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Abstract
Single domain generalization (single DG) aims at
learning a robust model generalizable to unseen
domains from only one training domain, mak-
ing it a highly ambitious and challenging task.
State-of-the-art approaches have mostly relied on
data augmentations, such as adversarial pertur-
bation and style enhancement, to synthesize new
data and thus increase robustness. Nevertheless,
they have largely overlooked the underlying co-
herence between the augmented domains, which
in turn leads to inferior results in real-world sce-
narios. In this paper, we propose a simple yet
effective scheme, termed as StyDeSty, to explic-
itly account for the alignment of the source and
pseudo domains in the process of data augmenta-
tion, enabling them to interact with each other in
a self-consistent manner and further giving rise to
a latent domain with strong generalization power.
The heart of StyDeSty lies in the interaction be-
tween a stylization module for generating novel
stylized samples using the source domain, and a
destylization module for transferring stylized and
source samples to a latent domain to learn content-
invariant features. The stylization and destyliza-
tion modules work adversarially and reinforce
each other. During inference, the destylization
module transforms the input sample with an ar-
bitrary style shift to the latent domain, in which
the downstream tasks are carried out. Specifically,
the location of the destylization layer within the
backbone network is determined by a dedicated
neural architecture search (NAS) strategy. We
evaluate StyDeSty on multiple benchmarks and
demonstrate that it yields encouraging results, out-
performing the state of the art by up to 13.44% on
classification accuracy. Codes are available here.
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Figure 1. Workflows of general DG solution, existing single DG
solution, and the proposed solution. (a) General DG methods
are trained on multiple source domains to learn domain-invariant
representations for generalization. (b) Existing single DG methods
typically leverage data augmentation techniques to increase the
domain diversity and then conduct training directly on the pseudo
domains. (c) The proposed single DG solution enables an explicit
stylization and destylization mechanisms to learn a latent domain,
where the downstream tasks are performed. The stylization and
destylization work in an adversarial fashion, and the location of
destylization is determined by a NAS algorithm.

1. Introduction
Domain generalization (DG) (Wang et al., 2021a; Sinha
et al., 2017; Volpi & Murino, 2019; Volpi et al., 2018) aims
to tackle the distribution shift problem between source and
target domain, and has recently demonstrated unprecedent-
edly promising results. The conventional setup of DG, as
shown in Figure 1(a), includes multiple source domains
X1,X2, · · · ,XN during training and a novel domain during
testing. As such, standard DG approaches have largely re-
lied on learning a domain-invariant representation from the
given domains, so that the model can be successfully gener-
alized to other unseen domains. Nevertheless, access to data
from multiple domains is, in reality, often infeasible due to
data availability such as privacy and budgeting issues. This
further calls for the single domain generalization (single
DG) that handles the generation-learning task using only
one source domain (Qiao et al., 2020).

Unfortunately, off-the-shelf solutions to multi-domain DG
are not applicable to single DG, since the former relies on do-
main identifiers as supervision signals for learning domain-
invariant representation (Balaji et al., 2018; Chattopadhyay
et al., 2020; Dou et al., 2019; Li et al., 2019), which are how-
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ever not available in the latter. To address the more challeng-
ing single DG task, existing methods have resorted to data
augmentation techniques to enhance the data diversity, in-
cluding adversarial data pertubation (Qiao et al., 2020; Volpi
et al., 2018) and style enhancement (Wang et al., 2021b;
Zhou et al., 2020), as shown in Figure 1(b). Despite un-
precedented advances, existing endeavors have focused on
the generation of the augmented domains, yet largely over-
looked the interconnections between such pseudo-domains
and the source one, leading to the incompetent generaliza-
tion capability and further inferior results, especially in the
challenging in-the-wild scenarios.

In this paper, we introduce a novel single DG approach,
termed as StyDeSty, to explicitly explore and take advantage
of the underlying coherence between the source and aug-
mented domains, in aim to learn a latent domain with strong
generalization capability. The core idea of StyDeSty lies
in that, samples from the pseudo-domains should share the
same underlying distribution in a “hidden” domain, denoted
as X̃, with the source. This hidden domain X̃, intuitively,
resembles the content in style-transfer tasks; in other words,
despite the diversified stylizations of X′

2,X′
3, · · · ,X′

N−1,
their contents are all identical. Such domain-invariant con-
tent is, therefore, reasonably expected to be generalized well
to unseen domains, which again can be treated as unknown
stylizations upon the same content.

We show in Figure 1(c) the overall pipeline of the proposed
StyDeSty. It comprises three key components: a stylization
module, a destylization module, and a task head, in which
the former two are optimized in a min-max game to rein-
force each other. During training, the stylization module
learns to generate novel stylized samples for the source do-
main, while the destylization learns to unify the features
before and after stylization to an identical distribution in
the latent domain, and explicitly enforces content consis-
tency between features of style-augmented samples and
original ones. During inference, testing samples, treated as
unseen-stylized ones, are projected back to the learned latent
domain, where the downstream tasks, such as classifications,
are performed through the task-specific head.

Specifically, we first demonstrate the benefit of explicit
destylization with an illustrating example. Then, we explore
what is an appropriate objective to regulate the behavior
of destylization, which provides insights for the adopted
training algorithm. Finally, we reveal that the location of the
key destylization layer is one crucial factor that affects the
performance and devise a neural architecture search (NAS)
strategy to automatically identify the optimal location. In
other words, in this paper, we study and give solutions to
three questions: why, how, and where to destyle in single
DG? As demonstrated in our experiments, StyDeSty outper-
forms state-of-the-art models by 3.60%, 5.65%, and 13.44%

on Digits, CIFAR-10-C, and PACS respectively. Moreover,
unlike previous DG techniques, StyDeSty does not require
a specific label format like categorical data, which makes
it a versatile solution for not only classification but also
regression, such as depth estimation.

Our main contributions are thus summarized as follows:

• A novel single DG approach is introduced, termed as
StyDeSty, to explicitly account for the alignment of
the source and pseudo domains, achieved through an
adversarial stylization and destylization game, where
the two players reinforce each other.

• An effective objective is further proposed as supervi-
sion for the destylization module, along with the corre-
sponding training strategy for the entire framework.

• A NAS approach is devised to identify the optimal
location for destylization, which coordinates well styl-
izations, destylizations, and downstream tasks.

• The proposed StyDeSty serves as a versatile solution
for universal supervised learning problems, applica-
ble to not only classification but also regression tasks.
Our method is evaluated extensively on multiple bench-
marks and achieves superior performance.

2. Related Works
2.1. Alignment in General Domain Generalization

The key for generalization lies in learning domain-invariant
representation so that different domains share a common
feature/latent space (Ben-David et al., 2010). Thus, many
methods rely on aligning the source domains by minimiz-
ing cross-domain feature difference (Motiian et al., 2017;
Yu et al., 2023; Jin et al., 2020; Mahajan et al., 2021;
Du et al., 2020; Yang et al., 2022a;b; Ye et al., 2023; Ye
& Wang, 2024; Liu et al., 2022a; Muandet et al., 2013),
e.g., based on distance metrics of maximum mean discrep-
ancy (MMD) (Long et al., 2015; Yan et al., 2017), corre-
lation distance (Sun & Saenko, 2016; Zhuo et al., 2017),
and second-order moment (Peng et al., 2019; Jin et al.,
2020). The other branch that achieves a similar goal tends
to leverage the adversarial training strategy for generaliza-
tion (Ganin & Lempitsky, 2015; Li et al., 2018b;a; Shao
et al., 2019; Zhao et al., 2020b; Albuquerque et al., 2019).
Although these methods could handle the general DG prob-
lem, they are still inapplicable to single DG where only
one source domain is available since both of the distance
minimization and adversarial training based DG methods
need multiple source domains for optimization.

