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ABSTRACT

Retrieval-Augmented Generation (RAG) enhances recency and factuality in answers. How-
ever, existing evaluations rarely test how well these systems cope with real-world noise,
conflicting between internal and external retrieved contexts, or fast-changing facts. We
introduce Retrieval-Aware Robustness Evaluation (RARE), a unified framework and large-
scale benchmark that jointly stress-tests query and document perturbations over dynamic,
time-sensitive corpora. One of the central features of RARE is a knowledge-graph-driven
synthesis pipeline (RARE-Get) that automatically extracts single and multi-hop relations
from the customized corpus and generates multi-level question sets without manual in-
tervention. Leveraging this pipeline, we construct a dataset (RARE-Set) spanning 527
expert-level time-sensitive finance, economics, and policy documents and 48295 questions
whose distribution evolves as the underlying sources change. To quantify resilience, we
formalize retrieval-conditioned robustness metrics (RARE-Met) that capture a model’s
ability to remain correct or recover when queries, documents, or real-world retrieval results
are systematically altered. Our findings reveal that RAG systems are unexpectedly sensitive
to perturbations. Moreover, they consistently demonstrate lower robustness on multi-hop
queries compared to single-hop queries across all domains.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) significantly enhances Large Language Models (LLM) by integrating
external knowledge sources, allowing the generation of accurate and contextually rich responses (Gao et al.,
2024). However, the robustness of RAG systems remains inadequately evaluated. In addition, current
benchmarks predominantly rely on static, time-invariant datasets with general-knowledge or common-sense
queries. Such benchmarks inadvertently favor models that rely on memorization rather than genuine retrieval
and synthesis of novel, timely information (Xu et al., 2024). Consequently, existing assessments yield overly
optimistic performance measures, overlooking critical real-world scenarios involving dynamic, specialized,
and complex information.

An ideal synthesized evaluation dataset generation pipeline for RAG must address several critical dimensions
simultaneously, emphasizing dynamics, query complexity, and content specialization. Dynamics is
crucial to reflect real-world scenarios where information evolves rapidly (Meem et al., 2024; Jang et al.,
2022), particularly in domains such as finance (Shen & Kurshan, 2023). Such time-sensitive data sets
prevent contamination of memorized responses and require continuous adaptation by RAG systems. Query
complexity, especially multi-hop scenarios that require complex reasoning and integration across multiple
retrieved documents (Yang et al., 2018; Geva et al., 2021). Most existing multi-hop datasets require substantial
human efforts, which makes it impossible to curate large-scale extensive datasets. Therefore, automation is
essential and advanced techniques such as Knowledge Graphs (KGs) (Schneider et al., 2022) can be used.
Moreover, with widespread integration into real-world applications, benchmarks must emphasize content
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specialization, including professional and domain-specific contexts that challenge models with intricate
terminology and nuanced interpretations.

Additionally, most RAG benchmarks has focused on accuracy measurements, with limited attention to
how these systems perform when faced with noisy or imperfect inputs. In real-world applications, an
RAG system usually should contend with perturbed queries containing typos, irrelevant information, or
ambiguous phrasing (Zhang et al., 2025b). Retrieved document may also be noisy, partially relevant, or even
contradictory (Chen et al., 2023). A truly robust RAG system should maintain robust performance despite
these challenges.

In this paper, we introduce a comprehensive Retrieval-Aware Robustness Evaluation (RARE) framework. It
includes: RARE-Get: a novel dynamic synthesis pipeline that automatically constructs time-sensitive RAG
evaluation data through knowledge graph triplet extraction and traversal techniques, enabling the creation of
single-hop and multi-hop tuples (question, answer, ground truth chunks) at various complexity levels without
manual curation. RARE-Set: a large-scale benchmark comprising 527 specialized documents and 48295
queries across financial, economics, and policy domains - sectors where information accuracy and timeliness
are particularly critical yet underrepresented in existing benchmarks. Unlike previous datasets dominated
by general knowledge questions, our benchmark exclusively focuses on "rare" datasets: domain-specific,
technical queries that require advanced information synthesis. RARE-Met: a comprehensive robustness
evaluation metric for measuring RAG system performance under perturbations to queries, documents, and
simulated real-world retrieval results, providing diagnostic insights into current system limitations. Our
dataset features diverse query patterns generated through knowledge graph traversal, including single-hop,
multi-hop chained, star-shaped, and inverted-star-shaped, with systematic perturbations at both surface and
semantic levels to comprehensively assess robustness under realistic conditions.

Our evaluation reveals that RAG systems are still fragile under some perturbations. Robustness scores do
not always scale strictly with model size - some mid-sized generators outperform several larger counterparts.
Also, the robustness of RAG systems across different domains is different, and multi-hop queries prove
less robust than single-hop queries. All of these indicate the importance of evaluating and improving the
robustness of RAG systems.

2 RELATED WORK

Time-Sensitive Benchmark Recent temporal-related benchmark initiatives address LLM knowledge out-
dating through distinct approaches. FreshQA (Vu et al., 2024) tests reasoning over up-to-date knowledge
with a fixed questions, dynamic answers-updated QA benchmark and evaluation methodology for correctness
and hallucination detection. PAT-Questions (Meem et al., 2024) introduces a self-updating benchmark for
present-anchored temporal questions using SPARQL queries over Wikidata to automatically refresh answers.
RealtimeQA (Kasai et al., 2024) employs a weekly dynamic platform that extracts questions form news
quizzes, challenging systems to answer questions about current events. Existing benchmarks often exhibit
limitations such as narrow raw data domains (primarily Wikipedia or news articles), a restricted number of
test cases due to the reliance on fixed human-generated questions, and a prevalence of queries that can be
accurately answered by the language model alone—without the need for retrieval—such as general-domain
fact questions.

Multi-Hop QA and RAG Benchmark Early knowledge-intensive benchmarks like Natural Ques-
tions (Kwiatkowski et al., 2019) and HotpotQA (Yang et al., 2018) established foundations for factual
question answering but lacked cross-document reasoning and overlapping with popular training dataset. Later
development such as MuSiQue (Trivedi et al., 2022) and StrategyQA (Geva et al., 2021) advanced multi-hop
QA capabilities but remained confined to Wikipedia sources. MultiHop-RAG (Tang & Yang, 2024) expanded
to news domain with 2-4 ho queries but lacks dynamic real-time updates. RAGBench (Friel et al., 2025)
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Table 1: Comparison of our proposed dataset with prior benchmarks. Symbols: ✓ = yes/present; ✗ = not
available; "partial" = feature applies to only a subset; "-" = not applicable; MH = Multi Hop question.

