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ABSTRACT

Despite the transformative success of chain-of-thought (CoT) and reinforce-
ment learning (RL) in large language models, their application to visual gener-
ation—where reasoning is a critical challenge—remains largely unexplored. In
this paper, we present Plan-and-Paint, a novel framework that integrates a dual-
level reasoning hierarchy for text-to-image generation. Our framework operates at
two critical stages: (1) at the semantic level, an adaptive planner first decomposes
the input prompt into a structured generation plan, and (2) at the foundational
level, a reinforcement learning agent optimizes the initial noise prior to align
with this plan. To seamlessly coordinate these two stages, we introduce a uni-
fied reinforcement learning paradigm GRPO to jointly optimizes both the plan-
ning coherence and the execution fidelity through a composite reward function.
Extensive experiments demonstrate the superiority of our approach: Plan-and-
Paint achieves significant improvements on both GenEval (0.87→0.90) and WISE
benchmarks. Most importantly, on GenEval benchmark, our method secures the
top rank, outperforming a wide range of top-tier open-source and closed-source
competitors, including GPT-Image-1 High, Janus-Pro-7B, Qwen-Image, BAGEL,
and Seedream 3.0 by a significant margin. Our work advances the state-of-the-art
in text-to-image generation, proving that an explicit reasoning hierarchy is key to
unlocking controllable and compositional text-to-image generation. To facilitate
future research, we will make our code and pre-trained models publicly available.

1 INTRODUCTION

Visual generation, particularly through diffusion models (Saharia et al., 2022; Podell et al., 2023;
Wang et al., 2025), has achieved remarkable success in synthesizing high-fidelity images from nat-
ural language descriptions. Despite their impressive performance, these models remain constrained
by their reliance on purely random initial noise that is entirely agnostic to the target semantic con-
tent. This semantic-agnostic initialization necessitates computationally intensive blind exploration
through multiple denoising steps before meaningful structures begin to emerge (Ho et al., 2020).
This limitation is further exacerbated in fast-sampling techniques like mean flow (Geng et al., 2025),
where the deterministic generation trajectory makes outputs critically dependent on the initial noise
condition. NoiseAR (Li et al., 2025) tackles this by introducing an autoregressive model that learns a
conditional and semantically rich noise prior. However, NoiseAR’s reasoning capability is acquired
through supervised training on annotated data of text-noise pairs, which inherently limits its ability
to generalize to novel compositional concepts or dynamically reason about unseen configurations,
making it incapable of semantic textual reasoning. For instance, when given an ambiguous prompt
like “Traditional food of the Mid-Autumn Festival”, NoiseAR cannot infer the intended concept
(e.g., “mooncake”) and often generates unfaithful results due to its reliance on superficial textual
correlations from training data, as shown in Fig. 1.

Recent advances in large language models (LLMs), such as OpenAI o1 (OpenAI, 2024) and
DeepSeek-R1 (Guo et al., 2025), have demonstrated significant capabilities in complex reasoning
across domains, including mathematics (Amini et al., 2019; Hendrycks et al., 2021; Shao et al.,
2024), coding (Chen et al., 2021; Austin et al., 2021; Jain et al., 2024), and writing (Cardon et al.,
2023; Achiam et al., 2023). By incorporating reinforcement learning (RL) techniques, these mod-
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“Traditional food of the Mid-Autumn Festival”

NoiseAR T2I-R1 Ours w/o ALP-CoT Ours

Figure 1: Given the prompt “Traditional food of the Mid-Autumn Festival”, NoiseAR (Li et al.,
2025) fails to generate a discernible mooncake. T2I-R1 (Jiang et al., 2025) produces a blurry im-
age with a cluttered background. Ours w/o ALP-CoT, which only uses fixed-length semantic-level
reasoning, suffers from over-depiction, introducing irrelevant objects despite a clear mooncake. Our
method generates a high-quality image that accurately highlights the mooncake, precisely focusing
on the theme.

els utilize structured Chain-of-Thought (CoT) (Wei et al., 2022) reasoning to decompose problems
into sequential steps, substantially improving inference reliability. Inspired by these developments,
generative vision models have begun integrating CoT-style mechanisms to enhance semantic co-
herence, particularly in autoregressive image synthesis. Recent work in text-to-image generation
has increasingly adopted prompt rewriting (Deng et al., 2025) and semantic-level planning (Jiang
et al., 2025; Duan et al., 2025) before image generation. Methods like T2I-R1 (Jiang et al., 2025)
employ semantic-level CoT reasoning, where input text is reinterpreted into structured and detailed
generative descriptions to better guide the image generation process.

However, we observe that naively applying a fixed semantic-level prompt CoT is fundamentally
suboptimal. As illustrated in Fig. 1, excessive or indiscriminate elaboration can dilute primary sub-
ject information, introduce extraneous contextual details, and ultimately compromise both semantic
alignment and image quality. To address this challenge, we propose an Adaptive Length Prediction
for CoT (ALP-CoT) mechanism. In contrast to existing fixed-length CoT methods, our approach
dynamically modulates the elaboration extent through an explicit assessment of input ambiguity,
object-relation complexity, and attribute-binding specificity. By expanding prompts into structured
descriptive chains only when necessary, our method ensures a balance between conciseness and
expressiveness, thereby substantially improving the fidelity and relevance of generated outputs.

Despite recognizing the importance of semantic-level prompt CoT, a critical challenge remains un-
addressed: How to effectively leverage and optimize such reasoning processes within a reinforce-
ment learning framework tailored for visual generation? Extending reinforcement learning to visual
generation introduces complexities distinct from those in code, mathematics, or conventional lan-
guage tasks. Designing reward functions that capture the multidimensional nature of image qual-
ity—including semantic fidelity, spatial accuracy, attribute binding, overall coherence, and aesthetic
appeal—poses significant difficulties. Therefore, effective reinforcement learning for visual genera-
tion necessitates a comprehensive reward framework that evaluates generated images from multiple
dimensions to ensure reliable quality assessment, while also functioning as a regularization method
to prevent it hacking a single reward model.

