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Abstract

Finetuning large language models (LLMs) is a resource-intensive task for re-
searchers in academia, with memory constraints posing a key bottleneck. A classic
optimization method, block coordinate descent (BCD), significantly reduces mem-
ory cost by segmenting the trainable parameters into multiple blocks and optimizing
one active block at a time while freezing the others. However, we identify that
blindly applying BCD to train LLMs can be inefficient for two reasons. First,
optimizing only the active block requires backpropagating through multiple deeper
yet inactive blocks, resulting in wasteful computations. Second, the frozen blocks,
when they are not quite close to optimality, can narrow the optimization landscape,
potentially misguiding the training of the active block. To address these issues
simultaneously, we propose integrating BCD with landscape expansion, which
unfreezes the inactive blocks and updates them in a cost-efficient manner during
the same backpropagation as the update to the active block. Experiments on 8B
and 70B models demonstrate that our proposed method surpasses memory-efficient
baselines and matches Adam’s downstream performance while requiring only 24
GB of memory for the 8B model and 300 GB for the 70B model.

1 Introduction

Large language models (LLMs) have gained significant popularity within the research community
and industry. To drive progress in this field and satisfy a wide range of application needs, researchers
most commonly finetune LLMs on diverse datasets tailored to various tasks and objectives. How-
ever, finetuning LLMs demands extensive computational resources, with memory being a primary
constraint. For instance, optimizing a model with N billion parameters using Adam requires at least
18N gigabytes of GPU memory (see Section 2). This memory limitation often prevents researchers
from experimenting with larger models.

To address this practical challenge, researchers have developed memory efficient algorithms for
LLM finetuning such as parameter efficient finetuning (PEFT), including Adapter [11], LoRA [13],
prompt tuning [16], prefix tuning [17], etc. These techniques focus on training a small set of
additional parameters while maintaining the original pretrained model unchanged. Other memory
efficient methods for full parameter training have also been investigated. For example, Galore [43]
applies a low-rank space projection to both the gradient and the optimizer’s states to reduce memory
consumption. For more related works, please refer to Section A.
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In addition to the existing approaches, a classic optimization paradigm, known as block coordinate
descent (BCD), holds a strong potential for memory efficient LLM finetuning. When optimizing a
model with /V billion parameters, BCD partitions the model parameters into D blocks and optimizes
over only one active block at a time. Consequently, the memory is decreased from 18 N to 2N + %
GB, as only the gradient and optimizer states of the active block need to be stored. In practice, BCD
has been the method of choice in many data science problems in the last decade, with a wide array
of variants developed for improving memory, performance, convergence, and efficiency; see, e.g.,

[12, 2,41, 36, 33].

In stark contrast to the previous memory efficient methods, and despite its intuitive memory benefits,
BCD has been overlooked and rarely explored in the context of deep neural networks (hence LLMs). It
was not until very recently that [21] proposed BAdam, which integrates BCD into an LLM finetuning
framework by training each active block with several Adam steps. Even though BAdam has shown
preliminary success in reducing memory cost during training and improving performance at test time,
its direct use of vanilla BCD leaves at least two fundamental aspects to be questioned:

» Computing the (stochastic) gradient for a single active block via backpropagation necessitates
calculating the partial derivatives of the activations of multiple deeper yet inactive layers. This is
wasteful of computation, since these partial derivatives are not used to update their corresponding
weights.

* Given that the training objective is highly nonconvex, and since all blocks are frozen except for
the active one, BCD tends to be misled by its local view of the optimization landscape, which
potentially slows down its convergence speed.

Building on the foundation established by BAdam, we propose a simple remedy to the above two
issues. Our new algorithmic framework, termed BREAD, is a blend of two components: (1) Similarly
to BAdam, we update the active block using several Adam steps (the BCD component); (2) differently,
we unfreeze the inactive blocks and update them using lightweight memory efficient optimization
techniques (the landscape expansion component). Since landscape expansionutilizes the gradients
of the activations that are already calculated, it adds minimal additional computation and in fact
addresses the wasteful computation issue. Furthermore, the landscape expansioncomponent provides
BCD a better view of the optimization landscape for better updating the current active block, thereby
addressing the second point of concern. In combination, BREAD maintains the memory efficient
feature of BCD with improved learning capability and faster convergence. Our main contributions
are outlined as follows:

* Limitations of Standard BCD in LLMs: Our research identifies two fundamental limits of
vanilla BCD when applied to LLMs: The wasted gradient computation during backpropagation
and the suboptimal landscape caused by freezing inactive blocks. These limitations partly
explain why the application of BCD in neural networks is uncommon.

* Blending BCD with Landscape Expansion: We propose a new algorithmic framework termed
BREAD, which combines BCD with a landscape expansiontechnique to address these two
limitations simultaneously. It unfreezes some of (or all) the inactive blocks and updates them
using memory efficient optimization techniques. BREAD maintains the memory efficiency of
BCD with improved optimization ability.

* Excellent Performance: Our experiments on instruction tuning and preference optimization
with the Llama 3.1-8B and Llama 3.1-70B models demonstrate that BREAD clearly outper-
forms state-of-the-art memory efficient training methods and achieves comparable downstream
performance to that of Adam on five math benchmarks and MT-bench scores.

2 Preliminaries on Block Coordinate Descent for LLM Training

Our main focus lies in improving the efficiency of BCD for finetuning LLMs. Therefore, we first
review some preliminary concepts of LLM and BCD in this section.

Objective of training LLLMs. Consider minimizing a general objective function miny, H(W) =
%E?:l h;(W), where W € R% n is the number of data samples. In the context of train-

ing/finetuning LLMs, h; (W) represents the negative log-likelihood of the autoregressive probability
Pw(y;lz;] = [1i, Pw [y, s|yj1:5—1, ;] for the j-th prompt ; and its corresponding j-th output



y;. In most LLM models, this autoregressive probability is modeled by a transformer architecture
[37], and thus W € R? encompasses all trainable parameters of the transformer, including the query,
key, value, and output attention matrices, as well as the gate, up, and down projection matrices of
each transformer layer.

