For each
atomic neighborhood in a molecule, we construct a rigid body, that corresponds to the fixed bond
geometry and inter-atomic bond distances. The model then predicts rotations and translations of
neighborhoods.

2 METHODS

This section is organized as follows. First, we introduce one of the key distinctions of our approach,
which is representation of a molecule as a set of rigid neighborhoods. Then we describe featurization
of this molecular representation. This is followed by addressing the symmetry and chirality problem
in prediction of spatial transforms of rigid bodies. Next, we touch on the equivariance of the spatial
transforms predictions. Finally, we describe the model architecture, introducing a modified Evoformer
block, and the loss functions.

2.1 MOLECULE REPRESENTATION

The idea is to decompose the input molecule as a set of atomic neigborhoods, and for each atomic
neighborhood to use a predefined bond geometry and atomic distances, such that one can explicitly
compute the atomic coordinates of a neighborhood. Given this representation, the model is trained
to predict the rotation and translation of the whole neighborhood by matching the correct structure.
Figure 1 shows an example of a rigid neighborhood. To construct the rigid bodies constituting the
atomic neighborhoods we develop an algorithm that combine interatomic distances and geometries
(see Appendix section A.1.), resulting in reconstruction of molecular neighborhoods with acceptable
precision (Figure 1). We observed that local bond geometries can be rigorously approximated by the
rigid bodies, except for some isolated cases (see Appendix Table 6). We classified bond geometries
based on the hybridization of valent electron orbitals in the central atom and a set of bonds between
the central atom and its neighbors. This entails that each geometry has a symmetry, which we compute
by enumerating permutations of bonds and realigning them to the initial geometry. We observed, that
only 22 different geometries are enough to cover most of the molecules in the Molecule3D dataset.
Table 6 shows examples of the extracted arrangements and the RMSD distributions for the molecules
from the dataset. Although, for some molecular structures neighborhoods deviate from the standard
22 geometries and average atomic distances (see Appendix Figure 10, row 4), these examples are
rare and the algorithm is able to correct such small deviations (See Appendix section A.2.4).

2.2 FEATURES

Similarly to the AlphaFold2 model, the features we passed into the model are divided into single and
pairwise ones. Single features encode each rigid body separately, while pairwise features encode
spatial relationships between the rigid bodies. The algorithm to calculate the features is listed in
Appendix Table 8. Each neighborhood is described by the ordered set of vectors corresponding to
the concatenated central atom features, bond features, neighbor atom features, and neighbor atom
coordinates in the neighborhood. We embed each neighborhood using a 4-layer fully connected
neural network. Note, that the pairwise features consist of shared bond features between the two
neighborhoods and alignment matrices and translations between them. The necessity of including
specific transformation between the pairs of molecular neighborhoods is illustrated in Figure 2. If the
geometric information about the specific bond shared between the two neighborhoods is not passed
to the model, it leaves room for ambiguity and degrades model predictions. To obtain the alignment
matrix Rij from a neighborhood i to the neighborhood j, we compute the matrices Hij that align the
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Figure 2: Example of some of the possible
pairings between two neighborhoods. Red
circles are the neighborhood central atoms.

Figure 3: Example of an isomorphism of a
molecule. Red and yellow highlight atoms
swapping which the molecule graph does
not change.

shared bond parallel to the x-axis. The alignment matrix for neighborhood i along the shared bond of
neighborhood j is then:

Rij = HT
jiHflipHij (1)

, where Hflip is the matrix that flips x-axis. Similarly, we compute alignment translations tij between
the neighborhood pairs. These features depend only on the bond geometries and distances described
in the section 2.1. Appendix section A.2 provides detailed description of the data processing pipeline
and Appendix algorithms 9 and 10 shows the computation of the Rij matrices and tij vectors.

2.3 SYMMETRY AND CHIRALITY

To predict rotations and translations of rigid bodies corresponding to a molecule, one has to take
into account permutation symmetries of the molecule graph. Figure 3 shows a molecule, where
swapping atoms 1,2,13,14 with the corresponding atoms 5,4,7,6 does not change the molecular graph.
Therefore, for example the neighborhood comprisins C:2, O:13, C:1, and C:3 may correspond to
two different rotations and translations. During the training process of our model, we generate all
possible isomorphisms and then compute different combinations of target rotations and translations
of neighborhoods.

The chirality of molecules strongly affects their properties and their interactions with biological
molecules, therefore it has to be addressed carefully. In our case the same bond geometries with two
different chiralities do not align. Therefore one needs to specify chirality of each neighborhood to get
the correct bond geometry for prediction. During the training, we extract this data from the target
structures using standard RDKit utilities. First, we assign ranks to atoms using CIP rules Cahn et al.
(1966). Then for each neighborhood central atom, we arrange its neighbors in the order defined by
the atomic rank (see Appendix algorithm 6). We assign a chiral label as the sign of the volume built
on the vectors, formed by the bonds from the central atom of a neighborhood. During the extraction
of the bond geometries, we verify that all geometries and allowed permutations have the positive
chiral label (see Appendix algorithm 2). During the construction of the neighborhoods (see in Figure
1), we reflect the bonds with respect to the central atom, if the chirality of the neighborhood does not
correspond to the label assigned by the RDKit (see Appendix algorithms 9 and 11). Note, that for
some molecules, an isomorphism can swap atoms of a chiral center. If such permutation changes the
chirality, we can choose it arbitrarily at the cost of the isomorphism. In this case, we fix the chirality
and choose all the isomorphisms for which the neighborhood aligns with the ground truth structure
(see Appendix algorithm 11). Also note, that for some molecules the number of isomorphisms is
exceedingly large to store the coordinates of atoms for each one of them. Therefore, we factorize
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isomorphisms into local and global ones, where local isomorphisms act only on one neighborhood,
leaving every other atom in place (see Appendix section A.2.2).

2.4 EQUIVARIANCE

The rotations and translations predicted by the model should be equivariant, that is they should rotate
or translate when the input is rotated or translated accordingly, formally written as:

F (g ◦ x) = r ◦ F (x)

where F is the prediction model, g and r are the elements of the SE(3) group: the group of all
rotations and translations of the 3-dimensional space. Here, we used a simplified definition of the
equivariance, where g = r and used rotation matrices and translation vectors as inputs and outputs.

Previous approaches to the construction of equivariant neural networks can be broadly separated in
two classes: generally or specific equivariant networks. The first class of approaches can represent
any F that can be learned by a neural network. The methods belonging to this class either represented
tensors as a decomposition into spherical harmonics Thomas et al. (2018) or require lifting R3

space into high-dimensional Lie group space Hutchinson et al. (2021). Both of these approaches
require recomputing decomposition into spherical harmonics which can be numerically unstable
and computationally costly. The second class of approaches to equivariance is exemplified by the
SchNet Schütt et al. (2017) and AlphaFold2 structure module. These methods include equivariant
operations in the initial R3 space into the model, which limits the function F such a model can learn.
Recently, a new approach emerged in the class of generally equivariant neural networks Du et al.
(2022a); Wang and Zhang (2022), where the key idea is to construct a set of reference frames and
project input tensors onto them. The predictions are then given as a set of decomposition coefficients
that are transformed back into tensors. The seminal work by Du et. al. Du et al. (2022a) dealt with
systems composed of sets of points, thus, the frame construction may lead to numerical instability
in case of points being close in space or belonging to the same plane. Here, we work with a system
comprised of rigid bodies with natural frames of reference associated with them, therefore avoiding
the aforementioned problem.