To address these challenges, we propose a multi-reward framework that integrates special-
ized vision-language experts to provide robust evaluation. We incorporate a human preference
model (Wu et al., 2023) for aesthetic and semantic alignment, an open-vocabulary detector (Liu
et al., 2024) for object existence and spatial relations, and a Visual Question Answering (VQA)
model (Wang et al., 2022) for fine-grained attribute binding and theme clarity. This design en-
sures comprehensive supervision across aesthetic, structural, semantic, and theme dimensions while
preventing over-optimization to individual rewards. Combined with Group Relative Policy Opti-
mization (GRPO), our approach enhances reasoning and generalization to complex prompts. Exper-
iments on GenEval (Ghosh et al., 2023) demonstrate that our method not only achieves state-of-the-
art performance but also secures the top rank, significantly outperforming open-source and closed-
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source strong competitors including GPT-Image-1 High (OpenAI, 2025), Janus-Pro-7B (Chen et al.,
2025), Qwen-Image (Wu et al., 2025a), BAGEL (Deng et al., 2025), and Seedream 3.0 (Gao et al.,
2025), demonstrating our method’s effectiveness in achieving faithful and controllable text-to-image
generation.

In summary, our main contributions are:

• We propose Plan-and-Paint, a novel dual-level reasoning framework that synergizes a high-
level adaptive-length semantic planner and a low-level controlled noise-space executor,
mirroring a human-like “plan-and-execute” creative paradigm.

• We design an adaptive-length prediction CoT that dynamically adjusts how much a prompt
is elaborated, which improves accuracy and reduces errors from unnecessary details.

• We develop a multi-reward reinforcement learning framework integrating vision-language
experts for comprehensive evaluation across aesthetic, structural, semantic, and theme di-
mensions, effectively preventing reward hacking.

• We achieve state-of-the-art performance on the GenEval benchmark, surpassing strong
baselines like GPT-Image-1 High, Janus-Pro-7B, Qwen-Image, BAGEL, and Seedream
3.0, demonstrating the effectiveness of our method.

2 METHOD

In this section, we present details of our Plan-and-Paint framework. We begin by revisiting the pre-
requisite knowledge of Group Relative Policy Optimization (GRPO) algorithm in Sec. 2.1. Then,
we introduce our Plan-and-Paint framework in Sec. 2.2 and Sec. 2.3, highlighting its core compo-
nents: a prompt-level Chain-of-Thought (CoT) strategy and a noise-level reasoning methodology.
In Sec. 2.4, we elaborate our multi-dimensional rewards design for effective reinforcemnet learning.

2.1 PRELIMINARY

Recently, reinforcement learning has emerged as a primary paradigm for enhancing the reasoning
capabilities of large-scale models. Group Relative Policy Optimization (GRPO) (Guo et al., 2025)
is a reinforcement learning algorithm designed to improve LLM reasoning by building upon Prox-
imal Policy Optimization (PPO). Its primary contribution is a group-relative advantage estimation
method that removes the need for a parameterized value function, thus enhancing training efficiency
and stability. For each prompt, GRPO samples a group of responses from the current policy. The
advantage Âi for each response is then computed by normalizing its scalar reward ri against the
mean and standard deviation of the rewards within its peer group:

Âi =
ri − µG

σG
, where µG =

1

G

G∑
j=1

rj , σG =

√√√√ 1

G

G∑
j=1

(rj − µG)2. (1)

The policy parameters θ are updated by maximizing the following objective function:

JGRPO(θ) = Eq∼D,{oi}G
i=1∼πθold (·|q)[

1

G

G∑
i=1

min
(
ρi(θ)Âi, clip(ρi(θ), 1− ϵ, 1 + ϵ)Âi

)
− βDKL(πθ||πref)

]
,

(2)

where ρi(θ) =
πθ(oi|q)
πθold (oi|q)

is the probability ratio for the entire sequence, ϵ is a clipping hyperparam-
eter that constrains policy updates, and the KL divergence term DKL acts as a regularizer to prevent
policy πθ from deviating too far from a pre-trained reference model πref.

2.2 ADAPTIVE LENGTH PREDICTION FOR COT

To address the challenge of generating high-fidelity images from text prompts, we introduce a novel
two-stage generation paradigm Plan-and-Paint, as illustrated in Fig. 2. This paradigm emulates the
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“A photo of a dog right of a teddy bear”

LMM
Noise 

Reasoning

�� (for GRPO)
Adaptive Length CoT:                                             

“The image portrays a lively scene featuring a 
vibrant toy dog, positioned to the right of a 

heartwarming teddy bear...”

...

Human Preference

Compositional 
Correctness

Attribute Fidelity

Theme  Clarity

GRPO

...

�� 

Adaptive Length 
Prediction for CoT ️

Semantic Reasoning 
(LMM)️

Figure 2: Overview of Plan-and-Paint. Given the input text prompt, the Adaptive Length Pre-
diction module first executes the two-stage self-querying process to determine Lopt to guide the
semantic reasoning prompt CoT generation. This prompt CoT is then fed into the noise reasoning
model to produce G initial noise maps NG, using an autoregressive architecture. These noise maps
are subsequently passed to a large multimodal model Qwen-Image to synthesize G corresponding
images IG. Finally, the generated images are evaluated by an ensemble of multi-dimensional vision
experts to compute group-relative rewards and perform GRPO training.

human cognitive process of conceptualization before creation by first leveraging a MultiModal Large
Language Model (MLLM) to generate a detailed Chain-of-Thought (CoT) narrative. This narrative
serves as a rich, descriptive blueprint for the subsequent image synthesis stage.

A pivotal challenge in this approach is determining the optimal length of semantic CoT. A fixed-
length strategy is suboptimal, as it fails to adapt to the widely varying semantic complexity of user
prompts. An overly short CoT may omit critical details, while an excessively long one risks intro-
ducing contradictory information or semantic drift. To address this challenge, we propose Adaptive
Length Prediction for Chain-of-Thought (ALP-CoT), an innovative mechanism that dynamically
predicts the ideal reasoning length at inference time. Uniquely, ALP-CoT does not rely on an ex-
ternal, pre-trained regression model. Instead, it leverages the inherent reasoning capabilities of the
MLLM itself through a structured, two-step self-querying process.

