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ABSTRACT

Standard learning approaches are designed to perform well on average for the data
distribution available at training time. Developing learning approaches that are
not overly sensitive to the training distribution is central to research on domain-
or out-of-distribution generalization, robust optimization and fairness. In this
work we focus on links between research on domain generalization and algorith-
mic fairness—where performance under a distinct but related test distributions is
studied—and show how the two fields can be mutually beneficial. While domain
generalization methods typically rely on knowledge of disjoint “domains” or “en-
vironments”, “sensitive” label information indicating which demographic groups
are at risk of discrimination is often used in the fairness literature. Drawing in-
spiration from recent fairness approaches that improve worst-case performance
without knowledge of sensitive groups, we propose a novel domain generaliza-
tion method that handles the more realistic scenario where environment parti-
tions are not provided. We then show theoretically and empirically how different
partitioning schemes can lead to increased or decreased generalization perfor-
mance, enabling us to outperform Invariant Risk Minimization with handcrafted
environments in multiple cases. We also show how a re-interpretation of IRMv1
allows us for the first time to directly optimize a common fairness criterion, group-
sufficiency, and thereby improve performance on a fair prediction task.

1 INTRODUCTION

Machine learning achieves super-human performance on many tasks when the test data is drawn
from the same distribution as the training data. However, when the two distributions differ, model
performance can severely degrade to even below chance predictions (Geirhos et al., 2020). Tiny
perturbations can derail classifiers, as shown by adversarial examples (Szegedy et al., 2014) and
common-corruptions in image classification (Hendrycks & Dietterich, 2019). Even new test sets
collected from the same data acquisition pipeline induce distribution shifts that significantly harm
performance (Recht et al., 2019; Engstrom et al., 2020). Many approaches have been proposed to
overcome model brittleness in the face of input distribution changes. Robust optimization aims to
achieve good performance on any distribution close to the training distribution (Goodfellow et al.,
2015; Duchi et al., 2016; Madry et al., 2018). Domain generalization on the other hand tries to go
one step further, to generalize to distributions potentially far away from the training distribution.

The field of algorithmic fairness meanwhile primarily focuses on developing metrics to track and
mitigate performance differences between different sub-populations or across similar individu-
als (Dwork et al., 2012; Corbett-Davies & Goel, 2018; Chouldechova & Roth, 2018). Like domain
generalization, evaluation using data related to but distinct from the training set is needed to charac-
terize model failure. These evaluations are curated through the design of audits, which play a central
role in revealing unfair algorithmic decision making (Buolamwini & Gebru, 2018; Obermeyer et al.,
2019).

While the ultimate goals of domain generalization and algorithmic fairness are closely aligned, little
research has focused on their similarities and how they can inform each other constructively. One of
their main common goals can be characterized as:

Learning algorithms robust to changes across domains or population groups.

1



Under review as a conference paper at ICLR 2021

Method Handcrafted Train accs Test accs
Environments

ERM 7 86.3 ± 0.1 13.8 ± 0.6
IRM 3 71.1 ± 0.8 65.5 ± 2.3

EIIL+IRM 7 73.7 ± 0.5 68.4 ± 2.7

Table 1: Results on CMNIST, a digit classification task where color is a spurious feature correlated
with the label during training but anti-correlated at test time. Our method Environment Inference
for Invariant Learning (EIIL), taking inspiration from recent themes in the fairness literature,
augments IRM to improve test set performance without knowledge of pre-specified environment
labels, by instead finding worst-case environments using aggregated data and a reference classifier.

Achieving this not only allows models to generalize to different and unobserved but related distri-
butions, it also mitigates unequal treatment of individuals solely based on group membership.

In this work we explore independently developed concepts from the domain generalization and fair-
ness literatures and exchange lessons between them to motivate new methodology for both fields.
Inspired by fairness approaches for unknown group memberships (Kim et al., 2019; Hébert-Johnson
et al., 2018; Lahoti et al., 2020), we develop a new domain generalization method that does not
require domain identifiers and yet can outperform manual specification of domains (Table 1). Lever-
aging domain generalization insights in a fairness context, we show the regularizer from IRMv1 (Ar-
jovsky et al., 2019) optimizes a fairness criterion termed “group-sufficiency” which for the first time
enables us to explicitly optimize this criterion for non-convex losses in fair classification.

The following contributions show how lessons can be exchanged from the two fields:

• We draw several connections between the goals of domain generalization and those of
algorithmic fairness, suggesting fruitful research directions in both fields (Section 2).

• Drawing inspiration from recent methods on inferring worst-case sensitive groups from
data, we propose a novel domain generalization algorithm—Environment Inference for
Invariant Learning (EIIL)—for cases where training data does not include environment
partition labels (Section 3). Our method outperforms IRM on the domain generalization
benchmark ColorMNIST without access to environment labels (Section 4).

• We also show that IRM, originally developed for domain generalization tasks, affords a
differentiable regularizer for the fairness notion of group sufficiency, which was previously
hard to optimize for non-convex losses. On a variant of the UCI Adult dataset where con-
founding bias is introduced, we leverage this insight with our method EIIL to improve
group sufficiency without knowledge of sensitive groups, ultimately improving generaliza-
tion performance for large distribution shifts compared with a baseline robust optimization
method (Section 4).

• We characterize both theoretically and empirically the limitations of our proposed method,
concluding that while EIIL can correct a baseline ERM solution that uses a spurious feature
or “shortcut” for prediction, it is not suitable for all settings (Sections 3 and 4).

2 DOMAIN GENERALIZATION AND ALGORITHMIC FAIRNESS

Here we lay out some connections between the two fields. Table 2 provides a high-level comparison
of the objectives and assumptions of several relevant methods. Loosely speaking, recent approaches
from both areas share the goal of matching some chosen statistic across a conditioning variable e,
representing sensitive group membership in algorithmic fairness or an environment/domain indica-
tor in domain generalization. The statistic in question informs the learning objective for the resulting
model, and is motivated differently in each case. In domain generalization, learning is informed by
the properties of the test distribution where good generalization should be achieved. In algorithmic
fairness the choice of statistic is motivated by a context-specific fairness notion, that likewise en-
courages a particular solution that achieves “fair” outcomes (Chouldechova & Roth, 2018). Empty
spaces in Table 2 suggest areas for future work, and bold-faced entries suggest connections we show
in this paper.

2



Under review as a conference paper at ICLR 2021

Statistic to match ∀ e e known? Dom-Gen method Fairness method

E[`|e] yes REx (Krueger et al., 2020), CVaR Fairness
Group DRO (Sagawa et al., 2019) (Williamson & Menon, 2019)

E[`|e] no DRO Duchi et al. (2016) Fairness without Demographics
(Hashimoto et al., 2018; Lahoti et al., 2020)

E[y|S(x), e] yes Score-based IRM Group sufficiency
(Chouldechova, 2017; Liu et al., 2019)

E[y|Φ(x), e] yes IRM (Arjovsky et al., 2019) IRM across sensitive groups
E[y|Φ(x), e] no EIIL (ours) EIIL (ours)∣∣∣E[y|S(x), e]− E[ŷ(x)|S(x), e]

∣∣∣ no Multicalibration (Hébert-Johnson et al., 2018)∣∣∣E[y|e]− E[ŷ(x)|e]
∣∣∣ no Multiaccuracy (Kim et al., 2019)∣∣∣E[y 6= ŷ(x)|y = 1, e]
∣∣∣ no Fairness gerrymandering (Kearns et al., 2018)

Table 2: Domain Generalization (Dom-Gen) and Fairness methods can be understood as matching
some statistic across conditioning variable e, representing “environment” or “domains” in Dom-Gen
literature and “sensitive” group membership in the Fairness literature. We boldface new connections
highlighted in this work, with blank spaces suggesting future work.