Let X = (R1, T1, ...RN , TN ) ∈ R12N be a many-body system embedded into R3 space, where N is
the number of rigid bodies. For rigid body i, we use Ri(t) ∈ R9 and Ti(t) ∈ R3 to denote its rotation
and translation at iteration t, respectively. The rows of the matrix Bki = Ri = (a1i , a

2
i , a

3
i ) ∈ R3

correspond to the basis vectors of each local frame associated with the neighborhood i (these local
frames make a complete basis for vectors). Additionally, we construct the basis for rotation matrixes
using the approach outlined by Du et. al. Du et al. (2022a), namely Bklij = aki ⊗ alj ∈ R9,
where k, l ∈ 1, 2, 3 and i, j ∈ 1 . . . N . To preserve translation equivariance we first centralize the
translations T (c)

i = Ti − 1
N

∑N
i Ti. Then we take each vector input for the rigid body i (like T (c)

i )
and compute its decomposition coefficients in the basis Bki . Similarly, for the input rotation matrixes
defined on the pairs of rigid bodies (see Rij in section 2.2) we use a basis composed of matrices
Bklij . Additionally, we have input vectors defined on the pairs of neighborhoods (tij see section 2.2),
that we have to scalarize. To avoid constructing a new basis we instead transform these vectors into
tensors: t(t)ij = tij ⊗ tij and then decompose them into basis Bklij . The resulting scalars then can be
used in a neural network without breaking the SE(3)-equivariance.

To obtain updated rotations and translations of the neighborhoods we predict translation and rotation
update vectors and matrices, correspondingly. For the vector prediction, we interpret predictions
as the decomposition coefficients in the basis Bki . Thus, translations updates are computed as
dTi =

∑
k FikB

k
i , where Fik is the k-th network output for i-th neighborhood. In principle, one can

use the same vectorization procedure for computing rotation matrices updates using the basis Bklij .
However, in our case, the space of all possible rotation matrices forms a manifold in the space of all
possible decompositions in the basis Bklij . On the other hand, we need to predict only a valid rotation
matrix, that is orthogonal matrix. For this, we use the 6D-rotation representation first proposed in the
work Zhou et al. (2019), where the idea is that any rotation matrix can be represented using just two
vectors (b1, b2) and to construct the complete orthogonal matrix from these vectors one follows the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

 Evoformer

block

VectorizeScalarize

Translations

Rotations

 Evoformer

block

Scalarize

Neighborhood

representations

Pairwise

representations

Vectorize

Neighborhood

representations

Pairwise

representations

Translations

Rotations

x12 Evoformer blocks

     Pairwise 

representation

Neighborhood 

representation

Row-wise 

gated 

self-

attention 

with pair

bias

Transition

 Outer 

product 

 mean

 Triangle 

update 

using

outgoing 

edges

 Triangle 

update 

using

incoming 

edges

 Triangle 

self-

attention 

around

starting 

node

 Triangle 

self-

attention 

around

ending 

node

Transition

+ +

+ + + + + +

Neighborhood 

representation

     Pairwise 

representation

Evoformer block

Figure 4: Schematic representation of the AlphaMol model along with the modified Evoformer
block. Scalarization and vectorization blocks are described in section 2.4. ”+” symbol denotes
component-wise sum of feature tensors and ”o” symbol denotes matrix multiplication.

Graham-Schmidt process:

GS

([ | |
b1 b2
| |

])
=

[ | | |
c1 c2 c3
| | |

]
=


c1 = N (b1)

c2 = N (b2 − (c1 · b2)c1)
c3 = c1 × c2

(2)

, where N is the vector normalization operation. Using this rotation representation we need to predict
two vectors instead of a matrix, so we can use the same basis Bki , that we employed for predicting
translation updates. The detailed description of vectorization and scalarization algorithms developed
in this work presented in Appendix section A.3, particularly, Appendix algorithms 15 - 18.

2.5 MODEL

The model consists of sequential Evoformer blocks that predict rotations and translations updates to
the initial rotations and translations of the molecular neighborhoods (see Figure 4). Each updated
transform is computed as follows:

Ti = T predi + T previ (3)

Ri = Rpredi ◦Rprevi (4)

, where subscripts pred and prev corresponds to predicted transforms from each Evoformer module
and previous total transform, respectively; and i denotes the neighborhood index. We used identity
matrices and zero vectors as the initial ones. Note, that the molecular representation comprises
pairwise features to encode relations between the rigid neighborhoods and the single features to encode
characteristics of the rigid neighborhoods itself. Therefore, the operations within the Evoformer
block, treating the prediction of molecular structures as a graph inference problem in R3, must reflect
chemically feasible molecular geometries in the R3 space. We would like to note, that operations on
the pairwise representations are one of the key innovations introduced in AlphaFold2: they are based
on the intuition, that the pairwise representations contain information that must satisfy the triangle
inequality on distances. Therefore the corresponding update functions operate on triangles of edges
involving three different nodes; the missing edge of the triangle is included using logit bias to axial
attention coupled with the multiplicative update, which uses two edges to update the missing third
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edge. The axial attention is also modeled using the bias to the row-wise attention, that is coming from
previous pairwise representations. This completes the information flow from pairwise representations
to individual molecular neighborhoods.

To improve the training stability of the model we followed the recent observation by Shuangfei et al
Zhai et al. (2023) that training instability is usually accompanied by the low entropy of the attention
layer. We implemented σReparam algorithm to regularize attention weights in all the layers that use
attention in the Evoformer block (Appendix algorithm 19). Additionally, following recent efforts by
the Ziyao et al Li et al. (2022), we replaced all ReLU activation units with Gaussian Error Linear
Units (GELU) and added postprocessing layer to the output of the OuterProductMean module.

2.6 LOSSES

We used several loss terms to improve predictions and training stability of the model. To compare
predicted structures with the ground truth ones we use frame-aligned point error loss (FAPE) first
proposed by the AlphaFold2 team. Given a set of predicted coordinates xi, i ∈ 1, . . . , N and
reference frames Fj , j ∈ 1, . . . ,M , along with a set of true coordinates xgti and reference frames
F gtj , the loss is computed by transforming coordinates of each point xi into the frame Fj and
comparing them to the corresponding ground truth coordinates xgti in the ground truth frames F gtj :

FAPE
(
F, x, F gt, xgt

)
=

1

NM

∑
ij

‖Fi ◦ xj − F gti ◦ xgtj ‖

, where N is the number of atoms in a molecule and M is the number of rigid bodies comprising it
(see Appendix algorithm 21). The detailed description of the whole algorithm is given in Appendix
section A.4.1 and Appendix algorithm 22. The second loss term penalizes the clashes of atoms in
the predicted structure. To construct it, we used Van-der-Waals radii for each atom Mantina et al.
(2009) and assign minimum distance between any two atoms in a molecule as rminij = rVWi + rVWj .
However, we want to exclude atoms that belong to the same neighborhoods from the loss. Therefore,
we set rminij = 0 if atoms i and j are the second-order neighbors in the molecular graph (Appendix
algorithm 23). After predicting atomic coordinates for a molecule we calculate the clash penalty as:

Lclash(x) =
1∑

ij r
min
ij > 0

∑
ij

ReLU
(
rminij − ‖xi − xj‖

)
It is also worth to note, that some atomic positions are predicted more than once, because of the
overlap of rigid neighborhoods along the covalent bonds of a molecule (See Fig. 2). Therefore, we
averaged each atomic position across all the rigid neighborhoods containing given atom (Appendix
algorithm 20). Finally, during the prediction of rotation matrices (Eq.2) one can face co-linearity
problem for the vectors b1 and b2, which are used to parameterize rotation. Hence, we added the
co-linearity loss, that minimizes scalar product between the normalized vectors b1 and b2 (Appendix
algorithm 24). One of the key features of AlphaFold2 is its ability to predict the quality of the resulting
structures, which we aim to retain in our work. For this, we predict the per-neighborhood accuracy
of the structure (pLDDT) using a small neural network from the final neighborhood representations
(Appendix algorithm 25). All the losses, except for pLDDT are predicted for each iteration of the
Evoformer block and then averaged. To take into account isomorphisms of the molecular graph, we
compute the minimum FAPE and pLDDT losses over all the isomorphisms.