2.2.1 TWO-STAGE SELF-QUERYING MECHANISM

The core of ALP-CoT is a SemanticLengthPredictor module that instructs the MLLM to analyze its
own task and prescribe a suitable reasoning budget. This process unfolds in two sequential stages:

Stage 1: Semantic Task Classification. The predictor first categorizes the user prompt Puser
into predefined semantic types—e.g., color, position, count, relation, or default—by querying the
MLLM with a structured prompt Qclassify:

Ttask = MLLM
(
Qclassify(Puser), Lshort

)
, (3)

where Ttask denotes the identified task type, providing a strong contextual prior for the subsequent
length prediction stage.

Stage 2: Task-Specific Length Prediction and Calibration. With the task type Ttask identified,
a second, more specific query, Qpredict, is constructed. This query primes the MLLM to act as an
expert for the given task type and recommend an optimal max reasoning length (in tokens) for the
original prompt Puser:

Lraw = MLLM
(
Qpredict(Puser, Ttask), Lmedium

)
. (4)

To enhance stability and prevent erratic predictions, this raw value is calibrated using a set of prede-
fined heuristics stored in task profiles. Each task type Ttask is associated with a base length βT and
a scaling factor σT . The final optimal length Lopt is computed as:

Lopt = clip (⌊βT + σT · Lraw⌋ , Lmin, Lmax) , (5)
where clip(·) ensures Lopt lies within [Lmin, Lmax], balancing flexibility and stability. This calibration
step grounds the MLLM’s abstract recommendation in a well-defined numerical space, blending the
model’s dynamic reasoning with robust and rule-based constraints.
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Prompt: “A golden donut 
below a brown cat” Human Preference

Compositional 
Correctness

Attribute Fidelity

�ℎ푝�

Object Exist: donut? cat?
Object Count: a donut? a cat?
Object Spatial: below?           ��푝푎��푎柀

�푒푥���   
�푐표���

 

Q1: “Is there a golden donut?”
Q2: “Is there a brown cat?” 

Theme  Clarity
Q3: “Can you see donut clearly?”
Q4: “Can you see cat clearly?” VQA

VQA

Object
Detector

HPSv2

�푉��

Generated Image

�푓��푎柀

Figure 3: Illustration of Rewards Design. The diagram illustrates that our rewards assess the
aesthetic quality, the semantic and compositional spatial fidelity to the prompt, as well as the image’s
theme alignment with the prompt.

2.2.2 INTEGRATION INTO THE GENERATION PIPELINE

The ALP-CoT mechanism is seamlessly integrated as a precursor to the main CoT generation. At
inference time, the SemanticLengthPredictor executes this two-stage self-querying process to deter-
mine Lopt. The main CoT reasoning is then performed with the max new tokens parameter explicitly
set to this dynamically predicted value. This MLLM-driven, self-adaptive approach ensures that the
reasoning depth is precisely tailored to the complexity of each prompt, significantly improving the
robustness and quality of our Plan-and-Paint generation framework. We accompany an illustrative
example of ALP-CoT in Appendix C.

2.3 NOISE-LEVEL REASONING

Beyond prompt-level reasoning, we introduce a reasoning paradigm that operates directly on the ini-
tial noise prior, which we term Noise-level Reasoning. In diffusion frameworks, particularly those
employing the flow matching training objective like Qwen-Image (Wu et al., 2025a), the initial noise
tensor z ∼ N (0, I) is not merely a random starting point; it fundamentally dictates the global struc-
ture, composition, and key attributes of the final image. Motivated by this observation and inspired
by NoiseAR (Li et al., 2025), we conceptualize the initial noise not as unstructured entropy, but as
a latent canvas where the model’s foundational decisions are encoded. This process is analogous to
a sculptor selecting a block of marble, where its intrinsic properties profoundly influence the final
sculpture. By applying GRPO optimization strategy within the initial noise space, we empower the
model to perform reasoning at the most foundational level of generation. This allows it to learn an
optimal noise prior that is already biased towards fulfilling the complex compositional requirements
of the prompt, resulting in improvements in both prompt alignment and overall image fidelity.

2.4 GENERATION REWARDS DESIGN

Unlike rule-based reward mechanisms commonly used in language models, image evaluation cannot
rely solely on predefined rules, as it requires a multifaceted assessment that includes aesthetic qual-
ity, object presence, semantic attributes, relational accuracy, and theme clarity. Given the complexity
of such an evaluation, we employ an ensemble of vision-language experts to measure generated im-
ages from diverse perspectives. As shown in Fig. 3, our reward integrates the following components:

Human Preference Metrics (RHPS). To ensure the holistic quality and prompt coherence of the
generated images, we employ Human Preference Score v2 (HPSv2) model (Wu et al., 2023), which
aims to align text-to-image synthesis with human preferences by predicting the likelihood of a syn-
thesized image being preferred by users. We define this reward as RHPS(Igen, P ), which provides a
crucial, high-level signal to guide our model toward producing visually compelling and contextually
appropriate results.

Compositional Correctness (RDet). Accurately generating compositional elements specified in
a prompt—such as object existence, count, and spatial relationships—remains a primary challenge
for text-to-image models. To address this, we employ the open-vocabulary object detector Ground-
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ingDINO (Liu et al., 2024) as a specialized composition expert. For a prompt P that specifies a set
of K target objects {oi}Ki=1, we formulate a composite reward signal, RDet, as a weighted sum of
multiple components. The foundational component is an existence reward Rexist:

Rexist =
1

K

K∑
i=1

I(max(conf(oi, Igen)) > τ), (6)

where conf(oi, Igen) yields the confidence scores of all detected instances of object oi in the gener-
ated image Igen, τ is a predefined confidence threshold, and I(·) is the indicator function.

When the prompt also dictates object counts or spatial relations (e.g., “three dogs to the left of
a cat”), we introduce a count reward (Rcount) and a spatial reward (Rspatial). Rcount measures the
normalized difference between detected and requested object counts, while Rspatial evaluates the
geometric arrangement of bounding boxes (e.g., via relative coordinate checks). The total reward is
then computed as RDet = w1Rexist +w2Rcount +w3Rspatial, providing a comprehensive and granular
signal for structural fidelity.