Notation Let X be the input space, E the set of environments (a.k.a. “domains”), Y the target
space. Let x, y, e ∼ pobs(x, y, e) be observational data, with x ∈ X , y ∈ Y , and e ∈ E . H
denotes a representation space, from which a classifier w ◦ Φ (that maps to the pre-image of ∆(Y)
via a linear map w) can be applied. Φ : X → H denotes the parameterized mapping or “model”
that we optimize. We refer to Φ(x) ∈ H as the “representation” of example x. ŷ ∈ Y denotes
a hard prediction derived from the classifier by stochastic sampling or probability thresholding.
` : H× Y → R denotes the scalar loss, which guides the learning.

The empirical risk minimization (ERM) solution is found by minimizing the global risk, expressed
as the expected loss over the observational distribution:

CERM (Φ) = Epobs(x,y,e)[`(Φ(x), y)]. (1)

Domain Generalization Domain generalization is concerned with achieving low error rates on
unseen test distributions. One way to achieve domain generalization is by casting it as a robust op-
timization problem (Ben-Tal et al., 2009) where one aims to minimize the worst-case loss for every
subset of the training set, or other well-defined perturbation sets around the data (Duchi et al., 2016;
Madry et al., 2018). Other approaches tackle domain generalization by adversarially learning rep-
resentations invariant (Zhang et al., 2017; Hoffman et al., 2018; Ganin et al., 2016) or conditionally
invariant (Li et al., 2018) to the environment.

Distributionally Robust Optimization (DRO) (Duchi et al., 2016), seeks good performance for all
nearby distributions by minimizing the worst-case loss supq Eq[`] s.t.D(q||p) < ε, whereD denotes
similarity between two distributions (e.g. χ2 divergence) and ε is a hyperparameter. The objective
can be computed as an expectation over p via per-example importance weights γi = q(xi,yi)

p(xi,yi)
.

Recently, Invariant Learning approaches such as Invariant Risk Minimization (IRM) (Arjovsky
et al., 2019) and Risk Extrapolation (REx) (Krueger et al., 2020) were proposed to overcome the
limitations of domain invariant representation learning (Zhao et al., 2019) by discovering invariant
relationships between inputs and targets across domains. Invariance serves as a proxy for causal-
ity, as features representing “causes” of target labels rather than effects will generalize well un-
der intervention. In IRM, a representation Φ(x) is learned that performs optimally within each
environment—and is thus invariant to the choice of environment e ∈ E—with the ultimate goal
of generalizing to an unknown test dataset p(x, y|etest). Because optimal classifiers under standard
loss functions can be realized via a conditional label distribution (f∗(x) = E[y|x]), then an invariant
representation Φ(x) must satisfy the following Environment Invariance Constraint:

E[y|Φ(x) = h, e1] = E[y|Φ(x) = h, e2] ∀h ∈ H ∀ e1, e2 ∈ E . (EI-CONSTR)

Intuitively, the representation Φ(x) encodes features of the input x that induce the same conditional
distribution over labels across each environment.
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Because trivial representations such as mapping all x onto the same value may satisfy environment
invariance, other objectives must be introduced to encourage the predictive utility of Φ. Arjovsky
et al. (2019) propose IRM as a way to satisfy (EI-CONSTR) while achieving a good overall risk.
As a practical instantiation, the authors introduce IRMv1, a gradient-penalty regularized objective
enforcing simultaneous optimality of the same classifier w ◦ Φ in all environments.1 Denoting by
Re = Epobs(x,y|e)[`] the per-environment risk, the objective to be minimized is

CIRM (Φ) =
∑
e∈E

Re(Φ) + λ||∇w|w=1.0R
e(w ◦ Φ)||2. (2)

Krueger et al. (2020) propose the related Risk Extrapolation (REx) principle, which dictates a
stronger preference to exactly equalize Re ∀ e (e.g. by penalizing variance across e), which is
shown to improve generalization in several settings.2

Fairness Early approaches to learning fair representations (Zemel et al., 2013; Edwards & Storkey,
2015; Louizos et al., 2015; Zhang et al., 2018; Madras et al., 2018) leveraged statistical indepen-
dence regularizers from domain adaptation (Ben-David et al., 2010; Ganin et al., 2016), noting that
marginal or conditional independence from domain to prediction relates to the fairness notions of
demographic parity ŷ ⊥ e (Dwork et al., 2012) and equal opportunity ŷ ⊥ e|y (Hardt et al., 2016).

Recall that (EI-CONSTR) involves an environment-specific conditional label expectation given a
data representation E[y|Φ(x) = h, e]. Objects of this type have been closely studied in the fair
machine learning literature, where e now denotes a “sensitive” indicating membership in a pro-
tected demographic group (age, race, gender, etc.), and the vector representation Φ(x) is typically
replaced by a scalar score S(x) ∈ R. E[y|S(x), e] can now be interpreted as a calibration curve
that must be regulated according to some fairness constraint. Chouldechova (2017) showed that
equalizing this calibration curve across groups is often incompatible with a common fairness con-
straint, demographic parity, while Liu et al. (2019) studied “group sufficiency’‘—satisfied when
E[y|S(x), e] = E[y|S(x), e′]∀e, e′—of classifiers with strongly convex losses, concluding that ERM
naturally finds group sufficient solutions without fairness constraints.

Because Liu et al. (2019) consider convex losses, their theoretical results do not hold for neural net-
work representations. However, by noting the link between group sufficiency and the constraint from
(EI-CONSTR), we observe that the IRMv1 regularizer (applicable to neural nets) in fact minimizes
the group sufficiency gap in the case of a scalar representation Φ(x) ⊆ R, and when e indicates sen-
sitive group membership. It is worth noting that Arjovsky et al. (2019) briefly discuss using groups
as environments, but without specifying a particular fairness criterion.

Reliance on sensitive demographic information is cumbersome since it often cannot be collected
without legal or ethical repercussions. Hébert-Johnson et al. (2018) discussed the problem of mit-
igating subgroup unfairness when group labels are unknown, and proposed Multicalibration as a
way of ensuring a classifier’s calibration curve is invariant to efficiently computable environment
splits. Since the proposed algorithm requires brute force enumeration over all possible environ-
ments/groups, Kim et al. (2019) suggested a more practical algorithm by relaxing the calibration
constraint to an accuracy constraint, yielding a Multiaccurate classifier.3 The goal here is to boost
the predictions of a pre-trained classifier through multiple rounds of auditing (searching for worst-
case subgroups using an auxiliary model) rather than learning an invariant representation.

A related line of work also leverages inferred subgroup information to improve worst-case model
performance using the framework of DRO. Hashimoto et al. (2018) applied DRO to encourage
long-term fairness in a dynamical setting where the average loss for a subpopulation influences
their propensity to continue engaging with the model. Lahoti et al. (2020) proposed Adversarially
Reweighted Learning, which extends DRO using an auxiliary model to compute the importance
weights γi mentioned above. Amortizing this computation mitigates the tendency of DRO to overfit
its reweighting strategy to noisy outliers. Wang et al. (2020) proposed a group DRO method for
adaptively estimating soft assignments to groups suitable for the setting where group labels are
noisy.