3 RESULTS

The dataset used for training and test is based on PubChemQC Nakata and Shimazaki (2017)
consisting of approximately 4 million molecules, where each molecule is represented with Simplified
Molecular Input Line Entry Specification (SMILES) description, IUPAC International Chemical
Identifier (InChI), and the ground-state and excited-state 3D geometries of these molecules. Here we
used the pre-processed version of this dataset, Molecule3D, provided by Xu et al. (2021c). The dataset
is split into 60% / 20% / 20% subsets for training/validation/test, and two different splitting strategies
is used: random and scaffold-based splitting, where a scaffold refers to a molecule’s core component
consisting of connected rings without branches. Note, that scaffold-based split leads to a distribution
shift between the training and test subsets. We used the scaffold-based split, which forces a model to
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Figure 5: Examples of predicted structures from the test set. Red: true structures; Blue: predicted
structures. We split the test set into sets of molecules depending on the number of the rotable bonds
and the RMSD of the prediction. Then for each number of rotable bonds, we split RMSD region into
8 equal intervals and picked one example for each.

Table 1: The evaluation of the trained models on the test set of Molecule3D benchmark.

Model MAE RMSD FAPE HOMO-LUMO

AlphaMol/8 0.365 0.886 1.565 0.435
AlphaMol/12 0.353 0.893 1.509 0.337
AlphaMol/24 0.304 0.830 1.434 0.382

RDKit ETKDG 0.532 - - 0.1524
DeeperGCN-DAGNN + Distance 0.660 - - 0.2000
DeeperGCN-DAGNN + Coordinates 0.763 - - 0.2371

capture such distribution shifts in chemical space and measures the out-of-distribution generalization
ability of the model. Additionally, we filtered the dataset to exclude molecules containing only
one neighborhood, molecules, whose graph has disconnected components, molecules that have
pentavalent atoms, and some other cases (see Appendix section A.2). In total, we excluded ≈ 4, 000
structures across the training, validation, and test sets.

We have trained models with different number of Evoformer blocks: small (8), medium(12), and
big(24). The model was trained using Adam optimizer with the learning rate 1.5 · 10−4, without
a learning rate schedule. The training of each model was carried out on one node with 4xV100
for 1 · 106 iterations, which approximatelly correspond to 5, 7 and 15 days of node-time for small,
medium and big models. To compare our results with the previous algorithms we compute the mean
absolute error (MAE) performance metric:

MAE =
1

N2

∑
i,j=1..N,i6=j

∣∣∣dpredij − ddataij

∣∣∣ (5)

where dpredij is the distance between atom i and atom j in the prediction and ddataij is the actual
distance between the same atoms.

We compared our models with the DeeperGCN-DAGNN model Liu et al. (2021) model, which
predicts either distances between atoms or 3D atomic coordinates Xu et al. (2021c). Additionally, we
used the ETKDG algorithm Riniker and Landrum (2015) implemented in RDKit Landrum (2020) as
a baseline. The results are shown in Table 1. One can see, that even the smallest model outperforms
previously published methods in predicting 3D structures of ground states of molecules.

The existing methods typically report degradation of the prediction quality with respect to the number
of rotatable bonds in a molecule. We did not observed such a drawback for our method, and Figure
6 shows the distribution of RMSD of the predicted structures in the test set versus the number of
rotatable bonds. As one can see, the RMSD distribution has the second peak at the RMSD value of ∼
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Figure 6: Left axis: distribution of RMSD of
predicted structures depending on the number
of rotable bonds. Color scheme uses logarith-
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Å

100

101

102

103

104
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structures depending on average predicted
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1.3 Åcorresponding to molecules with up to 11 rotatable bonds, while the worst case predictions have
about 7 rotatable bonds. Figure 5 shows examples of the predicted molecular structures sampled from
three groups with different number of rotatable bonds and 8 groups corresponding to the different
RMSD values.

It is important to note, that one of the advantages of our model is ability to estimate the confidence
of the predictions, which could be useful in the downstream tasks. Figure 7 shows the correlation
between the average predicted LDDT and the RMSD of the predicted structure. Expectedly, we
observed a negative correlation between the predicted LDDT and RMSD.

4 DISCUSSION

In this study we developed a method to predict ground state small molecule structures based on novel
representation of molecular structures as a set of rigid neighborhoods. We introduced how to compute
loss functions over all isomorphisms of a molecular structure, as well as how to fix the chirality of
the predicted structures. These features are especially relevant for biological molecules; for example,
chirality may imply very different bioactivity properties between the small molecule enantiomers
and structural properties of protein chains. To the best of our knowledge, the proposed approach
of factorizing isomorphisms of the molecules is the only one available that can deal with this long
tail molecules. For example, lipids have long tails of carbohydrates for which other approaches to
account for isomorphisms fail, because their number grows exponentially with the length of the
molecule. To successfully train the model we introduced some changes to the Evoformer block,
namely, σReparam methodZhai et al. (2023), scalarization approach to equivarianceDu et al. (2022a)
and Graham-Schmidt processZhou et al. (2019) to represent rotations. These changes allowed us to
exclude the learning rate scheduling and running exponential averaging and significantly stabilized
the training.
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A APPENDIX

A.1 BOND GEOMETRIES

In this work we first remove terminal hydrogens of the molecule using the algorithm 1. We do this in
because we want to preserve hydrogens for carbon atoms in SP3 hydridization, while keeping the
same number of neighborhoods as with the hydrogen-free molecular representation. In particular we
remove all hydrogens bonded to heavy atoms that are connected only to one other heavy atom.

We extract bond geometries and bond distances from the dataset using the algorithm 2.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Algorithm 1 Removing terminal hydrogens

Require: Mol
done← False
while not done do

done← True
for atom i ∈Mol.GetAtoms() do

if atom i.Symbol! =′ H ′ then
Neighb← atom i.Neighbors()

Nheavy =
∑
atom j∈Neighb

{
1, atom j.Symbol! =′ H ′

0, otherwise
. Number of heavy atoms

connected to atom i
Nhyd = len(Neighb)−Nheavy . Number of hydrogens connected to atom i
if Nheavy == 1 && Nhyd > 0 then . If atom i hydrogens are terminal

for atom j ∈ Neighb do
if atom j.Symbol ==′ H ′ then

Mol.RemoveAtom(atom j)
done← False

end if
end for

end if
end if

end for
end while

return Mol

Algorithm 2 An overview of bond geometries extraction

Require: Dataset
mol ∈ Dataset
for mol ∈ Dataset do

Hoods← Neighborhoods(mol)
for hood ∈ Hoods do

HoodKey ← Cat(hybridization, num single bonds, num double bonds, . . . )
UnitV ecs← []
for (i, j) ∈ HoodBonds do . Index i is always the root atom of the neighborhood

BondKey ← Cat(mol[i].Symbol,mol[j].Symbol) . mol[i].Symbol is the atomic
symbol of i-th atom

BondDist←
√
|mol[i].Coords−mol[j].Coords|2

Store[BondKey]← BondDist
UnitV ecs.append ((mol[j].Coords−mol[i].Coords)/BondDist)

end for
if len(UnitV ecs) >= 3 && volume sign(UnitV ecs) < 0 then

UnitV ecs←
(
1 0 0
0 1 0
0 0 −1

)
· UnitV ecs . Making sure that all geometries have

positive volume sign
end if
perms← []
for perm ∈ Permutations(range(len(UnitV ecs))) do. Permutations of bond indices

if RMSD(UnitV ecs, UnitV ecs[perm]) < 0.1 then . Only counting permutations
for one chirality

perms.append(perm)
end if

end for
Store[HoodKey]← UnitV ecs, perms

end for
end for
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Table 2: Previous work on molecular structure prediction

Method Year Inner representation Equivariance Training framework
GraphDG Simm and Hernández-Lobato (2019) 2020 Distances Scalars VAE
ConfVAE Xu et al. (2021a) 2021 Distances Scalars VAE
ConfGF Shi et al. (2021) 2021 Distances Scalars Energy-based
DGSM Luo et al. (2021) 2021 Distances Scalars Energy-based
CGCF Xu et al. (2021b) 2021 Distances Scalars Energy-based, NeuralODE
SDEGen Zhang et al. (2023) 2023 Distances Scalars Diffusion
GeoMol Ganea et al. (2021) 2021 Angles and dist. Scalars OT
BOKEI Chan et al. (2020) 2020 Torsions Scalars BO
Torsional Diffusion Jing et al. (2022) 2022 Torsions Scalars Diffusion
CVGAE Mansimov et al. (2019) 2019 Coordinates Fixed frame VAE
DMCG Zhu et al. (2022) 2022 Coordinates Fixed frame VAE
EVFN Zhang et al. (????) – Coordinates Scalarization Energy-based
GeoDiff Xu et al. (2022) 2022 Coordinates Scalars Diffusion
EC-Conf Fan et al. (2023) 2023 Coordinates Irr. repr. Diffusion
Table 3: Previous methods that predict structures of molecules based on molecular graph description.
Updated version of the survey Du et al. (2022b). We also classify score-matching algorithms as
energy-based.