Attribute Fidelity and Theme Clarity (RVQA). Beyond structural correctness, fidelity to fine-
grained attributes (e.g., color, texture) and theme clarity are crucial for generation quality. We em-
ploy a Visual Question Answering (VQA) model, GIT (Wang et al., 2022), as an attribute expert to
assess this dimension. Instead of performing complex semantic parsing, we rephrase key descriptive
phrases from the prompt P into a set of K verification questions. For example, a prompt containing
“a black dog and a yellow cat” would yield the questions, Q1: “Is there a black dog?”, Q2: “Is
there a yellow cat?”, Q3: “Can you see dog clearly?” and Q4: “Can you see cat clearly?”. The
VQA model then evaluates the generated image Igen against each question Qi, providing a probabil-
ity distribution over the answers “Yes” and “No”. The final attribute fidelity reward aggregates the
confidence in the affirmative answer across all questions:

RVQA =
1

K

K∑
i=1

PVQA(Yes|Igen, Qi). (7)

This approach effectively transforms the attribute verification and theme clarification task into a
series of binary VQA problems, encouraging the model to correctly bind attributes to their corre-
sponding objects.

Final Reward Formulation. The final reward Rfinal for a given sample is a weighted average of
the scores from these three expert models, creating a balanced and comprehensive training signal:

Rfinal = RHPS +RDet +RVQA. (8)

3 EXPERIMENT

3.1 EXPERIMENT SETUP

Training Settings. Our training dataset consists of text prompts sourced from T2I-R1 (Jiang et al.,
2025), totaling 6,786 prompts with no images. We use the pre-trained semantic-level model in T2I-
R1 as LMM to infer prompt-level CoT. Our base model is NoiseAR (Li et al., 2025), and we use
Qwen-Image (Wu et al., 2025a) as image generator. In our GRPO training setup, we use a learning
rate of 1e-6, and a beta of 0.01. For each input, we sample a group of N = 8 candidates.

Benchmark. We evaluate on GenEval (Ghosh et al., 2023) and WISE (Niu et al., 2025) bench-
marks. GenEval contains 553 prompts across six compositional tasks (object generation, counting,
color, spatial relations, attribute binding) for fine-grained text-to-image alignment evaluation. WISE
includes 1,000 prompts requiring common sense reasoning in cultural concepts, spatial-temporal
scenes, and natural science. We follow the official evaluation settings of all the benchmarks.

3.2 QUANTITATIVE EVALUATION

We present a comprehensive evaluation of our method against the vast majority of leading text-to-
image models, spanning both open-source and closed-source projects across both original and
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Table 1: Quantitative Evaluation Results on GenEval.

Model Single
Object

Two
Object Counting Colors Position Attribute

Binding Overall↑

PixArt-α (Chen et al., 2024) 0.98 0.50 0.44 0.80 0.08 0.07 0.48
Emu3-Gen (Wang et al., 2024b) 0.98 0.71 0.34 0.81 0.17 0.21 0.54
TokenFlow-XL (Qu et al., 2025) 0.95 0.60 0.41 0.81 0.16 0.24 0.55
SDXL (Podell et al., 2023) 0.98 0.74 0.39 0.85 0.15 0.23 0.55
Janus (Wu et al., 2025b) 0.97 0.68 0.30 0.84 0.46 0.42 0.61
SD3-Medium (Esser et al., 2024) 0.98 0.74 0.63 0.67 0.34 0.36 0.62
FLUX (Wang et al., 2025) 0.97 0.79 0.71 0.77 0.18 0.42 0.62
JanusFlow (Ma et al., 2025) 0.97 0.59 0.45 0.83 0.53 0.42 0.63
GoT (Fang et al., 2025) 0.99 0.69 0.67 0.85 0.34 0.27 0.64
FLUX.1-dev (Labs, 2024) 0.98 0.81 0.74 0.79 0.22 0.45 0.66
DALL-E 3 (Betker et al., 2023) 0.96 0.87 0.47 0.83 0.43 0.45 0.67
Show-o (Xie et al., 2024) 0.98 0.80 0.66 0.84 0.31 0.50 0.68
FLUX+Pref-GRPO (Wang et al., 2025) 0.99 0.86 0.74 0.81 0.26 0.57 0.70
SD3.5 Large (Esser et al., 2024) 0.98 0.89 0.73 0.83 0.34 0.47 0.71
Show-o2-1.5B (Xie et al., 2025) 0.99 0.86 0.55 0.86 0.46 0.63 0.73
GoT-R1-7B (Duan et al., 2025) 0.99 0.94 0.50 0.90 0.46 0.68 0.75
T2I-R1 (Jiang et al., 2025) 0.99 0.92 0.52 0.88 0.72 0.62 0.77
Janus-Pro-7B (Chen et al., 2025) 0.99 0.89 0.59 0.90 0.79 0.66 0.80
BAGEL (Deng et al., 2025) 0.99 0.94 0.81 0.88 0.64 0.63 0.82
GPT-Image-1 [High] (OpenAI, 2025) 0.99 0.92 0.85 0.92 0.75 0.61 0.84
Seedream 3.0 (Gao et al., 2025) 0.99 0.96 0.91 0.93 0.47 0.80 0.84
Qwen-Image (Wu et al., 2025a) 0.99 0.92 0.89 0.88 0.76 0.77 0.87

Ours w/o ALP-CoT 0.99 0.92 0.90 0.89 0.79 0.83 0.88
Ours w/o NR 0.99 0.96 0.84 0.90 0.80 0.81 0.88
Ours 1.00 0.98 0.90 0.91 0.82 0.77 0.90