On the other routine, there are also works designing normal-
ization mechanisms for feature alignment so that features
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from different domains share the same statistics. For exam-
ple, (Seo et al., 2020) propose to learn the domain-specific
batch normalization layer for each domain independently.
(Fan et al., 2021) present an adversarial adaptive normaliza-
tion where both the standardization and rescaling statistics
are learned via neural networks instead of data-wise calcu-
lation. (Jin et al., 2021) design a restoration module that
supplements the lost discriminative features due to the nor-
malization operation. Differently, the feature destylization
design in our paper is achieved by the adaptive instance
normalization (AdaIN) (Huang & Belongie, 2017) which
aims to transfer all the augmented and stylized features to
the same distribution, so as to reach “alignment”. Moreover,
destylization also enforces constraints to preserve content
consistency before and after stylization, which further en-
courages the learning of style-/domain-invariant features.

We notice that (Yang et al., 2023) also adopt the AdaIN
module for style alignment. Nevertheless, the augmentation
techniques are limited to low-level transformations such as
color jittering and Gaussian noise, resulting in relatively
limited data diversity. Furthermore, their augmentation and
alignment modules are trained independently. In contrast,
the two modules learn mutually to reinforce each other in our
method. We find that such an adversarial fashion impacts
performance positively.

2.2. Single Domain Generalization

The problem of learning to generalize with only one avail-
able source domain can be tackled from different perspec-
tives, such as projecting superficial statistics out (Wang
et al., 2019b), penalizing local predictive power (Wang
et al., 2019a), solving Jigsaw puzzles (Carlucci et al., 2019),
clustering pseudo training domains (Matsuura & Harada,
2020), self challenging (Huang et al., 2020), meta architec-
tures (Wan et al., 2022), attention consistency (Cugu et al.,
2022), and debiasing and regularization (Qu et al., 2023).

However, recent data augmentation-based methods have
achieved dominant performance for the single DG task by
enriching the diversity of domain data. Representatively,
(Volpi et al., 2018) propose to apply adversarial pertur-
bations into the source samples to augment domain data.
(Zhao et al., 2020a) further add regularization to adversar-
ial perturbations via maximum entropy. (Li et al., 2021)
and (Kang et al., 2022) propose to generate novel styles
progressively and constantly. (Cheng et al., 2023) propose
Beyasian augmentation. (Lv et al., 2022) and (Chen et al.,
2023) augment data by leveraging causal knowledge. (Qiao
et al., 2020) make the learning with adversarial data aug-
mentation become learnable and optimize it in a bi-level
meta-learning framework. Similar ideas are also explored
in (Fu et al., 2023), (Chen et al., 2022), and (Zhong et al.,
2022). Beyond adversarial perturbations, many recent data
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Figure 2. StyDeSty framework consists of a stylization module
G, a destyliation module F , and a task head H , where a NAS
algorithm is involved to search an optimal position of the AdaIN
layer for destylization. Black and red arrows denote forward pass
and loss computation and IN represents instance normalization.

augmentation-based single DG methods tend to use style
transfer techniques for domain enlargement, e.g., (Zhou
et al., 2020) train an image-to-image generator for each
source domain to synthesize novel domains, (Zhou et al.,
2021) mix up the styles of source images to generate new
domain data, (Wang et al., 2021b) propose a style comple-
ment module to increase the diversity of domain data, (Choi
et al., 2023) propose progressive random convolution for
style augmentation, and (Zhao et al., 2022) utilize farthest
point sampling to select style vectors for style augmentation.
However, these methods over-explore the domain augmen-
tation (i.e., stylization) but ignore the important effect of the
explicit feature alignment and the underlying coherence
among augmented domains w.r.t model generalization,
which makes the trained model hard to be generalized to
test domains with unseen styles in inference. This drawback
motivates us to further consider unifying/aligning the dis-
tribution of augmented domains by destylization and thus
increase model robustness against style variance. How to
balance such two designs of stylization and destylization is
also the focus of this paper.

3. Methodology
The heart of the StyDeSty framework is at the interaction
of its three components: a stylization module G, a destyl-
ization module F , and a task head H . An overview of our
method is illustrated in Figure 2. We start the introduction
of the key stylization and destylization modules first and
then elaborate on the training objective. Finally, a NAS-
guided training algorithm is proposed, which coordinates
the interaction between stylization and destylization, and
regulates the whole StyDeSty pipeline.

3.1. Stylization and Destylization

Stylization Module. Similar to style transfer (Gatys et al.,
2016; Huang & Belongie, 2017; Liu et al., 2021a; 2022b;
2020; 2023; Tang et al., 2023), the stylization module G
aims to generate various stylized versions given a source
image xS from a source domain S. In this paper, similar
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(a). w/o Destyle (b). w/o Percpt. (c). End-to-End (d). Ours

Figure 3. Left: TSNE visualizations of stylized and original source samples for by different fashions of destylization. Right: Visualizations
of task loss and alignment loss with destylization at different locations in a deep network.

to the style complement module in (Wang et al., 2021b), G
consists of B blocks, with a single convolution layer encj ,
an instance normalization layer, an affine transformation
layer parameterized by µj and σj , and a symmetric decon-
volution layer decj for the j-th block, 1 ≤ j ≤ B. Given an
input RGB image xS , the j-th block firstly projects it to a c-
dimension feature space with encj to derive fj ∈ Rh×w×c.
Then, the instance normalization layer normalizes fj with
the channel-independent mean µf

j and standard deviation
σf
j , followed by the affine transformation layer to get f̂j . At

last, decj projects f̂j back to the RGB space, and the result
is denoted as x̂j . Formally, this process can be written as:

fj = encj(x
S), f̂j = σj ×

fj − µf
j

σf
j

+µj , x̂j = decj(f̂j).

(1)
Notably, the affine parameters µj and σj for some blocks
have shape h× w × c while the other ones are with shape
1× 1× c, to mimic local and global distortions respectively.
The final augmented result xT is given as a weighted sum
of the outputs of all the B blocks, with the weight vector
w ∈ RB drawn from a standard normal distribution in each
training iteration:

w ∼ N (0, 1), xT = sigmoid(
1∑B

j=1 wj

wj x̂j), (2)

where the sigmoid is applied to scale the augmented images.

Destylization Module. The destylization module F is typ-
ically composed of the first several blocks of a backbone
network and a destylization layer. For example, for the
classification problem, if ResNet-18 (He et al., 2016) with
4 main blocks is selected as the backbone network, we can
take the former 2 blocks to build the destylization module
and the remaining parts would serve as the task head H . The
core of the destylization module is the final destylization
layer accounting for underlying coherence and explicitly
distribution aligning. In this paper, we adopt adaptive in-
stance normalization (AdaIN) (Huang & Belongie, 2017), a
simple but effective mechanism in arbitrary style transfer,
for instantiation. The insight is that channel-wise statistic
information like mean and variance in a deep network can
largely represent the style of an image. In this sense, the
alignment of these statistics can be viewed as transferring

all the images to the same style/latent, which is known as
destylization in this paper. The unified style is encoded by
the affine parameters of the AdaIN layer and the formulation
is similar to that of the stylization module:

AdaIN(f, µ, σ) = σ × f − µf

σf
+ µ, (3)

where µ and σ are learnable affine parameters while µf and
σf are the channel-wise mean and standard deviation of a
feature map f produced by the layer before AdaIN.