Table 4: Previous work on protein structure prediction

Method Inner representation Equivariance Training framework
AlphaFold2 Jumper et al. (2021) Rigid bodies Invariant Point Attention OT
RoseTTAFold Baek et al. (2021) Atomic coordinates SE(3) Transformer OT
OmegaFold Wu et al. (2022) Rigid bodies Invariant Point Attention OT
ESMFold Lin et al. (2022) Rigid bodies Invariant Point Attention OT
SE(3)-Fold Wu et al. (2021) Coordinates Scalars Energy-based
RFDiffusion Watson et al. (2022) Atomic coordinates SE(3) Transformer Diffusion
Chroma Ingraham et al. (2022) Rigid bodies Relative transforms Correlated Diffusion

Table 5: Previous methods that predict structures of proteins.

We use algorithm 3 to extract molecular neighborhoods and expression 6 to obtain the volume sign. As
we can see we treat a bond geometry as an object that is equal to other geometry up to a permutation
of bonds. I.e. only the hybridization of the root atom and the number of single/double/triple bonds
counts. We store the fist bond length and bond geometry of a particular class without averaging over
all the structures in the dataset. Table 6 shows resulting geometries and the distribution of RMSD
values when aligning them to the structures from the dataset. It also contains examples of aligned
geometries as well as outliers in terms of alignment RMSD.

{
~vi = ~ri, 3-neighbor
~vi = ~r4 − ~ri, 4-neighbor

, i ∈ [1, 2, 3]

volume sign = sign(~v1, ~v2 × ~v3)

Signature Geometry Initial molecule Outlier RMSD distribution

SP22100
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SP34000

SP32000

SP33100

SP21002

SP20002

SP20003

SP22000
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SP1010

SP3D3000

SP23000

SP21100

SP33000

SP3D4000

SP20102
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SP32200

SP0200

SP31100

SP32100

SP2000

SP3D3100 -

SP0011

Table 6: Bond geometries.
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Algorithm 3 Algorithm for extracting molecular neighborhoods

Require: mol, rank
Aij∈[0,N),← Adjaccency(mol) . Getting adjacency matrix of the molecule
Bij∈[0,N),← BondIndex(mol) . Bond indices for adjacency matrix
HoodIdx← 0
for k < N do

if
∑
iAki > 1 then . Degree of the node k
HoodRootAtom[HoodIdx]← k
neighbors← []
for l < N do

if Akl == 1 then
neighbors.append(l, rank[l])

end if
end for
neighbors← sort(neighbors, lambdax : x[1]) . Sorting neighbors according to the

CIP ranks
AtomIdx← 0
for l ∈ neighbors do

HoodAtomIndices[HoodIdx,AtomIdx]← l
HoodBondIndices[HoodIdx,AtomIdx]← Bkl
AtomIdx← AtomIdx+ 1

end for
HoodIdx← HoodIdx+ 1

end if
end forreturn HoodRootAtom, HoodAtomIndices, HoodBondIndices

A.2 DATA PROCESSING

The data processing pipeline is outlined in algorithms 4 and 5. The pipeline 4 processes molecular
graphs without any knowledge of ground truth atomic coordinates. We extract atomic and bond
feature sets described in the manuscript first. Then we get the indices of atoms comrising molec-
ular neighborhoods and rearrange per-atom features into per-neighborhood and pairwise features.
Afterwards we compute initial coordinates for each neighborhood atoms according to the bonds
geometries, that we described in section A.1. Afterwards we use these coordinates to get pairwise
transforms between neighborhoods. And finally, we enumerate isomorphisms in the molecule.

The processing of atomic coordinates is outlined in algorithm 5. We generate coordinates for each
isomorphisms of the molecular graph and extract transforms between initial neighborhood coordinates
and generated ground truth coordinates giving us a set of ground truth transforms.

Algorithm 4 Pipeline of molecular graph pre-processing

Require: mol . Molecular graph
Fi∈[0,N),← AtomicFeatures(mol) . Getting atomic features
Bj∈[0,M),← BondFeatures(mol) . Getting bond features
NeighbIdxij ← GetNeighborhoods(mol) . Getting indices of atoms in neighborhoods,
i ∈ [0,M), j ∈ [0,mi)]
HoodFeati∈[0,N) ← GetHoodFeatures(Fi, Bij , NeighbIdxij) . Getting neighborhood
features
PairFeatij∈[0,N) ← GetPairFeatures(mol) . Getting pairwise neighborhood features
xinitij ← GetInitCoords(mol) . Getting initial coordinates of atoms in neighborhoods
Tij∈[0,N) ← GetPairTansforms(mol) . Getting pairwise transforms of neighborhoods
global iso, local iso← GetIsomorphisms(mol) . Getting isomorphisms of the molecule

This pipeline has several special cases shown in the Table 7 along with the number of such cases
in the dateset. The first case is the excessive number of isomorphisms: when we try to predict a
molecule with hydrogens, these hydrogens can switch places between themselves without changing
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Algorithm 5 Pipeline of atomic coordinates pre-processing

Require: atom coords, global iso, local iso, xinit, NeighbIdx
for k ∈ num global iso do

for l ∈ num local iso do
iso neighbor indiceskl ← global iso[k] · local iso[l] ·NeighbIdx
gt neighbor positionskl ← atom coords[iso neighbor indiceskl]

end for
end for
gt neighb transforms← FitNeighbTransforms(xinit, gt neighbor positions)

the graph. Table 7 show that the number of isomorphism tend to increase exponentially when we
have long hydrocarbon tails in some molecules. We describe our solution to this problem in section
A.2.2.

Some molecules have several connected components in their graphs. In this case we select the largest
one and continue processing. Molecules containing penta-valent silicon compounds(. . . Si5 . . . ) and
penta-valent phosphorous (. . . CPF4 . . . ) are excluded from the dataset. We also exclude molecules
contanining only one neighborhood, single atom or atoms rare in biologically releavant compounds
(Be, Kr, Ar etc).

Exception key Examples Number

Isomorphisms 4733

Disconnected 1547

Alignment 21676

Pentavalent 800

Single hood 3841
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Single atom 43

Atom type 32

Table 7: Exclusion set.

A.2.1 NEIGHBORHOODS

As outlined in the data processing pipeline Alg 4, we first obtain atomic indices for each neighborhood.
To make them consistent with chirality of the molecule we sort the indices for each neighborhood
according to the CIP ranks of atoms in the molecule (Alg. 6). Then we compute the features of

Algorithm 6 GetNeighborhoods

Require: Aij , i, j ∈ [0, N) . Adjacency matrix of the molecule
Require: CIPi . CIP ranks of atoms in the molecule
RootIdx = {i : i is not leaf node} . Every non-leaf atom makes a neighborhood
for i ∈ RootIdx do

NeighbIdxi ← {j : Aij = 1}
Sort(NeighbIdxi, key = CIPi) . Sorting indexes using CIP ranks of the atoms

end for
return NeighbIdxi

the neighborhoods following Alg 7. The atomic and bond features (F and B) are described in the
manuscipt. Pairwise features for neighborhoods are computed using algorithm 8, that is similar to the

Algorithm 7 GetHoodFeatures

Require: edgej , j ∈ [0,M) . Indexes of atoms connected by the M bonds
Require: Fi, i ∈ [0, N) . Atomic features
Require: Bj , j ∈ [0,M) . Bond features
Require: RootIdx,NeighbIdx . Root and neighbor indices for each neighborhood

for i ∈ RootIdx do
for j ∈ NeighbIdxi do

bond index← {k : edgek = (i, j)}
HoodFeatij ← cat(Fi, Fj , Bbond index)

end for
end for
return HoodFeatij

previous algorithm.