1w ◦ Φ yields a classification decision via linear weighting on the representation features.
2Analogous to REx, Williamson & Menon (2019) adapt Conditional Variance at Risk (CVaR) (Rockafellar

& Uryasev, 2002) to equalize risk across demographic groups.
3Kearns et al. (2018) separately utilize boosting to equalize subgroup errors without sensitive attributes.
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Limitations of generalization-first fairness One exciting direction for future work is to apply
methods developed in the domain generalization literature to tasks where distribution shift is related
to some societal harm that should be mitigated. However, researchers should be wary of blind “so-
lutionism”, which can be ineffectual or harmful when the societal context surrounding the machine
learning system is ignored (Selbst et al., 2019). Moreover, many aspects of algorithmic discrimina-
tion are not simply a matter of achieving few errors on unseen distributions. Unfairness due to task
definition or dataset collection, as discussed in the study of target variable selection by Obermeyer
et al. (2019), may not be reversible by novel algorithmic developments.

3 INVARIANCE WITHOUT DEMOGRAPHICS OR ENVIRONMENTS

In this section we draw inspiration from recent work on fair prediction without sensitive labels
(Kearns et al., 2018; Hébert-Johnson et al., 2018; Hashimoto et al., 2018; Lahoti et al., 2020) to
propose a novel domain generalization algorithm that does not require a priori domain/environment
knowledge. To motivate the study of this setting and show the fairness and invariance considerations
at play, consider the task of using a high dimensional medical image x to predict a target label
y ∈ {0, 1} indicating the presence of COVID-19 in the imaged patient. DeGrave et al. (2020)
describe the common use of a composite dataset for this task, where the process of aggregating data
across two source hospitals e ∈ {H1, H2} leads to a brittle neural net classifier w ◦Φ(x) that fixates
on spurious low-level artifacts in x as predictive features.

Now we will consider a slightly different scenario. Consider a single hospital serving two different
demographic populations e ∈ {P1, P2}. While P1 has mostly sick patients at time t = 0 due to
the prevalence of COVID-19 in this subpopulation, P2 currently has mostly well patients. Then
p(x, y|e = P1, t = 0) and p(x, y|e = P2, t = 0) will differ considerably, and moreover a classifier
using a spurious feature indicative of subpopulation membership—either a low-level image artifact
or attribute of the medical record—may achieve low average error on the available data. Of course
such a classifier may generalize poorly. Consider temporal distribution shifts: suppose at time t = 1,
due to the geographic density of the virus changing over time, P1 has mostly well patients while pa-
tients from P2 are now mostly sick. Now the spurious classifier may suffer worse-than-chance error
rates and imply unfair outcomes for disadvantaged groups. In reality the early onset and frequency
of exposure to COVID-19 has been unequally distributed along many social dimensions (class, race,
occupation, etc.) that could constitute protected groups (Tai et al., 2020), raising concerns of addi-
tional algorithmic discrimination.

Learning to be invariant to spurious features encoding demographics would prevent errors due to
such temporal shifts. While loss reweighting as in DRO/ARL can upweight error cases, without an
explicit invariance regularizer the model may still do best on average by making use of the spurious
feature. IRM can remove the spurious feature in this particular case, but a method for discovering
environment partitions directly may occasionally be needed.4 This need is clear when demographic
makeup is not directly observed and a method to sort each example into the maximally separating
the spurious feature, i.e. inferring populations {P1, P2}, is needed for effective invariant learning.

3.1 ENVIRONMENT INFERENCE FOR INVARIANT LEARNING

We now derive a principle for inferring environments from observational data. Our ex-
position extends IRMv1 (Equation 2), but we emphasize that our method EIIL is applica-
ble more broadly to any environment-based learning objective. We begin by introducing
ui(e

′) = pobs(e′|xi, yi) = 1(ei = e′) as an indicator of the hand-crafted environment assignment
per-example. Noting that Ne :=

∑
i ui(e) represents the number of examples in environment e, we

can re-express this objective to make its dependence on environment labels explicit

CIRM (Φ,u) =
∑
e∈E

1

Ne

∑
i

ui(e)`(Φ(xi), yi) +
∑
e∈E

λ
∣∣∣∣∣∣∇w|w=1.0

1

Ne

∑
i

ui(e)`(w ◦ Φ(xi), yi)
∣∣∣∣∣∣

2
.

(3)

4In a variant of the first example where hospitals e ∈ {H1, H2} are known, the given environments could
be improved by a method that sorts whether spurious artifacts are present, i.e. inferring equipment type.
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Our general strategy is to replace the binary indicator ui(e), with a probability distribution
q(e|xi, yi), representing a soft assignment of the i-th example to the e-th environment. q(e|xi, yi)
should capture worst-case environments w.r.t the invariant learning objective; rewriting q(e|xi, yi)
as qi(e) for consistency with the above expression, we arrive at the following bi-level optimization:

min
Φ

max
q

CIRM (Φ,q). (EIIL)

We leave the full exploration of this bi-level optimization to future work, but for now propose the
following practical sequential approach, which we call EIILv1 (See Appendix A for pseudocode):

1. Input reference model Φ̃;

2. Fix Φ ← Φ̃ and fully optimize the inner loop of (EIIL) to infer environments q̃i(e) =
q̃(e|xi, yi);

3. Fix q← q̃ and fully optimize the outer loop to yield the new model Φ.

Instead of requiring hand-crafted environments, we instead require a trained reference model Φ̃,
which is arguably easier to produce and could be found using ERM on pobs(x, y), for example. In
our experiments we consider binary environments5 and explicitly parameterize the q(e|x, y) as a
vector of probabilities for each example in the training data.6

3.2 ANALYZING THE EIIL SOLUTION

To characterize the ability of EIILv1 to generalize to unseen test data, we now examine the inductive
bias for generalization provided by the reference model Φ̃. We state the main result here and defer
the proofs to Appendix B. Consider a dataset with some feature(s) z which are spurious, and other(s)
v which are valuable/causal w.r.t. the label y. Our proof considers binary features/labels and two
environments, but the same argument extends to other cases. Our goal is to find a model Φ whose
representation Φ(v, z) is invariant w.r.t. z and focuses solely on v.

Theorem 1 Consider environments that differ in the degree to which the label y agrees with the
spurious features z: P(1(y = z)|e1) 6= P(1(y = z)|e2): then a reference model Φ̃Spurious that
is invariant to valuable features v and solely focusing on spurious features z maximally violates
the Invariance Principle (EI-CONSTR). Likewise, consider the case with fixed representation Φ
that focuses on the spurious features: then a choice of environments that maximally violates (EI-
CONSTR) is e1 = {v, z, y|1(y = z)} and e2 = {v, z, y|1(y 6= z)}.

If environments are split according to agreement of y and z, then the constraint from (EI-CONSTR) is
satisfied by a representation that ignores z: Φ(x) ⊥ z. Unfortunately this requires a priori knowledge
of either the spurious feature z or a reference model Φ̃Spurious that extracts it. When the wrong
solution Φ̃Spurious is not a priori known, it can sometimes be recovered directly from the training
data; for example in CMNIST we find that Φ̃ERM approximates Φ̃Color. This allows EIIL to find
environment partitions providing the starkest possible contrast for invariant learning.