Discussion: Why to Destyle? We provide an illustrating
example in Figure 3(left) to demonstrate how our destyl-
ization module works. We conduct training on the photo
domain of PACS dataset (Li et al., 2017) and visualize the
learned representation of each sample using TSNE (Van der
Maaten & Hinton, 2008), where the different classes are
denoted by different colors, and the original source sam-
ples and stylized ones are denoted by different markers. As
shown in the plot (a), although the previous methods like
L2D (Wang et al., 2021b) have used style augmentation to
increase diversity, they still suffer from the domain shift
problem given unseen styles in inference without a kind of
explicit alignment/destylization. In contrast, with an explicit
destylization operation, our method largely alleviates such
a problem (see plot (d)), which means better robustness to
style shifts. More results can be found in the supplementary.

3.2. Objective Functions

The overall loss function is inspired by (1) the recent works
on adversarial data augmentation (Sinha et al., 2017; Qiao
et al., 2020; Zhao et al., 2020a), and (2) the classic theory
of domain adaptation (Ben-David et al., 2010) – the test
error is largely dominated by the source training risk and
the discrepancy between the source and target domain:

min sup
T =G(S):W (S,T )≤ρ

ET [Ltask(H(F (xT )), yT )

+αLalign.(F (xS), F (xT ))],
(4)

where T denotes synthetic target domains by data augmenta-
tion, xT ∼ T is an instance sampled from T and augmented
from the source sample xS ∼ S, G and F are instantiated
as the stylization and destylization modules respectively in
this paper, Lalign. is a metric of alignment between two
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features, α is a hyperparameter controlling the weight of
this constraint, and ρ is another hyperparameter denoting
the maximal strength of data augmentation. Since it is
intractable for deep networks to solve the constrained opti-
mization problem in Equation (4), we alternatively consider
the following objective by Lagrangian relaxation:

min sup
T =G(S)

{ET [Ltask(H(F (xT )), yT )

+αLalign.(F (xS), F (xT ))]− βW (S, T )},
(5)

where β ≥ 0 is a penalty factor with an intuitive meaning
similar to ρ. Equation (5) offers insights into the loss func-
tions of each component which will be illustrated below.

Task head. The task head H in the StyDeSty framework
aims to discriminate information related to the task from
the unified distribution/latent by the destylization module F .
Through Equation (5), we can find that the feature alignment
metric Lalign. and the W-distance term are not related to
H . Therefore, H is trained with only the task-specific loss
Ltask(H(F (xT )), yT ). Notably, StyDeSty is a versatile
framework applicable for different tasks with different forms
of Ltask. For instance, in classification problems, cross-
entropy loss is a typical option, while in regression problems,
we can use L1 or L2 loss as Ltask.

Destylization Module: How to Destyle. As suggested by
Equation (5), there are two components for the objective of
the destylization module F : task-specific loss Ltask and fea-
ture alignment metric Lalign.. The configuration of Ltask

is the same as that in the task head. As for the feature
alignment term, one straight-forward idea is to measure the
Euclidean distance or L2 distance between the two feature
maps F (xS) and F (xT ). However, as shown in the plot
(b) of Figure 3, we find that this configuration often leads
to inferior results. One major problem is that not all posi-
tions and channels are worth aligning equally for the current
task. To increase the awareness of key features for this dis-
tance metric, we further adopt the task head as a perceptual
network and measure the feature distance at the last hid-
den layer of H , denoted as H−1. In this way, we have the
following loss function for the destylization module:

Lalign.(F (xS), F (xT )) = ∥F (xS)− F (xT )∥2

+λ∥H−1(F (xS))−H−1(F (xT ))∥2,

LF =
1

n

n∑
i=1

{Ltask(H(F (xT
i )), y

T
i )

+ αLalign.(F (xS
i ), F (xT

i ))},

(6)

where λ is a hyper-parameter balancing the weight of the
perceptual term and n is the size of a mini-batch.

It is worth noting that the task head H serves as a metric
function here and its parameters should not be updated ac-
cording to the gradient of Lalign.. Therefore, we do not

train modules G and H simultaneously but update them
alternately. Otherwise, the task head would also help align-
ment, which weakens the alignment ability of the destyl-
ization module, as demonstrated in the plot (c) of Figure 3.

Stylization Module. The stylization module G behaves
adversarially against F and H . Moreover, it is not allowed
to destroy the semantics of the original images to generate
meaningless stylized results. Therefore, we introduce a se-
mantic perceptron M to enforce the semantic consistency
constraint Lsem. on G. Besides, the time complexity of solv-
ing the W distance as indicated by Equation (5) for a batch
of data is considerable for an iterative algorithm. We then al-
ternatively consider the dual form of the W distance, which
is equivalent to the maximum mean discrepancy (MMD)
with a Lipschitz continuous kernel function k under some
mild conditions (Edwards, 2011). In this sense, the loss
function for G can be written as:

Lsem. = ∥ 1
n

n∑
i=1

k(M(xS
i ))−

1

n

n∑
i=1

k(M(xT
i ))∥2,

LG = −LF + βLsem..

(7)

3.3. Training with NAS: Where to Destyle

With the different objective functions for each module, the
training process can be organized as a three-stage algorithm,
to train F , H , and G alternately in each iteration. Neverthe-
less, we have to answer an important question before the
formal training: how to select an appropriate position in a
backbone network to insert the destylization layer and split
the network into F and H? Empirically, we observe that
there is a trade-off between the objectives of the task ahead
and the alignment. As demonstrated in Figure 3(right),
the deeper destylization could benefit the alignment of the
source and stylized samples but make the task head training
difficult, since it is more convenient to enforce the features
with high-level semantics to be aligned by discarding dis-
criminative information. In this paper, instead of selecting
the position heuristically, we devise a neural architecture
search (NAS) strategy to address this problem. Assume
that there is a backbone network P with L positions that
are potentially suitable for inserting the AdaIN layer which
splits P into L+1 blocks with the l-th one denoted as pl. In
the NAS stage, we insert AdaIN layers, denoted as AdaINl

with 1 ≤ l ≤ L, to all the L positions and optimize a vector
π ∈ RL, where πl indicates the logit value that the l-th
AdaIN layer is enabled. We denote the output of the l-th
block as xl, and xl for 1 ≤ l ≤ L is given by:

π̂ = GumbelSoftmax(π), x̂l = pl(xl−1),

xl = π̂lAdaINl(x̂l) + (1− π̂l)x̂l.
(8)

Here, the Gumbel-Softmax function (Jang et al., 2016) is
applied on π, which would produce a one-hot vector π̂
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Algorithm 1 Training of StyDeSty
Required: A source domain S; A randomly-initialized
stylization module G; A randomly initialized backbone P
with L candidate AdaIN layers; A zero initialized vector π
for selecting the enabled AdaIN.

1: repeat
2: Train P and π by Equation (9) for TP times;
3: Train G by Equation (10) for TG times;
4: until argmaxπ does not change {NAS Stage}
5: Select the AdaIN layer l with maximal πl and split P

into F and H;
6: repeat
7: Train F by Equation (6) for TF times;
8: Train H by Ltask for TH times;
9: Train G by Equation (7) for TG times;

10: until convergence {Formal training stage}

indicating the selected AdaIN layer in this iteration.