Dataset Year # QA Data Sources Unique Time-Sens. MH Dynamic Automatic

Time-Sens. Benchmarks
RealtimeQA 2023 2340 News ✓ ✓ ✓ ✓ partial
FreshQA 2024 600 Search engine ✓ ✓ ✓ ✓ partial
PAT-Questions 2024 6172 Wikipedia partial ✓ ✓ ✓ ✓

MH & RAG Benchmarks
Natural Questions 2019 100 k Wikipedia ✗ ✗ ✗ ✗ ✗
HotpotQA 2018 97.9 k Wikipedia ✓ ✗ ✓ ✗ ✗
MuSiQue-Ans 2022 50 k Wikipedia ✗ ✗ ✓ ✗ partial
StrategyQA 2021 2780 Wikipedia ✓ ✗ ✓ ✗ ✗
MultiHop-RAG 2024 2506 News ✓ ✓ ✓ ✗ ✓
RAGBench 2024 100 k Domain-specific ✗ ✗ ✓ ✗ ✓
CRAG 2024 4409 Search engine ✗ ✓ ✓ ✗ partial

LLM Robust Benchmarks
KaRR 2023 - T-REx (Wikipedia) partial ✗ ✗ ✗ partial
QE-RAG 2025 51 k Wiki + Domain-specific partial ✗ ✓ ✗ ✓
SURE 2025 - NQ-open (Wikipedia) ✗ ✗ ✗ ✗ ✓

RARE (Ours) 2025 48.3 k Domain-specific reports ✓ ✓ ✓ ✓ ✓

introduced evaluation across industry corpora with new faithfulness metrics, with CRAG (Yang et al., 2024)
targets dynamic performance across multiple domains with simulated web and knowledge graph APIs, though
still limited in scale and dynamic renew ability.

LLM & RAG Robustness Recent frameworks attempt to quantify RAG robustness, usually with various
perturbations. RAGAS (Es et al., 2025) measures factual consistency through automated evaluation without
ground-truth annotations but lacks assessment of query/document perturbations and limited number of
assessment. Cao et al. (2025) analyzed the robustness of the RAG system on linguistic variations and
found that RAG systems are even more sensitive to these variations compared with LLM-only generation.
SURE Yang et al. (2025b) introduced a framework to quantify the sensitivity to semantic-agnostic spurious
features (e.g. format of document) in grounding data, providing a taxonomy of formatting variations that
reveal widespread vulnerabilities. QE-RAG (Zhang et al., 2025b) tests robustness by injecting realistic
query entry errors into QA datasets to evaluate tolerance to input noise, though primarily focused on static,
general-domain tasks without evaluating document-level corruptions. KaRR (Dong et al., 2023) provides a
statistical approach to assess whether an LLM contains reliable factual knowledge by estimating the ration
of generating correct surface text given varying prompts, although its assessment is limited to parametric
knowledge rather than retrieval capabilities. While these approaches advance discrete facts of RAG robustness,
none offer a unified, dynamic evaluation pipeline capable of automatically generating large-scale, temporal
test cases and measuring performance under systematic perturbations to queries, documents, and retrieval
results.

3 RARE-GET: DYNAMIC RAG BENCHMARK DATASET GENERATION PIPELINE

RAG benchmarks should ideally comprise diverse, realistic queries with corresponding golden passages
containing the information needed to answer them correctly. Creating such benchmarks manually demands
extensive human effort and domain expertise, particularly for specialized, multi-hop reasoning scenarios.
In addition, manual-based benchmark cannot consistently create the dynamic and up-to-date datasets. To
address these challenges, we introduce RARE-Get, a fully automated pipeline for constructing complex RAG
benchmarks from unstructured data.
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Figure 1: Illustration for the RARE framework. Red frame: data that pipeline will generate; Black frame:
process/movement.

RARE-Get transforms domain-specific documents into comprehensive benchmark datasets through four key
stages: (1) Ground Truth Chunks Construction; (2) Knowledge Graph Construction; (3) Question & Answer
Construction and (4) Quality Assurance, as illustrated in Figure 1. This approach enables the creation of
technical, challenging RAG evaluation datasets that evolve dynamically alongside their source documents,
ensuring continued relevance in rapidly changing domains. For time-sensitive, such automatic pipeline
also ensures that newest answers with questions will always be updated following by the knowledge graph
re-construction or updating process.

3.1 CORPUS PREPARATION AND CHUNKING

The pipeline begins by processing domain-specific documents, converting them into manageable chunks
suitable for retrieval systems. We carefully segment each document into passages of approximately 600
tokens, striking a balance between informativeness and retrieval efficiency, as well as a real-world retrieval
simulation. For tables, we prevent splitting a single table across different chunks. Related information (e.g.
table titles, data explanation) will remain in the same chunk. Similarly, for text-only contents, we ensure that
no paragraph is divided between chunks. Also, we develop specialized chunking techniques across three
distinct domains. Each domain receives tailored processing to enhance information extraction and context
retention. Appendix A illustrates the full details for chunking on different domains.

3.2 KNOWLEDGE GRAPH EXTRACTION

The cornerstone of the benchmark creation process is systematically transforming chunked documents
into structured knowledge representations. For each set of n consecutive chunks, we employ LLM (GPT-
4.1 (OpenAI, 2025)) with carefully designed prompts adapted for different domains.

The prompts specify multiple types of multi-hop question patterns with detailed examples, instructing the
LLM to extract connected triplets where entities overlap between chunks. In addition, we ask LLM to extract
the source sentence it used to extract the triplet, which will be further implemented as answer verification,
making sure the generated answer is included in the ground truth chunk. Lastly, we normalize semantically
similar relations (e.g. "manufactures" vs. "produces") using E5-Mistral-7B-Instruct (Wang et al., 2023), one
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<uses> 

<comparable sales metric>
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<net revenue from 53rd week of 
2024>

Chained Shape Star Shape Inverted Star Shape

“What metric does lululemon 
athletica use that specifically 
excludes net revenue from the 

53rd week of 2024 in its 
calculation?”

”Which specific policy was included in the 
Dutch government's pandemic response that 
protected jobs and firms during the COVID-
19 crisis from March 2020 to March 2022?”

“Which type of architectural-
barrier project, mentioned 

among non-housing 
community-development 

initiatives in South Bend’s 2024 
CAPER, received the same source 

of funding?”

comparable sales metric temporary emergency scheme for job 
retention (NOW) cds-6 architectural barriers

<support package during covid-19>
<protected>

<jobs and firms>

<support package during covid-19>
<included>

< temporary emergency scheme for job 
retention (now)>

<cds-6 architectural barriers>
<received funding from>

<CDBG>

<eds-oyment>
<received funding from>

<CDBG>

Figure 2: Examples of the multi-hop questions. Blue: triplets traversed from KG; Peach: generated question;
Green: generated answer; Red: "bridge" entity which connect different triplets together;

of the leading embedding models according to the MTEB leaderboard (Muennighoff et al., 2023). Finally,
after constructing the corresponding knowledge graph for each document, we merge different knowledge
graphs into a larger knowledge graph to create cross-document questions. Example prompts used for the
extraction of triplets are in the Appendix F.