BCD for LLM training. BCD first splits the model parameters into D blocks, i.e., W =
{Wy,--- W, ,Wp}, where W, € R% and Zf:l dg = d. The block partition in such a
splitting can be very flexible. For instance, the block variable W, can be either a single matrix or all
the trainable matrices of a transformer layer. Then, at each block iteration, BCD updates only one
active block while fixing the others at their most up-to-date values. This makes each sub-problem
of BCD a D x smaller problem compared to the original one if the D blocks are partitioned evenly.
Suppose at the (¢ 4 1)-th block iteration the active block is W, BCD optimizes the following problem:

min h(WltJrlv R Wetj_11a W@v W;—i-lv Tty WB)»
W, €R%
where ' C {1,--- ,n} is a batch of the training dataset. Updating from block ¢ = 1 to block £ = D
is counted as one block-epoch. Since it is intractable to solve (1) exactly, one can instead approximate
the solution by implementing K Adam steps, as utilized in BAdam [21].

Memory efficiency of BCD. We analyze the memory consumption induced during training under
the mixed precision training setting [25]. The memory cost is attributed to the storage of the model
parameters, gradients, and optimizer states. We consider an LLM with N billion parameters and
express GPU memory consumption in gigabytes (GB). Initially, one must store the FP16 model
parameters for the backpropagation (BP) process, requiring 2N memory. Additionally, the optimizer
maintains a copy of the model in FP32 precision, consuming another 4N memory. The gradients,
momentum, and second moment vectors are all stored in FP32 precision with each requiring 4N
memory. Consequently, the total memory required is at least 18 N. For example, in order to train a
Llama 3-8B or a Llama 3-70B model, Adam requires at least 144 GB or 1260 GB of GPU RAM,
respectively, which can be prohibitive in limited memory scenarios.

In sharp contrast to Adam, BCD only requires storing the FP32 model parameters, gradients, and
optimizer states for the active block Wy, which is only 1/D of the memory consumption needed for
all the parameters. Thus, in addition to maintaining an FP16 model that requires 2N memory, BCD
needs a total of only 2NV + % memory. Therefore, for training a Llama 3-8B or a Llama 3-70B
model and when D = 32 or D = 80 (partition each transformer layer as a block), BCD only needs
roughly 20 GB or 154 GB of GPU RAM, respectively, which is significantly cheaper compared to
the costs of Adam. We refer to [21] for a more detailed analysis on memory cost.

3 Limitations of BCD for Neural Networks

In this section, we show that while BCD is memory-efficient for training LLMs, there are two major
limitations when applying BCD for neural network training. To ease our analysis, let us consider a
L-layer feedforward neural network model:

Zor1 = fyy,(20), VI< L < L, with z ==, (1)

where L is the total number of layers, « is the input, féw is the /-th layer’s transformation.

Limitation I: Ineffective utilization of intermediate derivatives during backpropagation. Due to
the compositional structure of deep neural networks, taking the stochastic gradient of the /-th layer’s
parameters W, requires computing the partial derivatives with respect to all the activation values of
deeper layers, as shown in the following equation:
oH - oH 6zL+1 8Z¢+2 8Z4+1
aW[ o 8zL+1 6zL 8zz+1 an ’

Toya

(@)

where H is the objective function of the neural network training problem. During the backpropagation
process, optimization methods such as Adam utilizes all the intermediate partial derivatives Iy
of the activations in (2) for computing the gradients of the L, L — 1,--- , ¢ 4+ 1-th layers’ weight
parameters. However, since BCD only updates the active block W, the term I, ; is merely used for



calculating the gradient of W, resulting in ineffective utilization of the computed partial derivatives
of the activations during backpropagation.

Limitation II: Convergence slowdown of BCD’s sub-problem. To tackle a training problem,
optimization methods such as Adam optimize over all the trainable parameters W, while the BCD
optimization scheme (1) minimizes the objective over only the current active block, keeping the
others fixed. Intuitively, BCD appears to narrow the optimization landscape of the training problem
by freezing most of the parameters in each of its sub-problems, potentially eliminating better search
directions that can lead to rapid decrease of the objective function.

To establish such an intuition formally, let us consider the following optimization problem:

i — L L-1 1

o T HOW) = F (fwo fi, 0 fig, Lo 0 fiv, (@).9) ®

where = and y are the input and the label, respectively. féw is the transformation of ¢’s layer, which

can be either a transformer layer or a feedforward layer. fw,, is the transformation of output layer,

e.g. the language modeling head of a transformer model. The following proposition establishes the
condition where BCD’s sub-problem is strictly suboptimal to the original problem.

Proposition 3.1. (BCD'’s sub-problem may not include optima) Consider the objective (3) with F'(-)
being cross-entropy loss employed in the training of transformer model. When W, is not of full
rank, there exists a pair of (x,y) such that BCD’s sub-problem is strictly suboptimal to the original
problem:

3 HW,..--- . W Wou i HW7"',W,W0L¢ . 4
scpuin (W, Wi, Wou) > o min o H(W, s Wour) 4)

We remark that the above inequality is different from a direct conclusion of expressivity power:
miny, H(W') > minw, w, H(W), which does not induce the strict suboptimality. In Section D.3,
we show that the strict suboptimality issue also exists for regression problem with /5 loss under
relatively mild assumptions.

The inequality (4) characterizes the suboptimality induced by freezing the output layer. We provide
further analysis and empirical evidence on the effect of freezing intermediate layers in Section D.3.

Possible slowdown in convergence. Theorem 3.1 is only for a sub-problem of BCD, which does not
imply that BCD will finally fail to converge. However, the strict inequality proven in Theorem 3.1
implies that BCD’s sub-problem may not have the full optimization landscape for some concrete
transformer problems, as the optimal solutions are not covered. This narrow landscape issue will
potentially slow down the convergence of BCD’s sub-problem to the optima, as the search direction
towards the optimal solutions is excluded.

To address above limitations, one immediate approach is to apply Adam to inactive blocks as well.
However, this essentially reverts to using Adam and undermines the memory efficient property of the
BCD optimization scheme. In the next section, we will present several memory-efficient approaches
to address them.

4 BREAD Framework and Its Analysis

In this section, we present our framework Block cooRdinate dEscent via IAnDscape expansion
(BREAD), which solve the two limitations revealed in Section 3 simultaneously, with almost negligi-
ble additional memory cost.

