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Abstract

Causal models are crucial for understanding complex systems and identifying
causal relationships among variables. Even though causal models are extremely
popular, conditional probability calculation of formulas involving interventions
pose significant challenges. In case of Causal Bayesian Networks (CBNs), Pearl
assumes autonomy of mechanisms that determine interventions to calculate a
range of probabilities. We show that by making simple yet often realistic inde-
pendence assumptions, it is possible to uniquely estimate the probability of an
interventional formula (including the well-studied notions of probability of suffi-
ciency and necessity). We discuss when these assumptions are appropriate. Im-
portantly, in many cases of interest, when the assumptions are appropriate, these
probability estimates can be evaluated using observational data, which carries im-
mense significance in scenarios where conducting experiments is impractical or
unfeasible.

1 Introduction

Causal models play a pivotal role in elucidating the causal relationships among variables. These
models facilitate a principled approach to understanding how various factors interact and influ-
ence each other in complex systems. For instance, in epidemiology, causal models often help us
understand the relationship between lifestyle choices and health outcomes (Greenland, Pearl, and
Robins 1999); and in economics, they help to analyze the impact of policy changes on market dy-
namics (Hicks 1979). These examples underscore the versatility and utility of causal models for
providing a formal representation of system variables.

Interventions and conditioning are the most fundamental procedures in the application of causal
models, useful to examine and analyze causal mechanisms. For example, interventions help ex-
plain the outcome of complex ML systems (Galhotra, Pradhan, and Salimi 2021); and in AI-driven
healthcare diagnostics, it is crucial to discern the effect of a particular intervention (like a change in
treatment protocol) on patient outcomes (Greenland 1999).

Despite their utility, calculating the probabilities related to interventions and conditioning in tandem
presents significant challenges. Indeed, it is not even clear what the semantics of queries involving
counterfactuals is. Work in the AI literature has focused on two types of models: functional causal
models1 and causal Bayesian networks (Pearl 2000). Both are typically described using directed
acyclic graphs, where each node is associated with a variable. In a causal model, with each variable
Y associated with a non-root node, there is a deterministic (structural) equation, that gives the value
of Y as a function of the values of its parents; there is also a probability on the values of root nodes.
In a CBN, like in a Bayesian network, each variable Y is associated with a conditional probability

1Unless specified, in this paper, “causal models” refer to “functional causal models”.
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table (cpt), that for each setting of the parents of Y , gives the probability of Y conditional on that
setting. In a functional causal model, it is actually straightforward to determine the conditional
probability of formulas involving interventions. In a CBN, this is far from true. Indeed, recent work
of Beckers (2023) has shown that an approach given by Pearl (2000) to calculate these probabilities
in a CBN is incorrect. 2 Pearl also calculates probabilities in a CBN by implicitly reducing the CBN
to a family of functional causal models (see, e.g., (Pearl 2000, Theorem 9.2.10)), but he does not
give an explicit reduction, nor does he give a formal definition of the probability of a formula in a
CBN. Here, we do both. Using this approach leads to formulas having a range of probabilities in a
CBN, whereas in a functional causal model, their probability is unique.

But we take an additional significant step. Pearl assumes that mechanisms that determine how inter-
ventions work (which are given by the cpts in the case of CBNs and the structural equations in the
case of causal models) are autonomous: as Pearl puts it, “external changes affecting one equation
do not imply changes to the others” (Pearl 2000, p. 28). We model this autonomy formally by
taking the equations to be independent of each other, in an appropriate space. As shown recently by
Richardson, Peters, and Halpern (2024), taking the equations that characterize different variables to
be independent is a necessary and sufficient condition for reproducing all the (conditional) indepen-
dencies in the underlying Bayesian network, as determined by d-separation (Pearl 1988). Thus, this
independence seems like a natural and critical assumption to get CBNs and causal models to work
as we would expect.

Here we assume that, not only are the equations that define different variables independent, but
also the equations that give the values of a variable for different settings of its parents. We never
need to consider the values of a variable for different settings of its parents in a standard Bayesian
network, but this is necessary to determine the probability of a formula involving interventions, such
as X = 0 ∧ Y = 0 ∧ [X ← 1](Y = 1) (X and Y have value 0, but if X is set to 1, Y gets value
1). Taking these latter equations to be independent is not always appropriate;3 For example, there
may be a latent exogenous variable that affects the value of Y for different settings of Y ’s parents.
But if the parents of Y (including exogenous variables) are all observable, and screen Y off from
the effects of all other variables, then the independence assumption seems appropriate.

Making these independence assumptions has significant benefits. For one thing, it allows us to
uniquely identify the probability of queries in a CBN; rather than getting a range of values, we
get a unique value. Moreover, for many formulas of interest (including the probability of necessity
and probability of sufficiency (Pearl 2000), we can compute the probability by considering only
conditional probabilities involving only a subset of endogenous and exogenous variables, which do
not involve interventions. This means that these probabilities can be estimated from observational
data, without requiring involving controlled experiments. This can have huge implications in settings
where such experimental data is not available but the exogenous variables can be observed.

The rest of this paper is organized as follows. Section 2 reviews the formalism of causal models.
Section 3 gives semantics to formulas in Causal Bayesian Networks (CBNs) and Section 4 shows
that any CBN can be converted to a compatible causal model that satisfies the independence assump-
tions that we are interested in. We show how counterfactual probabilities of necessity and sufficiency
can be simplified and calculated in the appendix.

2Pearl (2000)[Theorem 7.1.7] provides a (correct) three-step procedure for calculating counterfactual proba-
bilities in a causal model. But then on p. 220, Pearl says that the same procedure works for CBNs. Specifically,
he says “counterfactual probabilities p(Yx = y | e) can still be evaluated using the three steps (abduction,
action, and prediction) of Theorem 7.1.7. In the abduction phase, we condition the prior probability p(u) of
the root nodes on the evidence available, e, and so obtain p(u | e). In the action phase, we delete the arrows
entering variables in set X and instantiate their values to X = x. Finally, in the prediction phase, we compute
the probability of Y = y resulting from the updated manipulated network.” As Beckers shows, this is incorrect.
Here’s a trivial counterexample. Suppose that we have a simple causal model with one exogenous variable U ,
which is the parent of an endogenous variable Y , which in turn in is the parent of an endogenous variable X .
All variables are binary. U = 1 with probability 1. Y = U , and if Y = 1, then X = 0 with probability 1/2 and
X = 1 with probability 1/2. Now consider p(X = 1 | X = 1). Applying Pearl’s procedure, the probability of
U = 1 continues to be 1 (no amount of conditioning will change that). Since there are no interventions, Y = 1
with probability 1, and X = 1 with probability 1/2. That is, p(X = 1 | X = 1) = 1/2 according to Pearl’s
procedure. But this is clearly incorrect. Beckers provides a more general counterexample, and shows that the
problem is not fixable in any obvious way.

3We thank Elias Bareinboim and Scott Muller for stressing this point.
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2 Causal Models and CBNs

In a (functional) causal model (also called a structural equations model), the world is assumed to
be described in terms of variables and their values. Some variables may have a causal influence
on others. This influence is modeled by a set of structural equations. It is conceptually useful to
split the variables into two sets: the exogenous variables, whose values are determined by factors
outside the model, and the endogenous variables, whose values are ultimately determined by the
exogenous variables. In some settings, exogenous variables can be observed; but they can never
be intervened upon, as (by assumption) their values are determined by factors outside the model.
Note that exogenous variables may involve latent factors that are not observable, and may even be
unknown. For example, in an agricultural setting, we could have endogenous variables that describe
crop produce, amount of fertilizers used, water consumption, and so on, and exogenous variables
that describe weather conditions (which cannot be modified, but can be observed) and some latent
factors, like the activity level of pollinators (which cannot be observed or measured). The structural
equations describe how the values of endogenous variables are determined (e.g., how the water
consumption depends on the weather conditions and the amount of fertilizer used).