3.3 QUERY PATTERNS

By traversing the constructed knowledge graph in different strategies, we identify four structural templates,
one single-hop and three multi-hop, that produce queries of increasing complexity (multi-hop examples and
QA pairs appear in Figure 2).

Pattern Graph structure (template) What it tests
Single-hop (e1, r1, e2) Direct fact lookup; baseline

single-chunk retrieval.
Chained-Shape (e1, r1, e2) → (e2, r2, e3) → . . . Follow 2–3 linked triplets; step-

wise reasoning across chunks.
Star-Shape (e1, r1, e2) ∥ (e1, r2, e3) ∥ . . . Aggregate diverse facts around

a focal entity; synthesize across
relations.

Inverted-Star (e1, r1, e2) ∥ (e3, r2, e2) ∥ . . . Recognize convergent paths;
combine evidence toward a
common target.

Table 2: Single hop and multi-hop query pattern templates.

When traversing the entire graph according to these patterns and identifying the corresponding triplet(s), we
ensure that the extracted triplets can only be used to generate corresponding questions. For instance, while
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traversing all single-hop triplets (e1, r1, e2), we ensure that e1 has an out-degree of 1 and an in-degree of 0,
while e2 has an in-degree of 1 and an out-degree of 0. This approach prevents duplication of content between
single-hop and multi-hop questions. Additionally, for multi-hop questions, we remove all triplet sets that
can be entirely answered from the same chunk. This ensures that multi-hop questions must be answered
by traversing multiple files. Finally, We restrict to these patterns because they cover the three fundamental
reasoning moves in real retrieval: follow a path (chain), aggregate around a hub (star), and converge multiple
clues to a target (inverted-star). These patterns are expressive enough to span most cross-chunk tasks while
keeping graph traversal depth and branching controllable for automatic generation, verification, and difficulty
tuning.

3.4 QUERY GENERATION AND QUALITY ASSURANCE

For each identified pattern, we use pattern-specific prompts to generate QA pairs that use information from
its triplets, corresponding ground truth chunks, and metadata storing information such as timestamp or the
country name. For multi-hop questions specifically, we implement a specialized algorithm that: (1) Identifies
a "pivot entity" that connects different triplets; (2) References this pivot indirectly in the question; (3) Ensures
the question cannot be answered from a single chunk; (4) Performs "pivot-rarity" and "negative-distractor
safety" checks to guarantee question quality. Appendix F shows the complete algorithm for generating pairs.

Finally, all generated query-answer pairs undergo rigorous quality assessment using separate LLM-based
evaluation based on Claude 3.5 Haiku (Claude, 2024) that scores each query-answer pair on three dimensions
from the scale of 1 to 5: (1) Readability; (2) Clarity; (3) Correctness. Only queries with scores above
3 across all dimensions are included in the final benchmark. This quality-controlled generation process
creates benchmarks that effectively evaluate both retrieval accuracy and reasoning capabilities within domain-
specific contexts. As source documents evolve or new ones are added, the pipeline can dynamically extend
the benchmark, ensuring continued relevance for evaluating RAG systems against the latest information.
Appendix F includes step-by-step measuring standards.

4 RARE-SET: LARGE-SCALE DOMAIN-SPECIFIC RAG DATASET

RARE-Set contains three different domains of datasets: finance, economics, and policy. We collect a hetero-
geneous corpus with 199 recent S&P 500 Companies’ SEC 10-k filings, 114 OECD economic surveys, and
214 Consolidated Annual Performance and Evaluation Report (CAPER) from grantees for U.S. Department
of Housing and Urban Development (HUD) funded programs. Appendix E shows the full dataset statistics.

We enhance datasets quality through a variety of processing techniques. For instance, for financial reports, our
preprocessing pipeline builds on Edgar-Crawler (Loukas et al., 2021), with custom modifications. Rather than
preserving tables in HTML format, we convert them to a markdown structure optimized for LLM inputs. In
knowledge graph extraction from financial documents, we prioritize relations involving performance metrics,
operational activities, and financial events. We explicitly target generalized and reusable relations that can
be applied across companies within the same industry. This approach supports the generation of multi-hop
questions that span multiple companies. For economic surveys, we design prompts to emphasize policy
measures, key economic indicators, and patterns of national development. In the context of policy reports,
our focus is on fund allocation, program implementation, and beneficiary data.

The benchmark contains single-hop queries and three types of multi-hop queries based on different knowledge
patterns in the knowledge graph. One thing to mention is that all of these domains are time-sensitive and can
update dynamically as time progresses.
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Table 3: Robustness definitions under query/document settings. ✓ = counted robust only if the final answer
is correct; ∅ = counted robust only if the model safely refuses; ✓∨∅ = robust if either correct or safely
refuses. g(q, d) represents generator (model) given query and document. g(q, ∅) is the per-record no-context
probe indicating the generator can answer without retrieval. 1 denotes that the generator can answer without
retrieval, while 0 indicates it cannot.

g(q, ∅) = 1 g(q, ∅) = 0

Document setting q (orig.) q′ (perturbed) q (orig.) q′ (perturbed)

Ground-Truth Docs ✓ ✓ ✓ ✓
Lexical-Diff (Has Answer) ✓ ✓ ✓ ✓
Lexical-Similar (No Answer) ✓∨∅ ✓∨∅ ∅ ∅
Real-World Retrieval ✓∨∅ ✓∨∅ ✓∨∅ ✓∨∅

5 RARE-MET: RETRIEVAL-AWARE ROBUSTNESS METRIC

A robust RAG system should maintain correctness under two conditions: if the generator can already answer
the query without retrieval (g(q, ∅) = 1), it must consistently give the correct answer regardless of retrieval
content; if it cannot answer without retrieval (g(q, ∅) = 0), it should provide the correct answer given correct
retrieval, and otherwise safely refuse rather than hallucinate when retrieval is incorrect or irrelevant.

Table 3 shows the full definition of RAG robustness under different circumstances.

5.1 QUERY PERTURBATIONS

We define four types of query perturbations Q′ = q′1, q
′
2, . . . , q

′
n derived from the original query q, grouped

into two categories: Surface-level perturbations: (1) character-level changes; (2) word-level changes
(typos, synonyms) based on TextAttack (Morris et al., 2020); and Advanced-level perturbations: (1) LLM-
based grammar rewrites that preserve the query’s intrinsic meaning; (2) LLM-based additions of irrelevant
information. Appendix C.1 includes more details on constructing perturbations for each query.