Even if environment partitions are available, it may be possible to improve performance by inferring
new partitions from scratch. It can be shown (see Appendix B.2) that the environments provided in
the CMNIST dataset (Arjovsky et al., 2019) do not maximally violate (EI-CONSTR) for a reference
model Φ̃Color, and are thus not maximally informative for learning to ignore color. Accordingly,
EIIL improves test accuracy for IRM compared with the hand-crafted environments (Table 1).

5The theoretical analysis of IRM suggests that the more (statistically independent) environments the better
in term of generalization guarantees. This suggests in the setting where these analyses apply, extending EIIL to
find more than two environments (with a term to promote diversity amongst inferred environments) may further
help out-of-domain generalization, which we leave for future investigation.

6Note that under this parameterization, when optimizing the inner loop with fixed Φ the number of pa-
rameters equals the number of data points (which is small relative to standard neural net training). We leave
amortization of q to future work.
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Figure 1: CMNIST with varying label noise θy . Under high label noise (θy > .2), where the
spurious feature color correlates to label more than shape on the train data, IRM(eEIIL) matches or
exceeds the performance of IRM(eHC) on the test set without relying on hand-crafted environments.
Under medium label noise (.1 < θy < .2), IRM(eEIIL) is worse than IRM(eHC) but better than
ERM, the logical approach if environments are not available. Under low label noise (θy < .1),
where color is less predictive than shape at train time, ERM performs well and IRM(eEIIL) fails.
GRAYSCALE indicates the oracle solution using shape alone, while ΦColor uses color alone.

4 EXPERIMENTS

We defer a proof-of-concept synthetic regression experiment to Appendix E for lack of space. We
proceed with the established domain generalization benchmark ColorMNIST, and then discuss a
variant of the algorithmic fairness dataset UCI Adult. We note that benchmarking model perfor-
mance on a shifted test distribution without access to validation samples—especially during model
selection—is a difficult open problem, a solution to which is beyond the scope of this paper. Ac-
cordingly we use the default IRM hyperparameters wherever appropriate, and otherwise follow a
recently proposed model selection strategy (Gulrajani & Lopez-Paz, 2020) (see Appendix D).7

4.1 COLORMNIST

ColorMNIST (CMNIST) is a noisy digit recognition task8 where color is a spurious feature that
correlates with the label at train time but anti-correlates at test time, with the correlation strength
at train time varying across two pre-specified environments (Arjovsky et al., 2019). Crucially, label
noise is applied by flipping y with probability θy; the default setting (θy = 0.25) implies that shape
(the correct feature) is marginally less reliable than color in the train set, so naive ERM ignores
shape to focus on color and suffers from below-chance performance at test time.

We evaluated the performance of the following methods: ERM: A naive MLP that does not make
use of environment labels e, but instead optimizes the average loss on the aggregated environ-
ments; IRM(eHC): the method of Arjovsky et al. (2019) using hand-crafted environment labels;
IRM(eEIIL): our proposed method (a.k.a. EIILv1) that infers useful environments (not using hand-
crafted environment labels) based on the naive ERM, then applies IRM to the inferred environments.

After noting that EIILv1—denoted IRM(eEIIL) above—outperforms IRM without access to envi-
ronment labels in the default setting (See Tables 1 and 6), we examine how the various methods
perform as a function of θy . This parameter influences the ERM solution since low θy implies shape
is more reliable than color in the aggregated training data (thus ERM generalizes well), while the op-
posite trend holds for high θy . Because EIILv1 relies on a reference model Φ̃, its performance is also
affected when Φ̃ = ERM (Figure 1). We find that IRM(eEIIL) generalizes better than IRM(eHC)
with sufficiently high label noise θy > .2, but generalizes poorly under low label noise. This is
precisely due to the success of ERM in this setting, where shape is a more reliable feature in the
training data than color. We verify this conclusion by evaluating IRM(eEIIL) when Φ̃ = ΦColor, i.e.
a hand-coded color-based predictor as reference. This does relatively well across all settings of θy ,
approaching the performance of the (oracle) baseline that classifies using grayscale inputs.

7Following the suggestion of Gulrajani & Lopez-Paz (2020), we note that Section 4.2 contains “oracle”
results that are overly optimistic for each method (see Appendix D for model selection details).

8MNIST digits are grouped into {0, 1, 2, 3, 4} and {5, 6, 7, 8, 9} so the CMNIST target label y is binary.
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4.2 CENSUS DATA

We now study a fair prediction problem using a variant of the UCI Adult dataset,9 which comprises
48, 842 individual census records collected from the United States in 1994. The task commonly
used as an algorithmic fairness benchmark is to predict a binarized income indicator (thresholded
at $50, 000) as the target label, possibly considering sensitive attributes such as age, sex, and race.
Because the original task measures in-distribution test performance, we instead construct a vari-
ant of this dataset suitable for measuring out-of-distribution test performance, which we call Con-
foundedAdult.

Train accs Test accs

Baseline 92.7 ± 0.5 31.1 ± 4.4
ARL (Lahoti et al., 2020) 72.1 ± 3.6 61.3 ± 1.7
EIILv1 69.7 ± 1.6 78.8 ± 1.4

Table 3: Accuracy on ConfoundedAdult, a variant of the UCI Adult dataset where some sensitive
subgroups correlate to the label at train time and reverse this correlation pattern at test time.

Lahoti et al. (2020) demonstrate the benefit of per-example loss reweighting on UCI Adult using
their method ARL to improve predictive performance for undersampled subgroups. Following La-
hoti et al. (2020), we consider the effect of four sensitive subgroups—defined by composing bina-
rized race and sex labels—on model performance, assuming the model does not know a priori which
features are sensitive. However, we focus on a distinct generalization problem where a pernicious
dataset bias confounds the training data, making subgroup membership predictive of the label on the
training data. At test time these correlations are reversed, so a predictor that infers subgroup mem-
bership to make predictions will perform poorly at test time (see Appendix C for details). Dwork
et al. (2012) described a similar motivating scenario where the conditional distribution mapping
features to target labels varies across demographic groups due to cultural differences, so the most
predictive predictor for one group may not generalize to the others. The large distribution shift of
our test set can be understood as a worst-case audit to determine whether the classifier uses subgroup
information in its predictions.

Using EIILv1—to first infer worst-case environments then ensure invariance across them—performs
favorably on the audit test set, compared with ARL and a baseline MLP (Table 3). We also find that,
without access to sensitive group information, using the IRMv1 penalty on the EIIL environments
improves subgroup sufficiency (Figure 2). Appendix E.3 provides an ablation showing that all com-
ponents of the EIILv1 approach are needed to achieve the best performance.

(a) (b) (c) (d) (e)

Figure 2: We examine subgroup sufficiency—whether calibration curves match across demographic
subgroups—on the ConfoundedAdult dataset. Whereas ARL is not subgroup-sufficient (a), EIIL in-
fers worst-case environments and regularizes their calibration to be similar (b), ultimately improving
subgroup sufficiency (c). This helps EIIL generalize better to a shifted test set (e) compared with
ARL (d). Note that neither method uses sensitive group information during learning.