Formally, a causal model M is a pair (S,F), where S is a signature, which explicitly lists the
endogenous and exogenous variables and characterizes their possible values, and F defines a set
of modifiable structural equations, relating the values of the variables. A signature S is a tuple
(U ,V,R), where U is a set of exogenous variables, V is a set of endogenous variables, and R
associates with every variable Y ∈ U ∪V a nonempty setR(Y ) of possible values for Y (that is, the
set of values over which Y ranges). For simplicity, we assume that V is finite, as isR(Y ) for every
endogenous variable Y ∈ V . F associates with each endogenous variableX ∈ V a function denoted
FX such that FX : (×U∈UR(U))× (×Y ∈V−{X}R(Y ))→ R(X). This mathematical notation just
makes precise the fact that FX determines the value of X , given the values of all the other variables
in U ∪ V .

The structural equations define what happens in the presence of external interventions. Setting the
value of some variableX to x in a causal modelM = (S,F) results in a new causal model, denoted
MX←x, which is identical to M , except that the equation for X in F is replaced by X = x.

Following most of the literature, we restrict attention here to what are called recursive (or acyclic)
models. In such models, there is a total ordering≺ of the endogenous variables such that ifX ≺ Y ,
then X is not causally influenced by Y , that is, FX(. . . , y, . . .) = FX(. . . , y′, . . .) for all y, y′ ∈
R(Y ). If X ≺ Y , then the value of X may affect the value of Y , but the value of Y cannot affect
the value of X . It should be clear that if M is an acyclic causal model, then given a context, that
is, a setting ~u for the exogenous variables in U , there is a unique solution for all the equations. We
simply solve for the variables in the order given by ≺.

A recursive causal model can be described by a dag (directed acyclic graph) whose nodes are labeled
by variables, and there is an edge from X to Y if X ≺ Y . We can assume without loss of generality
that the equation for Y involves only the parents of Y in the dag. The roots of the dag are labeled by
exogenous variables or endogenous variables with no parents; all the remaining nodes are labeled
by endogenous variables.4

A probabilistic (functional) causal model is a pair (M,Pr) consisting of a causal model M and a
probability Pr on the contexts of M . In the rest of this paper, when we refer to a “causal model”,
we mean a probabilistic functional causal model, unless we explicitly say otherwise.

A causal Bayesian network (CBN) is a tuple M = (S,P) described by a signature S, just like a
causal model, and a collection P of conditional probability tables (cpts), one for each (endogenous
and exogenous) variable.5 For this paper, we focus on recursive CBNs that can be characterized by
a dag, where there is a bijection between the nodes and the (exogenous and endogenous) variables.
The cpt for a variable X quantifies the effects of the parents of X on X . For example, if the parents
of X are Y and Z and all variables are binary, then the cpt for X would have entries for all j, k ∈
{0, 1}2, where the entry for (j, k) describes{Pr(X = 0 | Y = j, Z = k). (There is no need to have

4Note that the equation for an endogenous variable X with no parents must be a constant function; e.g.,
FX = 3. In the model MX←x that results from M after intervening on X , X is an endogenous variable with
no parents.

5Some authors (e.g., Pearl (2000) seem to assume that CBNs do not include exogenous variables. We find
it useful to allow them.
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an explicit entry for P (X = 1 | Y = j∩Z = k), since this is just 1−P (X = 0 | Y = j∩Z = k).)
The cpt for a root of the dag is just an unconditional probability, since a root has no parents.

Just as for causal models, we can also perform interventions in a CBN: intervening to set the value
of some variable X to x in a CBN M results in a new CBN, denoted MX←x, which is identical to
M , except that now X has no parents; the cpt for X just gives X value x with probability 1.

Note that we typically use the letter M to refer to both non-probabilistic causal models and CBNs,
while we use Pr to refer to the probability on contexts in a probabilistic causal model. We use P to
refer to the probability in a cpt. It is also worth noting that a causal model can be viewed as a CBN;
the equation Y = F (~x) can be identified with the entry P (Y = F (~x)) | ~X = ~x) = 1 in a cpt.

3 Giving semantics to formulas in CBNs

3.1 The problem

Consider the following (standard) language for reasoning about causality: Given a signature S =
(U ,V,R), a primitive event is a formula of the form X = x, for X ∈ V and x ∈ R(X). A
causal formula (over S) is one of the form [Y1 ← y1, . . . , Yk ← yk]ϕ, where ϕ is a Boolean
combination of primitive events, Y1, . . . , Yk are distinct variables in V , and yi ∈ R(Yi). Such a
formula is abbreviated as [~Y ← ~y]ϕ. The special case where k = 0 is abbreviated as ϕ. Intuitively,
[Y1 ← y1, . . . , Yk ← yk]ϕ says that ϕ would hold if Yi were set to yi, for i = 1, . . . , k. L(S) is the
language consisting of Boolean combinations of causal formulas. We typically take the signature
S to be fixed, and just write L. It will be convenient to consider a slightly richer language, that
we denote L+(S). It extends L(S) by allowing primitive events U = u, where U ∈ U , and also
allowing interventions on exogenous variables.6

A pair (M,~u) consisting of a (non-probabilistic) causal modelM and a context ~u is called a (causal)
setting. A formula ϕ ∈ L+ is either true or false in a setting. We write (M,~u) |= ϕ if the causal
formula ϕ is true in the setting (M,~u). The |= relation is defined inductively. (M,~u) |= X = x if
the variable X has value x in the unique (since we are dealing with acyclic models) solution to the
equations inM in context ~u (that is, the unique vector of values for the endogenous variables that si-
multaneously satisfies all equations in M with the variables in U set to ~u). The truth of conjunctions
and negations is defined in the standard way. Finally, (M,~u) |= [~Y ← ~y]ϕ if (M~Y←~y, ~u~Y←~y) |= ϕ,

where (M~Y←~y is identical to M except that the equation for each endogenous variable Y ∈ ~Y is
replaced by Y = y∗, where y∗ ∈ R(Y ) is the value in ~y corresponding to Y , and ~u~Y←~y is identical

to ~u, except that for each exogenous variable U ∈ ~Y , the component of ~u corresponding to U is
replaced by u∗, where u∗ ∈ R(U) is the value in ~y corresponding to U . (We remark that in a CBN,
intervening to set an exogenous variable U to u∗ is just like any other intervention; we change the
cpt for U so that u∗ gets probability 1.)

In a probabilistic causal model (M,Pr), we can assign a probability to formulas in L by taking the
probability of a formula ϕ inM , denoted Pr(ϕ), to be Pr({~u : (M,~u) |= ϕ}). Thus, the probability
of ϕ in M is simply the probability of the set of contexts in which ϕ is true; we can view each
formula as corresponding to an event.

When we move to CBNs, things are not so straightforward. First, while we still have a probability on
contexts, each context determines a probability on states, assignments of values to variables. A state
clearly determines a truth value for formulas that do not involve interventions; call such formulas
simple formulas. Thus, we can compute the truth of a simple formula ϕ in a context, and then using
the probability of contexts, determine the probability of ϕ in a CBN M . But what about a causal
formula such as ψ = [~Y ← ~y]ϕ? Given a context ~u, we can determine the model M ′ = M~Y←~y .
In (M ′, ~u), ϕ is an event whose probability we can compute, as discussed above. We can (and will)
take this probability to be the probability of the formula ψ in (M,~u). But note that ψ does not
correspond to an event in M , although we assign it a probability.

6It is conceptually somewhat inconsistent to allow interventions on exogenous variables, since their value is
assumed to be determined by factors outside the model, but it is technically convenient for some of our results.
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It gets harder to evaluate probability if we add another conjunct ψ′ and consider the formula ψ ∧ψ′.
While we can use the procedure above to compute the probability of ψ and ψ′ individually in (M,~u),
what is the probability of the conjunction? Because such formulas do not correspond to events in
M , this is not obvious. We give one approach for defining the probability of a formula in a CBN by
making one key assumption, which can be viewed as a generalization of Pearl’s assumption. Pearl
assumes that mechanisms that determine how interventions work (which are the cpts in the case of
CBNs and the structural equations in the case of causal models) are autonomous; he takes that to
mean “it is conceivable to change one such relationship without changing the others” (Pearl 2000, p.
22). We go further and assume, roughly speaking, that they are (probabilistically) independent. In
a causal model, the mechanism for a given variable (specifically, the outcome after the intervention)
is an event, so we can talk about mechanisms being independent. While it is not an event in a CBN,
we nevertheless use the assumption that mechanisms are independent to guide how we determine
the probability of formulas in L in a CBN.