4.1 Motivations: Low-rank Expansion Addresses Limitations

The limitations in Section 3 attributes to BCD’s design of updating only one block parameters at
a time, primarily for the concern of memory-efficiency. In this section, we demonstrate that both
limitations can be effectively addressed by applying low-cost updates on inactive blocks, with only
negligible additional memory cost incurred. Formally, our approach is motivated by the following
proposition.

Proposition 4.1. (Rank-1 Expansion) Under the same assumption as Theorem 3.1, the suboptimality
issue can be resolved by introducing rank-1 update on Wy,:

in HWy, -+  Wr, Wy +C)= min HWy, - ,Wr, Wou),
gﬂg (W, y Wi, ++C) srunl}‘%m (W, L +)



where S C {W,--- , Wy} is the active block parameter, and C is a rank-1 matrix.

Motivated by the above proposition, we develop the BREAD framework for accelerating BCD by
performing low-cost update on inactive blocks with almost negligible additional memory cost.

4.2 The BREAD Framework

Algorithm 1 BREAD-LoRA

1: Input: Model parameters {W?}%_,, number of blocks D, iterations per block K, training
dataset D = {(z;,y;)}}_;, batch size B.
2: Initialization: Block-epoch index ¢ < 0, inactive block LoRA matrices U ]Q, Vj0 and optimizer

states 87 « 0,Vj € [P].

3: while stopping criterion not met do
4:  generate a block partition 7 = {m1,...,7mp};
5.  for one block-epoch i =1to D do
6: Determine partial updates or full updates J C [P] as in (6);
7: stV 0; // Re-initialize optimizer states for the active block
8: W“N—Wt 85" + 3
9: for landscape expansion block updates k = 1to K do
10: sample a data batch in random-reshuffled order D = {(z;, yj)}le ~ D;
11: within one backward pass on the data batch Dp do
12: compute the active block’s grad. gf % and correction matrices’ grad. gtj’“;
13: end within
14: // Update active block and correction matrices
15: WEE stk < AdamStep(W}F~!, ghk, sbF1);
16: Uj’“, V’ g 89" < AdamStep({U* ', V" '} g4*, 855 1),
17: end for
18: W« WEE U« ULF Vit - viB E o 355 5L K« None;
19: end for

20 t+t+1
21: end while
22: return parameters {W/}/_, and correction matrices {C!}_,

Similar to BCD framework, BREAD splits the model into D blocks, which can be partitioned either
in a layer-wise or matrix-wise manner. Then, each block sub-problem is approximately solved using
K steps. Importantly, BREAD not only optimizes the active block as in BCD, but also the weights
of inactive blocks for better optimization landscape in a memory-efficient manner. We introduce
two concrete algorithmic instances for updating inactive blocks with almost negligible additional
memory cost.

Algorithm I: Low-rank based expansion. Motivated by Theorem 4.1, we propose to introduce
additional trainable low-rank expansion matrices to inactive blocks { W } o0, where Wy is the
current active block. The simplest implementation of this idea is to add LoRA with extremely low
rank (e.g., rank-4) to inactive blocks.

Wo +UpVy, Up € R™" Vy e R™™, W 44 5)

We present the detailed procedure in Algorithm 1. For each landscape corrected update (Algorithm 1
line 9-16), we sample a batch of data in a random reshuffled manner, and calculate the gradient
of both active block and the expansion matrices within one backward pass. Then, we update the
active block and expansion matrices with a single Adam step. The optimizer states of the expansion
matrices are accumulated throughout the entire algorithm execution, as they occupy only negligible
memory space.

In the subsequent sections, we refer the Algorithm 1 as BREAD-LoRA. Motivated by the [7], we
also propose a variant that uses higher learning rate for U, i.e. g—“/’ > 1, which we refer as BREAD-
LoRA+. We remark that Algorithm 1 naturally allows any low-rank based memory efficient methods
for making landscape expansion, e.g., DoRA and PiSSA [20, 24].



Algorithm II: SGD based expansion. The previous implementation uses low-rank matrices for
landscape expansion. We also propose a full-rank landscape expansion method by applying on-
the-fly SGD to inactive blocks. Specifically, due to the compositional structure of neural networks,
the gradient of the model is computed from the deep layers to the shallow layers. The strategy
is to perform an SGD update on a matrix whenever its (stochastic) gradient is available, and then
immediately discard the corresponding gradient after the update. We term this approach as BREAD-
SGD. The gradient is computed on-the-fly and only the current block’s gradient needs to be stored.
Thus, the memory overhead is negligible.

Variants of expansion block selection. Based on the derivation of (7), evaluating the gradients of the

expansion matrices is inexpensive for layers £+ 1, ..., L. However, the gradient evaluation for layers

1,...,¢ — 1 is more costly, as it requires calculating % forj = 1,...,¢ — 1. Therefore, one
J

computationally efficient variant of BREAD is to add expansion matrices only for layers £+ 1,..., L.
This leads to two strategies of selecting expansion matrices:

7o {[P], for full backward ©)

{¢+1,---,L}, forefficient backward.

Here, P denotes the total number of expansion matrices.

4.3 Analysis of BREAD

Memory cost analysis. To simplify the analysis, we consider a D-layer neural network where each
layer consists of one matrix with dimensions R™*™. BCD requires storing bfloat16 weight (2Dm?),
float32 block weight (4m?), gradient (4m?), and optimizer states (8m?). BREAD-LoRA introduces
additional cost of storing float32 LoRA parameters, gradient, and optimizer states (32Dmr). BREAD-
SGD introduces the cost of storing one block float16 gradient (2m?). Consider a setting similar to our
Llama 3.1-8B experiment where r = 4, D = 32, and m = 4096, BREAD-LoRA and BREAD-SGD
introduces additional memory cost by approximately 1.2% and 2.5%, respectively.

Computational cost analysis. We now show that the additional backward cost is also cheap, since
the intermediate partial derivatives used for computing the active block’s gradient can be directly used
for computing expansion matrices’ gradients, as we have identified in (2). Specifically, the gradient
of the expansion matrix C; can be expressed as

oOH - oH (9ZL+1 8zj+2 aZj+1
8Cj - 8ZL+1 3ZL 8Zj+1 8Cj '

Computed in (2), Vj > £

N

Clearly, when j > ¢, computing the (stochastic) gradient of C; only requires additional computation

of %, which is cheap given the low dimensionality after low-rank factorization representation,
J

ie., C; = U;V;. We empirically measure the memory and epoch training time in Table 1.