For optimization, all the parameters of P including π are
updated together in the NAS time since the split position
for the destylization module and the task head is unknown.
P and G are still trained in a min-max game and their loss
functions are formulated as:

LP =
1

n

n∑
i=1

{Ltask(P (xT
i ), y

T
i )

+α

L∑
l=1

π̂l∥AdaINl(x̂S
i,l)−AdaINl(x̂T

i,l)∥
2},

(9)

LG = −LP + βLsem.. (10)

Note that here we do not incorporate the perceptual term in
Equation (6) which requires passing through features after
each AdaINl till the last layer and increases the computa-
tional burden significantly. The NAS procedure will repeat
until the selected index of AdaIN layer does not change in
further iterations. The overall training is summarized as Al-
gorithm 1. The memory complexity and time complexity per
iteration are consistent with those augmentation-based DG
methods like L2D (Wang et al., 2021b), while the overall
time complexity is related to TP , TG, TF , and TH .

4. Experiments
4.1. Datasets

To demonstrate the effectiveness and versatility of the pro-
posed StyDeSty for single DG, we conduct extensive eval-
uations on three classification benchmarks: Digits, CIFAR-
10-C, and PACS, and one regression problem: monocular
depth estimation on the KITTI and vKITTI dataset. More
comparisons can be found in the appendix.

Method SVHN M-MNIST SYN USPS Avg.

Source Only 27.83 52.72 39.65 76.94 49.29

JiGen 33.80 57.80 43.79 77.15 53.14
RSC 31.04 46.62 34.81 64.42 44.22

MMLD 26.41 51.51 38.33 75.04 47.82
ADA 35.51 60.41 45.32 77.26 54.62

M-ADA 42.55 67.94 48.95 78.53 59.49
ME-ADA 42.56 63.27 50.39 81.04 59.32
MixStyle 32.29 53.48 42.35 81.17 52.32

L2D 62.86 87.30 63.72 83.97 74.46

Ours 67.48 90.75 69.40 87.64 78.82

Table 1. Comparisons of single DG accuracy (%) on Digits.
MNIST is used for training while the others are for evaluation.

Digits. Digits consists of 5 digit recognition datasets in-
cluding MNIST (LeCun et al., 1998), SVHN (Netzer et al.,
2011), MNIST-M (Ganin & Lempitsky, 2015), SYN (Ganin
& Lempitsky, 2015), and USPS (Denker et al., 1988), with
variance on foreground shapes and background patterns.
MNIST is used as the source domain containing 60,000
training images. We convert all the images to 32× 32 reso-
lution with RGB format in the experiment.

CIFAR-10-C. CIFAR-10-C dataset (Hendrycks & Diet-
terich, 2019) is the corrupted version from the original
CIFAR-10 (Krizhevsky et al., 2009) dataset, including 10
classes and totally 50,000 training images with 32 × 32
resolution. There are 4 categories of corruption including
weather, blur, noise, and digital. For each category, the
corruption level is marked from 1 (mildest) to 5 (severest).

PACS. PACS dataset (Li et al., 2017) contains 9,991 images
of 4 domains: photo, art painting, cartoon, and sketch with 7
classes. The cross-domain variance in style and deformation
is considerable and the adopted resolution is 224 × 224,
which makes it a more challenging benchmark.

KITTI and vKITTI: KITTI (Geiger et al., 2013) is an
outdoor dataset with 42,382 images for automatic driving.
In this paper, we use the test dataset for evaluation. The
training domain is vKITTI dataset (Gaidon et al., 2016)
containing 21,260 frames with depth labels from the Unity
game engine. All the images are resized to 640 × 192
resolution for training and evaluation.

4.2. Comparison with Sate-of-the-arts

We mainly compare StyDeSty with 8 state-of-the-art single
DG methods, including Jiasaw-puzzle based JiGen (Car-
lucci et al., 2019), self-challenging based RSC (Huang et al.,
2020), clustering based MMLD (Matsuura & Harada, 2020),
adversarial augmentation based ADA (Volpi et al., 2018),
M-ADA (Qiao et al., 2020), ME-ADA (Zhao et al., 2020a),
and style enhancement based MixStyle (Zhou et al., 2021)
and L2D (Wang et al., 2021b), as well as the Source Only
baseline. All the comparisons are conducted using the same
datasets and backbone networks. For our method, by de-
fault, the batch size is set as 64 and the optimizer is SGD.
The optimizer for F and H uses a 0.0005 weight decay and
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Settings Source Only JiGen RSC MMLD ADA ME-ADA MixStyle L2D Ours

Photo

Art 62.26 60.74 67.72 64.59 64.31 65.62 67.42 68.07 72.12
Cartoon 27.60 33.40 33.70 30.25 34.94 36.95 36.34 34.43 55.03
Sketch 29.35 43.96 48.00 28.61 36.12 35.10 38.28 44.69 62.61

Avg. 39.73 46.03 49.81 41.15 45.12 45.89 47.35 49.06 63.25

Art

Photo 96.29 96.71 92.75 96.47 95.81 95.69 97.23 96.11 94.13
Cartoon 61.01 58.40 71.89 55.97 67.96 67.28 64.66 70.61 71.97
Sketch 49.25 51.23 69.43 41.46 68.26 65.31 54.32 65.08 74.09

Avg. 68.85 68.78 78.02 64.63 77.34 76.09 72.07 77.26 80.06

Cartoon

Photo 85.27 85.57 85.33 85.33 85.99 84.49 87.72 86.17 87.78
Art 63.38 68.90 71.00 62.11 68.55 57.82 71.59 75.24 75.93

Sketch 67.73 63.35 73.30 66.07 72.28 71.82 63.78 73.40 75.87

Avg. 72.13 72.60 76.54 71.17 75.61 74.71 74.36 78.27 79.86

Sketch

Photo 24.73 36.65 44.25 21.13 25.33 26.53 27.10 48.63 58.80
Art 22.61 28.61 52.00 18.36 27.88 28.61 26.20 48.38 60.11

Cartoon 41.13 41.30 61.86 34.04 58.70 52.89 52.07 62.88 67.75

Avg. 29.49 35.51 52.70 24.51 37.30 36.01 35.12 53.40 62.22

Avg. 52.55 55.73 64.27 50.37 58.84 58.18 57.23 64.50 71.35

Table 2. Comparisons of single DG accuracy (%) on the PACS dataset. The first column indicates the training domain while the second
column indicates the unseen test domain. Results under the ResNet-18 backbone are reported. Best performances in comparisons are
highlighted in bold and the second best ones are marked with underlines.

Method Art Cartoon Sketch Avg.

w/o Style 66.89 41.64 37.06 48.53
AutoAug 70.80 44.50 50.09 55.13
DCGAN 73.54 47.01 49.50 56.68

w/o Destyle 69.68 41.42 41.33 50.81
Separate Style Transfer 70.51 53.33 58.39 60.74

w/o Lalign. 72.51 49.70 56.20 59.47
w/o Percpt. 69.53 47.35 52.25 56.38

end-to-end 68.85 45.65 55.41 56.63
w/o Adv. 71.58 53.63 59.63 61.61

Ours 72.12 55.03 62.61 63.25

Table 3. Ablation studies of single DG accuracy (%) on PACS
dataset. The photo domain is used for the training domain while
the other three are for evaluation.