Additionaly, we have to provide geometric input features to our model. We compute the initial
geometry of a neighborhood by combining bond geometry and bond lengths, extracted from the
data and described in the section A.1. Algorithm 9 outlines the procedure we use to assign initial
coordinates to the atoms of neighborhoods. We first assign signatures to the neighborhoods in the
same way we did it in section A.1, then we load bond order, allowed permutations and bond lengths
from the data geometric data. We then find permutation that matches the current bond order to the
one in the data and assing the coordinates according to this permutation.
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Algorithm 8 GetPairFeatures

Require: edgej , j ∈ [0,M) . Indexes of atoms connected by the M bonds
Require: Fi, i ∈ [0, N) . Atomic features
Require: Bj , j ∈ [0,M) . Bond features
Require: RootIdx . Root indices for each neighborhood

for i ∈ RootIdx do
for j ∈ RootIdx do

bond index← {k : edgek = (i, j)}
if bond index 6= ∅ then

PairFeatij ← cat(Fi, Fj , Bbond index)
end if

end for
end for
return PairFeatij

Algorithm 9 GetInitCoords

Require: edgej , j ∈ [0,M) . Indexes of atoms connected by the M bonds
Require: BondTypej , j ∈ [0,M) . Bond types
Require: Permutationsi, i ∈ [0, N) . Allowed permutations for each neighborhood
Require: BondOrderi, i ∈ [0, N) . Bond order for each neighborhood
Require: Coordsij , i ∈ [0, N), j ∈ [0,Ki) . Coordinates of unit vectors of geometry of each

neighborhood
Require: BondLengthij , i ∈ [0, N), j ∈ [0,Ki) . Bond lengths of each bond in neighborhoods
Require: RootIdx,NeighbIdx . Root and neighbor indices for each neighborhood

for i ∈ RootIdx do
bond order ← {}
for j ∈ NeighbIdxi do . Extracting bond order of the current neighborhood

bond index← {k : edgek = (i, j)}
bond order ← bond order ∪ {BondTypebond index}

end for
perm← {p : p(bond order) = BondOrderi, p ∈ Permutationsi} . Matching the bond

orders
init coordsi ← {(0, 0, 0)} . Placing the root atom in the center
for k ∈ perm(NeighbIdxi) do . Computing the initial coordinates

init coordsik ← Coordsik ∗BondLengthik
end for

end for
return init coordsik
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Table 8: Each one-hot feature is an encoding of a given property + 1 bit that indicates that the property
is abnormal or incorrectly assigned.

Feature Encryption Size

Atom type one-hot 35
Is aromatic 1/0 1
Atom degree one-hot 8
Atom hybridization one-hot 6
Atom implicit valence one-hot 8
Atom formal charge one-hot 4
Size of the ring atom belongs to one-hot 6
Number of rings atom belongs to one-hot 5
Atom chirality to 1/0 1

Bond type one-hot 4
Bond in ring 1/0 1
Bond is conjugated 1/0 1
Bond is aromatic 1/0 1
Bond chirality 1/0 1

Finally we obtain pair transforms using algorithm 10. For each pair of neighborhoods i and j that
are connected by a bond we take the coordinates of atom in the first neighborhood vec src that
constitutes the bond ij. Similarily we take the coordinates of atom from the second neighborhood j
vec dst that belongs to the bond ji between neighborhoods. Then we compute the transform that
aligns second neighborhood along the bond vec src.

Algorithm 10 GetPairTansforms

Require: edgej , j ∈ [0,M) . Indexes of atoms connected by the M bonds
Require: init coordsik, i ∈ [0, N), k ∈ [0,Ki) . Initial coordinates of neighborhood atoms
Require: RootIdx,NeighbIdx . Root and neighbor indices for each neighborhood

for i ∈ RootIdx do
for j ∈ RootIdx do

if {k : edgek = (i, j)} 6= ∅ then
vec src← {init coordsik : NeighbIdxik = j} . Initial coordinates of atom from

neighborhood i to j
vec dst← {init coordsjk : NeighbIdxjk = i} . Initial coordinates of atom from

neighborhood j to i
Hsrc ← AlignX(vec src) . Alignment matrix of vector to the X-axis
Hdst ← AlignX(vec dst)
T rotij ← HT

src ·Hflip ·Hdst . Rotational part of the pair transform
T transij ← vec src . Translational part of the pair transform

end if
end for

end for
return Tij

The final set of features of each neighborhood is given in the Table 8.

A.2.2 ISOMORPHISMS FACTORIZATION

Lets denote a set of all isomorphisms of a molecule graph as I . Any one element in the set I is a
permutation of atomic indices of a molecule. We need to enumerate this set in order to compute the
final loss of the model prediction:

L = min
iso∈I

FAPE (Tpred, Xpred, Tgt(iso), Xgt(iso)) (6)

where Tpred, Tgt are the predicted and ground truth transforms of the neighborhoods and Xpred, Xgt

are the predicted and ground truth atomic coordinates of the molecule. The Eq.6 represents the
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form we use in the current work, alternatively we can take the minimum over Tpred(iso−1) and
Xpred(iso

−1). However this alternative formulation makes algorithm more computationally heavy.
The Xgt(iso) can be written as Xgt(iso) = {xiso(i)gt , i ∈ [0, N)}. Tgt(iso) are the transforms from
initial coordinates of the neighborhood atoms to the ground truth coordinates permutted using an
elemenet of the set I .

Naively we can enumerate all isomorphisms of a molecule graph by first coloring the graph vertexes
using the atom type and graph edges using the bond type. However, this procedure will yield the
number of isomorphisms that exceed 105 for all molecules in the first row of Table 7. The reason
for this is that each hydrogen bonded to a carbon using signle bond can be swapped for any other
hydrogen of the same atom, so that the number of such swap combinations grows exponentially with
the number of carbons in the molecule.

In this work we deal with this problem for the case of terminal hydrogen atoms only. To circumvent
combinatorial explosion of the isomorphism set, we factorize the set into local and global isomor-
phisms. Local isomorphisms I(l)i are computed for each neighborhood i. Each local isomorphism
should only permute hydrogens, leaving heavy atoms in their respective places. Global isomor-
phisms I(g) are the isomorphisms of the molecule without hydrogens, that are extended to the added
hydrogens with identity permutation.

Proposition: ∀i ∈ I∃l ∈ I(l),m ∈ I(g) : i = l · m We leave out the proof of this proposition,
however it should be trivial. If the proposition holds, we compute the loss of the model prediciton in
the following way:

iso
(l)
i = argmin

iso∈I(l)i

FAPE (Tpred, Xpred, Tgt(iso), Xgt(iso)) , i ∈ [0,M) (7)

L = min
iso∈I(g)

FAPE

Tpred, Xpred, Tgt

iso× ∏
i∈[0,M)

iso
(l)
i

 , Xgt

iso× ∏
i∈[0,M)

isoi

 (8)

Despite this method, there are still some ligands that have highly symmetric molecular graphs.
Although the number of global isomorphisms they have is on the order of 104, we still exclude 91
molecules from the dataset that have more than 512 global isomorphisms for convenience. Figure 8
shows some examples of such molecules.

Figure 8: Examples of molecules with the graph that has more than 512 global isomorphisms.

A.2.3 GROUND TRUTH

While obtaining neighborhood transforms from neighbor positions we run into two special cases:
the chirality of a neighborhood is not set and the corresponding bond geometry fits the coordinates
badly (RMSD −min RMSD > 0.3). The algorithm 11 outlines the way we detect and treat these
special cases. If the chirality mask is true, then we assign chirality to this atom and reprocess the
data. In practice, we observed that quatro-valent phosphorus in certain lingands is not labeled as
chiral. If the fit mask contains true values, we leave transforms that we obtained in this algorithm
and unmask all its local isomorphisms.