3.2 Independence of cpts and complete combinations of conditional events

To describe our approach, we must first make clear what we mean by mechanisms (cpts) being inde-
pendent. This has two components: the outcomes of cpts for different variables are independent, and
for the cpt for a single variable Y, the outcomes for different settings of the parents of Y are inde-
pendent. Indeed, all these outcomes are mutually independent. We believe that these independence
assumptions are quite reasonable and, capture the spirit of Bayesian networks. In fact, Richardson,
Peters, and Halpern (2024) show that the assumption that cpts involving different variables are in-
dependent is equivalent to the (conditional) independence assumptions made in Bayesian networks
(see Section 3.4 for further discussion).

In more detail, suppose that we have a variable Y1 in a CBN M with parents X1 . . . , Xm. We want
to consider events of the form Y1 = y1 | (X1 = x1, . . . , Xm = xm), which we read “Y1 = y1 given
that X1 = x1, . . . , and Xm = xm”. Such events have a probability, given by the cpts for Y1. We
call such an event a conditional event for CBN M . (Explicitly mentioning the CBN M is necessary,
since on the right-hand side of the conditional with left-hand side Y , we have all the parents of Y ;
what the parents are depends on M .) Roughly speaking, we identify such a conditional event with
the formula [X1 ← j1, . . . , Xm ← jm](Y1 = 1). This identification already hints at why we we
care about conditional events (and their independence). Suppose for simplicity that m = 1. To
determine the probability of a formula such as X1 = 0 ∧ Y1 = 0 ∧ [X1 ← 1](Y1 = 1) we need
to apply both the entry in the cpt for Y1 = 0 | X1 = 0 and the entry for Y1 = 1 | X = 1. They
each give a probability; the probability of the formula X1 = 0 ∧ Y1 = 0 ∧ [X1 ← 1](Y1 = 1) is the
probability that the conditional events Y1 = 0 | X1 = 0 and Y1 = 1 | X = 1 hold simultaneously.
Our independence assumption implies that this probability is the product of the probability that each
of them holds individually (which is given by the cpt for Y1).

This is an instance of independence within a cpt; we want the conditional events in a cpt for a variable
Y for different settings of the parents of Y to be independent. (Of course, conditional events for the
same setting of the parents, such as Y1 = 0 | X1 = 1 and Y1 = 1 | X1 = 1, are not independent.)
Independence for cpts of different variables is most easily explained by example: Suppose that Y2

has parents X1 and X3. Then we want the events Y1 = 0 | X1 = 0 and Y2 = 1 | (X1 = 0, X3 = 1)
to be independent. This independence assumption will be needed to compute the probability of
formulas such as [X1 ← 0](Y1 = 0) ∧ [X1 = 0, X3 = 1](Y2 = 1). As we said, we in fact want to
view all the relevant conditional events as mutually independent.7

Although we use the term “conditional event”, these are not events in a CBN. On the other hand, in
a causal model, there are corresponding notions that really do correspond to events. For example,
the conditional event Y1 = 0 | X1 = 1 corresponds to the set of contexts where the formula
[X1 ← 1](Y1 = 1) is true. Starting with a CBNM , we will be interested in causal models for which
the probability P (Y1 = 0 | X1 = 1), as given by the cpt for Y1 in M , is equal to the probability of
the corresponding event in the causal model.

Going back to CBNs, define a complete combination of conditional events (ccce) for M to be a
conjunction consisting of the choice of one conditional event for M for each endogenous variable

7This implicitly assumes that all exogenous variables are independent. We can easily drop this assumption
by assuming that rather than having a separate cpt for each exogenous variable, we just have a single cpt for
contexts. Nothing in the rest of the discussion would change if we did this.
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X and each setting of the parents of X . A fixed-context ccce (fccce) involves fewer conjuncts; we
have only conditional events where for all the exogenous parents U of a variable X , the value of U
is the same as its value in the conjunct determining the value of U (the examples should make clear
what this means).

Example 3.1. Consider the CBN M∗ with the following dag:
U X Y

,
where all variables are binary, and the cpts give the following probabilities: P (U = 0) = a,
P (X = 0 | U = 0) = b, P (X = 0 | U = 1) = c, P (Y = 0 | X = 0) = d, and P (Y = 0 | X =
1) = e. Then a ccce consists of 5 conjuncts:

• one of U = 0 and U = 1;

• one of X = 0 | U = 0 and X = 1 | U = 0;

• one of X = 0 | U = 1 and X = 1 | U = 1;

• one of Y = 0 | X = 0 and Y = 1 | X = 0; and

• one of Y = 0 | X = 1 and Y = 1 | X = 1.

An fccce consist of only 4 conjuncts; it has only one of the second and third conjuncts of a ccce.
In particular, if U = 0 is a conjunct of the fccce, then we have neither X = 0 | U = 1 nor
X = 1 | U = 1 as a conjunct; similarly, ifU = 1 is a conjunct, then we have neitherX = 0 | U = 0
nor X = 1 | U = 0 as a conjunct. (This is what we meant above by saying that each exogenous
parent U of X must have the same value as in conjunct that determines U ’s value.)

It is not hard to show that, in this case, there are 32 ccces and 16 fccces. Moreover, (in this example
and in general) each fccce is equivalent to a disjunction of ccces. The number of ccces and fccces
can be as high as doubly exponential (in the number of variables), each one involving exponentially
many choices. For example, if a variable Y has n parents, each of them binary, there are 2n possible
settings of the parents of Y , and we must choose one value of Y for each of these 2n settings, already
giving us 22n choices. It is easy to see that there is also a double-exponential upper bound.

If we think of a conditional event of the form Z = 1 | X = 0, Y = 0 as saying “if X were (set to)
0 and Y were (set to) 0, then Z would be 1”, then given a ccce and a formula ϕ ∈ L and context ~u,
we can determine if ϕ is true or false. We formalize this shortly. We can then take the probability
of ϕ to be the sum of the probabilities of the ccces that make ϕ true. The probability of a ccce is
determined by the corresponding entry of the cpt. Thus, if we further assume independence, we can
determine the probability of each ccce, and hence the probability of any formula ϕ. We now give
some informal examples of how this works, and then formalize the procedure in Section 3.3.
Example 3.2. In the CBN M∗ described in Example 3.1, there are two fccces where ϕ = X =
0 ∧ Y = 0 ∧ [X ← 1](Y = 1) is true: (a) U = 0 ∧ (X = 0 | U = 0) ∧ (Y = 0 | X = 0) ∧ (Y =
1 | X = 1); and (b) U = 1 ∧ (X = 0 | U = 1) ∧ (Y = 0 | X = 0) ∧ (Y = 1 | X = 1). Each
of these two fccces is the disjunction of two ccces, which extend the fccce by adding a fifth conjunct.
For example, for the first fccce, we can add either the conjunct X = 0 | U = 1 or the conjunct
X = 1 | U = 1. The total probability of these two fccces is abd(1− e) + (1− a)cd(1− e); this is
the probability of ϕ in M∗.

We give one more example of this calculation.
Example 3.3. Consider the model CBN M†, which differs from M∗ in that now U is also a parent
of Y ; the dag is shown below. M∗ and M† have the same cpts for U and X; the cpt of Y in M† is
P (Y = 0 | U = 0, X = 0) = f1, P (Y = 0 | U = 0, X = 1) = f2, P (Y = 0 | U = 1, X = 0) =
f3, P (Y = 0 | U = 1, X = 1) = f4.

U X
Y

Now there are 128 ccces, but only 16 fccces; the formula ϕ = X = 0∧Y = 0∧ [X ← 1](Y = 1) is
true in only two of these fccces: (a) U = 0∧ (X = 0 | U = 0)∧ (Y = 0 | (U = 0, X = 0))∧ (Y =
1 | (U = 0, X = 1)); and (b) U = 1∧)X = 0 | U = 1) ∧ (Y = 0 | (U = 1, X = 0)) ∧ (Y =
1 | (U = 1, X = 1)). It is easy to check that PrM†(ϕ) = abf1(1− f2) + (1− a)cf3(1− f4). The
calculation of the probability of ϕ is essentially the same in M∗ and M†.
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We denote by PrM (ϕ) the probability of a formula ϕ in a CBN or causal model M . (We provide a
formal definition of PrM (ϕ) for a CBN M at the end of Section 3.)