Table 2: Quantitative Evaluation Results on WISE.
Model Cultural Time Space Biology Physics Chemistry Overall↑
JanusFlow (Ma et al., 2025) 0.13 0.26 0.28 0.20 0.19 0.11 0.18
Janus (Wu et al., 2025b) 0.16 0.26 0.35 0.28 0.30 0.14 0.23
Show-o (Xie et al., 2024) 0.28 0.40 0.48 0.30 0.46 0.30 0.35
Janus-Pro-7B (Chen et al., 2025) 0.30 0.37 0.49 0.36 0.42 0.26 0.35
Emu3 (Wang et al., 2024b) 0.34 0.45 0.48 0.41 0.45 0.27 0.39
Harmon-1.5B (Wu et al., 2025c) 0.38 0.48 0.52 0.37 0.44 0.29 0.41
SDXL (Podell et al., 2023) 0.43 0.48 0.47 0.44 0.45 0.27 0.43
SD3-Medium (Esser et al., 2024) 0.43 0.50 0.52 0.41 0.53 0.33 0.45
SD3.5 Large (Esser et al., 2024) 0.44 0.50 0.58 0.44 0.52 0.31 0.46
PixArt-α (Chen et al., 2024) 0.45 0.50 0.48 0.49 0.56 0.34 0.47
Playground-v2.5 (AI, 2024) 0.49 0.58 0.55 0.43 0.48 0.33 0.49
FLUX.1-dev (Labs, 2024) 0.48 0.58 0.62 0.42 0.51 0.35 0.50
BAGEL (Deng et al., 2025) 0.44 0.55 0.68 0.44 0.60 0.39 0.52
T2I-R1 (Jiang et al., 2025) 0.56 0.55 0.63 0.54 0.55 0.30 0.54
Qwen-Image (Wu et al., 2025a) 0.62 0.63 0.77 0.57 0.75 0.40 0.62

Ours 0.65 0.62 0.78 0.55 0.69 0.40 0.63

RL methods, on the GenEval and WISE benchmarks (in Table 1 and Table 2). Our method demon-
strates substantial improvements over the baseline, achieving remarkable performance on GenEval
(0.90) and on WISE (0.63), thereby establishing a new state-of-the-art. Notably, on the GenEval,
our method secures the top rank, outperforming existing methods by a significant margin, including
top-tier competitors such as GPT-Image-1 [High] (OpenAI, 2025), Janus-Pro-7B (Chen et al., 2025),
Qwen-Image (Wu et al., 2025a), BAGEL (Deng et al., 2025), Seedream 3.0 (Gao et al., 2025), etc.
What’s more, on GenEval, our method leads in three of six subtasks, with an exceptional perfor-
mance in the Position subtask (0.82) and Attribute Binding subtask (0.83), all surpassing previous
SOTA results by over 3%, as shown in Table 1.

3.3 QUALITATIVE EVALUATION

Fig. 4 presents a comprehensive qualitative analysis comparing our method against baseline meth-
ods, including Qwen-Image, NoiseAR, T2I-R1, and our ablation study settings. We evaluate on
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“A photo of a dog right of a teddy bear”

“A coffee shop in Rome at 10 AM Chicago time” 

“A photo of a bird below a skateboard”

NoiseAR                T2I-R1             Qwen-Image    Ours w/o ALP-CoT   Ours w/o NR              Ours

  

Figure 4: Visualization Results. Qualitative comparison among the base model NoiseAR, T2I-R1,
Qwen-Image, Ours w/o ALP-CoT, Ours w/o NR, and Ours full model. Our model demonstrates
superior performance on prompt alignment and excellent image quality.

challenging prompts to test complex compositional reasoning, spatial relationships, and contextual
understanding. More visualization results refer to Fig. 6 and Fig. 7 in the Appendix.

As shown in Fig. 4, for “A coffee shop in Rome at 10 AM Chicago time” (top row), baseline methods
(NoiseAR, T2I-R1, Qwen-Image) generate generic cafés, failing to capture the location “in Rome”.
In contrast, our approach and its variant without noise reasoning (NR) both generate scenes with
recognizable Roman landmarks, demonstrating contextual understanding capabilities of our ALP-
CoT. For “A photo of a bird below a skateboard” (second row), all baseline models incorrectly
place the bird on the skateboard. Our method, and all its variants, correctly interprets this spatial
relationship, demonstrating our effectiveness in addressing complex spatial composition.

We attribute these quantitative and qualitative improvements to two key innovations: our novel
ALP-CoT mechanism, which improves context-aware instruction following ability, and significantly
enhances output diversity as demonstrated in Fig. 5. And our advanced noise-level reasoning frame-
work, which enhances the model’s robustness and generative precision. Together, these contributions
not only achieve a new state-of-the-art but also demonstrate a novel and effective pathway toward
building more robust and precise text-to-image generation.

3.4 ABLATION STUDIES

We conduct systematic ablation studies to investigate key components of our approach in Table 3,
and qualitative comparisons in Figure 4. We utilize Qwen-Image (Wu et al., 2025a) as our baseline,
which achieves an overall score of 0.87, and establish a strong baseline for visual reasoning tasks.

Direct Use Semantic CoT. Directly applying Semantic-level CoT from T2I-R1 (Jiang et al., 2025)
to Qwen-Image results in significant performance degradation, with the overall score dropping from
0.87 to 0.83. This 4% decrease demonstrates that naively transferring reasoning patterns across
different model architectures introduces suboptimal reasoning chains.

Effect of Noise Reasoning. The integration of Noise Reasoning (NR) provides moderate improve-
ment, with the overall performance from 0.83 to 0.84. NR achieves perfect scores in Single Object
recognition (1.00) and notable gains in Colors understanding (0.93). However, substantial defi-
ciencies persist in spatial reasoning (Position: 0.58) and compositional understanding (Attribute
Binding: 0.72), indicating that while NR helps mitigate some transfer issues, it cannot fully address
the fundamental limitations of fixed-length reasoning.
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Table 3: Ablation Studies on GenEval.
Model Single