5.2 DOCUMENT PERTURBATION

For document perturbation D′ = d′1, d
′
2, . . . , d

′
n, we primarily consider two directions: lexical relevance and

answer relevance. Similarly to definitions under query perturbation, the lexical relevance measure changes
of document styles. Answer relevance, on the other hand, determines whether the retrieved document truly
contains the answer required by the question. As we consider lexical perturbation and answer perturbation as
two dimensions, we define three document perturbations which encompassed all possible distributions of
retrieval documents. (1) Documents with the similar lexical style but answers are different: directly remove
the answer sentence/words from the ground truth chunk. (2) Documents with different lexical style but
answer is similar/identical: LLM-based back-translation. (3) Real-world retrieval results (Dret): constructing
a real-world simulated retrieval process based on LangChain (Chase & contributors, 2022) (including a
re-ranking model). The first two document perturbations are introduced to more clearly examine how different
relevance types—lexical or answer-based—affect the overall robustness of the RAG system.

Appendix B shows all types of document perturbations under such relevance and reason of evaluating from
these perspectives. Appendix C.2 reveals construction process in details. The first two document perturbations
are introduced to more clearly examine how different relevance types—lexical or answer-based—affect the
overall robustness of the RAG system.
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5.3 ROBUSTNESS METRICS

Metric Fixed / Varied Expression

Overall Robustness Fixed: ∅; Varied: q∈Q, d∈D
1

|Q| |D|
∑
q∈Q

∑
d∈D

f
(
g(q, d), a

)
Query Robustness Fixed: dgt; Varied: q′∈Q′ 1

|Q′|
∑

q′∈Q′

f
(
g(q′, dgt), a

)
Document Robustness Fixed: q; Varied: d′∈D′ 1

|D′|
∑

d′∈D′

f
(
g(q, d′), a

)
Real-World Retrieval Robustness Fixed: q; Varied: d′i∈Dret

1

|Dret|
∑

d′i∈Dret

f
(
g(q, d′i), a

)
Table 4: Definition of different robustness score. f(pred, ans) indicates the open-ended prediction and
ground truth LLM-based comparison function. All other notations are identical to the previous section.
Appendix D also provides an additional table to understand these notation better.

6 ROBUSTNESS EXPERIMENTS AND ANALYSIS

6.1 EXPERIMENTAL SETTING

We perform our experiments on a total of 6000 QA pairs for three domains, each of which has 1000 single-hop
questions and 1000 multi-hop questions. Retrieval is evaluated with three top-ranking embedding models
from the MTEB leaderboard: E5-Large-Instruct (Es et al., 2025), Jina-Embedding-v3 (Sturua et al., 2024),
and Stella-En-1.5B-v5 (Zhang et al., 2025a). For the RAG system’s generators, we evaluate both leading
open-source LLMs, including Qwen 3 (Yang et al., 2025a) and the Llama 3.2 family (Grattafiori et al., 2024),
as well as proprietary models accessed through commercial APIs. The Llama 3.2 series is served via the
Amazon Bedrock API, while closed-source GPT models are accessed directly through the OpenAI API. All
generators are configured to operate deterministically (temperature = 0) with a maximum output length of
1024 tokens. Although models are instructed to provide concise final answers, chain-of-thought reasoning is
explicitly encouraged in their outputs to facilitate their abilities. We close Qwen 3’s internal thinking mode
for fair comparison. Appendix G.3 proves our results are statistical significance.

For the Qwen 3 series, we deploy both vLLM (Kwon et al., 2023) servers (for larger models) and
SGLang (Zheng et al., 2024) servers (for smaller models), running in parallel to optimize inference throughput.
These open-source models are executed on a cluster of 16 NVIDIA L40S GPUs. To accelerate large-scale
experimentation, multiple server instances are launched concurrently, and inference requests are distributed
across them. Completion of the full experimental suite requires approximately five days.

To quantify the discrepancy between predictions and ground-truth answers, we design a two-stage evaluation
pipeline. In the first stage, both prediction and reference strings are normalized, after which exact and
inclusive string matches are implemented. If no lexical match is detected, the second stage employs Claude-3-
Haiku (Anthropic, 2024) judging with a carefully engineered evaluation prompt (Appendix F) to determine
whether prediction matches the ground truth. Using Claude model can minimize bias and ensure neutrality in
the evaluation.

6.2 OVERALL MODEL PERFORMANCE

Examining the overall robustness scores in the Table 5 shows that larger models generally demonstrate
superior robustness. GPT-4.1 achieves a robustness score that surpasses those of its smaller models, GPT-4.1

8
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Table 5: Robustness results across different models and metrics

Model Overall Query Document Retrieval

Llama-3.2-1B-Instruct 0.318 0.280 0.254 0.389
Llama-3.2-3B-Instruct 0.607 0.459 0.587 0.649
Llama-3.2-11B-Vision-Instruct 0.627 0.658 0.630 0.610
Llama-3.2-90B-Vision-Instruct 0.782 0.691 0.771 0.820

Qwen3-4B 0.665 0.734 0.700 0.611
Qwen3-8B 0.698 0.714 0.721 0.667
Qwen3-32B 0.664 0.732 0.701 0.598

GPT-4.1-nano 0.589 0.613 0.651 0.531
GPT-4.1-mini 0.646 0.730 0.651 0.613
GPT-4.1 0.675 0.761 0.668 0.654

mini and GPT-4.1 nano. A similar scaling-law is observed within the Llama 3.2 series: Llama-3.2-90B-Vision-
Instruct exhibits a markedly higher robustness score than any other model. Surprisingly, it even surpasses
closed models such as GPT series. However, size alone does not always reflects the robustness. For example,
Qwen3-32B attains an overall robustness score lower than that of the smaller - but architecturally similar -
Qwen3-8B and even Qwen3-4B. This phenomenon is widely observed across the Qwen3 family of models.
The Qwen3 models consistently maintain a relatively high robustness score, even for smaller-scale variants
such as the 4B model. In addition, compared with other robustness scores, the document score does not
exhibit a significant improvement as model size increases; in fact, some models even show regression. This
phenomenon primarily arises because larger models are more tended to answer directly with hallucination,
even when they lack the ability to answer the question or given document does not contain the answer. In
contrast, certain smaller models are more likely to decline questions that exceed their capabilities. Appendix
G.2 will include more analysis on it. All of these findings highlight the decisive roles of architectural design
and training methodology. More analysis about each sub-metric is available in Appendix G.1.

6.3 DOMAIN-SPECIFIC AND MULTI-HOP QUESTIONS ROBUSTNESS

Figure 7 indicates that RAG systems’ robustness is heavily influenced by domain-specific factors. RAG
system perform best in finance reports, which typically feature standardized terminology and numerical
data. However, they are struggling most with the economics survey, which often involves complex causal
relationships and varied terminology. In addition, single-hop queries consistently yield higher robustness
scores than multi-hop queries across all domains and perturbations (Figure 6). This trend is amplified
in smaller models, suggesting that multi-hop reasoning capabilities require substantial model capacity to
maintain robustness under perturbations.