3.3 Giving semantics to formulas in CBNs

We already hinted in Examples 3.2 and 3.3 how we give semantics to formulas in CBNs. We now
formalize this.

The first step is to show that a ccce (resp., fccce) determines the truth of a formula in L+(S) (resp.,
L(S)) in a causal model. To make this precise, we need a few definitions. We take the type of a
CBN M = (S,P), where S = (U ,V,R) to consist of its signature S and, for each endogenous
variable, a list of its parents (which is essentially given by the dag associated with M , without the
cpts). A causal model M ′ = (S ′,F ′) has the same type as M if S ′ = (U ∪ U ′,V,R′), where U ′
is arbitrary, R′|U∪V = R, and F ′ is such that each endogenous variable X depends on the same
variables in U ∪ V according to F ′ as it does according to the type of M (but may also depend on
any subset of U ′).
Definition 3.4. For the conditional event Y = y | (X1 = x1, . . . , Xm = xm), let the corresponding
formula be [X1 ← x1, . . . , Xm ← xm](Y = y). (Note that the corresponding formula may be in
L+ −L, since some of the Xis may be exogneous.) Let ϕα ∈ L+(S), the formula corresponding to
the ccce α, be the conjunction of the formulas corresponding to the conditional events in α. We can
similarly define the formula corresponding to an fccce.

Example 3.5. In the model M† of Example 3.3, if α is the fccce U = 0∧ (X = 0 | U = 0)∧ (Y =
0 | (U = 0, X = 0)) ∧ (Y = 1 | (U = 0, X = 1)), then ϕα is U = 0 ∧ [U ← 0]X = 0 ∧ [U ←
0, X ← 0](Y = 0) ∧ [U ← 0, X ← 1](Y = 1).

Say that a formula ψ is valid with respect to a CBNM if (M ′, ~u) |= ψ for all causal settings (M ′, ~u),
where M ′ is a causal model with the same type as M . The following theorem makes precise the
sense in which a ccce determines whether or not an arbitrary formula is true.

Theorem 3.6. Given a CBN M = (S,P) and a ccce (resp., fccce) α, then for all formulas ψ ∈
L+(S) (resp., ψ ∈ L(S)) either ϕα ⇒ ψ is valid with respect to M or ϕα ⇒ ¬ψ is valid with
respect to M .

Proof: We show that if two causal models M1 and M2 have the same type as M and ~u1 and ~u2 are
contexts such that (M1, ~u1) |= ϕα and (M2, ~u2) |= ϕα, then for all formulas ψ ∈ L+(S) (resp.,
ψ ∈ L(S)), we have that

(M1, ~u1) |= ψ iff (M2, ~u2) |= ψ. (1)

The claimed result follows immediately. The details of the proof can be found in the appendix.

Based on this result, we can take the probability of a formula ϕ ∈ L+(S) in a CBN M to be
the probability of the ccces that imply it. To make this precise, given a CBN M , say that a
probabilistic causal model (M ′,Pr) is compatible with M if M ′ has the same type as M , and
the probability Pr is such that all the cpts in M get the right probability in M ′. More pre-
cisely, for each endogenous variable Y in M , if X1, . . . , Xk are the parents of Y in M , then
for each entry P (Y = y | X1 = x1, . . . , Xk = xk) = a in the cpt for Y , Pr is such that
the corresponding formula [X1 ← x1, . . . , Xk ← xk](Y = y) gets probability a. (M ′,Pr)
is i-compatible with M (the i stands for independence) if it is compatible with M and, in addi-
tion, Pr is such that the events described by the formulas corresponding to entries for cpts for
different variable (i.e. the set of contexts in M that make these formulas true) are independent,
as are the events described by the formulas corresponding to different entries for the cpt for a
given variable. Thus, for example, if (x′1, . . . , x

′
k) 6= (x1, . . . , xk), then we want the events de-

scribed by [X1 ← x1, . . . , Xk ← xk](Y = y) and [X1 ← x′1, . . . , Xk ← x′k](Y = y) to
be independent (these are different entries of the cpt for Y ); and if Y ′ 6= Y and has parents
X ′1, . . . , X

′
m in M , then we want the events described by [X1 ← x1, . . . , Xk ← xk](Y = y)

and [X ′1 ← x′1, . . . , Xm ← x′m](Y ′ = y′) to be independent (these are entries of cpts for different
variables).

Theorem 3.7. Given a CBN M and a formula ϕ ∈ L+(S), the probability of ϕ is the same in all
causal models M ′ i-compatible with M .
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Proof: It follows from Theorem 3.6 that the probability of ϕ is the sum of the probabilities of the
formulas ϕα for the ccces α such that ϕα ⇒ ϕ is valid. It is immediate that these formulas have the
same probability in all causal models i-compatible with M .

Formally, we take PrM (ϕ), the probability of ϕ in the CBN M , to be PrM ′(ϕ) for a causal model
M ′ i-compatible with M . By Theorem 3.7, it does not matter which causal model M ′ i-compatible
with M we consider. Note for future reference that if we consider only causal models compatible
with M , dropping the independence assumption, we would get a range of probabilities.

3.4 Discussion

Four points are worth making: First, note that this way of assigning probabilities in a CBNM always
results in the probability of a formula ϕ ∈ L+ being a sum of products of entries in the cpt. Thus,
we can in principle compute the probabilities of (conditional) events involving interventions from
observations of statistical frequencies (at least, as long as all settings of the parents of a variable in
the relevant entries of the cpt have positive probability).

Second, the number of ccces may make the computation of the probability of a formula in a CBN
seem unacceptably high. As the examples above shows, in practice, it is not so bad. For example,
we typically do not actually have to deal with ccces. For one thing, it follows from Theorem 3.6
that to compute the probability of ϕ ∈ L, it suffices to consider fccces. Moreover, when computing
PrM (ϕ) where ϕ involves an intervention of the form X ← x, we can ignore the entries in the
cpts involving X , and for variables for which X is a parent, we consider only entries in the cpts
where X = x. We can also take advantage of the structure of the formula whose probability we
are interested in computing to further simplify the computation, although the details are beyond the
scope of this paper.

Third, as mentioned above, a formula involving interventions does not correspond in an obvious
way to an event in a CBN, but it does correspond to an event in a (functional) causal model. The key
point is that in a causal model, a context not only determines a state; it determines a state for every
intervention. We can view a formula involving interventions as an event in a space whose elements
are functions from interventions to worlds. Since a context can be viewed this way, we can view a
formula involving interventions as an event in such a space. This makes conditioning on arbitrary
formulas in L+ (with positive probability) in causal models well defined. By way of contrast, in a
CBN, we can view a context as a function from interventions to distributions over worlds. Finally,
it is worth asking how reasonable is the assumption that cpts are independent, that is, considering
i-compatible causal models rather than just compatible causal models, which is what seems to have
been done elsewhere in the literature (see, e.g., (Balke and Pearl 1994; Tian and Pearl 2000)).

As we said, Richardson, Peters, and Halpern (2024) show that the assumption that cpts involv-
ing different variables are independent is equivalent to the (conditional) independence assumptions
made in Bayesian networks. More precisely, given a CBNM , letM ′ be the non-probabilistic causal
model constructed above. They show that if the probability Pr′ makes interventions on different
variables independent (i.e., if Pr′(~U, f1, . . . , fm) = Pr(~u) × PrY1(f1) × · · · × PrYm(fm), as in
our construction), then all the conditional independencies implied by d-separation hold in (M,Pr′)
(see (Pearl 1988) for the formal definition of d-separation and further discussion). Conversely, if
all the dependencies implied by d-separation hold in (M,Pr′), then Pr′ must make interventions on
different variables independent.