Object
Two

Object Counting Colors Position Attribute
Binding Overall↑

Qwen-Image (Wu et al., 2025a) 0.99 0.92 0.89 0.88 0.76 0.77 0.87
Qwen-Image+Semantic CoT (Jiang et al., 2025) 0.99 0.96 0.85 ↓ 0.89 0.65 ↓ 0.66 ↓ 0.83 ↓
Qwen-Image+NR+Semantic CoT 1.00 ↑ 0.97 ↑ 0.86 ↓ 0.93↑ 0.58 ↓ 0.72 ↓ 0.84 ↓
Qwen-Image+NR+Semantic CoT (L=30) 0.98 ↓ 0.91 ↓ 0.81 ↓ 0.85 ↓ 0.73 ↓ 0.76 ↓ 0.84 ↓
Qwen-Image+NR+Semantic CoT (L=77) 0.98 ↓ 0.94 ↑ 0.74 ↓ 0.93 ↑ 0.69 ↓ 0.80 ↓ 0.84 ↓
Qwen-Image+NR+Semantic CoT (L=1024) 1.00 ↑ 0.98 ↑ 0.88 ↓ 0.93 ↑ 0.57 ↓ 0.75 ↓ 0.85 ↓
Qwen-Image+NR+Semantic CoT (L=2048) 1.00 ↑ 0.98 ↑ 0.88 ↓ 0.93 ↑ 0.57 ↓ 0.75 ↓ 0.85 ↓
Qwen-Image+NR+ALP-CoT 1.00 ↑ 0.98 ↑ 0.90 ↑ 0.91 ↑ 0.82 ↑ 0.77 0.90 ↑

“A photo of a cat”

“A photo of a refrigerator” 

“A photo of a cup”

“A photo of a cat”

“A photo of a cup”

“A photo of a refrigerator” 

Qwen-Image Ours 

Figure 5: Visualization Result of the Image Diversity of a Single Prompt. We showcase the result
of the baseline model Qwen-Image and our method.

Analysis of Fixed-Length Constraints. We systematically explore the effect of maximum token
length L (default=512) in Semantic-level CoT, varying L from 30 to 2048 tokens. The results reveal
a clear trade-off: shorter constraints (L=30) cause catastrophic failures across most metrics, while
longer constraints (L=1024/2048) improve object-related tasks (Single Object: 1.00, Two Object:
0.98, Colors: 0.93) but severely harm spatial reasoning (Position: 0.57). This paradoxical behavior
suggests that fixed-length reasoning fundamentally struggles to balance detailed object description
with precise spatial and compositional understanding.

Superiority of Adaptive Length Planning. Our proposed ALP-CoT approach achieves superior
performance (Overall: 0.90) by dynamically adapting reasoning length. It demonstrates significant
improvements in the challenging Position task (0.82, +17% relative to fixed-length variants) while
maintaining strong performance across all metrics. This improvement over the baseline validates
that adaptive length planning is crucial for effective visual reasoning, particularly for tasks requiring
complex spatial and compositional understanding.

4 CONCLUSION

In this work, we present Plan-and-Paint, a novel framework that sets a new state-of-the-art in text-to-
image generation. Our method’s strength lies in the synergy of two core components: an Adaptive
Length Prediction for CoT (ALP-CoT) mechanism that tailors prompt complexity to enhance seman-
tic alignment, and a Noise-level Reasoning process that ensures structural integrity. Trained using
a GRPO framework with multi-dimensional rewards, our model achieves superior SOTA perfor-
mance on the challenging GenEval and WISE benchmarks. Through extensive ablation studies, we
confirm that ALP-CoT is crucial for semantic accuracy and Noise-level Reasoning for coherence.
Together, they achieve a superior balance between prompt fidelity and image quality, providing a
robust foundation for future research on reasoning-enhanced generative models.
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A RELATED WORK

Text-to-Image Generation. The field of text-to-image generation has witnessed remarkable
progress through diffusion models (Saharia et al., 2022; Podell et al., 2023; Wang et al., 2025) and
autoregressive approaches (Sun et al., 2024a; Li et al., 2024; Tian et al., 2024). While these models
demonstrate impressive capabilities in generating high-quality images from text prompts, they ex-
hibit significant limitations in compositional reasoning tasks (Fang et al., 2025). Complex prompts
involving multiple objects with specific attributes and spatial relationships often lead to attribute
binding errors, object omissions, and relationship violations. Recent efforts have attempted to ad-
dress these issues through improved architectures (Fang et al., 2025; Duan et al., 2025) and training
strategies (Jiang et al., 2025), yet the fundamental challenge of integrating structured reasoning into
the generation process remains largely unsolved.

Multimodal Large Language Models. MLLMs (Achiam et al., 2023; Wang et al., 2024a; Ope-
nAI, 2024) have made significant strides in bridging visual understanding and language processing.
These models typically employ vision encoders (e.g., CLIP (Radford et al., 2021)) for visual feature
extraction and large language models for reasoning and response generation. A growing research
direction focuses on unifying visual understanding and generation within single models. Some ap-
proaches leverage external diffusion models for image synthesis (Sun et al., 2024b), while others
utilize discrete tokenization methods (Esser et al., 2021) but face challenges in maintaining both
generation quality and understanding capability. Dual-encoder architectures (Team, 2024) attempt
to separate these tasks, yet effectively translating complex reasoning into high-quality visual gener-
ation remains an open challenge. Current methods primarily use MLLMs for prompt enhancement
or preliminary planning (Deng et al., 2025), lacking deep integration of reasoning throughout the
generation process.

Reinforcement Learning for T2I Generation. Reinforcement Learning has emerged as a power-
ful paradigm for enhancing reasoning capabilities in generative models. The success of reasoning-
based RL approaches in language domains like OpenAI o1 (OpenAI, 2024) and DeepSeek-R1 (Guo
et al., 2025) has inspired applications in multimodal settings. Group Relative Policy Optimiza-
tion (GRPO) (Guo et al., 2025) provides an efficient framework for policy improvement through
relative reward comparisons among candidate outputs, eliminating the need for separate critic net-
works. Recent work has begun exploring RL for compositional image generation (Duan et al.,
2025; Jiang et al., 2025), employing rule-based rewards and multi-level optimization strategies.
These approaches typically focus on either prompt-level reasoning or pixel-level refinement, but
lack mechanisms for seamless coordination between high-level semantic reasoning and low-level
noise reasoning. Our framework addresses this gap by introducing a unified reward ensemble that
simultaneously optimizes semantic planning coherence and execution fidelity, enabling more effec-
tive translation of complex reasoning into high-quality visual outputs.

B MORE QUALITATIVE EVALUATIONS

We present more qualitative analysis in Fig. 6 and Fig. 7, which provides an extensive comparison of
text-to-image generation capabilities across multiple strong methods, including NoiseAR (Li et al.,
2025), T2I-R1 (Jiang et al., 2025), BAGEL (Deng et al., 2025), Flux-1-Konext-Pro (Labs, 2024),
Qwen-Image (Wu et al., 2025a), and our approach. The evaluation spans five challenging prompts
that test cultural understanding, object counting, spatial relationships, and compositional reasoning.