A.2.4 DATASET STATISTICS

Overall out of 3,982,254 molecules in the dataset we exclude 5105. Out of which are 801 compounds
containing penta-valent atoms, 4137 single-neighborhood compounds, 43 examples that have atoms

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 11 FitNeighbTransforms

Require: init coordsik, i ∈ [0, N), k ∈ [0,Ki) . Initial coordinates of atoms in neighborhoods
Require: gt positionsglik, g ∈ global iso, l ∈ local iso, i ∈ [0, N), k ∈ [0,Ki) . Ground

truth coordinates
rmsdgli ← RMSD(init coords, gt positions) . Aligning all initial coordinates to all ground
truth ones
min rmsdi ← min

gi
(rmsdgli) . Min RMSD for each neighborhood

iso maskgli ← (rmsdgli −min rmsdi) < 0.3 . Flagging true all variants that are close to the
best fit
loc iso maskgi ← ∃liso maskgli
if ∀g¬(∀iloc isomaskgi) then

. If all global isomorphisms have at least one hood that does not fit any local isomorphisms

Wgi ←
(
1 0 0
0 1 0
0 0 2loc iso maskgi − 1

)
. We flip chirality of neighborhoods that did not fit any local isomorphism

rmsdchirgli ← RMSD(W · init coords, gt positions)
loc iso maskchirgi ← ∃lrmsdchirgli < 0.82

. If fit changes when we flip the chirality then it is assigned incorrectly
chirality mask ← (∃gloc iso maskgi)⊕ (∃gloc iso maskchirgi )
if ∃ichirality maski then

Flip chiral center i and redo data processing
end if

. If the fit does not change, then we have non-standard neighborhood geometry
fit mask ← (¬∃gloc iso maskgi) ∧ (¬∃gloc iso maskchirgi )
if ∃ifit maski then

iso mask[fit mask]← True
end if

end if
. If there is no local isomorphism for at least one neighborhood, we mask such global

isomorphism
glob iso maskg ← ∀i∃liso maskgli
iso mask[¬glob iso maskg]← False
loc iso maskgi ← ∃liso maskgli
if ∀g¬(∀iloc isomaskgi) then

. If after all the changes we still have problematic neighborhoods we retain those close to the
optimal one

loc iso min idxgi = argmin
l

(rmsdgli)

opt rmsdg ←
∑
imin

l
(rmsdgli) . Min RMSD for each isomorphism

glob iso maskg ← opt rmsdg −min
g

(opt rmsdg) < 0.3

iso maskgli ← False
iso maskgloc iso min idxgii ← True
iso maskg¬glob iso maskg ← False

end if
. Finally we obtain rotations and translations from alignment matrix U

return rot← rmsdgli.U
T

return trans← gt positionsgl0k
return iso mask
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without neighbors, 32 compounds with rare atom types and 1 compound that is disconnected and has
non-trivial chirality. Additionally we remove 91 examples because of excessive number of global
isomorphisms.

Figure 9: Distibution of number of neighborhoods, global and local isomorphisms and average
neighborhood best fit rmsd in training, validation and test sets.

Figure 9 shows the distribution of the number of neighborhoods in train, test and validation subsets,
as well as distribution of number of global and local isomorphisms and average neighborhood rmsd
fit. We see that test set is slightly more challenging than the training and validation subsets. We
also can see in Fig. 9 that the overal best fit of the dataset using our molecule representation is good
enough to assume the validity of such a representation.

Additionally, Figure 10 shows molecules that are outliers in the statistics shown on the Fig 9. The
first row shows largest molecules in the dataset with the labels corresponding to the numbers of
neighborhoods in each molecule. The second row corresponds to the molecules with the biggest
numbers of global isomorphisms. The third row shows molecules with the biggest number of
neighborhoods with non-trivial local isomorphisms (that are not filtered out based on the structure).
Finally, the fourth row shows the molecules that have the worst fit using rigid-body bond geometries
along with the average rmsd over all neighborhoods.

A.3 MODEL

Algorithm 12 gives and overwiev of the model. First, we generate initial transforms of the neighbor-
hoods and embed input features. Then we iterate over Evoformer blocks, and iteratively refine initial
translations and rotations. Iteration parameters (Linear layers and Evoformer paramteres) are unique.
During the iteration we first scalarize the geometric features, pass them as a transformer input to
the Evoformer and then vectorize the transformed Evoformer output, which we use to update the
geometry of a molecule.

In this work we follow the approach by the AlphaFold2 team and use the same initialation of the rigid
body transforms. Algorithm 13 shows that we place all the neighborhoods in the frame origin and
assign them the same rotation.

For feature embedding we take the output features of the data processing algorithm HoodFeat and
PairFeat. First we append initial atomic coordinates of the neighbors in neighborhoods and linearly
transform them, obtaining neighbor embeddings neighb embed as a result. Next we concatenate
neighbor embedding for each neighborhood and transform these features obtaining embeddings
for neighborhoods hood embed. The pairwise neighborhood features are passed through a linear
transform followed by ReLU and another linear transform to obtain pairwise embeddings pair embed.
Algorithm 14 shows the pseudocode of the whole process.

To make evoformer application on the geometric features equivariant we first centralize the coordinates
of neighborhoods (Algorithm 15). This gives us translation invariance. The rotation equivariance is
archived by transforming geometric features into scalars in certain basis and after applying Evoformer,
transforming the output back into geometric features using the same basis. To do this we first construct
a set of basis for a molecule, one for each neighborhood. We use rotation of the neighborhood as a
vector basis (Algorithm 16, node basis). To scalarize rotation matrixes we also construct the basis
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Algorithm 12 AlphaMol

Require: HoodFeat, PairFeat, init coords
rot, trans← InitialTransforms()
single act, pair act← FeatureEmbedding(HoodFeat, PairFeat, init coords)
all rot, all trans← ∅ . Ordered (only the last position order matters) sets of rotations and
translations
for i ∈ [0, num evoformer blocks) do

. Scalarization of the geometry
trans← Centralize(trans)
node basis, edge basis← GetBasis(rot)
node scalars, edge scalars← Scalarize(rot, trans, pair rot, pair trans, node basis, edge basis)

. Evoformer part
single act← Linear(single act

⊕
node scalars)

pair act← Linear(pair act
⊕
edge scalars)

single act, pair act← Evoformer(single act, pair act)
transform← Linear(single act)

. Vectorization and geometry update
new rot, new trans← V ectorize(transform, node basis, rot, trans)
rot← rot · new rot
all rot← all rot ∪ rot . Saving new rotation
trans← trans+ new trans
all trans← all trans ∪ trans . Saving new translation

end for
return all rot, all trans, single act, pair act

Algorithm 13 InitialTransforms

. Using the same initialization as AlphaFold2
Require: batch size, num hoods

rot←
(
1 0 0
0 1 0
0 0 1

)
.repeat(batch size, num hoods)

trans←
(
0
0
0

)
.repeat(batch size, num hoods)

return rotbijk, transbij , b ∈ [0, batch size), i ∈ [0, num hoods), j, k ∈ [0, 3)

Algorithm 14 FeatureEmbedding

Require: HoodFeatbij ∈ RNfeat , init coordsbij ∈ R3, i ∈ [0, Nhoods), j ∈ [0, Nneighbors)
Require: PairFeatbij ∈ RMfeat , i, j ∈ [0, Nhoods)
HoodFeatbij ∈ RNfeat+3 ← HoodFeatbij

⊕
init coordsbij

neighb embedbij ← relu (Linear (relu (Linear (HoodFeatbij))))
neighb embedbi ∈ RNneighbors∗Nfeat ←⊕

j neighb embedbij
hood embedbi ← Linear (relu (Linear (neighb embedbi)))
pair embedbij ← Linear (relu (Linear (PairFeatbij)))
return hood embedbi, pair embedbij
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Figure 10: Outliers from the datasets. Labels on the left denote the category, labels above denote the
parameter, that this category has. The values of paramteres correspond to the data on Fig 9.

in the space of (1,1)-tensors. We do it by taking outer product of vector basis of each node with
all the other nodes. This way we obtain N2

hoods basis for pairwise tensor features (Algorithm 16,
edge basis).