Convergence Analysis. We establish the sample complexity result for BREAD under common

assumptions utilized for BCD analysis; see Section D.1 for the detailed assumptions, formal theorem
statement and proof.

Theorem 4.2. (informal) Let o and 8 be the step size of active block and expansion matrices,
respectively. Under assumptions stated in Section D.1, BREAD with deterministic gradient is a
descent method with the following property

HW M) — HWY) < —0(a) [Vw, HW )P - 0B) Y Ve, HW P12, (8)
JE[DI\i

where Wit"k denotes the model parameter at k-th step in block epoch t, block sub-problem i. o and
are the step size of the active block and expansion matrices, respectively.

By telescoping equation 8 across k = 1,--- K and i = 1,--- , D, and apply the step size rule in
Section D.1, we can show that BREAD finds e —approximate stationary point with O(¢~2) iterations.



Llama 3.1-8B Llama 3.1-70B

Method Peak Memory GPUhours GPU# Peak Memory GPU hours GPU #
Adam 208.2 GB 39.2 8 A100 1260 GB+® - 16+ A100
Galore 40.5 GB 31.2 1 A100 - - -
LoRA 25.0GB 23.6 1 A100 296.8 GB 213.1 8 A100
BAdam 21.8 GB 10.6 1 A100 276.2 GB 119.0 8 A100
BREAD-LoRA 232 GB 13.8 1 A100 288.6 GB 152.7 8 A100
BREAD-SGD 23.5GB 11.2 1 A100 292.1 GB 128.1 8 A100

Table 1: Memory footprint and one-epoch GPU hours for finetuning Llama 3.1 models on MathIn-
struct dataset. The BREAD’s training time is based on the partial implementation introduced in (6).
@ Estimated memory cost.

5 Experiments

We evaluate the proposed BREAD in finetuning Llama 3.1-8B and Llama 3.1-70B model on math
finetuning and instruction tuning tasks, comparing its memory cost, time cost and downstream
performance with full training algorithm and memory efficient baselines.

5.1 Setup

We begin by introducing the experimental setup.

Baselines. We compare BREAD with 1) BAdam [21], which applies vanilla BCD algorithm with
Adam as the inner solver; 2) LoRA [13], which freezes the pre-trained weight and only updates the
injected low-rank adapters; 3) Galore [43], which projects the gradient into low-rank spaces for
reducing the memory cost; 4) Adam [14], which serves as the full parameter training baseline.

Instruction tuning. We perform supervise finetuning on the Llama 3.1-8B model using Alpaca-GPT4
dataset [29], which contains 52K questions and corresponding GPT-4 generated answers. The model
is evaluated on MT-bench [44] for examining the model’s instruction-following capability.

Math finetuning. We finetune the Llama 3.1-70B and Llama 3.1-8B models on MathInstruct
dataset [42] for 3 epochs, which contains 260K questions that covers wide range of fields in mathe-
matics. The finetuned models are evaluated on 4 in-domain mathematical benchmarks, i.e., GSM8K,
MATH, NumGLUE, and AQuA [3, 9, 26, 19], and 1 out-of-domain mathematical benchmarks, i.e.,
SimulEq [15]. The evaluations are based on 0-shot prompt and 4-shot chain-of-thought prompt,
respectively. Due to the limited computational resource, we do not include the Adam’s results for
70B model. Since there is no model parallel implementation released for Galore by the finish of the
manuscript, we are unable to report its 70B results as well.

Preference optimization. After the instruction tuning, we further align the tuned model using direct
preference optimization (DPO) [32] on Ultrafeedback dataset [4]. We use the model finetuned by
Adam in instruction tuning phase as our base model for preference optimization.

All the experiments are run for 3 epochs. The reported scores are the best one among checkpoints at
epoch 1, 2, 3. The detailed hyper-parameters are presented in Section B.

5.2 Memory and Time Cost Measure

In Table 1, we empirically measure the peak memory cost and one epoch’s time cost for BREAD-
LoRA and other baseline approaches. The GPU hour is calculated as the training time x GPU number.
We set the LoRA rank to 64 to keep its number of trainable parameters (0.83 billion) close to a single
block of BREAD (0.86 billion).

Evidently, both BAdam and BREAD can train 8B model within 24GB memory cost, which is feasible
for a single RTX3090 GPU. All of LoRA, BAdam and BREAD can be used to finetune a 70B
model with a single 8 A100-40GB node. Compared with BAdam, BREAD consumes slightly higher
memory cost and training time under the efficient backward scheme.



Base model: Llama 3.1-8B

Method GSM8K MATH NumGLUE SimulEq AQuA Avg.
0-shot  4-shot 0O-shot 4-shot O-shot 4-shot O-shot 4-shot 0O-shot 4-shot 0O-shot 4-shot
Base model 17.8 525 8.6 232 257 40.6 122 28.8 193 437 167 378
Adam 623 649 174 229 564 568 28.6 335 449 528 419 462
Galore 46.7 572 162 229 428 450 287 323 478 484 364 412
LoRA-rank80 487 58.1 137 23.0 346 544 29.6 290 473 503 348 430
BAdam 539 583 172 23.6 537 572 325 328 504 496 415 443

BREAD-LoRA  57.0 57.6 20.0 237 559 582 325 328 496 500 430 445
BREAD-LoRA+ 57.8 61.8 204 24.6 561 58.8 329 327 512 51.0 43.7 458
BREAD-SGD 569 606 196 214 541 582 315 318 480 508 420 446

Base model: Llama 3.1-70B

Method GSMSK MATH NumGLUE SimulEq AQuA Avg.
0-shot  4-shot 0O-shot 4-shot 0O-shot 4-shot 0O-shot 4-shot 0O-shot 4-shot 0O-shot 4-shot
Base model 588 794 249 414 437 558 263 381 520 642 41.1 512
LoRA-rank64 83.8 820 41.7 442 704 69.0 403 488 614 658 595 620
BAdam 814 829 403 438 681 69.7 500 527 653 70.1 61.0 638

BREAD-LoRA 834 842 414 447 731 744 513 568 683 705 635 66.1
BREAD-LoRA+ 85.6 824 415 444 723 739 513 593 685 697 638 659
BREAD-SGD 828 839 408 437 689 697 497 613 622 697 609 657

Table 2: Math benchmark results for models finetuned on MathInstruct dataset.
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Figure 1: (a) Training loss of BAdam and BREAD variants; (b) Effect of block switch frequency K
for BREAD-LoRA; (c¢) Effect of the rank of expansion matrices for BREAD-LoRA.