The first example, “Traditional food for the Dragon Boat Festival in China”, reveals significant
limitations in cultural and contextual understanding among existing methods. While baseline models
generate generic festival foods, only our approach correctly produces zongzi (rice dumplings), the
traditional food specifically associated with this festival, demonstrating superior semantic reasoning
ability in cultural knowledge representation.

In the second example, “A photo of four computer keyboards”, quantitative accuracy emerges as a
key differentiator. All compared methods fail to generate exactly four keyboards, with most produc-
ing varying incorrect quantities. Our method alone achieves both precise numerical accuracy and
high visual quality, highlighting our advantage in numerical reasoning and object counting tasks.
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“Traditional food for the Dragon Boat Festival in China”

“A photo of four computer keyboards”

“A photo of a train right of a dining table”  

“A photo of a hair drier below an elephant”

“A photo of a bed right of a sports ball” 

NoiseAR T2I-R1 BAGEL Qwen-Image Ours Flux-1-Kontext-Pro 

Figure 6: Qualitative Comparisons. Visual comparison of text-to-image generation results by
NoiseAR, T2I-R1, BAGEL, Flux-1-Kontext-Pro, Qwen-Image, and our method. The results demon-
strate our method’s superiority in handling complex prompts involving cultural context (row 1:
Dragon Boat Festival food), numerical accuracy (row 2: four keyboards), spatial relationships with
object recognition (row 3: hair drier below elephant), and compositional reasoning (rows 4-5: train
right of dining table and bed right of sports ball). Our approach consistently achieves accurate
spatial relationships, right object counting, and high visual fidelity compared to baseline methods.

The third prompt, “A photo of a hair drier below an elephant”, presents a compound challenge
requiring both spatial reasoning and object recognition. NoiseAR and Qwen-Image fail the spatial
relationship, while T2I-R1, BAGEL, and Flux-1-Konext-Pro maintain correct spatial arrangement
but generate incorrect objects instead of one hair dryer. Our approach uniquely satisfies both con-
straints—correct spatial positioning and accurate object representation.

The fourth example, “A photo of a train right of a dining table”, further emphasizes the spatial rea-
soning capabilities. While NoiseAR, Flux-1-Konext-Pro, and Qwen-Image produce incorrect spa-
tial arrangements, and T2I-R1 achieves correct positioning but with poor image quality, our method
generates both spatially accurate and visually coherent results, outperforming all alternatives.

The final prompt, “A photo of a bed right of a sports ball”, confirms our method’s consistent superi-
ority. Apart from T2I-R1 and our method, all other methods fail to interpret the spatial relationship
correctly. Although T2I-R1 correctly interprets the spatial relationship, it fails to generate a recog-

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

“An iconic bridge, known for its red hue and 
location over a famous bay in San Francisco”

“A small piece of wood burning in a sealed jar 
with pure oxygen”

“Depict dry ice under direct sunlight, highlighting 
the state change of dry ice in a sealed jar with 

pure oxygen”

“A pair and a piece of light wood are placed in a 
transparent water tank”

“A clear glass of water with a portion of a pencil 
submerge”

“The Sydney Opera House at 6 PM London Time” “A colossal sculpture in Brazil, with outstretched 
arms overlooking the city below”

“The specific type of headgear worn by Egyptian 
pharaohs in ancient times”

“The style of jewelry popular among flapper 
women in the 1920s”

“The type of dress typically worn by women 
during the Victorian era”

“Michael Jordan's iconic moment”

“Show an image depicting a popular character 
from Japanese animation, known for their spiky 

blond hair and distinctive headband”

Figure 7: Additional Qualitative Results. Generated samples from Plan-and-Paint on diverse,
complex prompts requiring multi-step reasoning, including physical processes (e.g., “dry ice under
direct sunlight”), spatial compositions (“light wood in a water tank”), cultural and historic concepts
(“Flapper jewelry”, “Egyptian pharaoh headgear”), and iconic scenes (“Sydney Opera House at 6
PM London Time”). These examples illustrate the model’s capacity for structured and context-aware
visual synthesis.

nizable bed. Our approach alone successfully satisfies both the spatial constraint and object fidelity
requirements.

These comprehensive qualitative results demonstrate our method’s absolute advantage across mul-
tiple dimensions of text-to-image generation, including cultural contextualization, numerical accu-
racy, spatial reasoning, object recognition, and overall visual quality. The consistent outperformance
across diverse challenging prompts underscores the effectiveness of our proposed architectural in-
novations.

To further demonstrate the generalization capacity of our approach, we provide additional qualitative
results in Fig. 7. As illustrated, Plan-and-Paint consistently generates coherent and contextually
accurate images from a diverse set of challenging prompts. These include descriptions of complex
physical phenomena (e.g., “a small piece of wood burning in a sealed jar with pure oxygen”),
precise spatial arrangements (“a pair and a piece of light wood placed in a transparent water tank”),
culturally rich concepts (“the headgear of Egyptian pharaohs”), and temporally-situated scenes
(“the Sydney Opera House at 6 PM London time”). The model’s ability to generate such a wide
variety of concepts with high semantic alignment underscores the effectiveness of its dual-level
reasoning mechanism—especially in decomposing abstract or composite instructions into structured
generation plans. These results reinforce our claim that explicit hierarchical reasoning is essential
to achieving robust and composable text-to-image generation.
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C EXAMPLE OF ALP-COT

Example: ALP-CoT in Action

Input User Prompt (Puser): “A photo of a bird below a skateboard.”

Stage 1: Semantic Task Classification
• Query (Qclassify): The MLLM is prompted to analyze the input and categorize its main chal-

lenge from a predefined list (e.g., color, position, count, default).

• MLLM Analysis & Output (Ttask): The model classifies the task as general-purpose.

default

Stage 2: Task-Specific Length Prediction
• Query (Qpredict): Based on the “default” type, the MLLM is asked to predict a suitable reason-

ing length.