This result says nothing about making interventions for different settings of the parents of a single
variable independent. This is relevant only if we are interested in computing the probability of
formulas such asX = 0∧Y = 0∧[X ← 1](Y = 1), for which we need to consider (simultaneously)
the cpt for Y when X = 0 and when X = 1. As discussed earlier, independence is reasonable in
this case if we can observe all the parents of a variable Y , and thus screen off Y from the effects of
all other variables (and other settings of the parents). We cannot always assume this, but in many
realistic circumstances, we can. We give two general classes of examples where we can:

1. When debugging systems (including ml pipelines, database engines, or any general soft-
ware) and network failures, users have access to all parameters related to the code and the
execution environment (Fariha, Nath, and Meliou 2020; Kobayashi, Otomo, and Fukuda
2019; Galhotra, Fariha, Lourenço, Freire, Meliou, and Srivastava 2022). With this infor-
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mation, a causal graph over different blocks of code, its parameters, and other environment
variables like information about background processes can be constructed. This means we
can address queries like “Given that component A is faulty, with what probability would
repairing component B solve the problem” using our techniques.

2. Manufacturing pipelines across various industries, such as semiconductor fabrication, phar-
maceuticals, automobile assembly, and battery production, typically consist of a series of
interconnected stages. Each of these stages is equipped with several sensors designed to
monitor and measure critical environmental conditions that directly impact the production
process. These sensors collect data about variables such as temperature, humidity, pres-
sure, and other factors that can influence the quality, efficiency, and consistency of the final
product. For instance, in semiconductor fabrication, precise control of environmental con-
ditions like temperature and humidity is crucial to ensuring the integrity of the microchips
produced (Wu 2008). Similarly, in pharmaceutical manufacturing, sensors monitor param-
eters like pH levels and chemical concentrations to maintain the efficacy of the drugs being
produced. Thus, we can answer queries like “what is the probability that a temperature in-
crease of 3 degrees Celsius would result in a poor quality product, given that the humidity
is high?”.

Other potential applications of our framework include (a) modeling player performance in sports by
considering factors like injury, skill, and sports facilities, (b) urban planning scenarios to analyze the
impact of zoning laws, interest rates, and other factors on house prices, and (c) modeling agriculture
yield by considering variables like soil quality and weather conditions.

4 Converting a CBN to a (Probabilistic) Causal Model

Our semantics for formulas in CBNs reduced to considering their semantics in i-compatible causal
models. It would be useful to show explicitly that such i-compatible causal models exist and how to
construct them. That is the goal of this section. Balke and Pearl (1994) sketched how this could be
done. We largely follow and formalize their construction.

Starting with a CBN M , we want to construct an i-compatible probabilistic causal model (M ′,Pr′),
where M ′ has the same type as M . To do this, for each endogenous variable Y in M with parents
X1, . . . , Xn, we add a new exogenous variable UY ;R(UY ) consists of all functions fromR(X1)×
· · ·×R(Xn) toR(Y ). Balke and Pearl (1994) call such an exogenous variable a response function.
(Response functions, in turn, are closely related to the potential response variables introduced by
Rubin (1974).) We take UY to be a parent of Y (in addition to X1, . . . , Xn). We replace the cpt for
Y be the following equation for Y ; FY (x1, . . . , xn, f) = f(x1, . . . , xn), where f is the value of
UY . Since f is a function from R(X1)× · · · × R(Xn) to R(Y ), this indeed gives a value of Y , as
desired. Let Y1, . . . , Ym be the endogenous variables inM . We define the probability Pr′ onR(U)×
R(UY1

) × · · · × R(UYm) by taking Pr′(~u, f1, . . . fm) = Pr(~u) × Πi=1,...,m PrYi(fi), where PrYi
reproduces the probability of the cpt for Yi. Specifically, for an endogenous variable Y with parents
X1, . . . , Xn, PrY (f) = Π~x∈R(X1)×···×R(Xn) Pr(Y = f(x1, . . . , xn) | X1 = x1, . . . , Xn = xn).
This makes interventions for different settings ofX1, . . . , Xn independent, which is essentially what
we assumed in the previous section when defining the probability of formulas inL inM0, in addition
to making interventions on different variables independent and independent of the context in M . In
any case, it is easy to see that this gives a well-defined probability on R(U)×R(UY1

)×R(UYm),
the contexts in M ′. Moreover, M ′ is clearly a causal model with the same type as M that is
i-compatible with M .

We can easily modify this construction to get a family of causal models compatible with M , by
loosening the requirements on Pr′. While we do want the marginal of Pr′ on U to agree with the
marginal of Pr on U , and we want it to reproduce the probability of the cpt for each variable Yi (as
defined above), there are no further independence requirements. If we do that, we get the bounds
computed by Balke and Pearl (1994). The following example illustrates the impact of dropping the
independence assumptions.

Example 4.1. Consider the CBN M∗ from Example 3.1 again. Using the notation from that ex-
ample, suppose that a = 1 and b = d = 1/2. Independence guarantees that the set of ccces
that includes U = 0, X = 0 | U = 0, and Y = 0 | X = 0 has probability abd = 1/4.
But now consider a causal model (M∗∗,Pr∗∗) compatible with M∗ where the contexts are the
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same as in our construction, but the probability Pr∗∗ does not build in the independence assump-
tions of our construction. Recall that contexts in M∗∗ have the form (u, fX , fY ). Since we want
(M∗∗,Pr∗∗) to be compatible with M∗, we must have Pr∗∗({(u, fX , fU , fY ) : u = 0}) = 1,
Pr∗∗({(u, fX , fY ) : fX(0) = 0}) = 1/2, and Pr∗∗({(u, fX , fY ) : fY (0) = 0}) = 1/2, so that
Pr∗∗ agrees with the three cpts. But this still leaves a lot of flexibility. For example, we might have
Pr∗∗({(u, fX , fY ) : fX(0) = fY (0) = 0} = Pr∗∗({(u, fX , fY ) : fX(1) = fY (1) = 1} = 1/2
(so that Pr∗∗({(u, fX , fY ) : fX(0) = 0, fY (1) = 1}) = Pr∗∗({(u, fX , fY ) : fX(0) = 1, fY (1) =
0}) = 0). As shown in Example 3.2, PrM∗(X = 0 ∧ Y = 0 ∧ [X ← 1](Y = 1)) = 1/4. However,
it is easy to check that PrM∗∗(X = 0 ∧ Y = 0 ∧ [X ← 1](Y = 1)) = 1/2. (Tian and Pearl
(2000) give bounds on the range of probabilities for this formula, which is called the probability of
necessity; see also Section B and (Pearl 2000, Section 9.2).)

5 Computing counterfactual probabilities

In this section, we analyze counterfactual probabilities, introduced by Balke and Pearl (1994).
Counterfactual probabilities have been widely used in several domains, including psychology (Ho-
erl, McCormack, and Beck 2011), epidemiology (Greenland and Robins 1999), and political sci-
ence (Grynaviski 2013), to explain the effects on the outcome. More recently, they have proved
useful in machine learning to explain the output of ML models (Beckers 2022).

Two types of counterfactual formulas that have proved particularly useful are the probability of
necessity and the probability of sufficiency; we focus on them in this section. As discussed by
Pearl (2000), counterfactual analysis is particularly useful when it comes to understanding the im-
pact of a decision on the outcome. For example, we might be interested in the probability that an
outcome O would not have been favorable if A were not true. This captures the extent to which A
is a necessary cause of O. Similarly, we might be interested in whether A is sufficient for O: that is
if A were true, would O necessarily be true? We now review the formal definitions of these notions;
see (Pearl 2000) for more discussion.
Definition 5.1. Let X and Y be binary variables in a causal model or CBN M .

1. Probability of necessity of X for Y : PNX,Y
M = PrM ([X ← 0](Y = 0)|X = 1 ∧ Y = 1).

2. Probability of sufficiency ofX for Y : PSX,YM = PrM ([X ← 1](Y = 1) | X = 0∧Y = 0).

3. Probability of necessity and sufficiency of X for Y : PNSX,YM = PrM ([X ← 1](Y =
1) ∧ [X ← 0](Y = 0)).

Pearl (2000) gives examples showing that neither the probability of necessity nor the probability of
sufficiency in a CBN can be identified; we can just determine a range for these probabilities. But
with our independence assumptions, they can be identified, justifying our notation. Moreover, these
probabilities can be computed using only conditional probabilities of (singly) exponentially many
simple formulas (not involving interventions). Since these formulas do not involve interventions,
they can be estimated from observational data, without requiring involving controlled experiments.
Thus, our results and assumptions have significant practical implications.