0.9 momentum with the Nesterov mode (Nesterov, 1983).
Learning rates for F , H , and G are 0.001, 0.001, and 0.005.
The times of inner iteration in Algorithm 1 are all 1 except
that TH is 10. The hyper parameters α, λ, and β are 0.1,
1, and 1 respectively. As for the semantic perceptual net-
work M in Equation (7) and Equation (10), we directly use
the task head H itself as M for all the classification tasks
and features of the last hidden layer are adopted for Lsem..
For the depth estimation problem, we load a fixed VGG19
model (Simonyan & Zisserman, 2014) pretrained on Ima-
geNet (Russakovsky et al., 2015) as M and Lsem. would
use features of the ReLU-4 1 layer.

Comparisons on Digits. On the Digits dataset, we follow
previous works and adopt the 5-layer LeNet (LeCun et al.,
1998) as the backbone. There are 6 candidate positions to
insert the AdaIN layer which are positions after the first and
second convolution layer, ReLU layer, and pooling layer.
NAS selects the position after the first pooling layer.

The model is trained on the MNIST and evaluated on the
other four. Comparisons of results by different methods are
shown in Tab. 1. The improvement over the state-of-the-art
methods is consistent: 4.62%, 3.45%, 5.68%, and 3.67%

Method Photo Art Cartoon Sketch Avg.

Source Only 96.05 75.68 74.02 69.87 78.91

JiGen 96.47 80.62 74.71 72.43 81.06
RSC 93.95 82.81 79.74 83.51 85.00

MMLD 96.33 82.81 78.33 75.29 83.19
ADA 95.63 82.81 78.33 75.29 83.02

ME-ADA 95.33 77.88 78.58 78.07 82.47
MixStyle 96.31 83.11 79.43 72.95 82.95

L2D 95.15 83.69 80.16 82.01 85.25

Ours 95.27 84.03 79.86 82.23 85.35

Table 4. Comparisons of leave-one-domain-out classification accu-
racy (%) on PACS using ResNet-18 backbone. The column name
indicates the test domain and the other three are used for training.
on the 4 test datasets, which outperforms the state-of-the-art
method L2D (Wang et al., 2021b) by 4.36% in average.

Comparisons on CIFAR-10-C. Following the common
setting, we adopt WideResNet (16-4) (Zagoruyko & Ko-
modakis, 2016) as the backbone for the CIFAR-10-C dataset.
There is one convolution layer followed by three residual
blocks for this backbone, which means that the number of
candidate positions for the AdaIN layer is 4. The optimal
position indicated by the NAS algorithm is after the first
residual block. The batch size used is 128 and learning rates
for F , H , and G are 0.1, 0.1, and 0.001 respectively.

In this experiment, the original CIFAR-10 dataset is used
as the training domain and the corrupted images are used
for evaluation. The accuracy results w.r.t the corruption
level for each method are plotted as Figure 4, which demon-
strates that the model by our method can resist image cor-
ruption most robustly. On the severest corruption level 5,
our method outperforms others by 0.94%, 5.46%, 2.96%,
and 8.67% for the four corruption categories respectively,
and makes an average improvement of 5.65%.

Comparisons on PACS. We adopt ResNet-18 (He et al.,
2016) backbone on the PACS dataset. As a convention, a pre-
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Figure 4. Relationships between accuracy results and corruption levels of four categories on CIFAR-10-C dataset. Our method demon-
strates more robustness compared with other methods as the corruption increases.

Method Photo Art Cartoon Sketch Avg.

Ours 63.25 80.06 79.86 62.22 71.35

(Lv et al., 2022) 46.21 75.64 78.29 58.44 64.65
(Lv et al., 2022)+Ours 54.36 79.33 78.99 60.77 68.36

(Chen et al., 2023) 57.99 76.18 77.91 58.11 67.55
(Chen et al., 2023)+Ours 64.36 78.46 79.62 59.63 70.52

(Choi et al., 2023) 62.89 76.98 78.54 57.11 68.88
(Choi et al., 2023)+Ours 67.98 81.82 80.80 63.15 73.44

Table 5. Single DG accuracy (%) on PACS dataset when our
method is built on state-of-the-art ones as a plug-and-play com-
ponent. The column name indicates the training domain, and the
other three are used for training. The average performance over
the three test domains is reported.

trained checkpoint on ImageNet dataset (Russakovsky et al.,
2015) is loaded for initialization. We consider positions
after the 4 main blocks as candidate AdaIN positions and
the solution by the NAS algorithm is after the 2nd block.

Following previous arts, the results of using each of the four
domains for training respectively, and the other three for
evaluation are reported in Tab. 2. In almost all cases, our
method performs significantly better than previous state-
of-the-art ones, especially for scenarios where the domain
shift is dramatic, like 14.61% improvement when general-
izing from the photo to the sketch domain. On average,
our method outperforms others by 13.44% when using the
photo domain for training and 6.85% overall by averaging
the four training domains. Readers can refer to the supple-
mentary material for results of more different architectures
of backbone networks.

We also conduct experiments under the leave-one-out setting
of general DG, to use three domains for training and the
remaining one for evaluation, by mixing the data of three
domains as one domain. ResNet-18 is used as the backbone
and the selected AdaIN positions are all between the 1st
and 2nd residual blocks in the 4 cases. Results in Tab. 4
prove that our method can produce at least comparable
performance without any constraint on label space, which
indicates the versatility of the proposed method.

Comparisons on KITTI: In addition to the above clas-
sification tasks, we conduct experiments on a regression
problem: monocular depth estimation on the KITTI dataset.
The backbone network is a 4-level UNet-like (Ronneberger
et al., 2015) architecture following (Zhao et al., 2019).
For our method, we insert AdaIN layers to the upper three

Method Higher is better Lower is better

δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Squa Rel RMSE RMSElog

Source Only 0.642 0.861 0.944 0.236 2.171 7.063 0.315

MixStyle 0.701 0.887 0.952 0.216 2.155 6.895 0.291
v-L2D 0.708 0.892 0.954 0.211 2.103 6.794 0.291

Ours 0.739 0.905 0.958 0.197 2.054 6.684 0.276

Table 6. Comparisons of monocular depth estimation on KITTI
dataset. The vKITTI dataset extracted from a game engine is used
for the training domain and the KITTI test dataset is for evaluation.
Best performances in comparisons are highlighted in bold and the
second best ones are marked with underlines.

skip connection structures as well as the bottom level.
Adam (Kingma & Ba, 2014) is used as the optimizer with a
learning rate of 0.0001.

In this part, we mainly compare StyDeSty in this paper
with those methods without constrain on the label space,
including MixStyle (Zhou et al., 2021) and a variant of
L2D (Wang et al., 2021b) by removing the class-conditional
terms that are incompatible with this task, denoted as v-L2D.
Using vKITTI as the source domain, evaluation results on
the test KITTI dataset are shown in Tab. 6. Through all
the metrics, we can observe that our method generalizes to
the unseen target domain best by learning style-invariant
feature representations, which demonstrates the versatility
and superiority of StyDeSty.

4.3. Empirical Analysis

Ablation Study. To validate the effectiveness of some key
designs in our StyDeSty framework, we conduct ablations
on the PACS dataset as shown in Tab. 3. We first study the
effect of the stylization module, which intuitively diversifies
the source domain and tells the model what information can
be potentially variable in the inference time. Without this
module, the model is unaware of domain-invariant features,
leading to the misalignment of features that should remain
distinct. As shown in the first three settings of Tab. 3, we try
both removing the data augmentation module and replacing
it with augmentations other than the stylization in this paper,
like the widely used AutoAug (Cubuk et al., 2018) a vanilla
DCGAN (Radford et al., 2016) generator. The results are
measured on PACS taking Photo as the training domain
and the remaining ones as test domains. Their inferior
performance compared with the default setting of StyDeSty
verifies the effectiveness of the stylization module.
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Figure 5. Sensitivity analysis for loss weights: α, β, λ, and B.