• MLLM Predicted Length (Lopt): The model returns the calibrated length for this task type.

64

Result: Main CoT Generation
• Execution: The main reasoning process is run with max new tokens set to 64.

• Generated Semantic-CoT:
A vibrant, colorful scene features a beautifully-detailed
black-and-white bird soaring gracefully below a sleek skateboard. The
skateboard is positioned on a smooth, polished wooden surface, while
the bird adds a dynamic and intriguing touch to the composition. The
skateboard’s grip tape texture contrasts with the smooth feathers or

Generated Image:

Figure 8: A step-by-step walkthrough of our Adaptive Length Prediction for CoT (ALP-CoT) mech-
anism. For the prompt “A photo of a bird below a skateboard”, the model predicts a “default”
task type and allocates a 64-token budget, demonstrating its ability to tailor reasoning depth to the
prompt’s specific complexity.

An Illustrative Example. To make our ALP-CoT mechanism concrete, we walk through the pro-
cess with the user prompt: “A photo of a bird below a skateboard.” As detailed in Figure 8, the
process begins with the SemanticLengthPredictor querying the MLLM to classify the prompt’s pri-
mary semantic challenge. In this case, the MLLM categorizes the prompt as “default”. This indicates
that while a spatial relationship (“below”) is present, the model does not deem it complex enough
to require a specialist profile like “position”, instead opting for a general-purpose reasoning bud-
get. For the “default” task type, the MLLM predicts an optimal length of 64 tokens. This entire
self-querying process occurs before the main CoT generation, ensuring the reasoning budget is tai-
lored to the prompt’s specific demands without being excessive. The MLLM then generates the final
semantic CoT within this 64-token limit, which is subsequently used to guide the image synthesis
stage.
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Baseline: Fixed-Length Semantic CoT. For a direct comparison, we illustrate the process of the
original T2I-R1 baseline model using the same prompt. As shown in Figure 9, it directly generates
a Semantic CoT using a predefined, fixed token limit (e.g., 512 tokens) for all prompts, irrespective
of their intrinsic complexity. This static approach often results in an overly detailed CoT, where
the model invents extraneous attributes—a phenomenon we refer to as reasoning hallucination. For
the prompt “A photo of a bird below a skateboard”, the model fabricates details like “a bold urban
aesthetic adorned with stickers” and a “blurred, multicolored landscape”, which can misguide the
subsequent image generation process.

Example: Baseline T2I-R1 in Action

Input User Prompt: “A photo of a bird below a skateboard.”

Assistant: Semantic-CoT:
The image portrays a vivid and dynamic scene showcasing a bird
gracefully perched beneath a skateboard, with various visual attributes
adding depth and detail to the composition. The bird, characterized by
a rich palette of shades, exhibits a mix of vibrant blue, orange, and
white feathers with distinct textures, while the skateboard features
a bold urban aesthetic adorned with stickers and intricate patterns.
The skateboard, cast in a glossy metallic finish, displays multiple
colors and designs, including a prominent red stripe, and reflects the
surrounding light, creating a captivating interplay between textures and
hues. The background is composed of a blurred, multicolored landscape,
evoking a sense of depth and motion, subtly emphasizing the vibrant
contrast between the stationary bird and the mobile skateboard. This
creative juxtaposition brings a lively and engaging narrative to the
scene, while highlighting the harmonious coexistence between the natural
world and urban culture.

Generated Image:

Figure 9: The generation process of the baseline T2I-R1 model. It uses a fixed-length semantic
CoT mechanism. For a simple prompt, this leads to a verbose and hallucinatory CoT that includes
unrequested details, contrasting sharply with the tailored output of our adaptive method.

D LIMITATIONS

While our method demonstrates strong performance, it inherits certain limitations common to large
generative models. The planning module relies on the accuracy of prompt decomposition, which
can occasionally fail on highly abstract or ambiguous instructions. Additionally, the training of our
RL agent is computationally intensive, requiring significant resources that may hinder accessibility
for some researchers. Future work could focus on optimizing the training efficiency to reduce com-
putational costs while maintaining performance. Finally, our model’s performance is bounded by
the data it was trained on, and it may struggle with generating novel concepts or styles far outside
its training distribution. Addressing these limitations presents valuable directions for future work.
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E THE USE OF LARGE LANGUAGE MODELS

In accordance with ICLR policy, we disclose the use of Large Language Models (LLMs) in the
preparation of this work.

• The LLM assisted solely in improving grammatical accuracy, sentence fluency, and aca-
demic tone. DeepSeek-V3.1 model (Guo et al., 2025) was used exclusively for language
polishing and proofreading of early manuscript drafts.

• All scientific ideas, theoretical contributions, methodological designs, experimental results,
and conclusions are entirely conceived and developed by the human authors. The LLM
played no role in research ideation, technical innovation, or data analysis.

• We take full responsibility for the entire content of this manuscript. No LLM-generated
content was used without thorough human review and editing.

F ETHICS STATEMENT

Our work presents a novel approach for text-to-image generation. While we only used publicly
available datasets, we acknowledge that the capability of our model could potentially be misused
for generating misleading content, such as deepfakes or copyrighted material without permission, if
deployed irresponsibly.

To mitigate these risks, we commit to the following:

• The pre-trained models and code will be released strictly for research purposes under a
license that prohibits malicious use.

• We strongly encourage the community to develop robust detection methods and attribution
tools alongside generative technologies.

We believe the primary impact of our work is to advance the field of controllable content creation
for positive applications like education, art, and design. We endorse the ongoing development of
ethical guidelines for the safe deployment of generative AI.

G REPRODUCIBILITY STATEMENT

We have provided all details necessary to reproduce our results. Our models were trained on the
dataset used in T2I-R1 (Jiang et al., 2025), and evaluated on GenEval (Ghosh et al., 2023) and
WISE (Niu et al., 2025) benchmarks. The full model architecture and all critical hyperparameters
(e.g., learning rates, batch sizes, reward function weights) are detailed in Sec. 2.2, Sec. 3.1 and
Sec. 2.4. The training was conducted on 8 × NVIDIA A6000 GPUs. We will release our source
code, pre-trained model weights upon acceptance.
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