Algorithm 15 Centralize

Require: transbi ∈ R3, i ∈ [0, Nhoods)
centerb ∈ R3 ← 1

Nhoods

∑
i transbi

return transbi − centerb

Algorithm 16 GetBasis

Require: rotbi ∈ R9, i ∈ [0, Nhoods)
node basisbik ∈ R3 ← rotTbi, k ∈ [0, 3)
edge basisbijkl ∈ R9 ← node basisbik

⊗
node basisbjl, k, l ∈ [0, 3)

return node basisbik, edge basisbijkl

To obtain scalar features from translations, rotations of each neighborhood and the pairwise transla-
tions and rotations features we first project translations onto vectors of the node basis (Algorithm
17) obtaining node scalars. For the pairwise translations we first compute relative translations
rel trans and then transform them into translation tensor by taking outer product of their compo-
nents (Algorithm 17, edge trans). Then we project the relative translations tensor onto the pairwise
tensor basis. Similarily we obtain scalar pairwise rotations. Finally we concatenate pairwise scalars
into edge scalars.
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Algorithm 17 Scalarize

Require: transbi ∈ R3, rotbi ∈ R9 i ∈ [0, Nhoods)
Require: pair transbij ∈ R3, pair rotbij ∈ R9 i, j ∈ [0, Nhoods)
Require: node basisbim ∈ R3, edge basisbijkl ∈ R9 i, j ∈ [0, Nhoods), m ∈ [0, 3), k, l ∈

[0, 9)
node scalarsbi ∈ R3 ← (transbi, node basisbim)
rel transbij ∈ R3 ← (transbi − transbj) + pair transbij
edge transbij ∈ R9 ← rel transbij

⊗
rel transbij

scalar edge transbij ∈ R9 ← (rel transbij , edge basisbijkl)
scalar edge rotbij ∈ R9 ← (pair rotbij , edge basisbijkl)
edge scalarsbij ∈ R18 ← edge transbij

⊕
scalar edge rotbij

return node scalarsbi ∈ R3, edge scalarsbij ∈ R18

Algorith 18 describes our vectorization process of the output features transformbim. Here we obtain
three vectors for each neighborhood by treating transformbim as the decomposition coefficients
into the node basisbi. One of these three vectors is then interpreted as a translation update of a
neighborhood translationbi. The other two vectors are used to construct rotation using Gramm-
Schmidt process.

Algorithm 18 Vectorize

Require: transformbim ∈ R3, i ∈ [0, Nhoods), m ∈ [0, 3)
Require: node basisbim ∈ R3, edge basisbijkl ∈ R9 i, j ∈ [0, Nhoods), m ∈ [0, 3), k, l ∈

[0, 9)
vectorsbik ∈ R3 ←∑

m(node basisbik, transformbim)
translationbi ∈ R3 ← vectorsbi0
a
(1)
bi ∈ R3 ← vectorsbi1

a
(2)
bi ∈ R3 ← vectorsbi2

. Gramm-schmidt process

b
(1)
bi ←

a
(1)
bi

|a(1)bi |

b
(2)
bi ← a

(2)
bi − (b

(1)
bi , a

(2)
bi )b

(1)
bi

b
(2)
bi ←

b
(2)
bi

|b(2)bi |

b
(3)
bi ← b

(1)
bi × b

(2)
bi

rotationbi ∈ R9 ← b
(1)
bi

⊕
b
(2)
bi

⊕
b
(3)
bi

return translationbi ∈ R3, rotationbi ∈ R9

A.3.1 EVOFORMER

In this work we use the same Evoformer block, as the one in AlphaFold2 with few modifications.
First, we do not need column-wise attention, because the input single features have only one row. The
second important change is that throughout the Evoformer block we use GELU activation function
instead of ReLU. The major change we made is the addition of spectral normalization in the attention
layer. Algorithm 19 shows the changes to the gated self-attention with pair bias in bold. Similar
changes are done to the triangle attention modules.

A.4 LOSSES

First we compute the iterative atomic structures of a molecule based on rotations and translations
(all rot, all trans) output of the model. Algorithm 20 shows the outline of molecule reconstruction
using the scatter operation. Effectively we predict atom positions belonging to the bond between
neighborhoods twice and then average over these predictions. We ommit the technical details of tensor
manipulation. Similar procedure is performed for the single representations of the neighborhoods. In
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Algorithm 19 Gated self-attention with pair bias

Require: mbi ∈ RNfeat , i ∈ [0, Nhoods)
Require: zbij ∈ RNfeat , i ∈ [0, Nhoods)

. Iteratively compute maximum eigenvalue of the matrix KTQ
W← KTQ
u←W · u . u is the parameter of this module, saved for the next step
u← u

|u|
v←W · v . v is the parameter of this module, saved for the next step
v← v

|v|
σh ←∑

dc u
h
dW

h
dcv

h
c

. Standard gated self-attention with pair bias
mbi ← LayerNorm(mbi)
qhbi, k

h
bi, v

h
bi ← LinearNoBiasQKV (mbi) . Q, K, V are matrixes of the linear transform

bhbij ← LinearNoBias(LayerNorm(zbij))

ghbi ← Sigmoid(Linear(mbi))

ahbij ← Softmaxj(
1

σh
√
c
qhbi

T
khbj + bhbij) . Additional factor σh

ohbi ← ghbi ·
∑
j a

h
bijv

h
bi

m̃bi ← Linear(concath(o
h
bi))

return m̃

the end we have atom positionslbk tensor, where l indexes evoformer blocks outputs, b corresponds
to the molecule index in a batch and k enumerates the atoms in a molecule. Additionally we obtain
single actbk representation for each atom in the batch of molecules.

Algorithm 20 Structure reconstruction

Require: all rotlbi ∈ R9, all translbi ∈ R3, l ∈ [0, num evoformer blocks), b ∈
[0, batch size), i ∈ [0, Nhoods)

Require: init coordsbik ∈ R3, i ∈ [0, Nhoods), k ∈ [0, Nneighb)
Require: atom maskbik, i ∈ [0, Nhoods), k ∈ [0, Nneighb) . 1/0 depending on whether atom k

is present in neighborhood i
Require: atom indicesbik, i ∈ [0, Nhoods), k ∈ [0, Nneighb) . global index of atom k in

neighborhood i
neighbor positionslbik ← all rotlbi · init coordsbik + all translbi
num atomsm ←

∑
bik atom maskbikδ(atom indicesbik −m) . Scatter operation: we sum

over atom mask to the cell with indices of atom index
atom positionslm ← 1

num atomsm

∑
bik neighbor positionslbikδ(atom indicesbik −m)

atom positionslbk ∈ R3 ← atom positionslm, k ∈ [0, num atomsb) . Rearranging tensor
to the batch of molecules
single actm ← 1

num atomsm

∑
bik single actbikδ(atom indicesbik − l)

single actbk ∈ RNfeat ← single actm, k ∈ [0, num atomsb)
return atom positionslbk, single actbk, neighbor positionslbik

A.4.1 STRUCTURAL LOSSES

The first loss that we compute is Frame-Aligned Point Error(FAPE, Algorithm 21) of the reconstructed
structure with respect to the ground truth structure. However, because we have our ground truth data
in the factorized form we first have to find the best matching global and local isomorphism. Algorithm
22 outlines our implementation. The key feature of this algorithm is that it is an approximation
of the Eq.7. We do not reconstruct structures for each isomorphism, instead we compute FAPE
for neighborhoods for each isomorphism and then approximate FAPE of the whole structure by
the sum FAPE over all neighborhoods. In practice this approximation gives us the same minimum
as the whole-structure FAPE. Afterwards we reconstruct ground truth structure for the selected
isomorphisms and compute the correct FAPE score for the whole reconstructed structure.
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Algorithm 21 Frame-Aligned Point Error(FAPE)

Require: pred Ti ∈ R12, pred posj ∈ R3, gt Ti ∈ R12, gt posj ∈ R3

xij ← pred T−1i ◦ pred posj
gt xij ← gt T−1i ◦ gt posj
dij =

√
||xij − gt xij ||2

return 1
10NiNj

∑
ij (min(10, dij))