Let PaX(Y ) consist of all the parents of Y other than X . For a set Z of variables, let TZ consist of
all possible settings of the variables in Z .
Theorem 5.2. If M is a CBN where Y is a child of X , then

(a) PNX,Y
M =

∑
cj
PaX (Y )

∈TPaX (Y )
PrM (PaX(Y ) = cj

PaX(Y )
| Y = 1 ∧X = 1)

PrM (Y = 0 | X = 0 ∧ PaX(Y ) = cj
PaX(Y )

);

(b) PSX,YM =
∑
cj
PaX (Y )

∈TPaX (Y )
PrM (PaX(Y ) = cj

PaX(Y )
| Y = 0 ∧X = 0)

PrM (Y = 1 | X = 1 ∧ PaX(Y ) = cj
PaX(Y )

);

(c) PNSX,YM = PSX,YM · PrM (X = 0 ∧ Y = 0) + PNX,Y
M · PrM (X = 1 ∧ Y = 1).

We defer the proof of the theorem to Section B.1 in the appendix, where further extensions are also
provided.
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A Proof of Theorem 3.6

Proof: As we said, we show that if two causal models M1 and M2 have the same type as M and ~u1

and ~u2 are contexts such that (M1, ~u1) |= ϕα and (M2, ~u2) |= ϕα, then for all formulas ψ ∈ L+(S)
(resp., ψ ∈ L(S)), we have that (1) (as defined in the main text) holds. The claimed result follows
immediately.

We give the proof in the case that α is a ccce and ψ ∈ L+(S). The modifications needed to deal
with the case that α is an fccce and ψ ∈ L(S) are straightforward and left to the reader. Since M
is acyclic, we can order the exogenous and endogenous variables topologically. Let X1, . . . , Xm

be such an ordering. We first prove by induction on j that, for all interventions ~Y ← ~y (including
the empty intervention) and xj ∈ R(Xj), (M1, ~u1) |= [~Y ← ~y](Xj = xj) iff (M2, ~u2) |= [~Y ←
~y](Xj = xj).

For the base case, X1 must be exogenous, and hence have no parents. If X1 is not one of the
variables in ~Y , then we must have (M1, ~u1) |= [~Y ← ~y](X1 = x1) iff (M1, ~u1) |= (X1 = x1), and
similarly for M2; since no variable in ~Y is a parent of X1, intervening on ~Y has no effect on X1.
Since (M1, ~u1) |= ϕα and (M2, ~u2) |= ϕα, M1 and M2 agree on the values of variables in U . Thus,
(M1, ~u1) |= (X1 = x1) iff (M2, ~u2) |= (X1 = x1). It follows that (M2, ~u2) |= [~Y ← ~y](X1 = x1).
(M2, ~u2) |= [~Y ← ~y](X1 = x1), as desired.

On the other hand, if X1 is one of the variables in ~Y (which can happen only if the formula is in
L+(S)), let x∗ be the value in ~y corresponding to X1. In that case, the formula [~Y ← ~y](X1 = x∗)

is valid with respect toM . It follows that (M1, ~u1) |= [~Y ← ~y](X1 = x1) iff x1 = x∗, and similarly
for (M2, ~u2). The desired result follows. This completes the proof for the base case.

Now suppose that we have proved the result for j < m. Let Z1, . . . , Zk be the parents of Xj+1

in M . Since X1, . . . , Xm is a topological sort, we must have {Z1, . . . , Zk} ⊆ {X1, . . . , Xj}. Let
z1, . . . , zk be values inR(Z1), . . . ,R(Zk), respectively, such that (M1, ~u1) |= [~Y ← ~y](Zh = zh),
for h = 1, . . . , k. By the induction hypothesis, (M2, ~u2) |= [~Y ← ~y](Zh = zh), for h = 1, . . . , k.
Moreover, it is easy to see that ([~Y ← ~y]ϕ ∧ [~Y ← ~y]ϕ′))⇔ [~Y ← ~y](ϕ ∧ ϕ′) is valid with respect
to M . Thus, (M1, ~u1) |= [~Y ← ~y](Z1 = z1 ∧ . . . Zk = zk) and similarly for (M2, ~u2). Moreover,
since Z1, . . . , Zk are the parents of Xj+1, it follows that (M1, ~u1) |= [~Y ← ~y](Xj+1 = xj+1

)
iff [Z1 = z1 ∧ . . . Zk = zk)](Xj+1 = xj+1

) is a conjunct of ϕα. Since (M1, ~u1) |= ϕα and
(M2, ~u2) |= ϕα, the desired result follows, completing the induction proof.

The argument that (M1, ~u1) |= [~Y ← ~y]ψ iff (M2, ~u2) |= [~Y ← ~y]ψ for arbitrary (simple) formulas
ψ now follows from the fact that (as we already observed) ([~Y ← ~y]ϕ ∧ [~Y ← ~y]ϕ′)) ⇔ [~Y ←
~y](ϕ ∧ ϕ′) is valid with respect to M , as are ([~Y ← ~y]ϕ ∨ [~Y ← ~y]ϕ′)) ⇔ [~Y ← ~y](ϕ ∨ ϕ′) and
[~Y ← ~y]¬ϕ⇔ ¬[~Y ← ~y]ϕ.

Finally, we can deal with Boolean combinations of causal formulas by a straightforward induction.
This completes the argument that (1) holds for all formulas in ψ ∈ L+(S).

B Computing counterfactual probabilities (Missing Proof and Extension)

B.1 Proof of Theorem 5.2

We prove the calculation for the probability of sufficiency, PSX,YM . Essentially the same argument
can be used to compute the probability of necessity, PNX,Y

M . Finally, for part (c), we use the repre-
sentation of PNSX,YM in terms of PSX,YM and PNX,Y

M given in (Pearl 2000, Lemma 9.2.6).

Proof of Theorem 5.2 (b). Let Z = U ∪V \ {X,Y }. TZ has 2n−2 settings, where n = |U ∪V|. For
a setting c ∈ TZ , let cZ be the setting of the variable Z in c.
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By definition,

PSX,YM =
PrM ((X = 0) ∧ (Y = 0) ∧ [X ← 1](Y = 1))

PrM ((X = 0) ∧ (Y = 0))
. (2)

Let the numerator (X = 0) ∧ (Y = 0) ∧ [X ← 1](Y = 1) be ψ. Then we have

PrM (ψ) =∑
c∈TZ PrM ((X = 0) ∧ (Y = 0) ∧ [X ← 1](Y = 1) ∧

∧
Z∈Z(Z = cZ)).

We next compute the probability of

ψc = (X = 0) ∧ (Y = 0) ∧ [X ← 1](Y = 1) ∧
∧
Z∈Z

(Z = cZ).

From Theorem 3.6, it follows that in all causal models M ′ compatible with M ,

PrM ′(ψc) =
∑

ϕα =⇒ ψc

PrM ′(ϕα).

Now ϕα =⇒ ψc holds whenever α contains the following events:

1. (X = 0 | Pa(X) = cPa(X))

2. (Y = 0 | X = 0, PaX(Y ) = cPaX(Y ))

3. (Y = 1 | X = 1, PaX(Y ) = cPaX(Y ))

4. (Z = cZ | Pa(Z) = cPa(Z)), for all Z ∈ Z .

Let Sc consist of all ccces that contain these four events, and let ϕSc be the conjunction of the
formulas corresponding to the events in Sc. Then by Theorem 3.6,

ϕc ⇔
∨
α∈Sc

ϕα.