Remark. The reported memory cost is higher than the theoretical value, especially for the 70B
model’s experiments which requires distributed training. This additional memory cost arises from
storing activation values and computational buffers, e.g. the gradient buffer for performing reduce
scatter operation. Furthermore, the training time may have slight fluctuations for different runs.

5.3 Finetuning Performance

Math finetuning. The evaluation re-

sults on math benchmarks are shown

in Table 2. For the 8B model’s fine- Method SFT DPO
tuning, all the three BREAD vari- GPT-4 GPT-40 GPT-4 GPT-4o
ants outperform BAdam in both 0-  Base model 607 464  6.63 5.03
shot and 4-shot average score. The  Adam 6.63 5.03 7.83 6.08

BREAD-LoRA+ attains the highest

average score, which indicates that Ié?iﬁ)ﬁ: gg% jgg Zgg ggg
the benefits of landscape expansion- BAdam 6.53 4.88 763 5:99

approaches will also enhance the BREAD-LoRA 6.77 5.08 7.68 6.12
BREAD’s performance. As for the BREAD-LoRA+  6.65 4.88 7.62 6.15
finetuning of 70B model, the best BREAD-SGD 6.68 4.98 7.52 5.93

average (/4-shot score are obtained
by BREAD-LoRA and BREAD- Table 3: MT-bench scores of finetuning Llama 3.1-8B.
LoRA+, respectively.



Instruction tuning and DPO. We report the MT-bench score evaluated by both GPT-4 and GPT-40
models in Table 3. After SFT, the MT-bench score of all baseline approaches improves over the base
model. BREAD-LoRA achieves the highest scores in both evaluations, which are even higher than
Adam, demonstrating the effectiveness of landscape expansion. Based on the model finetuned by
Adam, we further align the model using direct preference optimization (DPO). Notably, BREAD-
LoRA and BREAD-LoRA+ achieves the highest evaluation score by GPT-4 and GPT-40 model,
respectively.

5.4 Convergence Verification

We present 1-epoch training loss of selected BREAD variants in Figure 1(a). For reference, we also
display the loss of BAdam. One can see that all the landscape expansionapproaches accelerates
BAdam, which justifies the effectiveness of landscape expansion. The BREAD-SGD is faster than
BREAD-LoRA, which may attribute to the higher learning rate of the expansion matrices and the
high-rank update. Notably, the BREAD-LoRA+ attains the fastest convergence, which is due to more
efficient learning rate assignment of adaptors.

5.5 Ablation Study

In this section, we conduct ablation study to examine the effect of the expansion matrices’ rank r and
the block switch frequency K of BREAD-LoRA.

Effect of K. We present the effect of sub-problem update steps K in Figure 1(b), which is by default
128 in our paper’s experiments. Evidently, BREAD outperforms BAdam under all choices of K.
Notably, increasing K consistently accelerates the convergence of BREAD for the examined range,
where BREAD with K = 512 takes only half of the iterations to reach the final training loss of
BREAD with K = 32. One possible explanation for the phenomenon is that when using larger K,
the Adam update will aggregate more historical information in its momentum and second moment
term, which leads to better search direction and scaling magnitudes. We leave the scientific study of
K as a future direction.

Effect of r. The effect of expansion matrices’ rank 7 is shown in Figure 1(c), which is set to 8 in our
paper. We note that by adding rank-1 expansion matrices, BREAD converges significantly faster than
BAdam, which corroborates our observation in Theorem 4.1. BREAD exhibits faster convergence as
the rank increases, since larger rank offers higher freedom of search directions.

5.6 Additional Experimental Results

We conduct additional experiments for comprehensive study of the algorithm’s property. Our main
findings are: 1) Convergence versus time. In terms of wall-clock time, BREAD-SGD under efficient
backward yields the fastest convergence among the BREAD variants. 2) Effect of ordering strategies.
Different block ordering yields similar convergence behavior; see Section E for the detailed results.

6 Conclusion and Discussions on Limitations

This paper investigates the application of a classic optimization method, known as BCD, to the
finetuning of LLMs. We pinpoint two primary shortcomings of the standard BCD approach when
applied to deep neural networks: the unnecessary computational overhead during backpropagation,
and the misguiding optimization landscape caused by frozen blocks. To overcome these challenges,
we introduce a new method termed BREAD, which unfreezes the inactive blocks and updates them
in a lightweight manner. Our experimental results demonstrate that BREAD significantly enhances
downstream task performance while maintaining the original BCD’s memory efficiency.

Limitations. The convergence theory for BREAD is derived based on SGD expansion, which eases
the analysis compared to LoRA-based expansion. Additionally, our analysis is based on deterministic
gradient rather than stochastic setting. We leave the analysis for LoRA-based expansion and stochastic
setting as future work.

Broader impacts. Our proposed method significantly accelerates BCD method for LLM training.
This is a technical algorithmic contribution that does not yield explicit negative societal impacts.
Howeyver, it carries a risk of misuse.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The major contributions and scope are properly reflected in abstract and the
summarization of contributions in Section 1.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have summarized the main limitations of this work in Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: In Theorem 3.1, Theorem 4.1, and Section D, we list all the assumptions used.
In Section D, we provide all the proofs of the theoretical results of this paper.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We include detailed experiment setup in Section 5.1 and Section B.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Our submission includes the data and code for reproducing the main experi-
ments of the paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The detailed setting of experiments such as dataset, hyperparameters are
included in Section 5.1 and Section B.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the MT-bench and math-tuning results in Section 5, we include the results
for different base models, different benchmarks, and different judge models.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We clearly report the computer resources used in the experiments in Section 5;
see, e.g., Table 1.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper follows the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have summarized the broader impacts of our method in Section 6.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release any data or model in this work.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The used datasets, codes, and models are properly cited based on their licenses.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our submission includes the new asset (implementation code). The asset is
well documented.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any crowdsourcing experiments or any research
with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve any crowdsourcing experiments or any research
with human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is only used for improving English writing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A More Related Works