7 CONCLUSION

In conclusion, we introduce RARE, a comprehensive framework for data generation and evaluating RAG
robustness that addresses critical gaps in existing benchmarks. Our knowledge-graph-based pipeline (RARE-
Get) automatically extracts relations from specialized corpora and generates multilevel questions through
pattern-based traversal, enabling dynamic dataset evolution without manual curation. The resulting benchmark
(RARE-Set) comprises 48295 questions across finance, economics, and policy domains, featuring single-
hop and complex multi-hop questions. Our robust evaluation metrics (RARE-Met) systematically measure
resilience against query, document, and retrieval perturbations. Experiments reveal that RAG systems
consistently demonstrate higher robustness in finance than economics, and single-hop queries outperform
multi-hop ones across all domains, providing crucial insights for developing more reliable RAG systems for
real-world applications.
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A CHUNKING TECHNIQUES

For each domain, here are the step-by-step explanation for chunking.

A.1 FINANCE

1. Load filing JSON and prepare metadata (CIK, company, filing type/date, period; optional GICS
sector/subindustry).

2. Preprocess item_7: split by lines, detect section titles (regex on uppercase "Item" patterns), detect
table-like blocks (pipe-delimited), group tables with nearby narrative, and merge short title-only
segments into adjacent content.

3. For each segment:

• If it contains a table, emit a single chunk with contains_table=true.
• Otherwise, split text with a token-aware recursive splitter (chunk_size=800,
overlap=100, tiktoken-based length), merge very short fragments (< 30 words), and carry
the section title into the first chunk; mark contains_table=false.

4. Assign chunk IDs and attach metadata.

A.2 ECONOMICS

1. Load structured content; extract file_country and file_year from the first "OECD Eco-
nomic Surveys:" line; initialize per-chunk metadata.

2. Start near the first table (idx = max(0, first-table-index−1)) and iterate rows.

3. For text rows, accumulate lines until around 600 words, then flush a text chunk with
chunk_page_idx.

4. For table rows, convert HTML to Markdown, prepend detected caption (from row or preceding short
"Table" lines) and append footnotes; emit a table chunk with chunk_page_idx.

5. Flush any remaining text; assign chunk IDs and attach metadata.

A.3 POLICY

1. Load structured content and join with external metadata row by id; prepare per-chunk metadata
(plan type, file_grantee, file_state, file_year).

2. Trim trailing content starting at the first "Attachment" header.

3. For text rows, accumulate lines until around 600 words, then flush a text chunk with
chunk_page_idx.

4. For table rows, convert HTML to Markdown; if captions/footnotes exist, prepend/append them; emit
a table chunk with chunk_page_idx.

5. Flush any remaining text; assign chunk IDs and attach metadata.

B THREE TYPES OF DOCUMENT PERTURBATIONS

Figure 3 illustrates that real-world retrieval results (violet dots) are scattered throughout the entire space of
lexical relevance and answer relevance, indicating that outcomes can occur in any region depending on the
retrieval performance. To study robustness, we introduce document perturbations in two targeted regions:
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answer-similar but lexically different (orange) and answer-different but lexically similar (blue), which allow
us to isolate and examine the impact of lexical versus answer relevance on RAG system performance.

Answer Relevance

Le
xi

ca
l R

el
ev

an
ce

Figure 3: Three types of document perturbations measured by two relevances.

C PERTURBATION CONSTRUCTIONS

C.1 QUERY PERTURBATIONS

1. Character-level noise: Use TextAttack Augmenters such as CompositeTransformation,
WordSwapQWERTY and WordSwapRandomCharacterDeletion (swap only 10% of the charac-
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ters); sample up to 5 variants and select via embedding model (first passing, otherwise maximum
similarity score).

2. Word-level substitutions: Use TextAttack Augmenter with WordSwapEmbedding
(max_candidates = 50) and the same constraints; sample up to 5 variants (swap only
10% of the vocabulary) and select with the same embedding model similarity filter.

3. Insert irrelevant info (LLM): Use GPT-4.1 to rewrite the query by inserting one domain-relevant but
answer-irrelevant detail (3 candidates); keep the highest-similarity candidate .

4. Grammar perturbation (LLM): Use GPT-4.1 to rephrase only grammar/punctuation/word order (3
candidates); keep the highest-similarity candidate.

C.2 DOCUMENT PERTURBATIONS

1. Regex deletion: Use Python re.sub, re.escape and re.IGNORECASE to remove exact sup-
porting sentences from answer-bearing chunks; compute semantic similarity using embedding model
to the original chunk, ensuring that their core contents are not changed.

2. Back-translation (LLM): Use GPT-4.1 to translate chunks EN→FR then FR→EN in batch; compute
similarity to the original with embedding model and attach the perturbed text with its score.

D RARE-MET NOTATION REFERENCE

Table 6: Notations and Definitions

Notation Definition

q Original query.
q′ ∈ Q′ Perturbed query; Q′ is the set of query perturbations.
Q = {q} ∪Q′ Full query set (original + perturbations).
dgt Ground-truth document.
d′ ∈ D′ Perturbed document; D′ is the set of document perturbations.
D = {dgt} ∪D′ Full document set (ground truth + perturbations).
∅ Empty context (no retrieval).
g(q, d) Generator producing the results given question q with context d.
a Ground-truth answer.
f
(
g(q, d), a

)
∈ {0, 1} Robustness judge (1 = robust, 0 = not), following Table 3.

g(q, ∅) ∈ {0, 1} Parametric-knowledge probe: 1 = can answer without retrieval; 0 = cannot.
Dret Set of documents returned by the evaluated retrievers.
d′i ∈ Dret A retrieved document used in real-world evaluation (e.g., top-k per retriever).
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E RARE-SET STATISTICS

Table 7: Dataset Statistics by Domain

Domain Financial Economics Policy

Document 199 114 214
Chunk 19825 12915 7014
Time Scope 2024-2025 2020-2025 2024-2025

Total # of Eligible Triplet/Triplets
Single-hop 17585 6719 6176
Chained (multi-hop) 11193 22256 82885
Star-shaped (multi-hop) 2707 1780 4868
Inverted-star-shaped (multi-hop) 558 2636 7377

Query (Train)
Single-hop 7362 6715 6125
Chained (multi-hop) 7930 3863 7563
Star-shaped (multi-hop) 833 511 661
Inverted-star-shaped (multi-hop) 64 415 253

Query (Test)
Single-hop 1000 1000 1000
Chained (multi-hop) 687 774 805
Star-shaped (multi-hop) 289 193 135
Inverted-star-shaped (multi-hop) 24 33 60

F PROMPTS

We will use the economic dataset prompts as the example.