9https://archive.ics.uci.edu/ml/datasets/adult
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5 CONCLUSION

We discussed the common goals of algorithmic fairness and domain generalization, compared re-
lated methods from each literature, and suggested how lessons can be exchanged between the two
fields to inform future research. The most concrete outcome of this discussion was our novel domain
generalization method, Environment Inference for Invariant Learning (EIIL). Drawing inspiration
from fairness methods that optimize worst-case performance without access to demographic infor-
mation, EIIL improves the performance of IRM on CMNIST without requiring a priori knowledge of
the environments. On a variant of the UCI Adult dataset, EIIL makes use of the IRMv1 regularizer
to improve group sufficiency—a fairness criterion previously difficult to optimize for non-convex
losses—without requiring knowledge of the sensitive groups.
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Ursula Hébert-Johnson, Michael P Kim, Omer Reingold, and Guy N Rothblum. Calibration for the
(computationally-identifiable) masses. In International Conference on Machine Learning, 2018.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. In International Conference on Learning Representations, 2019.

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros,
and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In International
conference on machine learning, pp. 1989–1998, 2018.

Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fairness gerryman-
dering: Auditing and learning for subgroup fairness. In International Conference on Machine
Learning, pp. 2564–2572, 2018.

Michael P Kim, Amirata Ghorbani, and James Zou. Multiaccuracy: Black-box post-processing for
fairness in classification. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and
Society, pp. 247–254, 2019.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Remi Le
Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapolation (rex). arXiv
preprint arXiv:2003.00688, 2020.

Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain, Xuezhi Wang, and
Ed H Chi. Fairness without demographics through adversarially reweighted learning. In Neural
Informational Processing Systems, 2020.

Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng Tao.
Deep domain generalization via conditional invariant adversarial networks. In Proceedings of the
European Conference on Computer Vision (ECCV), pp. 624–639, 2018.

Lydia T Liu, Max Simchowitz, and Moritz Hardt. The implicit fairness criterion of unconstrained
learning. In International Conference on Machine Learning, 2019.

Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The variational fair
autoencoder. In International Conference on Learning Representations, 2015.

David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Learning adversarially fair and
transferable representations. In International Conference on Machine Learning, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. 2018.

Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. Dissecting racial bias
in an algorithm used to manage the health of populations. Science, 366(6464):447–453, 2019.
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A EIILV1 PSUEDOCODE

Algorithm 1 The first stage of EIILv1 infers two environments that maximally violate the IRM
objective. The inferred environments are then used to train an IRM solution from scratch.

Input: Reference model Φ̃, dataset D = {xi, yi} with xi, yi ∼ pobs iid, loss function `, duration
Nsteps

Output: Worst case data splits D1, D2 for use with IRM.
Randomly initialize e ∈ R|D| as vectorized logit of posterior with σ(ei) := q(e|xi, yi). for n ∈
1 . . . Nsteps do
R1 = 1∑

i′ σ(ei′ )

∑
i σ(ei)`(Φ̃(xi), yi) ; // D1 risk

G1 = ∇w|w=1|| 1∑
i′ σ(ei′ )

∑
i σ(ei)`(w ◦ Φ̃(xi), yi)||2 ; // D1 invariance

regularizer

R2 = 1∑
i′ 1−σ(ei′ )

∑
i(1− σ(ei))`(Φ̃(xi), yi) ; // D2 risk

G2 = ∇w|w=1|| 1∑
i′ 1−σ(ei)

∑
i(1− σ(ei))`(w ◦ Φ̃(xi), yi)||2 ; // D2 invariance

regularizer
L = 1

2

∑
e∈{1,2}R

e + λGe

e← OptimUpdate(e,∇eL)
end
ê ∼ Bernoulli(σ(e)) ; // sample splits
D1 ← {xi, yi|êi = 1}, D2 ← {xi, yi|êi = 0} ; // split data
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B PROOFS

B.1 PROOF OF THEOREM 1

Consider a dataset with some feature(s) z which are spurious, and other(s) v which are valu-
able/causal w.r.t. the label y. This includes data generated by models where v → y → z, such
that P (y|v, z) = P (y|v). Assume further that the observations x are functions of both spurious and
valuable features: x := f(v, z). The aim of invariant learning is to form a classifier that predicts y
from x that focuses solely on the causal features, i.e., is invariant to z and focuses solely on v.

Consider a classifier that produces a score S(x) for example x. In the binary classification setting S
is analogous to the model Φ, while the score S(x) is analogous to the representation Φ(x). To quan-
tify the degree to which the constraint in the Invariant Principle (EI-CONSTR) holds, we introduce
a measure called the group sufficiency gap10:

∆(S, e) = E[[E(y|S(x), e1)− E(y|S(x), e2)]]

Now consider the notion of an environment: some setting in which the x → y relationship varies
(based on spurious features). Assume a single binary spurious feature z. We restate Theorem 1 as
follows:

Claim: If environments are defined based on the agreement of the spurious feature z and the label y,
then a classifier that predicts based on z alone maximizes the group-sufficiency gap (and vice versa –
if a classifier predicts y directly by predicting z, then defining two environments based on agreement
of label and spurious feature—e1 = {v, z, y|1(y = z)} and e2 = {v, z, y|1(y 6= z)}—maximizes
the gap).

We can show this by first noting that if the environment is based on spurious feature-label agreement,
then with e ∈ {0, 1} we have e = 1(y = z). If the classifier predicts z, i.e. S(x) = z, then we have

∆(S, e) = E[E[y|z(x),1(y = z)]− E[y|z(x),1(y 6= z)]]

For each instance of x either z = 0 or z = 1. Now we note that when
z = 1 we have E(y|z,1(y = z)) = 1 and E(y|z,1(y 6= z)) = 0, while when
z = 0 E(y|z, I[y == z]) = 0 and E[y|z,1(y 6= z)] = 1. Therefore for each example
|E(y|z(x),1(y = z))− E(y|z(x),1(y 6= z)| = 1, contributing to an overall ∆(S, e) = 1,
which is the maximum value for the sufficiency gap.

B.2 GIVEN CMNIST ENVIRONMENTS ARE SUBOPTIMAL W.R.T. SUFFICIENCY GAP

The regularizer from IRMv1 encourages a representation for which sufficiency gap is minimized be-
tween the available environments. Therefore when faced with a new task it is natural to measure the
natural sufficiency gap between these environments, mediated through a naive or baseline method.
Here we show that for CMNIST, when considering a naive color-based classifier as the reference
model, the given environment splits are actually suboptimal w.r.t. sufficiency gap, which motivates
the proposed EIIL approach for inferring environments that have a more sever sufficiency gap for
the reference model.

We begin by computing ∆(S, e), the sufficiency gap for color-based classifier g over the given train
environments {e1, e2}. We introduce an auxiliary color variable z, which is not observed but can be
sampled from via the color based classifier g:

p(y|g(x) = x′, e) = Ep(z|x′) [p(y|z, e, x′).]