Block coordinate descent method. Block coordinate descent (BCD) is a classic optimization
paradigm that dates back at least to [10]. It has gained popularity in recent years, due to its scalability
and efficiency for many machine learning applications [27, 33, 30, 6, 31]. The community seems
to converge to a consensus that, in order for BCD to be efficient, the problem it optimizes needs
to possess the so-called coordinate-friendly structure [35]. Nevertheless, deep networks are of a
compositional nature and not coordinate-friendly, which is perhaps why recent surveys or books
have never mentioned training deep networks as an application of BCD [38, 35, 1, 39, 34]. Recently,
BAdam [21] was proposed to finetune LLMs based on the BCD framework, where each block sub-
problem is approximately solved using several Adam steps. Although BAdam achieved preliminary
success, it is based on the vanilla BCD framework and shares the fundamental limitations we revealed
in this work. In light of these, we believe identifying the limitations of BCD for LLM fintuning and
fixing them entail certain insights, and this is what makes our contributions non-trivial and valuable.

Memory efficient finetuning. To address memory issue, multiple variants have been proposed.
Parameter efficient finetuning (PEFT) methods achieve memory efficiency by only training small
portion of (possibly extra) parameters while freezing most of the others, such as Adapter tuning [11],
prompt tuning, and prefix tuning [16, 17]. Low-rank adaptation (LoRA) is perhaps the most popular
technique that approximates model updates using two smaller, trainable low-rank matrices [13].
LoRA’ variants have been proposed to address its rank constraints and further reducing the memory
cost [18, 40, 5]. The work [28] proposes to use a layer-wise importance sampling for achieving
memory efficiency. Galore [43] projects the gradient into low-rank space so that it does not need
to store the full gradient and optimizer states in the memory. LOMO updates parameters in real
time during the backpropagation process [22], so that one can perform SGD without store stochastic
gradients. MeZO offers an alternative by approximating SGD using only forward passes [23], drawing
from zeroth-order optimization that estimates stochastic gradients through the difference in function
values. While this paper addresses the same application as these methods, they remain orthogonal to
the proposed approaches. They can function as lightweight updates in the frozen layers for landscape
expansion.

B Detailed Experimental Setup

We introduce the detailed hyperparameters and experimental setup in this section.

Global setup. For all the experiments in math finetuning, instruction tuning and direct preference
optimization, we fix the effective batch size to be 16 and train the model for 3 epochs. We use
DeepSpeed ZeRO-3 to implement all the experiments that require distributed training (shown in
Table 1). For all the experiments, we apply gradient checkpointing to reduce the memory cost for
storing activation values. We use mixed-precision training with BFloat 16 as the low-precision
datatype except for Galore, where we follow the setup in its paper, using pure BFloat 16 and 8-bit
Adam optimizer for reducing the memory cost. We apply cosine learning rate schedule for all the
experiments. For instruction tuning task, we set all method’s initial learning rate to 1e-6. For math
finetuning tasks, we set Adam’s initial learning rate to 1e-6 and other methods’ initial learning rate to
le-5. The learning rate ratio for LORA+ method is set to 16. The implementation of BAdam, Galore,
LoRA are based on LLama-Factory [45].

Math finetuning. We randomly select 100,000 samples from the MathInstruct dataset and finetune
all the models using the same samples. The benchmarks scores are evaluated using the MAmmoTH’s
repository” (without using program-of-thought). The rank of correction matrices U and V' for
BREAD-LoRA and BREAD-LoRA+ are set to 8. We initialize U as zero, and initialize V' from the

Kaiming uniform distribution [8], i.e. (—Z/l (@),L{ (@)) The rank of LoRA is set to 80 and 64 for
finetuning Llama 3.1-8B and Llama 3.1-70B, respectively, so that the trainable parameter number
of LoRA is close to that of one BAdam/BREAD active block. We follow the conventional setup to
set the LoRA scaling factor a = 4x LoRA rank. We set Galore’s rank to be 256, with the period of

re-calculating the projection matrix being 256. We set K = 100 for BAdam and BREAD.

“https://github.com/TIGER-AI-Lab/MAmmoTH
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Instruction tuning and direct preference optimization. The evaluation of MT-bench score is
based on FastChat [44] using both GPT-4 and GPT-40. We use the API "gpt-4-32k_0613" and
"gpt-40_2024-11-20" for GPT-4 and GPT-40, respectively. The maximum sequence is set to 1024
and 2048 for the experiments on Alpaca-GPT4 and UltraFeedback, respectively. For BAdam and
BREAD, we solve each block sub-problem for 128 steps, i.e. K = 128.

C BREAD-SGD Algorithm

We introduce a variant of the BREAD algorithm, termed BREAD-SGD, which employs Adam for
updating the active block and on-the-fly SGD for the inactive block. The detailed procedure is
outlined in Algorithm 2. Analogous to BREAD, BREAD-SGD partitions the model into D distinct
blocks and combines the gradient computation and update steps into a singular operation. Specifically,
gradients are calculated on a layer-by-layer basis; active layers are updated using Adam, while
inactive layers undergo a single SGD step. Once an inactive layer is updated, its gradient is discarded
to enhance memory efficiency.

Algorithm 2 BREAD (SGD variant)

1: Input: Model parameters {Weo},%:l, number of blocks D, iterations per block K, step size of
inactive blocks /3

2: Initialization: Block-epoch index ¢ < 0, and the corresponding optimizer states 5(; + 0,

Vj € [P]
3: while stopping criterion not met do
4:  Generate a block partition 7 = {7y,...,7p}
5. for one block-epoch i = 1to D do
6: Select correction matrices’ indices J C [P] as in (6)
7: 0+ 0 // Re-initialize Adam optimizer states
8: Wt 0« Wt
9: for landscape corrected block updates k = 1 to K do
10 Sample a data batch in random reshuffled order D = {(z;, y; )}7 1~D
11: within one backward pass on the data batch D do
12: // Update the active block
13: gm — 6?/{/{
14: WLk stk < AdamStep(WLF—1 glk ghh=1)
15:
16: // Correct inactive blocks
17: for ¢ J do
18: g e A
19: Wik Wikt — gghkt
20: gf, +=1 + None
21: end for
22: end within
23: end for
24: Wit « WEE 6K+ None
25: end for

26 t+—t+1
27: end while
28: Return parameters {W/}}£_,
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D Convergence Result and Additional Proofs

D.1 Convergence of BREAD

In this section, we establish a preliminary convergence result for the proposed algorithms. For
conciseness, we analyze the BREAD-SGD described in Algorithm 2. The analysis of BREAD and
BREAD-partial follows a similar approach.