Then, we delete the AdaIN layer for destylization (w/o
Destyle) and find that the performance would drop signifi-
cantly, which demonstrates that explicit feature alignment
contributes to the generalization ability a lot. We also try
replacing the destylization module with a pre-trained style
transfer module (Huang & Belongie, 2017), which is un-
aware of the downstream task. The performance gap indi-
cates the effectiveness of the task-aware destylization in our
method. Plus, only aligning the second-order statistics does
not make the model aware of invariant features without the
metric Lalign. in Equation (6)(w/o Lalign.) and the model
would produce inferior performance compared with that
of the full model. Moreover, if only the L2 loss between
normalized features is considered in Lalign. without the per-
ceptual term (w/o Percpt.), the performance can become
even worse. However, it is non-trivial to add the percep-
tual term in the task-specific feature space of H−1. If the
network is trained in an end-to-end manner with F and H
being updated at the same time (end-to-end), which means
that the task head would also be affected by the perceptual
alignment loss, the ability of the destylization module to
learn a unified distribution would be weakened and the per-
formance is also unsatisfactory. That is why StyDeSty uses
a multi-stage training strategy and achieves the best perfor-
mance, which drives both explicit distribution alignment
and an appropriate constraint on aligned features.

We finally make the stylization module a random style aug-
menter in each iteration instead of playing against the destyl-
ization module adversarially. The performance drop demon-
strates the effectiveness of their interplay.

Complementarity with Other Methods. The destylization
mechanism can also serve as a plug-and-play component
to improve the performance of other state-of-the-art meth-
ods. We apply the destylization layer and the corresponding
position found by the NAS algorithm to the backbones of
(Lv et al., 2022), (Chen et al., 2023), and (Choi et al., 2023),
respectively. The results on PACS are shown in Tab. 5,
where the single DG results are shown. The column name
indicates the training domain, and the other three are used
for training. We report the average performance over the
three test domains. The results indicate that our method can
improve other single DG methods as a general enhancer.
When applied on (Choi et al., 2023), it achieves even better
performance than the original StyDeSty framework in the
default setting of this paper.

Sensitivity Study for Hyper-parameters. We conduct anal-
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Figure 6. Accuracy by conducting destylization at different posi-
tions in a backbone network for 3 different settings: LeNet-5 on
Digits, WideResNet (16-4) on CIFAR-10-C, and ResNet-18 on
PACS. Positions selected by the NAS algorithm are highlighted in
orange. We also visualize the corresponding probabilistic scores
Softmax(π) of Equation (8) in grey.

ysis for loss weights: α, β, and λ on the PACS dataset. As
shown in Equation (6), the overall weights of the L2 distance
and the perceptual term are α and α×λ respectively, whose
sensitivity is analyzed in Figure 5(left). The sensitivity of β,
the weight of the semantic consistency in Equation (7), is
analyzed in Figure 5(middle). We observe performance vari-
ation up to 2% across different values, which reveals the ro-
bustness of our method to the various hyper-parameters. We
also study the parameter B of Equation (2) in Figure 5(right)
and find that the performance is insensitive to B if there are
sufficient augmentation modules.

NAS Algorithm. In this part, we experiment with all the
candidate positions for inserting the destylization AdaIN
layer, to rationalize the final position selected by the NAS al-
gorithm. The results of using LeNet-5 on the Digits dataset,
WideResNet (16-4) on the CIFAR-10-C dataset, and ResNet-
18 on the PACS dataset are shown as the three plots in Fig-
ure 6 respectively. The selected position is highlighted in
orange. The selected positions are stable when the NAS
algorithm is executed multiple times. In all settings, our
NAS algorithm can find the optimal position in a backbone
network to conduct destylization, in the sense of average
accuracy over test domains, which proves its general ef-
fectiveness for different datasets and backbone networks.
More analysis of the NAS algorithm can be found in the
supplementary material.

5. Conclusions
In this paper, we propose a simple yet effective approach for
single DG, termed StyDeSty, by introducing the stylization
and destylization mechanism. The stylization module aims
to generate diversely stylized samples, while the destyliza-
tion module learns to unify and align the feature distribu-
tions. These two designs are co-optimized by a min-max
game with a NAS-based method seeking for an optimal po-
sition for destylization. StyDeSty is a versatile framework
that not only works for classification tasks but is also readily
applicable to regression problems. Extensive experiments
on multiple benchmarks demonstrate that StyDeSty signif-
icantly outperforms the state-of-the-art methods by up to
13.44% in terms of classification accuracy.
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Impact Statement
Single domain generalization is a critical area of research
in machine learning that aims to enhance the robustness
and adaptability of models trained on a single domain when
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deployment of AI systems in real-world scenarios where
collecting comprehensive and diverse training data is im-
practical. By advancing techniques that enable models to
generalize from a limited dataset, this work can lead to more
reliable and versatile AI applications across various indus-
tries, from healthcare and autonomous driving to finance and
beyond. Ultimately, single domain generalization fosters
the development of more resilient AI systems, contributing
to safer and more efficient technological solutions.
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Figure 7. The explicit destylization mechanism unifies styles of
the source domain and any unseen target domains, which benefits
the performance of the downstream task head.

In this appendix, we provide more discussion with related
works, more analysis, additional details, and more compari-
son results of the proposed StyDeSty framework for single
domain generalization (single DG). First, we summarize
related works in a table as a supplement to the related work
section of the main paper. Then, we provide some qualita-
tive examples to illustrate the motivation of the proposed
method as a supplement to the main paper. We will also
give more details on the implementation of the stylization
module G and some loss functions. Finally, we conduct
more experiments to demonstrate and analyze the perfor-
mance of our method, including results on more settings
and benchmarks, and comparisons on the monocular depth
estimation task.

A. Summary of Related Works
We summarize the related works of single domain general-
ization methods in Tab. 7, focusing on method keywords,
alignment loss, and explicit alignment. With the regular-
ization of both alignment loss and explicit alignment in
destylization, our method achieves superior single-domain
generalization performance.

B. Motivation
Here, as a supplement to Figure 3 of the main paper, we pro-
vide further qualitative analysis to the three key questions:
why, how, and where to destyle in single DG?

Why to Destyle? Intuitively, the destylization module in
this paper aims to transfer any unseen styles in the test time
to the one most familiar to the task head. As shown in
Figure 7(top), we decode features after the destylization
AdaIN layer to the image space with a pre-trained decoder
and find that styles of the source domain (photo) and the
unseen target domain (sketch) are aligned, which benefits
the following task head. By contrast, in Figure 7(bottom),
without explicit destylization, the network is less robust to

(a). w/o Destyle (b). w/o Percpt. (c). End-to-End (d). Ours

Source
Stylized

Source

Figure 8. Qualitative results by different fashions of destylization.

(a). Layer 1 (b). Layer 2 (c). Layer 3
Source

Stylized
Source

Figure 9. Qualitative results by destylization at different locations.

domain shift and results in inferior performance. There is
another example in the plot (a) of Figure 8 to illustrate this
effect.