10This was previously used in a fairness setting by Liu et al. (2019) to measure differing calibration curves
across groups.
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Denote by GREEN and RED the set of green and red images, respectively. I.e. we have z ∈ G iff
z = 1 and x ∈ GREEN iff z(x) = 1. The the sufficiency gap is expressed as

∆(S, e) = Ep(x,e)
[∣∣∣Ep(y|x,e1)[y|g(x), e1]− Ep(y|x,e2)[y|g(x), e2]

∣∣∣]
= Ep(z,e)

[∣∣∣Ep(y|z,e1)[y|z, e1]− Ep(y|z,e2)[y|z, e2]
∣∣∣]

=
1

2

∑
z∈{GREEN,RED}

[∣∣∣Ep(y|z,e1)[y|z, e1]− Ep(y|z,e2)[y|z, e2]
∣∣∣]

=
1

2
(|E[y|z = GREEN, e1]− E[y|z = GREEN, e2]|+ |E[y|z = RED, e1]− E[y|z = RED, e2]|)

=
1

2
(|0.1− 0.2| − |0.9− 0.8|)

=
1

10
.

The regularizer in IRMv1 is trying to reduce the sufficiency gap, so in some sense we can think
about this gap as a learning signal for the IRM learner. A natural question would be whether a
different set of environment partition {e} can be found such that this learning signal is stronger, i.e.
the sufficiency gap is increased. We find the answer is yes. Consider an environment distribution
q(e|x, y, z) that assigns each data point to one of two environments. Any assignment suffices so far
as its marginal matches the observed data:

∫
z

∫
e
q(x, y, z, e) = pobs(x, y).

We can now express the sufficiency gap (given a color-based classifier g) as a function of the envi-
ronment assignment q:

∆(S, e ∼ q) = Eq(x,e)[|Eq(y|x,e,x)[y|g(x), e1]− Eq(y|x,e,x)[y|g(x), e2]|]
= Eq(x,e)[|Eq(y|z,e,x)p(z|x)[y|z, e1]− Eq(y|z,e,x)p(z|x)[y|z, e2]|]

Where we use the same change of variables trick as above to replace g(x) with samples from p(z|x)
(note that this is the color factor from the generative process p according with our assumption that g
matches this distribution).

We want to show that there exists a q yielding a higher sufficiency gap than the given environments.
Consider q that yields the conditional label distribution

q(y|x, e, z) := q(y|e, z) =

{
1(y = z) if e = e1,

1(y 6= z) if e = e2.

This can be realized by an encoder/auditor q(e|x, y, z) that ignores image features in x and parti-
tions the example based on whether or not the label y and color z agree. We also note that z is
deterministically the color of the image in the generative process: p(z|x) = 1(x = RED)
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Now we can compute the sufficiency gap:

∆(S, e ∼ q) = Eq(x,e)[|Eq(y|z,e,x)p(z|x)[y|z, e1]− Eq(y|z,e,x)p(z|x)[y|z, e2]|]

=
1

2
Ex∈RED|Eq(y|z,e,x)p(z|x)[y|z, e1]− Eq(y|z,e,x)p(z|x)[y|z, e2]|

+
1

2
Ex∈GREEN|Eq(y|z,e,x)p(z|x)[y|z, e1]− Eq(y|z,e,x)p(z|x)[y|z, e2]|

=
1

2
Ex∈RED(|

∑
y

∑
z

(y ∗ 1(y = z) ∗ 1(g(x) = z))−
∑
y

∑
z

(y ∗ 1(y 6= z) ∗ 1(g(x) = z))|)

+ Ex∈GREEN
1

2
(|
∑
y

∑
z

(y ∗ 1(y = z) ∗ 1(g(x) = z))−
∑
y

∑
z

(y ∗ 1(y 6= z) ∗ 1(g(x) = z))|)

=
1

2
Ex∈RED(|

∑
y

(y ∗ 1(y = 1) ∗ 1(x ∈ RED))−
∑
y

(y ∗ 1(y 6= 1) ∗ 1(x ∈ RED))|)

+ Ex∈GREEN
1

2
(|
∑
y

∑
z

(y ∗ 1(y = 0) ∗ 1(x ∈ GREEN))−
∑
y

∑
z

(y ∗ 1(y 6= 0) ∗ 1(x ∈ GREEN))|)

=
1

2
Ex∈RED[|1− 0|] + Ex∈GREEN[

1

2
|0− 1|] =

1

2
+

1

2
= 1.

Note that 1 is the maximal sufficiency gap, meaning that the described environment partition maxi-
mizes the sufficiency gap w.r.t. the color-based classifier g.

C DATASET DETAILS

Constructing the ConfoundedAdult dataset To create our semi-synthetic dataset, called Con-
foundedAdult, we start by observing that the conditional distribution over labels varies across the
subgroups, and in some cases subgroup membership is very predictive of the target label. We con-
struct a test set (a.k.a. the audit set) where this relationship between subgroups and target label is
reversed.

The four sensitive subgroups are defined following the procedure of Lahoti et al. (2020), with sex
(recorded as binary: Male/Female) and binarized race (Black/non-Black) attributes compose to
make four possible subgroups: Non-Black Males (SG1), Non-Black Females (S2), Black Males
(SG3), and Black Females (SG4).

We start with the observation that each subgroup has a different correlation strength with the tar-
get label, and in some cases subgroup membership alone can be used to achieve relatively low
error rates in prediction. As these correlations should be considered “spurious” to mitigate unequal
treatment across groups, we create a semi-synthetic variant of the UCI Adult dataset, which we
call ConfoundedAdult, where these spurious correlations are exaggerated. Table 4 shows various
conditional label distributions for the original dataset and our proposed variant. The test set for
ConfoundedAdult revereses the correlation strengths, which can be thought of as a worst-case audit
to ensure the model is not relying on subgroup membership alone in its predictions. We generate
samples for ConfoundedAdult using importance sampling, keeping the original train/test splits from
UCI Adult as well as the subgroup sizes, but sampling individual examples under/over-sampled
according to importance weights pConfoundedAdult

pUCIAdult .

D EXPERIMENTAL DETAILS

Model selection Krueger et al. (2020) discussed the pitfalls of achieving good test performance
on CMNIST by using test data to tune hyperparameters. Because our primary interest is in the
properties of the inferred environment rather than the final test performance, we sidestep this issue in
the Synthetic Regression and CMNIST experiments by using the default parameters of IRM without
further tuning. However for the ConfoundedAdult dataset a specific strategy for model selection is
needed.
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Subgroup (SG) p(y = 1|SG)

UCIAdult ConfoundedAdult
Train Test Train Test

1 0.31 0.30 0.94 0.06
2 0.11 0.12 0.06 0.94
3 0.19 0.16 0.94 0.06
4 0.06 0.04 0.06 0.94

Table 4: ConfoundedAdult is a variant of the UCI Adult dataset that emphasizes test-time distrbu-
tion shift.

We refer the interested reader to Gulrajani & Lopez-Paz (2020) for an extensive discussion of pos-
sible model selection strategies. They also provide a large empirical study showing that ERM is
difficult baseline to beat when all methods are put on equal footing w.r.t. model selection.

In our case, we use the most relaxed model selection method proposed by Gulrajani & Lopez-Paz
(2020), which amounts to allowing each method a 20 test evaluations using hyperparameter chosen
at random from a reasonable range, with the best hyperparameter setting selected for each method.
While none of the methods is given an unfair advantage in the search over hyperparameters, the
basic model selection premise does not translate to real-world applications, since information about
the test-time distribution is required to select hyperparameters. Thus these results can be understood
as being overly optimistic for each method, although the relative ordering between the methods can
still be compared.