Our analysis decouples the error terms induced by the update of active block and inactive blocks,
respectively. The descent property of the algorithm is established by analyzing consecutive updates
across one block epoch. We follow the deterministic setting in [21], leaving the analysis of stochastic
cases for the future work. We now introduce the assumptions used in analysis.

Assumption D.1 (Smoothness) The function H (W) is L-smooth on W and L;-smooth on block
W, forblocksi =1, -, D:

IVwH(W) = VwH(W)| < L|W - W]|. ©)
oOH 0H

ilw} i lw?

< Li||W}! —W?|,i=1,---,D. (10)

We denote L = max;¢(p] L; as the maximum Lipschitz constant.

Assumption D.2 (Bounded derivatives). The block derivatives Vw, H (W) are uniformly bounded
by a constant GG along the update trajectory of BREAD:

IV, HW)| < Gi=1,---,D.

The Theorem D.1 is standard for analyzing block coordinate descent-type methods [38]. Note
that the block-wise smoothness (10) can be naturally induced by the function smoothness (9).
The Theorem D.2 is provably satisfied for Adam algorithm under certain generalized smoothness
conditions. The Theorem D.2 directly induces the following corollary, which will be used in our
analysis.

Corollary D.3 ([21], Corollary D.3). Let Afk = diag <1/ < bk 4 /\)> denote a diagonal

matrix formed by coordinate-wise adaptive step sizes vector. Under Theorem D.2 and with0 < A < 1,
we have

1 Lk 1
< A; —1I. 11
QG )\ (h

Lemma D.4 (Re-statement of [21], Lemma D.7). Under the Theorem D.1 and Theorem D.2, and
given the step size condition o < 3 L s =5, we have the following bound for the bias between Adam

ko tk :
update and GD update ||€}|| == 7 31y 1= | H " (mi* — (1= F)gi )| -

. 2L;aK
eillz < 2 llg;"" ll2-

Theorem D.5 (Descent of BREAD). Under Theorem D.1 and Theorem D.2, the Algorithm 2 with
deterministic gradient achieves the following descent after each block-epoch of updates:

H(WH) — HW™) < —0(a)|VHW)[2 - 0@)[T,HW SR (2)
under the step size choice § = 2%, « < min{:+= 2LK2 , 242;@ &, 1%%2 1.

By telescoping (12) fromt = 1,--- , T, and divide each side by 7', we obtain the sample complexity
of |[VH(W?)||? = O(K/T). The proof of Theorem D.5 is based on the following Lemma, which
establishes the descent property of one block sub-problem.

Lemma D.6 (Descent of one block-epoch). Under Theorem D.1 and Theorem D.2, the Algorithm 2
update yields the following approximate descent property:

HW}) - HW}

i—

aK
1) < _E”VH(Wit—l)H%
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Proof. The proof of Theorem D.6 is based on the analysis framework of [21]. Additionally, we need
to analyze the descent property of the update in correction matrices. At the beginning of block epoch
t, block sub-problem i, let Wt be the parameter of block j, W/ be the full parameter. Let /3 be the
step size for the correction matrlces Based on the smoothness property in Theorem D.1, we have

HW/ ) — HW)
L
< Z <VH )Wtk+l W;,]c>+ Z §||th,’ik+1—thfik||§

7,2
JE[DN\i Je[DN\i

L
+(VHWI. W - W) 1 SIWE - w3

1,7

L L
= 2 (B BNVHWE+ (VHW ), W - Wik + 2w - Wi

JE[DNi
L L
< Y (B FANVHWE + (—a+ Fad)|VHWE +a (ViHW ™), ")
JE[DN\i
+ %(aG+Lia2k2)||e§’k||2, (13)

where the equalities is due to the GD update rule, and the last inequality uses Young’s inequality and
the Adam’s update rule. [|el*|| := L SO 171@ |HPF (mP* — (1 = 8F)g"F)|| is the bias of active
block’s update, where we use gfk to represent V; H (W;’f) for brevity. We have

k
1 1
k N n n n
lei "™l = Z SIH " (me" = (1= 679,
ke=1-p]
L *
N k
< X Tan IIZﬁ (o =gt
Lk
n—z t,z t,k
<< Z:j Zﬂl Li| Wi = Wil (14)
For the ease of expression, let 01" := szk Define Af(k, z) := [0 — 67%||. We have

Al(k, z —0(||ZH’Z

1 B ! j—1 t,1l
§a§w”(l 51)2@ 9i|

z

ZQZW _61 ZB] l tl tz) (1_ﬂ1)

1 i : :
Sazw(lfﬂl)zﬂ{ "Li67" =077 + (1= B 97|
j=1

=1

<.

& 1 _ J—l t ]l
Sa;)\(l—ﬁ B1) (ZB LiA kzZB B5)g; )

az? ' n
< = (Baldi(ky2) + llg“ll) (15)
Combine (15), (14) and apply the step size rule, we have
& 2L;a 4,
s (16)
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Plug (16) back into (13), we have

HWPH) — H(W) a7
L; L; :
< D (B FONVHWE+ (—at S a®) [ ViHW
je[DN\i
8L?a*k*G*  8L}a3k3G
—( Nt )IIVZ-H(WZ”“)II% (18)

Based on Theorem D.4 and use the fact that ||V; H(W,;_1)||2 < ||[VH(W;_1)]||2, we can derive the
following bound:

t,k+1 t.k ak t,ky (2 Bk t,ky (12
HW; ) = HW) < = IViHW Dl = > e VAHW . (19)
JE[DN\i
Proof of Theorem D.5. (19) establishes exact the same descent property as in [21] Corollary D.8.