How to Destyle? In this paper, there are two metrics to
measure the effectiveness of destylization: the element-wise
feature distance and the task-perceptual term measured in
the space of the task head. On the one hand, if only the
former one is adopted, the destylization module would not
realize what properties are important for the following task.
As shown in plot (b) of Figure 8, although the overall styles
are aligned, the major semantic structure is destroyed, which
harms the downstream classification. On the other hand, if
the task head for measuring the perceptual loss is trained
jointly with the destylization module, the task head would
also contribute to the destylization, which weakens the abil-
ity of alignment for the destylization module. As shown
in the plot (c), the alignment is not satisfactory enough
compared with that in the plot (d).

Where to Destyle? In the StyDeSty framework, the perfor-
mance is sensitive to the location of the destylization layer
AdaIN in a network. As shown in Figure 9, as the location
of destylization goes deeper, the alignment becomes more
convenient but more discriminative information is lost. The
trade-off between alignment and knowledge for the task mo-
tivates us to propose a NAS algorithm for better interaction
among stylization, destylization, and the task module.

C. Model Details
Stylization Module. As mentioned in the main paper, the
stylization module G consists of B encoder-transformation-
decoder blocks. All encoders take the form of a single
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Method Venue Key Words Alignment Loss Explicit Alignment

JiGen (Carlucci et al., 2019) CVPR 2019 Jigsaw Puzzles No No
RSC (Huang et al., 2020) ECCV 2020 Self-Challenging No No

MMLD (Matsuura & Harada, 2020) AAAI 2020 Adversarial Augmentation Yes No
ADA (Volpi et al., 2018) NeurIPS 2018 Adversarial Augmentation No No

M-ADA (Qiao et al., 2020) CVPR 2020 Adversarial Augmentation No No
ME-ADA (Zhao et al., 2020b) NeurIPS 2020 Adversarial Augmentation Yes No
MixStyle (Zhou et al., 2021) ICLR 2021 Style Mix-Up No No

PDEN (Li et al., 2021) CVPR 2021 Stylization Yes No
L2D (Wang et al., 2021b) ICCV 2021 Stylization Yes No

MetaCNN (Wan et al., 2022) CVPR 2022 Meta Feature Learning No No
CIRL (Lv et al., 2022) CVPR 2022 Causality Yes No

ABA (Cheng et al., 2023) CVPR 2023 Adversarial Augmentation Yes No
MAD (Qu et al., 2023) CVPR 2023 Debiasing No No

Meta-Causal (Chen et al., 2023) CVPR 2023 Causality Yes No
ProRandConv (Choi et al., 2023) CVPR 2023 Augmentation No No

Ours ICML 2024 Stylization and Destylization Yes Yes

Table 7. Summary of related works on single domain generalization methods.

convolution layer, and all decoders take the form of a sym-
metric deconvolution layer. Encoders project an image to a
c-dimension feature space Rh×w×c, and then the transfor-
mation layer learns to conduct affine transformation in this
space. The affine parameters for some blocks have shape
h×w×c to account for local distortions, and parameters for
others have shape 1× 1× c to account for global distortions.

In the experiments on small images with a 32× 32 resolu-
tion, such as CIFAR-10-C (Hendrycks & Dietterich, 2019;
Krizhevsky et al., 2009) and Digits (LeCun et al., 1998;
Netzer et al., 2011; Ganin & Lempitsky, 2015; Denker et al.,
1988) datasets, the stylization module uses 2 blocks with
local transformation for one and global transformation for
another. The number of channels for both blocks is 3 and
the kernel size is 3. For other classification tasks, the res-
olution of 224 × 224 is used, and we use 4 blocks with
local transformation and 2 with global transformation. The
local transformation blocks have 3 channels and kernel sizes
are 5, 9, 13, and 17. For the global transformation blocks,
one has 3 channels and a kernel size of 3, while the other
has 64 channels and a kernel size of 5. The parameters of
convolutional encoders and decoders are random for each
iteration.

Metric of Perceptual Distance. The feature alignment loss
Lalign. is a vital component of the objective for the destyl-
ization module F . It consists of two terms: L2 distance be-
tween two feature maps F (xS) and F (xT ), and perceptual
distance between H−1(F (xS)) and H−1(F (xT )), where
H−1 extracts features in the last hidden layer of the task
head H , denoted as hS and hT for simplicity.

To measure the distance between hS and hT , we adopt the
following negative log-likelihood (Cheng et al., 2020):

− 1

n

n∑
i=1

log qθ(h
T
i |hS

i ),

which employs a neural network parameterized by θ for
variational inference. Please refer to (Cheng et al., 2020)
for the details.

Semantic Consistency Constraint. To prevent the styl-
ization module from destroying the semantic structures of
an image and even generating meaningless results, a se-
mantic consistency constraint that incorporates a semantic
perceptron M is included as one supervision signal for this
module. Specifically, for the classification task, since the
task itself is for semantic understanding, we directly adopt
the task network, including the destylization module and
the task head without the final linear layer, as the perceptron
M . For tasks not directly related to semantic understanding
like depth estimation, we introduce a pre-trained VGG19
encoder (Simonyan & Zisserman, 2014) as M , the semantic
loss is measured on 5 layers: ReLU-x 1 for 1 ≤ x ≤ 5.

D. More Results
Full results on PACS dataset. In this part, we provide
full results of single domain generalization using the 4 do-
mains in the PACS dataset (Li et al., 2017) one by one
as the training domain. Methods for comparison are the
same as those in the main paper, including JiGen (Car-
lucci et al., 2019), RSC (Huang et al., 2020), MMLD (Mat-
suura & Harada, 2020), ADA (Volpi et al., 2018), ME-
ADA (Zhao et al., 2020a), MixStyle (Zhou et al., 2021), and
L2D (Wang et al., 2021b), as well as the baseline method
Source Only. The results under ResNet-18 (He et al., 2016)
and AlexNet (Krizhevsky et al., 2012) backbones are shown
in Tab. 2 and Tab. 8 respectively.

Through the results, we can observe that our StyDeSty out-
performs previous state-of-the-art methods in most cases,
which is consistent with the conclusion in the main paper.
Notably, our method is more robust compared with others
when the domain shift is dramatic. For example, when
the training or testing domain is Sketch, our method can
produce consistent improvement. On average, our method
achieves 6.85% and 2.37% promotion over the previous
state of the arts.

For ResNet18, NAS chooses the position after the second
residual block when the training domain is photo, art paint-
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Figure 10. Accuracy results by conducting destylization at different positions in a backbone network for 4 training domains (photo, art
painting, cartoon, and sketch for each column respectively) and 2 backbones (ResNet-18 and AlexNet for each row respectively) on PACS
dataset. Positions selected by the NAS algorithm are highlighted in orange.