CMNIST IRM is trained on these two environments and tested on a holdout environment con-
structed from 10, 000 test images in the same way as the training environments, where colour is
predictive of the noisy label 10% of the time. So using color as a feature to predict the label will
lead to an accuracy of roughly 10% on the test environment, while it yields 80% and 90% accuracy
respectively on the training environments.

To evaluate IRM(eEIIL) we remove the environment identifier from the training set and thus have
one training set comprised of 50, 000 images from both original training environments. We then
train an MLP with binary cross-entropy loss on the training environments, freeze its weights and
use the obtained model to learn environment splits that maximally violate the IRM penalty. When
optimizing the inner loop of EIIL, we use Adam with learning rate 0.001 for 10, 000 steps with full
data batches used to computed gradients.

The obtained environment partitions are then used to train a new model from scratch with IRM.
Following Arjovsky et al. (2019), we allow the representation to train for several hundred annealing
steps before applying the IRMv1 penalty.

Census data Following Lahoti et al. (2020), we use a two-hidden-layer MLP architecture for all
methods, with 64 and 32 hidden units respectively, and a linear adversary for ARL. We optimize
all methods using Adagrad; learning rates, number of steps, and batch sizes chosen by the model
selection strategy described above (with 20 test evaluations per method), as are penalty weights for
IRMv1 regularizer and standard weight decay. For the inner loop of EIIL (inferring the environ-
ments), we use the same settings as in CMNIST. We find that the performance of EIIL is somewhat
sensitive to the number of steps taken with the IRMv1 penalty applied. To limit the number of test
queries needed during model selection, we use an early stopping heuristic by enforcing the IRMv1
penalty only during the final 500 steps of training, with the previous steps serving as annealing
period to learn a baseline representation to be regularized. Unlike the previous datasets, here we
use minibatches to compute gradients during IRM training (for consistency with the ARL method,
which uses minibatches). However, full batch gradients are still used for inferring environments in
EIIL.
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Causal MSE Noncausal MSE

ERM 0.827 ± 0.185 0.824 ± 0.013
ICP(eHC) 1.000 ± 0.000 0.756 ± 0.378
IRM(eHC) 0.666 ± 0.073 0.644 ± 0.061
IRM(eEIIL) 0.148 ± 0.185 0.145 ± 0.177

Table 5: IRM using EIIL-discovered environments (eEIIL) outperforms IRM in a synthetic regres-
sion setting without the need for hand-crafted environments (eHC). This is because the reference
representation Φ̃ = ΦERM uses the spurious feature for prediction. MSE + standard deviation across
5 runs reported.

E ADDITIONAL EMPIRICAL RESULTS

E.1 SYNTHETIC DATA

We begin with a regression setting originally used as a toy dataset for evaluating IRM (Arjovsky
et al., 2019). The features x ∈ RN comprise a “causal” feature v ∈ RN/2 concatenated with a
“non-causal” feature z ∈ RN/2: x = [v, z]. Noise varies across hand-crafted environments e:

v = εv εv ∼ N (0, 25)

y = v + εy εy ∼ N (0, e2)

z = y + εz εz ∼ N (0, 1).

We evaluated the performance of the following methods:

• ERM: A naive regressor that does not make use of environment labels e, but instead opti-
mizes the average loss on the aggregated environments;

• IRM(eHC): the method of Arjovsky et al. (2019) using hand-crafted environment labels;

• ICP(eHC): the method of Peters et al. (2016) using hand-crafted environment labels;

• IRM(eEIIL): our proposed method (which does use hand-crafted environment labels) that
infers useful environments based on the naive ERM, then applies IRM to the inferred en-
vironments.

The regression methods fit a scalar target y = 1Ty via a regression model ŷ ≈ wTx to minimize
||y − ŷ|| w.r.t. w, plus an invariance penalty as needed. The optimal (causally correct) solution is
w∗ = [1,0] Given a solution [ŵv, ŵz] from one of the methods, we report the mean squared error
for the causal and non-causal dimensions as ||ŵv − 1||22 and ||ŵz − 0||22 (Table 5). Because v is
marginally noisier than z, ERM focuses on the spurious z. IRM using hand-crafted environments,
denoted IRM(eHC), exploits variability in noise level in the non-causal feature (which depends on
the variability of σy) to achieve lower error. Using EIILv1 instead of hand crafted environments
yields an improvement on the resulting IRM solution (denoted IRM(eEIIL)) by learning worst-case
environments for invariant training.

We show in a follow-up experiment that the EIILv1 solution is indeed sensitive to the choice of
reference representation, and in fact, can only discover useful environments (environments that allow
IRM(eEIIL)to learn the correct causal representation) when the reference representation encodes the
incorrect inductive bias by focusing on the spurious feature. We can explore this dependence of
EIILv1 on the mix of spurious and non-spurious features in the reference model by constructing a
Φ̃ that varies in the degree it focuses on the spurious feature, according to convex mixing parameter
α ∈ [0, 1]. α = 0 indicates focusing entirely on the correct causal feature , while α = 1 indicates
focusing on the spurious feature . We refer to this variant as IRM(eEIIL|Φ̃ = Φα−SPURIOUS), and
measure its performance as a function of α (Figure 3). Environment inference only yields good test-
time performance for high values of α, where the reference model captures the incorrect inductive
bias.
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Figure 3: MSE of the causal feature v and non-causal feature z. IRM(eEIIL)applied to the ERM
solution (Black) out-performs IRM based on the hand-crafted environment (Green vs. Blue). To
examine the inductive bias of the reference model Φ̃, we hard code a model Φ̃α−SPURIOUS where α
controls the degree of spurious feature representation in the reference classifier; IRM(eEIIL) out-
performs IRM(eHC) when the reference Φ̃ focuses on the spurious feature, e.g. with Φ̃ as ERM or
α-SPURIOUS for high α.

Train accs Test accs

ERM 86.3 ± 0.1 13.8 ± 0.6
IRM(eHC) 71.1 ± 0.8 65.5 ± 2.3
IRM(eEIIL|Φ̃ = ΦERM ) 73.7 ± 0.5 68.4 ± 2.7
IRM(eEIIL|Φ̃ = ΦColor) 75.9 ± 0.4 68.0 ± 1.2
ΦColor 85.0 ± 0.1 10.1 ± 0.2
GRAYSCALE 75.3 ± 0.1 72.6 ± 0.6
ARL 88.9 ± 0.2 20.7 ± 0.9

Table 6: Accuracy across ten runs with label noise θy = 0.25 GRAYSCALE hard codes out the color
feature and thus represents an oracle solution to CMNIST.

E.2 COLORMNIST

Table 6 expands on the results from Table 1 by adding additional methods discussed in Section 3.

In Table 7 we measure the performance of some alternative strategies for optimizing the bi-level
problem from Equation (EIIL). In particular, we consider alternating updates to the representation Φ
and environment assignments q, as well as solving the inner/outer loop of EIIL multiple times. On
the CMNIST dataset, none of these variants offers a performance benefit above the method used in
Section 4.