Dataset Generation Prompt: Triplets Extraction

You are an economic analyst skilled at interpreting OECD Economic Surveys.
Your task is to extract structured triplets consisting of {"entity_1", "relation", "entity_2"} from
provided consecutive text chunks from a single OECD Economic Survey.
Each triplet must be supported explicitly by one specific chunk, but other chunks can be referenced to
form insightful, multi-hop triplets.
You should include the source chunk ID and source sentence as the metadata of the triplets.

TASK: EXTRACT STRUCTURED MULTI-HOP TRIPLETS

Extract triplets fitting these multi-hop categories:
- Connected Chain
- Star
- Inverted Star

1. Connected Chain Triplets:
- Extract an initial triplet: <entity_1, relation, entity_2>.
- Then identify subsequent triplets where entity_2 of the previous triplet becomes entity_1 of the next.
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- Ideally, different subsequent triplets should be sourced from different chunks.
- Extract as many meaningful chains as possible.
- Skip if no valid connected chain is available.

Example:
- {"entity_1": "Luxembourg", "relation": "implemented", "entity_2": "free public transport"}
- {"entity_1": "free public transport", "relation": "aims to reduce", "entity_2": "carbon emissions"}

2. Star Triplets:
- One root entity branching into multiple distinct relationships.
- Each branch must independently derive from a unique chunk.
- Skip if no meaningful star relationship is possible.

Example:
- {"entity_1": "Luxembourg", "relation": "invests in", "entity_2": "renewable energy"}
- {"entity_1": "Luxembourg", "relation": "develops", "entity_2": "sustainable transport infrastruc-
ture"}

3. Inverted Star Triplets:
- Two distinct entities connected through a shared attribute (entity_2).
- Relations may differ and offer varied perspectives on the attribute.
- Skip if no valid inverted star relationship is possible.

Example:
- {"entity_1": "Luxembourg", "relation": "faces challenges in", "entity_2": "housing affordability"}
- {"entity_1": "OECD recommendations", "relation": "address", "entity_2": "housing affordability"}

REQUIRED STRUCTURE:
Each extracted triplet must include:
- entity_1 (str)
- relation (str)
- entity_2 (str)
- answer_chunk_id (str)
- The chunk ID is at the very beginning of each text chunk, such as "Chunk ID: economics_0e32d909-
en_chunk_9".
- You should copy the chunk ID where the triplet is extracted from as the "answer_chunk_id".
- source_sentence (str)
- Extracted exactly from the supporting chunk, COPY WORD BY WORD.
- If sourced from a table, strictly include relevant row, column, and specific data only.

CRITICAL INSTRUCTIONS:
Relations:
- Generalized and reusable across similar economic and policy contexts.
- Concise and specific (2-4 words preferred).
- Use standard economic and policy terminology.
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- Avoid specific dates or overly detailed references in the relations.
Good Examples:
- "implemented", "faces challenges in", "invests in", "promotes"
Bad Examples:
- "introduced free transport in 2020", "planned reforms announced in 2023"

Entities:
- Clearly specify entities (avoid general terms like "the country" or "the government").
- Maintain consistent terminology when referring to similar concepts, such as using "Luxembourg" all
the time instead of using "Luxembourg government" sometimes.
- Include specific, detailed information relevant to economic policies, recommendations, or outcomes.
- For table-derived entities, clearly indicate row, column, and description.

Goal:
Try to extract 15 to 20 triplets. If no valid connected triplets can be extracted, return an empty array:
[]

Dataset Generation Prompt: Single-Hop QA Pairs Generation

Create an economics-related natural question-answer pair using a relation triplet (entity_1, relation,
entity_2) based on the text context and the file metadata where the triplet was extracted.

Requirements
- The question and answer should be entirely based on the given text context; that is, one can only
generate the correct answer from the information available in the context.
- Always use "{file_country}" instead of "{file_country} government," "government," or "country" to
make the query more specific.
- You should use entity_1 or entity_2 as the answer to the question and construct the question using
the other entity and relation with appropriate context information.
- Aim to formulate questions that appear natural and are likely to be asked by a human.
- Avoid generating questions that are overly general or vague, where multiple ground truth chunks
could answer the question or it would be hard to retrieve the ground truth chunk given the question.
You MUST return an EMPTY string for question and answer in this case.

Examples
Example 1:
Triplet:
{"entity_1": "inflation", "relation": "is", "entity_2": "2.9% in 2023"}
Text Context:
[Full example context is omitted...]
Metadata:
- File Type: OECD Economic Surveys
- Country Surveyed: Luxembourg
- Survey Year: 2023
Output:
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{"question": "What is the inflation of Luxembourg in 2023?", "answer": "2.9%"}

Example of Vague Triplet (Should Return Empty):
Triplet:
{"entity_1": "luxembourg", "relation": "should maintain", "entity_2": "prudent fiscal policy"}
Text Context:
[Full example context is omitted...]
Metadata:
- File Type: OECD Economic Surveys
- Country Surveyed: Luxembourg
- Survey Year: 2023
Output:
{"question": "", "answer": ""}

Output Format
Respond in JSON format with "question" and "answer" fields encapsulating the formulated question
and its answer.

Notes
Ensure questions are specific to the context provided, emphasizing precision and clarity in wording.
If no singular answer emerges due to generality, opt for returning an empty dictionary to indicate an
unsuitably specific query.

Dataset Generation Prompt: Multi-Hop QA Pairs Generation

You are a benchmark designer creating multi-hop retrieval questions based on three types of multi-hop
triplets.

Input
- Triplet 1 = ({head1}, {rel1}, {tail1}) <- extracted from Chunk 1
- Triplet 2 = ({head2}, {rel2}, {tail2}) <- extracted from Chunk 2
- Chunk 1: {chunk1}
- Chunk 2: {chunk2}

Multi-hop Triplets DEFINITIONS
1. Chain Triplets
- Gurantee: {tail1} == {head2}
- Define A = {head1}, B = {tail1} / {head2}, C = {tail2}
2. Star-shaped Triplets
- Gurantee: {head1} == {head2}
- Define A = {tail1}, B = {head1} / {head2}, C = {tail2}
3. Inverted-star-shaped Triplets
- Gurantee: {tail1} == {tail2}
- Define A = {head1}, B = {tail1} / {tail2}, C = {head2}
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GOAL
Write ONE natural-language multi-hop question that *requires* evidence from both chunks and
answer it succinctly (no full sentences, only essential information).

