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Abstract 

To date, o v er 40 epigenetic and 300 epitranscriptomic modifications ha v e been identified. Ho w e v er, current short-read sequencing-based e x- 
perimental methods can detect < 10% of these modifications. Integrating long-read sequencing technologies with advanced computational 
approaches, including statistical analysis and machine learning, offers a promising new frontier to address this challenge. While supervised 
machine learning methods ha v e achie v ed some success, their usefulness is restricted to a limited number of w ell-characteriz ed modifications. 
Here, we introduce Modena, an inno v ativ e unsupervised learning approach utilizing long-read nanopore sequencing capable of detecting a broad 
range of modifications. Modena outperformed other methods in five out of six benchmark datasets, in some cases by a wide margin, while being 
equally competitive with the second best method on one dataset. Uniquely, Modena also demonstrates consistent accuracy on a DNA dataset, 
distinguishing it from other approaches. A k e y feature of Modena is its use of ‘dynamic thresholding’, an approach based on 1D score-clustering. 
This methodology differs substantially from the traditional statistics-based ‘hard-thresholds.’ We show that this approach is not limited to Mod- 
ena but has broader applicability . Specifically , when combined with tw o e xisting algorithms, ‘dynamic thresholding’ significantly enhances their 
performance, resulting in up to a threefold improvement in F1-scores. 
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Introduction 

Over the past few decades, it has become increasingly clear
that epigenetic and epitranscriptomic modifications are cru-
cial in regulating a wide range of functions across all forms
of life. In particular, over 40 types of DNA ( 1 ,2 ) and > 300
types of RNA modifications ( 3 ) have been reported. These
modifications affect major biological processes, including
those responsible for transcription, pre-messenger RNA (pre-
mRNA) splicing, nuclear export, translation ( 4 ), cellular dif-
ferentiation ( 5 ,6 ), mRNA stability ( 7 ), immune cell biology
( 8 ), neuronal development and brain plasticity ( 9–11 ), de-
pression ( 12 ), embryonic development ( 13 ,14 ), viral lifecycle
( 15 ), inflammation ( 16 ), cardiovascular disease ( 17 ,18 ), can-
cer ( 9 , 19 , 20 ), aging ( 16 , 21 ) and others. 

Many experimental methods have been developed to detect
epigenetic / epitranscriptomic modifications. While short-read
sequencing coupled with antibody or chemically-based detec-
tion is extensively employed, these methods face significant
limitations, e.g. ( 22 ). For instance, the available repertoire of
antibodies and chemicals is quite restricted, allowing the de-
tection of < 10% of presently known RNA modifications us-
ing these approaches ( 23 ). Moreover, when employing differ-
ent antibodies, these methods can only identify one modifica-
tion at a time and often lack quantitative precision. Addition-
ally, the multiple ligations and extensive PCR amplification
utilized in short-read sequencing methods result in the loss of
information, impacting the accurate detection and quantifica-
tion of DNA modifications ( 24 ). 

An alternative to short-read sequencing is third generation
long-read sequencing. Pacific Biosciences’ Single Molecule
Real-Time sequencing (SMRT) and Oxford Nanopore Tech-
nologies’ nanopore sequencing are two long-read sequencing
methods. Although SMRT sequencing has proven successful
in detecting various epigenetic modifications (e.g. 4mC, 5mC,
5hmC, 6mA) ( 25 ), a primary drawback of this method is that
many modifications lack a substantial effect on polymerase
dynamics. Consequently, this diminishes the sensitivity of the
SMRT method in detecting these modifications ( 24 ). More-
over, in the case of RNA modifications, SMRT has been tested
only as a proof of concept ( 24 ,26 ). 

Nanopore sequencing, on the other hand, has the potential
to detect (in principle) all RNA / DNA modifications, which
makes it a promising alternative to short-read sequencing.
Namely, chemical modifications can change the current in-
tensity signals and / or dwell time compared to unmodified
nucleotides and downstream computational methods can de-
tect these changes. Indeed, since the original proof of concept
study ( 27 ), it has been shown that different DNA and RNA
modification types can be detected in this way. 

Existing computational methods, however, are focused on
detecting a few well-characterized and abundant modifica-
tions, such as 5mC or 6mA in DNA ( 28 ,29 ) or m 

6 A in RNA
( 30 ,33 ). This is a direct consequence of the inherent limi-
tations of the underlying supervised machine learning algo-
rithms. Examples include those based on Hidden Markov
models, e.g. ( 27 ,31 ), Recurrent and / or Convolutional Neu-
ral Networks, e.g. Megalodon (ONT), ( 28 , 29 , 32 , 33 ), and
Support Vector Machines ( 30 ). These and other supervised
learning algorithms require sufficiently large and high-quality
training datasets for each modification type ( 34 ). 