EIILloops=k indicates that the inner and outer loops of the EIIL objective in Equation (EIIL) are
successively optimized k times, with k = 1 corresponding to IRM(eEIIL), the method studied in
the main experiments section. In other words, Φloops=1 is solved using IRM(eEIIL), then this rep-
resentation is used as a reference classifier to find Φloops=k+1 = IRM(eEIIL|Φ̃ = Φloops=k) in the

Train accs Test accs

EIILloops=1 73.7 ± 0.4 68.8 ± 1.8
EIILloops=2 85.4 ± 0.4 10.0 ± 0.4
EIILloops=3 75.6 ± 0.5 69.0 ± 0.9
EIILloops=4 84.8 ± 0.2 10.1 ± 0.3
EIILloops=5 76.2 ± 0.5 67.6 ± 0.7
EIILAltUpdates 82.3 ± 0.4 24.0 ± 1.1

Table 7: We measure performance on CMNIST of various alternative approaches to optimizing the
EIIL objective, ultimately concluding that none of the alternatives out-performs the method studied
in Section 4. See text for details
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Train accs Test accs

EIILv1 68.7 ± 1.7 79.8 ± 1.1
EIILv1 (no regularizer) 78.6 ± 2.0 69.2 ± 2.8
IRM (random environments) 94.7 ± 0.1 17.6 ± 1.6

Table 8: Our ablation study shows that both ingredients of EIILv1 (finding worst-case environments
and regularizing invariance across them) are required to achieve good test-time performance on the
ConfoundedAdult dataset.

next “loop” of computation. This also means that the training time needed is k times the training
time of IRM(eEIIL). As we expect from our theoretical analysis, using the IRM(eEIIL) solution as
a reference classifier for another round of EIIL is detrimental: since the reference classifier already
relies on the correct shape feature, environments that encourage invariance to this feature are found
in the second round, so the EIILloops=2 classifier uses color rather than shape.

EIILAltUpdates consists of optimizing Equation 1 using alternating steps to Φ and q. Unforatun-
tely, whereas this strategy works well for other bi-level optimization problems such as GANs, it
seems to do poorly in this setting. This method outperforms ERM but does not exceed chance-level
predictions on the test set.

E.3 CENSUS DATA

Ablation Here we provide an ablation study extending the results from Section 4.2 to demon-
strate that both ingredients in the EIILv1 solution—finding worst-case environment splits and reg-
ularizing using the IRMv1 penalty—are necessary to achieve good test-time performance on the
ConfoundedAdult dataset.

From Lahoti et al. (2020) we see that ARL can perform favorably compared with DRO (Hashimoto
et al., 2018) in adaptively computing how much each example should contribute to the overall loss,
i.e. computing the per-example γi in C = Exi,yi∼p[γi`(Φ(xi), yi)]. Because all per-environment
risks in IRM are weighted equally (see Equation 2), and each per-environment risk comprises an
average across per-example losses within the environment, each example contributes its loss to the
overall objective in accordance with the size of its assigned environment. For example with two
environments e1 and e2 of sizes |e1| and |e2|, we implicitly have the per-example weights of γi =

1
|e1| for i ∈ e1 and γi = 1

|e2| for i ∈ e2, indicating that examples in the smaller environment count
more towards the overall objective. Because EIILv1 is known to discover worst-case environments
of unequal sizes, we measure the performance of EIILv1 using only this reweighting, without adding
the gradient-norm penalty typically used in IRM (i.e. setting λ = 0). To determine the benefit of
worst-case environment discovery, we also measure IRM with random assignment of environments.
Table 8 shows the results, confirming that both ingredients are required to attain good performance
using EIILv1.

F ADDITIONAL THEORETICAL RESULTS

F.1 OPTIMAL SOFT PARTITIONS MAXIMIMALLY VIOLATE THE INVARIANCE PRINCPLE

We want to show that finding environment assignments that maximize the violation of the softened
version of the regularizer from Equation 3 also maximally violates the invariance princple. Because
the invaraince principle E[Y |Φ(X), e] = E[Y |Φ(X), e′]∀e, e′ is difficult to quantify for continuous
Φ(X), we consider a binned version of the representation, with b denoting the discrete index of the
bin in representation space. Let qi ∈ [0, 1] denote the soft assignment of example i to environment 1,
and 1−qi denote its converse, the assignment of example i to environment 2. Denote by yi ∈ {0, 1}
the binary target for example i, and ŷ ∈ [0, 1] as the model prediction on this example. Assume that
` represents a cross entropy or squared error loss so that∇w`(ŷ, y) = (ŷ − y)Φ(x).
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Consider the IRMv1 regularizer with soft assignment, expressed as

D(q) =
∑
e

||∇w|w=1.0
1

Ne

∑
i

qi(e)`(w ◦ Φ(xi), yi)||2

=
∑
e

|| 1

Ne

∑
i

qi(e)(ŷi − yi)Φ(xi)||2

= || 1∑′
i q
′
i

∑
i

qi(ŷi − yi)Φ(xi)||2 + || 1∑′
i 1− q′i

∑
i

(1− qi)(ŷi − yi)Φ(xi)||2

= ||
∑
i qiŷiΦ(xi)∑

i′ qi′
−
∑
i qiyiΦ(xi)∑

i′ qi′
||2 + ||

∑
i(1− qi)ŷiΦ(xi)∑

i′ 1− qi′
−
∑
i(1− qi)yiΦ(xi)∑

i′ 1− qi′
||2.

(4)

Now consider that the space of Φ(X) is discretized into disjoint bins b over its support, using zi,b ∈
{0, 1} to indicate whether example i falls into bin b according to its mapping Φ(xi). Thus we have

D(q) =
∑
b

(||
∑
i zi,bqiŷiΦ(xi)∑

i′ zi,bqi′
−
∑
i zi,bqiyiΦ(xi)∑

i′ zi,bqi′
||2 + ||

∑
i zi,b(1− qi)ŷiΦ(xi)∑

i′ zi,b(1− qi′)
−
∑
i zi,b(1− qi)yiΦ(xi)∑

i′ zi,b(1− qi′)
||2)

(5)

The important point is that within a bin, all examples have roughly the same Φ(xi) value, and the
same value for ŷi as well. So denoting K(1)

b :=
∑

i zi,bqiŷiΦ(xi)∑
i′ zi,bqi′

and K(2)
b :=

∑
i zi,b(1−qi)ŷiΦ(xi)∑

i′ zi,b(1−qi′ ) as
the relevant constant within-bin summations, we have the following objective to be maximized by
EIIL:

D(q) =
∑
b

(||K(1)
b −

∑
i zi,bqiyiΦ(xi)∑

i′ zi,bqi′
||2 + ||K(2)

b −
∑
i zi,b(1− qi)yiΦ(xi)∑

i′ zi,b(1− qi′)
||2.

One way to maximize this is to assign all yi = 1 values to environment 1 (qi = 1 for these examples)
and all yi = 0 to the other environment (qi = 0). We can show this is maximized by considering all
of the examples except the i-th one have been assigned this way, and then that the loss is maximized
by assigneing the i-th example according to this rule.

Now we want to show that the same assignment maximially violates the invariance principle (show-
ing that this soft EIIL solution provides maximal non-invariance). Intuitively within each bin the
difference between E[y|e = 1] and E[y|e = 2] is maximized (within the bin) if one of these ex-
pected label distributions is 1 while the other is 0. This can be achieved by assigning all the yi = 1
values to the first environment and the yi = 0 values to the second.

Thus a global optimum for the relaxed version of EIIL (using the IRMv1 regularizer) also maximally
violates the invariance principle.
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