ALGORITHM
1. Decide whether the final answer will be A or C.
- Pick A if you can phrase the question so the solver must:
• hop-1: use (C, rel2) to identify B,
• hop-2: use (B, rel1) to reach A.
- Pick C if you can phrase the question so the solver must:
• hop-1: use (A, rel1) to identify B,
• hop-2: use (B, rel2) to reach C.
2. Write a fluent, specific, and natural question that:
- References the pivot B indirectly (via the opposite hop as above).
- Omits the answer itself.
- Cannot be answered from a single chunk.
- Includes detailed and specific context from the source text chunks. DO NOT just use "according to
OECD Economic Survey".
- BAD example: "What is the primary export sector of the country that faces risk from global supply
chain disruptions?" (Too vague; could refer to any country)
- GOOD example: "What is the primary export sector of the country that faces risk from global supply
chain disruptions in Q3 2021?" (Specific to the context and time frame)
3. Return the answer based on A or C. Ensure the answer precisely matches the facts provided in the
context.

EXAMPLE
{"entity_1": "forward-looking fuel-tax trajectory", "relation_1": "would reduce", "entity_2": "reliance
on combustion-engine cars"}
{"entity_1": "reliance on combustion-engine cars", "relation_2": "drives", "entity_2": "transport-
sector emissions"}
*question*: Which forward-looking tax trajectory is proposed to cut the main driver of transport-sector
emissions?
*answer*: forward-looking fuel-tax trajectory

QUALITY CHECKS
- Pivot-rarity: B must be distinctive (≥ 2 meaningful words, not generic terms like "measures", "it",
"the company"). If B is too generic, output empty strings for the question and answer.
- Negative-distractor safety: Ask could a system answer your question after retrieving only *one*
chunk? If yes, output empty strings for the question and answer.

OUTPUT
Respond in JSON format with question and answer only as shown below:
{
"question": "...",
"answer": "..."
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}

Dataset Generation Prompt: Single-Hop QA Pairs Quality Assurance

Single-Hop Query Quality Evaluator
You are an expert evaluator of single-hop queries. Assess each query’s quality across two dimensions
on a 1-5 scale.

Assessment Criteria
1. Clarity (Question and Answer) (1-5)
- 5: Concise, unambiguous wording; answer mirrors clarity
- 4: Minor wording issue but still unambiguous
- 3: Some vagueness but meaning recoverable
- 2: Ambiguities/redundancies hinder understanding
- 1: Unclear or contradictory wording
2. Correctness (vs. Ground-Truth) (1-5)
- 5: Answer matches all facts in chunks; nothing missing
- 4: Correct but one minor fact omitted/loosely paraphrased
- 3: At least half of facts correct; one factual slip
- 2: Major fact missing/misstated/unsupported
- 1: Contradicts or ignores ground truth

Evaluation Process
1. Identify reasoning process
2. Assess alignment between query and provided text chunk
3. Evaluate clarity of question and answer
4. Verify factual correctness against ground-truth chunk

Input
- query: The single-hop question
- answer: The provided answer
- text chunk: Source text chunk

Output
{
"score": <average_of_dimension_scores>,
"dimension_scores": {
"clarity": <1-5>,
"correctness": <1-5>
}
}
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Dataset Generation Prompt: Multi-Hop QA Pairs Quality Assurance

Multi-Hop Query Quality Evaluator
You are an expert evaluator of multi-hop queries. Assess each query’s quality across three dimensions
on a 1-5 scale.

Assessment Criteria
1. Reasonableness and Multi-hop Need (1-5)
- 5: Meaningful question requiring all hops; each hop justified
- 4: Reasonable but one hop weakly motivated or could be merged
- 3: Sensible but answerable by single chunk with assumptions
- 2: Forced/trivial question; multi-hop structure unnecessary
- 1: Nonsensical/irrelevant; multi-hop structure meaningless
2. Clarity (Question and Answer) (1-5)
- 5: Concise, unambiguous wording; answer mirrors clarity
- 4: Minor wording issue but still unambiguous
- 3: Some vagueness but meaning recoverable
- 2: Ambiguities/redundancies hinder understanding
- 1: Unclear or contradictory wording
3. Correctness (vs. Ground-Truth) (1-5)
- 5: Answer matches all facts in chunks; nothing missing
- 4: Correct but one minor fact omitted/loosely paraphrased
- 3: At least half of facts correct; one factual slip
- 2: Major fact missing/misstated/unsupported
- 1: Contradicts or ignores ground truth

Evaluation Process
1. Identify distinct reasoning hops and assess necessity
2. Check alignment between hops and provided chunks
3. Evaluate clarity of question and answer
4. Verify factual correctness against ground-truth chunks

Input
- query: The multi-hop question
- answer: The provided answer
- text chunks: Source text chunks

Output
{
"score": <average_of_dimension_scores>,
"dimension_scores": {
"reasonableness": <1-5>,
"clarity": <1-5>,
"correctness": <1-5>
}
}

24



1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

RAG Simulation Prompt: RAG Generator

You are a {domain} expert. You are given a {domain} question and one or multiple contexts.
Your task is to answer the question strictly based on the these contexts.
You should think step by step and answer the question in a detailed and comprehensive way. Please
return the detailed reasoning process in the cot_answer part.

Requirements:
- Your answer is short and concise, do not return any other text in the answer part.
- Example 1: "What is the United States’ GDP in 2024?"
- Good: "$31.1 trillion"
- Bad: "According to the context, as my knowledge, the answer is $31.1 trillion"
- Example 2: "Who is the president of the United States from 2021 to 2025?"
- Good: "Joe Biden"
- Bad: "The president of the United States from 2021 to 2025 is Joe Biden, according to my
knowledge"
- If the question is not related to the context, strictly return "no such info" for answer part. Do not
return any other text in such case.

Here are some examples of how to answer based on the given context:
Example 1:
Question: What was Apple’s revenue in Q2 2023?
Context: [Doc] Apple Inc. reported financial results for its fiscal 2023 second quarter ended April 1,
2023. The Company posted quarterly revenue of $94.8 billion, down 2.5 percent year over year.
cot_answer: The question asks about Apple’s revenue in Q2 2023. According to the context, Apple
reported quarterly revenue of $94.8 billion for its fiscal 2023 second quarter ended April 1, 2023.
This represents a decrease of 2.5 percent year over year.
answer: $94.8 billion

Example 2:
Question: What is Luxembourg’s approach to public transport?
Context: [Doc] On March 1, 2020, Luxembourg became the first country to make all public transport
free, including buses, trains, and trams. This policy aims to reduce traffic congestion and carbon
emissions while promoting sustainable mobility solutions across the country.
cot_answer: The question asks about Luxembourg’s approach to public transport. According to the
context, Luxembourg made all public transport free on March 1, 2020, becoming the first country to
do so. This includes buses, trains, and trams. The goal of this policy is to reduce traffic congestion
and carbon emissions while promoting sustainable mobility solutions.
answer: Free public transport for all