Since the formulas ϕα for distinct ccces in Sc are mutually exclusive, we have that PrM ′(ψc) =
PrM ′(ϕS). Therefore,

PrM ′(ψ)
=
∑
c∈TZ

PrM ′(ϕc)

=
∑
c∈TZ

PrM ′(X = 0 ∧ Y = 0 ∧
∧
Z∈Z(Z = cZ) ∧ [X ← 1, PaX(Y )← cPaX(Y )](Y = 1))

=
∑

cPaX (Y )∈TPaX (Y )

PrM ′(X = 0 ∧ Y = 0 ∧ PaX(Y )← cPaX(Y ) ∧ [X ← 1, PaX(Y )← cPaX(Y )](Y = 1)).

If M ′ is i-compatible with M , then we can further conclude that∑
c∈TZ PrM ′(X = 0 ∧ Y = 0 ∧

∧
Z∈Z(Z = cZ) ∧ [X ← 1, PaX(Y )← cPaX(Y )](Y = 1))

=
∑
cPaX (Y )∈TPaX (Y )

PrM ′(X = 0 ∧ PaX(Y ) = cPaX(Y )) PrM ′(Y = 0 | X = 0 ∧ PaX(Y ) = cPaX(Y ))

PrM ′(Y = 1 | X = 1 ∧ PaX(Y ) = cPaX(Y ))
=
∑
cPaX (Y )∈TPaX (Y )

PrM ′(Y = 0 ∧X = 0 ∧ PaX(Y ) = cPaX(Y )] PrM ′ [Y = 1 | X = 1 ∧ PaX(Y ) = cPaX(Y )).

Since PrM ′(ψ) = PrM (ψ), substituting the expression for PrM (ψ) into (2), we get

PSM =

∑
cPaX (Y )∈TPaX (Y )

Pr(Y = 0 ∧X = 0 ∧ PaX(Y ) = cPaX(Y )) Pr(Y = 1 | X = 1 ∧ PaX(Y ) = cPaX(Y ))

Pr(X = 0 ∧ Y = 0)
,

as desired.
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We can extend Theorem 5.2 to the case where Y is any descendant of X (not necessarily a child
of X). In this case, the term involving Pa(Y ) would change to the set of the ancestors of Y at the
same level as X in the topological ordering of the variables. We can further extend Theorem 5.2
to arbitrary formulas ψ, where Pr(ψ) can be determined by calculating the probability of formulas
that do not involve interventions (although they may involve conditional probabilities), and thus
can be determined using only observational information. The key idea of the proof is to convert
ψ to a disjunction of conjunctions, where the disjuncts are mutually exclusive and have the form
ψi = ψi0 ∧

(∧
j∈{1,...,r} ψij

)
, where ψi0 =

(∧
j∈{1,...,s}(Zij = zij)

)
is a simple formula (with

no intervention), and ψij for j > 0 has the form [ ~Xj ← ~xj ](
∧
k∈{1,...,t} Yijk = yijk), where Yijk

is a descendant of ~Xj in M , so that we can apply the ideas in the proof of Theorem 5.2 to each
disjunct separately. In terms of complexity, we show that Pr(ψ) can be estimated in O(m · 2nr∗)
conditional probability calculations, where r∗ is the maximum number of conjuncts in a disjunction
ψi that involve at least one intervention, andm is the number of disjuncts in the DNF. Unfortunately,
for an arbitrary formula ψ, determining Pr(ψ) may involve doubly-exponentially many conditional
probabilities. We defer details to Section ?? in the appendix.

Theorem B.1. Given a CBNM = (S,P) and an arbitrary formilaψ, then Pr(ψ) can be determined
by taking the probability of formulas that do not involve interventions (although they may involve
conditional probabilities), and thus can be determined using only observational information.

We now show that we can calculate the probability of an arbitrary formula ψ in terms of conditional
probabilities that can be estimated from observational data. To prove this result, we first convert ψ
to an equivalent formula in a canonical form. Specifically, it has the form ψ1 ∨ · · · ∨ ψm, where the
ψis are mutually exclusive and each ψi is a conjunction of the form ψi0 ∧ · · · ∧ ψiri , where ψi0 is
a simple formula and for 1 ≤ j ≤ ri, ψij is a formula of the form [ ~Xj ← ~xj ](

∧
k∈{1,...,tij} Yijk =

yijk), and the interventions are all distinct. This conversion just involves standard propositional
reasoning and two properties which hold under the semantics described in Section 3. The first is
that [Y ← y]ϕ ∧ [Y ← y]ϕ′ is equivalent to [Y ← y](ϕ ∧ ϕ′). The second is that ¬[Y ← y]ϕ is
equivalent to [Y ← y]¬ϕ.

Ignore for now the requirements that the disjuncts be mutually exclusive, that all interventions be
distinct, and that there be no leading formulas involving interventions. Using standard propositional
reasoning, we can transform a formula ϕ to an equivalent formula in DNF, where the literals are
either simple formulas or intervention formulas (i.e., formulas of the form [X ← x]ϕ). Of course,
the disjuncts may not be mutually exclusive. Again, using straightforward propositional reasoning,
we can convert the formula to a DNF where the disjuncts are mutually exclusive. Rather than writing
out the tedious details, we give an example. Consider a formula of the form (ϕ1 ∧ ϕ2)∨ (ϕ3 ∧ ϕ4).
This is propositionally equivalent to

(ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4) ∨ (ϕ1 ∧ ϕ2 ∧ ¬ϕ3 ∧ ϕ4) ∨ (ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ¬ϕ4) ∨ (ϕ1 ∧ ϕ2 ∧ ¬ϕ3 ∧ ¬ϕ4)
∨(¬ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4) ∨ (ϕ1 ∧ ¬ϕ2 ∧ ϕ3 ∧ ϕ4) ∨ (¬ϕ1 ∧ ¬ϕ2 ∧ ϕ3 ∧ ϕ4).

We can now apply the two equivalences mentioned above to remove leading negations from inter-
vention formulas and to ensure that, in each disjunct, all interventions are distinct. These transfor-
mations maintain the fact that the disjuncts are mutually exclusive.

Since the disjuncts in ψ are mutually exclusive, the probability of ψ is the sum of the probabilities
of the disjuncts; that is, Pr(ψ) =

∑
i∈{1,...,m} Pr(ψi). To compute the probability of a disjunct ψi,

we first simplify it using the following two observations. First, if a formula involves an intervention
[X ← x] on some variable X such that X is also set to x in the formula, such as (X = x ∧ [X ←
x, Z ← z](Y = 1)), the intervention X ← x is redundant and can be dropped; for example, X =
0 ∧ [X ← 0, Z ← 1](Y = 1) is equivalent to X = 0 ∧ [Z ← 1](Y = 1). Second, if an intervention
formula does not contain a descendant of the intervened variables, such as ψ = [ ~X ← ~x](ψ1 ∧ ψ2),
where all variables in ψ1 are non-descendants of the variables in ~X , then the variables in ψ1 are not
affected by the intervention, so ψ1 can be pulled out of the scope of the intervention; that is, ψ is
equivalent to ψ1 ∧ [X ← x](ψ2). Using these observations, we remove all interventions that are
redundant and pull formulas involving only non-descendants of the intervened variables out of the
intervention formula.

14



After this simplification, without loss of generality, the disjunct ψi is a conjunction of formulas
ψi0 ∧

(∧
j∈{1,...,ri} ψij

)
, where ψi0 =

(∧
j∈{1,...,si}(Zij = zij)

)
is a simple formula (with no

intervention), and ψij for j > 0 has the form [ ~Xj ← ~xj ](
∧
k∈{1,...,tij} Yijk = yijk), where Yijk is

a descendant of some variable in ~Xj in M . The following theorem proves the result for ψi, which
completes the proof.

Theorem B.2. If M is a CBN and ψi = ψi0 ∧
(∧

j∈{1,...,ri} ψij

)
, where ψi contains no redundant

interventions, ψi0 =
(∧

j∈{1,...,si}(Zij = zij)
)

is a simple formula (with no interventions), and ψij

for j > 0 has the form [ ~Xj ← ~xj ](
∧
k∈{1,...,tij} Yijk = yijk), where Yijk is a descendant of some

variable in ~Xj in M , then Pr(ψi) can be computed by determining the probability of formulas that
do not involve an intervention.