Settings Source Only JiGen RSC MMLD ADA ME-ADA MixStyle L2D Ours

Photo

Art 48.19 56.10 52.88 58.64 53.61 51.76 51.06 58.45 56.93
Cartoon 43.30 43.52 38.69 49.87 45.44 44.67 41.42 49.74 52.73
Sketch 51.31 52.46 48.69 50.24 49.02 50.62 48.06 55.82 64.95

Avg. 47.60 50.69 46.85 52.92 49.36 49.02 46.85 54.67 58.21

Art

Photo 80.24 84.07 85.21 90.36 81.44 81.38 81.42 87.43 81.44
Cartoon 61.05 65.23 60.54 60.49 61.48 59.68 58.81 69.03 66.81
Sketch 57.80 62.10 58.74 51.77 59.94 58.84 56.56 66.38 69.61

Avg. 66.36 70.47 68.16 67.54 67.62 66.64 65.60 74.28 72.62

Cartoon

Photo 64.91 79.58 73.41 85.57 68.86 68.50 66.74 76.95 74.01
Art 49.07 58.25 53.65 61.72 51.86 53.17 50.53 62.45 61.52

Sketch 58.74 64.49 63.76 61.82 58.56 56.53 57.44 67.07 69.99

Avg. 57.88 67.44 63.58 69.70 59.76 59.40 58.24 68.82 68.51

Sketch

Photo 39.88 48.74 53.71 53.05 38.02 38.26 41.01 46.17 51.08
Art 31.84 37.60 39.94 43.51 32.08 32.37 34.53 35.50 49.56

Cartoon 52.18 54.39 54.52 61.43 54.95 55.38 55.21 57.98 62.76

Avg. 41.30 46.91 49.39 53.38 41.68 42.00 43.58 46.55 54.46

Avg. 53.29 58.88 57.00 60.89 54.61 54.27 53.57 61.08 63.45

Table 8. Comparisons of single DG accuracy (%) on PACS dataset. The first column indicates the training domain while the second
column indicates the unseen test domain. Results under the AlexNet backbone are reported. Best performances in comparisons are
highlighted in bold and the second best ones are marked with underlines.

ing, and cartoon and the position after the first residual block
when the training domain is sketch, to insert the destyliza-
tion layer. For the AlexNet backbone, the selected position
is after the first convolution stage for all four training do-
mains. To demonstrate the effectiveness of the NAS algo-
rithm, we experiment with all the candidate positions for
inserting the destylization AdaIN layer. The results of using
the two backbone networks on the four training domains
are shown as the eight plots in Figure 10 respectively, as a
supplement to Figure 6 in the main paper. It proves that the
NAS algorithm is competent to find an optimal position in a

backbone network to conduct the destylization.

To further explore the capacity of the NAS algorithm, we
also experiment with the VGG11 (Simonyan & Zisserman,
2014) backbone on the PACS dataset. The full results are
shown in Tab. 9. In this experiment, we choose positions
after the 8 ReLU layers as candidate positions for the AdaIN
layer. The NAS algorithm chooses ReLU-1 1 layer for art
painting and sketch domain and ReLU-2 1 layer for photo
and cartoon. We empirically find that when the number of
candidates is larger than 10, the convergence of the NAS
algorithm would become difficult, e.g., if we select position
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Settings Source Only JiGen RSC MMLD ADA ME-ADA MixStyle L2D Ours

Photo

Art 64.75 47.85 60.11 57.13 62.30 63.62 58.60 64.84 67.53
Cartoon 33.15 27.99 35.45 22.44 35.71 35.84 19.49 46.12 50.00
Sketch 29.12 26.80 40.06 17.43 31.53 30.24 19.30 53.19 61.92

Avg. 42.34 34.21 45.21 32.33 43.18 43.23 32.46 54.72 59.82

Art

Photo 83.72 85.99 87.78 90.18 94.25 91.86 95.22 92.22 84.97
Cartoon 57.68 47.53 64.46 54.82 61.52 68.94 52.34 71.54 69.75
Sketch 42.73 35.81 60.72 46.81 52.51 48.59 35.62 64.21 69.23

Avg. 61.38 56.44 70.99 63.94 69.43 69.80 61.06 75.99 74.65

Cartoon

Photo 75.25 77.60 72.69 80.60 84.37 82.40 84.74 88.32 84.13
Art 63.28 56.49 57.56 57.28 62.84 61.96 58.78 72.80 72.51

Sketch 54.03 45.41 67.40 50.47 59.97 57.62 48.64 64.88 70.37

Avg. 64.19 59.84 65.89 62.78 69.05 67.33 64.05 75.33 75.67

Sketch

Photo 35.30 40.42 45.09 37.01 40.18 39.94 49.97 55.51 53.95
Art 37.74 38.13 50.78 38.33 40.43 38.87 38.16 41.26 52.34

Cartoon 57.64 37.46 64.46 44.03 62.29 59.17 55.52 58.53 64.59

Avg. 43.56 38.67 53.44 39.79 47.63 45.99 47.88 51.77 55.96

Avg. 52.87 47.27 58.88 49.71 57.32 56.59 51.36 64.45 66.53

Table 9. Comparisons of single DG accuracy (%) on PACS dataset. The first column indicates the training domain while the second
column indicates the unseen test domain. Results under the VGG11 backbone are reported. Best performances in comparisons are
highlighted in bold and the second best ones are marked with underlines.

Method C I P Q S Avg.

L2D 38.69 12.04 38.40 6.53 30.12 25.16
Ours 42.93 12.79 40.72 6.78 32.67 27.18

Table 11. Comparisons of single DG accuracy (%) on DomainNet.
The models are trained on the Photo domain and evaluated on
Clipart (C), Infograph (I), Painting (P), Quickdraw (Q), and Sketch
(S). Results under the ResNet-18 backbone are reported.

Backbone Method A C S Avg.

ConvNeXt L2D 60.32 53.49 67.76 60.52
Ours 66.20 54.98 74.09 65.09

SWIN L2D 74.80 49.29 52.77 57.95
Ours 72.92 52.93 61.26 62.37

Table 10. Comparisons of single DG accuracy (%) on PACS
dataset. The models are trained in the Photo domain and evaluated
on the Art Painting (A), Cartoon (C), and Sketch (S) domains.
Results under ConvNeXt-T and SWIN-T backbones are reported.

after all the 20 functionality layers in the feature extractor
of VGG11 as candidates, the solution would sway among
several adjacent layers. More advanced NAS algorithms
such as coarse-to-fine strategies are necessary to handle
larger backbone networks. Involving multiple destylization
layers in a backbone network is also a promising future
research direction.

We also conduct experiments on state-of-the-art network
backbones like ConvNeXt (Liu et al., 2022c) and SWIN (Liu
et al., 2021b). The results of our method and the L2D (Wang
et al., 2021b) baseline are shown in Tab. 10. The models

are trained on the Photo domain and evaluated on the Art
Painting, Cartoon, and Sketch domains. The AdaIN layer is
inserted after the second stage for ConvNeXt and after the
first stage for SWIN. The results indicate that our method
outperforms the baseline without explicit destylization sig-
nificantly.

Results on DomainNet Dataset. To demonstrate the scala-
bility of the proposed StyDeSty framework for single DG,
we conduct experiments on DomainNet dataset (Peng et al.,
2019), which consists of images from six distinct domains,
including photos (real), clipart, infograph, painting, quick-
draw, and sketch. There are 48k to 172k images in each do-
main and 600k in total that are categorized into 345 classes.
We train the ResNet-18 models on the photos and evaluate
them on the other 5 domains. The results of our model and
the L2D (Wang et al., 2021b) baseline are shown in Tab. 11,
where our methods yield consistent improvement.

Comparison on Monocular Depth Estimation. As a sup-
plement to the quantitative results of monocular depth es-
timation in the main manuscript, we provide qualitative
comparisons with those methods without restriction on the
label format, including MixStyle (Zhou et al., 2021) and
a variant of L2D (Wang et al., 2021b) by removing the
class-conditional terms that are incompatible with this task,
denoted as v-L2D. Using vKITTI (Gaidon et al., 2016) as
the source domain, results on the test KITTI dataset (Geiger
et al., 2013) are shown in Figure 11. Through the figure,
we can observe that the results of our method show clear
object boundaries with the least noise, which demonstrates
the superiority of our method over the previous approaches.
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Figure 11. Qualitative comparisons on the monocular depth estimation task. The results of our method demonstrate clearer object
boundaries with the least noise.
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