By following the same argument as in [21] (10)—(11), one can establish the convergence result in
Theorem D.5.

O
D.2 Proof of Propositions
Proof of Theorem 3.1. We first show that H* = 0. One can construct z3 = [1,0,---,0]" and
W3 = [y,0,- - ,0]. Note that such a choice of z3 is always achievable by choosing a specific W5.

Hence, 0 function value can be attained by the constructed feasible point. This yields H* = 0 after
realizing that the objective function must be nonnegative.

In BCD, W, and Wj are fixed. We further assume that the fixed W3 has full column rank. We
split our discussion into two cases. Case I: y ¢ range(W3). We trivially have H* > 0 = H*. Case
II: y € range(Ws3). In this case, z3 := (W3 W3)~!W, y is the unique point that can achieve 0
function value. However, since 23 has at least one negative entry and z3 > 0 (due to the ReLU
activation), we have ||z3 — 23||3 > 0. Therefore, we have ||y — 9|5 = ||[W3(z5 — 23)||3 > 0 = H*,
where the last inequality follows from the full column rankness of Ws. O

Proof of Theorem 4.1. We construct z3 = e; = [1,0,---,0]T. Let C = [y—Wg(l),O,~~ ,01,

where ngl) is the first column of W3. Then, we have ||(W3 + C)z3 — y||3 = ||Ce; — (y —
Wgel)H% =0. O]

D.3 Analysis of Multi-Layer Model and Cross Entropy Loss

In this section, we generalize the Theorem 3.1 to L-layer neural network model and cross entropy
loss. The corresponding numerical verification are presented in Section E. Let us consider an L-layer
model:

z1 = o(Wix)
Zi:U(WiZifl), i:2,~-~,L—1
y=Wrzp_4,

where o(x) = max(0, z) is the ReLU activation function and z; € R%.

D.3.1 Suboptimality Analysis for L-layer Model

Let us first consider the general regression loss ||§ — y||3, where v is the target we aim to fit.

Effect of freezing W . When W7, is full column rank, the optimal z;,_; we seek to fit is the least
square solution 2} | = (W, W,)"'W [ y. When 2z} | contains negative entries, it cannot be fit
due to the non-negativity of the ReL.U function, which induces the suboptimality:

. ~ 2 . N 2
min — > min — .
wmin (g -yl > o minflg -yl
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Effect of freezing intermediate layers. Each intermediate layer performs the transformation
z; = 0(W;z;_1) := M;. When W; is trainable, we have range(M;) = R%* when 2z;_; # 0.
However, when W; is frozen, range(M,) is limited to the projected "restricted” column space of W,
where "restricted" means that the column combination should be positive, due to the positivity of
Zi—1-

D.3.2 Suboptimality analysis for cross entropy loss

Without loss of generality, let us assume that the ground truth label is the first class. The cross entropy
loss is given by — log (exp g1 /(> i~ exp ¥;)), where m is the number of classes. Consider the case
where the weight of the last layer W, has a row with the same weight as the first row, i.e. 3 j such

that WL(j) = WL(D, we have §; = WL(j)zL,l = L(l)zL,l = ¢j1. In this case, we will never be
able to drive the loss down to — log %:

log (expyl) > log <e><pyl> — gt
(Xois, exp ¥i) exp iy +expy; 2
While it is not common for W7, to have exactly two same rows, one can expect large error when
there are rows that form small angle, i.e.

(i)

[ [0

D.3.3 Small Experiment on Multi-layer Neural Network Training

Below, we conduct a small experiments on training multi-layer neural network to demonstrate the
aforementioned suboptimality issue. We treat each layer as one block, and set the block switch
frequency K = 100. As shown in Figure 2(a), BREAD-LoRA with rank-1 landscape correction
converges dramatically faster than BAdam. In particular, BAdam only begins to converge rapidly
after the 300 steps, when the final layer has been trained. This phenomenon supports our discussion
that a poorly trained final layer may hinder convergence. In Figure 2(b), we show that BREAD
boosts the convergence for 8-layer neural network as well, which corroborates our L-layer analysis in
Section D.3.1.

Training loss Training Loss

14 \ 14

1.0
—— BAdam
20 BREAD (rank1)

- 0.6] — rankl update only

208
S
0.6

04— BAdam

02 BREAD (rank1)
—— rankl update only

0.0
100 200 300 400 500 00 0 250 500 750 1000 1250 1500 1750 2000

Iteration Iteration

(a) Training loss of 3-layer model. (b) Training loss of 8-layer model.

Figure 2: BREAD with rank-1 landscape expansion converges dramatically faster than BCD.
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E Additional Experiments

Convergence in time. We finetune the Llama 3.1-8B model on MathInstruct dataset for 3 epochs,
and report training loss convergence versus time/iteration in Figure 3. Notably, BREAD-SGD-partial
achieves the fastest convergence in terms of time, and BREAD-SGD and BREAD-partial surpasses
BAdam at certain points. All the BREAD variants achieve lower training loss than BAdam after 3
epochs.

Convergence versus time Convergence versus iteration

—— BAdam —— BAdam
0.60 BREAD-LORA 0.60 BREAD-LORA

—— BREAD-LoRA-partial h —— BREAD-LoRA-partial
0.55 —— BREAD-SGD 0.55 . —— BREAD-SGD

~—— BREAD-SGD-partial

x\\ —— BREAD-SGD-partial
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S
o
o
S

o

S

&
o
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[

Training loss
Training loss

o
»
S

0.35 \h\;‘xy 0.35
0.30 0.
0 10 20 30 40 50 60 0 10000 20000 30000 40000 50000
Time (hours) Number of iterations
(a) Training loss in terms of time. (b) Training loss in terms of iteration.

Figure 3: Convergence analysis of training loss in terms of time and iteration.

Effect of ordering strategies. We test the ordering strategies of ascending (from input layer to
output layer), descending (from output layer to input layer), and random (select the layer in random
reshuffling manner). As shown in Figure 4, different ordering strategy does not result in evident
difference of convergence speed.

Ablation on ordering strategies
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BREAD-descending
—— BREAD-random
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@
@
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Figure 4: Ablation study on block ordering strategies
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