Proof. The proof proceeds along lines very similar to the proof of Theorem 5.2.

Let Z̄ = ∪sij=1Zij , Z = U ∪ V \ Z̄ , and z̄ = {zij : j ∈ {1, . . . , si}}. TZ has 2|Z| settings. For a
setting c ∈ TZ , let cZ be the setting of the variable Z in c. We use PaA(Z) to denote A ∩ Pa(Z),
i.e., the set of parents of Z in A and z̄A to denote the values in z̄ for all variables in A. Then

PrM (ψi) =∑
c∈TZ

PrM

( ∧
j∈{1,...,si}

(Zij = zij) ∧

( ∧
j∈{1,...,ri}

[ ~Xj ← ~xj ](
∧

k∈{1,...,tij}
Yijk = yijk)

)
∧
∧
Z∈Z

(Z = cZ)

)
.

We next compute the probability of

ψic =

( ∧
j∈{1,...,si}

(Zij = zij)∧
( ∧
j∈{1,...,ri}

[ ~Xj ← ~xj ](
∧

k∈{1,...,tij}

Yijk = yijk)

)
∧
∧
Z∈Z

(Z = cZ)

)
.

From Theorem 3.6, it follows that in all causal models M ′ compatible with M ,

PrM ′(ψic) =
∑

ϕα =⇒ ψic

PrM ′(ϕα).

Now ϕα =⇒ ψic holds whenever α contains the following events:

1. (Zij = zij | Pa(Zij) = cPa(Zij)), for all j ∈ {1, . . . , si};

2. (Z = cZ | PaZ(Z) = cPaZ(Z), PaZ̄(Z) = z̄PaZ̄(Z)) , for all Z ∈ Z;

3. (X = cjX | Pa(X) = cjPa(X)), for all X ∈ X ′j , where X ′j consists of all descendants of the

intervened variables in ~Xj other than the variables in ~Xj and cj ∈ T ′j , the set of settings of
the variables in U ∪ V , where the following variables are fixed as follows:

(a) ~Xj = ~xj ,
(b) Yijk = yijk for all k ∈ {1, . . . , tij},
(c) Zik = zik for Zik /∈ ( ~Xj ∪ X ′j), k ∈ {1, . . . , si},
(d) Z = cZ for all Z ∈ Z and Z /∈ ( ~Xj ∪ X ′j).

Intuitively, T ′j captures all possible post-intervention settings of all variables that are descendants
of ~Xj , while fixing Yijks as yijk. By fixing the third set of events, (X = cjX |Pa(X) = cjPa(X))

for all X ∈ X ′j , we ensure that all events involving descendants of ~Xj are consistent with respect
to one of the post-intervention settings cj ∈ T ′j . These events represent the effects of interventions
in ~Xj ← ~xj on its descendants. For example, consider a causal graph as shown below and ψi =
[X1 ← 1, X3 ← 1](Y = 1).
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X1

X2 X3

Y

In this case, ~Xj = {X1 ← 1, X3 ← 1}. By the conditions mentioned above, α must contain one of
the two events ((Y = 1 | X2 = 0, X3 = 1) ∧ (X2 = 0 | X1 = 1)) or ((Y = 1 | X2 = 1, X3 =
1) ∧ (X2 = 1 | X1 = 1)), because T ′1 = {{X1 = 1, X2 = 0, X3 = 1, Y = 1}, {X1 = 1, X2 =
1, X3 = 1, Y = 1}}. This condition ensures that if X1 = 1 and X3 = 1, then ϕα implies Y = 1.
It is easy to see that if α does not contain either of these two events, then it must contain ((Y = 0 |
X2 = 0, X3 = 1) ∧ (X2 = 0 | X1 = 1)) or ((Y = 0 | X2 = 1, X3 = 1) ∧ (X2 = 1 | X1 = 1)), in
which case ϕα does not imply ψi.

Let Sc consist of all ccces that contain these events, and let ϕSc be the conjunction of the formulas
corresponding to the events in Sc. Thus,

ϕSc =

( ∧
j′∈{1,...,si}

[Pa(Zij′)← cPa(Zij′ )
](Zij′ = zij′)

)
∧
( ∧
Z∈Z

[PaZ(Z)← cPaZ(Z) ∧ PaZ̄(Z)← z̄PaZ̄(Z)](Z = cZ)

)
∧

∧
j∈{1,...,ri}

( ∨
cj∈T ′j

( ∧
X∈X ′j

[Pa(X)← cjPa(X)](X = cjX)

))
=

( ∧
j′∈{1,...,si}

[Pa(Zij′)← cPa(Zij′ )
](Zij′ = zij′)

)
∧
( ∧
Z∈Z

[PaZ(Z)← cPaZ(Z) ∧ PaZ̄(Z)← z̄PaZ̄(Z)](Z = cZ)

)
∧

( ∨
{cj∈T ′j : j∈{1,...,ri}}

( ∧
X∈X ′l , l∈{1,...,ri}

[Pa(X)← clPa(X)](X = clX)

))
.

Then by Theorem 3.6,
ϕSc ⇔

∨
α∈Sc

ϕα.

Since the formulas ϕα for distinct ccces in Sc are mutually exclusive, we have that PrM ′(ψic) =
PrM ′(ϕS). Therefore,

PrM ′(ψi)
=
∑
c∈TZ

PrM ′(ψic)

=
∑

c∈TZ ,
cj∈T ′j : j∈{1,...,ri}

PrM ′

( ∧
j′∈{1,...,si}

(Zij′ = zij′) ∧
∧
Z∈Z

(Z = cZ)

∧
∧

X∈X ′l , l∈{1,...,ri}
[Pa(X)← clPa(X)](X = clX)

)
.

We can further simplify this expression. Specifically, we can get rid of [Pa(X) ← cjPa(X)](X =

cjX) for all descendants X of some Yijk with k ∈ {1, . . . , tij} and j ∈ {1, . . . , si}. We leave the
details to the reader. The expression above may be infeasible for some combinations of settings
c ∈ TZ and cl for all l ∈ {1, . . . , ri}. For example [X ← 1](Y = 0) ∧ [X ← 1](Y = 1) has
zero probability. Furthermore, certain formulas in

∧
X∈X ′l ,l∈{1,...,ri}

[Pa(X) ← clPa(X)](X = clX)

may be duplicates, and some interventions may be redundant. We need to drop the duplicates and
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redundant interventions before further simplifying the expression. For ease of exposition, we assume
that the expression is feasible, all conjuncts in

∧
X∈X ′l ,l∈{1,...,ri}

[Pa(X) ← clPa(X)](X = clX) are
distinct, and all interventions are non-redundant.

If M ′ is i-compatible with M , then we can further conclude that

PrM ′(ψi)

=
∑

c∈TZ ,
cj∈T ′j :j∈{1,...,ri}

(
PrM ′

( ∧
j′∈{1,...,si}

(Zij′ = zij′) ∧
∧
Z∈Z

(Z = cZ)

)

×PrM ′

( ∧
X∈X ′l ,

l∈{1,...,ri}

[Pa(X)← clPa(X)](X = clX)

))

=
∑

c∈TZ ,
cj∈T ′j :j∈{1,...,ri}

(
PrM ′

( ∧
j′∈{1,...,si}

(Zij′ = zij′) ∧
∧
Z∈Z

(Z = cZ)

)

∏
X∈X ′l ,

l∈{1,...,ri}

PrM ′(X = clX | Pa(X)← clPa(X))

)
.

Since PrM ′(ψi) = PrM (ψi), we get the desired result.

In terms of complexity, each intervention ~Xj ← ~xj requires at most 2n different settings in the
set T ′j . Therefore, the expression above for PrM (ψi) has O(2n(ri+1)) setting combinations in the
summation andO(nri+1) conditional probability calculations for each such setting. This shows that
an arbitrary formula ψ can be evaluated in terms of O(m(nr∗+ 1)2n(r∗+1)) conditional probability
calculations, where r∗ is the maximum number of conjuncts in a disjunction ψi that involve at least
one intervention, and m is the number of disjuncts in the DNF.
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curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer:[NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.
• Including this information in the supplemental material is fine, but if the main contri-

bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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