Example 3:
Question: How many homeless individuals received emergency shelter services in Pittsburgh?
Context: [Doc] The City of Pittsburgh allocated CDBG funds to various community programs
including affordable housing initiatives. The HOME program supported the construction of 45 new
housing units for low-income families.
cot_answer: The question asks about the number of homeless individuals who received emergency
shelter services in Pittsburgh. After reviewing the context carefully, I don’t see any information about
emergency shelter services for homeless individuals or any numbers related to this. The context only
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mentions CDBG funds for community programs and the HOME program supporting 45 new housing
units for low-income families. There is no specific information about homeless emergency shelter
services.
answer: no such info

Example 4:
Question: What were Smith A O Corp’s consolidated sales for the year ended December 31, 2024?
Context: [Doc] In this section, we discuss the results of our operations for 2024 compared with 2023.
Our sales in 2024 were $3,818.1 million, a decrease of $34.7 million compared to 2023 sales of
$3,852.8 million. Our decrease in net sales was primarily driven by lower water heater volumes in
North America, lower sales in China, and unfavorable currency translation of approximately $18
million due to the depreciation of foreign currencies compared to the U.S. dollar, which more than
offset our higher boiler sales and pricing actions.
cot_answer: The question asks about Smith A O Corp’s consolidated sales for the year ended
December 31, 2024. According to the context, the sales in 2024 were $3,818.1 million, which was a
decrease of $34.7 million compared to 2023 sales of $3,852.8 million. The context explains that this
decrease was primarily due to lower water heater volumes in North America, lower sales in China,
and unfavorable currency translation of approximately $18 million.
answer: $3,818.1 million

Output Format:
- cot_answer: detailed reasoning process
- answer: concise answer to the question

Evaluation Prompt: Judging Prediction and Ground Truth

You are a fair and strict judger, given prediction and ground truth, your task is to determine if the
prediction has the same/highly similar meaning as the ground truth answer.
Return true if:
- The prediction and ground truth are semantically identical or highly similar.
- The prediction provides the same information as the ground truth.
- If ground truth is included in the prediction consider it a match.
- Which means if prediction not only contains the ground truth, but also contains other information, it
should be considered a match.
- Example: prediction: "The company’s revenue was $50 million in 2023" and ground truth: "$50
million" are considered the same.
Return false if:
- The prediction does not match the ground truth in meaning.
- The prediction is a refusal or does not provide an answer.
- The ground truth has more specific information than the prediction.
- If the prediction is a numeric value, it should match the ground truth numerically
- Example 1: 120,000,000 and 120000000 are considered the same.
- Example 2: 120,000,000 and 120 billion are considered the same.

For your output, you should only answer ’true’ or ’false’, no extra text.
Examples:
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1. Prediction: "The company’s revenue was $50 million in 2023", Ground Truth: "$50 million",
Output: true
2. Prediction: "Apple Inc.", Ground Truth: "Apple", Output: true
3. Prediction: "I cannot find that information", Ground Truth: "25%", Output: false
4. Prediction: "The answer is 42", Ground Truth: "42", Output: true
5. Prediction: "The population is around 1 million", Ground Truth: "1,000,000", Output: true
6. Prediction: "Tesla", Ground Truth: "General Motors", Output: false
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G EXPERIMENT RESULTS ANALYSIS

G.1 DETAIL ANALYSIS
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Figure 4: Relationship between the sizes of open-source generators and their robustness scores across various
categories. Generally, larger generator sizes correspond to higher robustness scores. However, for Qwen 3
models, robustness scores tend to stay closely across difference parameter sizes
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Figure 5: Pairwise relationship between query, document and retrieval robustness. All of these models achieve
the balanced robustness across query, document, and retrieval dimensions, while Qwen3 models cluster tightly
in the upper-right corner, indicating consistently strong robustness across categories. In contrast, Llama
models are more spread out, with smaller ones performing poorly and larger ones improving in document and
retrieval robustness but still lagging in query robustness.
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Figure 6: Difference in multi-hop and single-hop robustness scores by domain. Positive robustness scores =
single-hop better, negative robustness scores = multi-hop better. Since all of the differences are positive, it
clearly shows that RAG systems exhibit lower robustness on multi-hop questions compared to single-hop
questions, while the most significant gaps appears in policy domain.
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Figure 7: Average overall robustness scores from different domains and question types
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G.2 PERTURBATION-SPECIFIC ROBUSTNESS

Figure 8: Average robustness score in different query perturbations vs. all types of documents.
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Figure 9: Average robustness score in different document perturbations vs. all types of queries.
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For Figure 8, there’s no significant differences across different query perturbations, showing that current
models are less sensitive to the query perturbations. The query robustness score generally follows the scaling
law, while Qwen3 models have consistency high scores. In Figure 9, while ground truth and lexical difference
with answer robustness score generally follow the scaling law, other two types of document robustness scores
does not, especially the lexical similar without answer robustness. Smaller models usually receive such score
higher. This is due to the number of probability of returning refusal information. Larger models tend to
response the question more frequently than smaller models, which causes the lower lexical sim robustness
score. It eventually affects the document robustness as well as the overall robustness score.

G.3 SIGNIFICANCE TESTS

Model 1 Model 2 Z-score P-value
Qwen3 vs GPT
GPT-4.1 Qwen3-32B 6.312 0
GPT-4.1 Qwen3-4B 5.987 0
GPT-4.1 Qwen3-8B -15.300 0
Qwen3-32B GPT-4.1-mini 11.772 0
Qwen3-32B GPT-4.1-nano 46.655 0
Qwen3-4B GPT-4.1-mini 12.096 0
Qwen3-4B GPT-4.1-nano 46.978 0
Qwen3-8B GPT-4.1-mini 33.362 0
Qwen3-8B GPT-4.1-nano 68.138 0

Qwen3 vs Llama
Llama-3.2-90B Qwen3-32B 79.336 0
Llama-3.2-90B Qwen3-4B 79.016 0
Llama-3.2-90B Qwen3-8B 57.961 0
Qwen3-32B Llama-3.2-11B 23.295 0
Qwen3-4B Llama-3.2-11B 23.620 0
Qwen3-8B Llama-3.2-11B 44.860 0

GPT vs Llama
GPT-4.1 Llama-3.2-11B 29.599 0
Llama-3.2-11B GPT-4.1-mini -11.529 0
Llama-3.2-11B GPT-4.1-nano 23.402 0
Llama-3.2-90B GPT-4.1 73.107 0
Llama-3.2-90B GPT-4.1-mini 90.924 0
Llama-3.2-90B GPT-4.1-nano 125.065 0

Table 8: Pairwise two-proportion z-tests comparing models’ overall robustness scores. Every pair of p-value
is less than 0.05, indicating our results’ high statistical significances.

H THE USE OF LLMS

We acknowledge the use of LLMs in the writing of this paper. They were used to check grammar and improve
sentence clarity. In addition, LLMs were utilized in our data generation pipeline and during the evaluation
stage. These uses are explicitly described in the corresponding sections.
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