Algorithm 22 Structure loss

Require: gt neighbor positionsbglin ∈ R3, gt rotbgli ∈ R9, gt transgli ∈ R3, b ∈
[0, batch size), g ∈ [0, Nglob iso), l ∈ [0, Nloc isoi) i ∈ [0, Nhoods)

Require: all rotmbi ∈ R9, all transmbi ∈ R3, atom positionsmbk ∈ R3 m ∈
[0, num evoformer blocks)

Require: neighbor positionsmbin
Require: atom maskbin, i ∈ [0, Nhoods), n ∈ [0, Nneighb) . 1/0 depending on whether atom n

is present in neighborhood i
Require: atom indicesbin, i ∈ [0, Nhoods), n ∈ [0, Nneighb) . global index of atom n in

neighborhood i

. Computing FAPE loss for each neighborhood and isomorphism between the prediction and the
ground truth
pred rigidsmbi ∈ R12 ← all rotmbi ⊕ all transmbi
gt rigidsbgli ∈ R12 ← gt rotbgli ⊕ gt transbgli
neighb fapembgli ← FAPE (pred rigidsmbi, gt rigidsbgli, neighbor positionsmbin, gt neighbor positionsbglin)

. Getting indices of local and global isomorphisms
local iso idxmbgi, min local isombgi ← argmin

l
(neighb fapembgli) , min

l
(neighb fapembgli)

global iso idxmb ← argmin
g

(
∑
imin local isombgi)

local iso idxmbi ← local iso idxm,b,global iso idxmb,i

. Selecting rigid transforms and neighbor positions of the ground truth based on local and global
isomorphism
gt rigidsmbi ← gt rigidsb,global iso idxmb,local iso idxmbi,i

gt neighbor positionsmbin ← gt neighbor positionsb,global iso idxmb,local iso idxmbi,i,n

. Reconstructing atomic positions for each molecule from neighbor positions, same operation as
in Structure reconstruction algorithm
num atomsf ←

∑
bin atom maskbinδ(atom indicesbin − f)

gtatom positionsmf ← 1
num atomsf

∑
bin gt neighbor positionsmbinδ(atom indicesbin−f)

gt atom positionsmbk ∈ R3 ← gt atom positionsmf , k ∈ [0, num atomsb) . Rearranging
tensor to the batch of molecules

. Computing FAPE loss for the reconstructed ground truth for each evoformer block and molecule
in the batch
struct fapemb ← FAPE (pred rigidsmbi, gt rigidsmbi, atom positionsmbk, gt atom positionsmbk)

return
∑

mb struct fapemb

num evoformer blocks·batch size , gt atom positionsmbk
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Additionally we penalize the clashes between atoms in the structure. Algorithm 23 shows our
procedure for computing clash loss. Importantly, we exclude first and second neighbors from the
loss, because it is guranteed that some of these neighbors belong to the same neighborhoods and
our algorithm treats them as rigid bodies. To compute second-order neighbors we use well known
formula Asecond = Afirst(Afirst)T > 0, where Afirst is the adjacency matrix of the molecular
graph.

Algorithm 23 Clash loss

Require: atom positionsbk ∈ R3, b ∈ [0, batch size), k ∈ [0, Natoms)
Require: adjbkl, l ∈ [0, Natoms) . Adjacency matrix
Require: rbk, k ∈ [0, Natoms) . Atomic radius
second adjbkl ← (

∑
m adjbkmadjblm) > 0 . Adjacency for second neighbors

min distbkl ← (rbk + rbl)(1− second adjbkl)
dbkl ←

√
||atom positionsbk − atom positionsbl||2

L = 1∑
bkl(min distbkl>0)

∑
bklReLU(min distbkl − dbkl)

return L

Finally, collinearity of the predictions is also penalized as described in the Algorithm 24. Specifically
we save collinearity values during the vectorization stage described by the Algorithm 18. After
computing all the Evoformer iterations, we average over the batch and iterations and obtain the loss.

Algorithm 24 Collinearity loss

Require: b(1)mbi ∈ R3, a
(2)
mbi ∈ R3 m ∈ [0, num evoformer blocks), b ∈ [0, batch size), k ∈

[0, Nhoods)

collmbi ← (b
(1)
mbi,

a
(2)
mbi

||a(2)mbi||
)

L← 1
num evoformer blocks·batch size·Nhoods

∑
mbi collmbi

return L

Similar to AlphaFold2 we predict the model confidence over its own structure prediction. In our
case we predict per-neighborhood lDDT scores. As the Algorithm 25 shows, our implementation has
almost no changes from the one used in AlphaFold2.

Algorithm 25 pLDDT loss
Require: atom positionsbk, gt atom positionsbk, single actbi, b ∈ [0, batch size), i ∈
[0, Nhoods), k ∈ [0, Natoms)

Require: neighbor atom indicesbin, n ∈ [0, Nneighb)

Require: v(bins) ∈ RNbins . Vector of bin cutoff values, f.e [1, 3, 5, . . . 99]
. Computing ground truth LDDT, based on the predicted and gt atomic structures, then averaging
atomic lDDT over neighborhoods
dbkl ←

√
||atom positionsbk − atom positionsbl||2

gt dbkl ←
√
||gt atom positionsbk − gt atom positionsbl||2

L1bkl ← |dbkl − gt dbkl|
scorebkl ← 1

4 ((L1bkl < 0.5) + (L1bkl < 1.0) + (L1bkl < 2.0) + (L1bkl < 4.0))

gt LDDTbk ← 1∑
l(gt dbkl<15)

∑
l scorebkl(gt dbkl < 15)

gt LDDTbi ← 1
Nneighb

∑
n gt LDDTb,neighbor atom indicesbin

. Computing predicted LDDT and using cross-entropy loss to compare it to groud-truth LDDT
ybi ∈ RNbins ← relu(Linear(relu(Linear(LayerNorm(single actbi)))))
pbi ← SoftMax(Linear(ybi))
gt pbi ← OneHot(gt LDDTbi, v

(bins))
pLDDTbi ← pTbiv

(bins)

L← 1
batch size·Nhoods

∑
ib

(
gt pTbi log pbi

)
return pLDDTbi, L
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A.4.2 PROPERTY PREDICTION

We added property prediction head to check whether the atom-wise single activations can be used in
the end-to-end fashion for predictions. We use standard SchNet architecture with the assumption of a
fully-connected atomic graph. Algorithms 26, 27 and 28 summarize the architecture of the neural
network used for HOMO-LUMO gap prediction as well as the loss computation.

Algorithm 26 Property prediction head

Require: atom positionsbk ∈ R3, single actbk, b ∈ [0, batch size), k ∈ [0, Natoms)
Require: gtb . Ground-truth homo-lumo gap
hbk ← LayerNorm(Linear(single actbk))

dbkl ←
√
||atom positionsbk − atom positionsbl||2

rbfbkl ← RBF (dbkl)
for i ∈ [0, Ninteract) do

hbk ← hbk + Interactioni(hbk, rbfbkl)
end for
predb ←

∑
k Linear (ShiftedSoftP lus(Linear(hbk)))

L← 1
batch size

∑
b |predb − gtb|

return L

Algorithm 27 Radial basis function
Require: dbkl, b ∈ [0, batch size), k, l ∈ [0, Natoms)
Require: x0 = 0.0, x1 = 5.0, Ngaussians = 50
rm ← x0 +

m
Ngaussians

(x1 − x0), m ∈ [0, Ngaussians)

decbklm ← e
− (dbkl−rm)2

2(r1−r0)2

return decbkl ∈ RNgaussians

Algorithm 28 Interaction block

Require: hbk ∈ RNfeat , rbfbkl ∈ RNgaussians , b ∈ [0, batch size), k, l ∈ [0, Natoms)
h← Linear(h)

. CF convolution module
Wbkl ∈ RNfeat ← ShiftedSoftP lus(Linear(ShiftedSoftP lus(Linear(rbfbkl))))
hbk ←

∑
l (hbk ·Wbkl)

. Output of interaction block
hbk ← Linear(Softplus(Linear(hbk)))
return hbk ∈ RNfeat
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