Given the vast number of potential modifications and the
aforementioned limitations of experimental methods, creat-
ing ample high-quality training datasets necessary for super- 
vised learning algorithms is extremely challenging ( 35 ). Con- 
sequently, supervised algorithms are limited in scope to a small 
number of well-characterized and abundant modifications.
Moreover, even when training examples are available, mod- 
els trained and tested in a specific setting (e.g. on a particu- 
lar organism or the same organism exposed to specific envi- 
ronmental conditions) may be error-prone and unreliable in 

other settings (e.g. the same organism exposed to different 
environmental conditions). This is a well-known problem of 
overfitting, which arises when training datasets are not repre- 
sentative of the deployment conditions ( 34 ). The complexity 
of biological systems and the vast repertoire of their responses 
to changes in environmental conditions creates an enormous 
variability of biological settings, which consequently repre- 
sents another considerable challenge for supervised learning 
algorithms ( 34 ). Moreover, due to their computational com- 
plexity, supervised algorithms are currently constrained to si- 
multaneously detect only one or two modification types ( 34 ).
Finally, supervised algorithms are even, in principle, unable to 

detect novel or rare modifications since they require training 
examples. Therefore, the simultaneous identification of a di- 
verse repertoire of genomic or transcriptomic modifications 
(including rare or novel types) remains an elusive goal for su- 
pervised learning algorithms. 

Unsupervised learning algorithms, on the other hand, can 

address all of these shortcomings, and the necessity for de- 
veloping such methods has been recently recognized ( 2 ). The 
trade-off is that unsupervised algorithms detect only the mod- 
ification site and not the modification type. Crucially, this lim- 
itation can be addressed since it is well-known that most types 
of modifications occur within specific sequence or structural 
contexts ( 36 ). This fact can be leveraged to determine the 
modification type. For example, a ‘hit’ within the DRACH 

motif (where D = A / G / T, R = A / G, H = A / C / T) strongly
indicates m 

6 A. In summary, the main advantage of the unsu- 
pervised approach lies in its ability to identify a wide range 
(in principle all) of modifications simultaneously without the 
need for large and complex training datasets for each mod- 
ification type or biological setting. Additionally, since unsu- 
pervised methods do not require training datasets, they resist 
overfitting. 

Two types of unsupervised methods / algorithms in 

epigenetic / epitranscriptomic settings are signal-based and 

basecaller -error -based ( 23 ,37 ). Both align negative / control 
reads and native / test reads to a reference sequence. In the 
signal-based approaches, the process involves aggregating raw 

signal samples from different reads position-wise, separately 
for native / test and negative / control reads. This aggregation 

results in two distinct distributions, and the distance between 

these distributions is quantified by using statistical tests such 

as the well-known two-sample Kolmogorov–Smirnov test 
(KS-test for short, 38 ). Basecaller -error -based methods, on 

the other hand, leverage the fact that modified positions 
frequently show a higher incidence of ‘basecaller-errors’ (e.g.
mismatches). Thus, by comparing ‘basecaller-error profiles’ 
between negative / control and native / test samples at specific 
sites, the presence of modified nucleotides can be inferred. 

This study presents a signal-based unsupervised algorithm 

with distinctive computational novelties that set it apart from 

similar algorithms. We constructed twelve new benchmark 

datasets with unique advantages and demonstrated that our 



Nucleic Acids Research , 2025, Vol. 53, No. 1 3 

a  

o  

s  

r  

c

M

M

L  

e  

n  

n  

h  

t  

t  

s  

u  

r  

p  

M  

s  

b  

p  

i  

a  

n  

w  

c  

f  

a  

c  

h  

(  

n  

s  

p  

f
 

n  

i  

s  

w  

i  

(  

b  

−  

s  

h  

i  

t  

‘  

a  

s  

‘  

i  

s  

n  

s  

s  

w  

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/53/1/gkae1168/7919996 by A*STAR

 c/o N
U

S C
entral Library user on 14 February 2025
lgorithm, Modena, significantly outperforms different types
f unsupervised algorithms. We also show that Modena’s 1D
core-clustering approach, when integrated with other algo-
ithms, can substantially improve their performance, which
ould be of broader interest. 

aterials and methods 

odena algorithm 

ike other unsupervised algorithms used in the
pigenetic / epitranscriptomic setting, Modena (Figure 1;
ovel steps are shown in grey) requires two sets of data: a
egative / control set containing reads where modifications
ave been completely or partially removed (e.g. by in vitro
ranscription, gene knockout, gene knockdown, inhibitor
reatment) and a second set containing native / test reads. Both
ets of reads have to be basecalled and resquiggled. Here we
sed Guppy (v. 6.1.7) for basecalling and Tombo (v. 1.5) for
esquiggling. Note that basecalling and resquiggling are just
re-processing steps and not a key feature of our algorithm.
odena application ( https:// github.com/ sbidin/ modena )

upports both Tombo and f5c for resquiggling. Resquiggling
ins signal samples into discrete events and assigns them to
ositions on the reference sequence (Figure 1 A, Step 1). As
llustrated in Figure 1 A (Step 1), events of different reads
ligned to the same reference position often differ in the
umber of assigned signal samples. To ensure consistency,
e resample each event (sampling with replacement) to

ontain the same number of signal samples. In Figure 1 A,
or clarity, only 10 signal samples are assigned to each event
fter the resampling step (Step 2). In reality, each event
ontains 30 signal samples after Step 2. This number is a
yperparameter and was determined on the validation dataset
 Supplementary Figure S1 ). Note that hyperparameters (e.g.
umber of clusters in k-means clustering or sample size in this
etting) are user-defined variables which affect algorithm out-
uts but do not change its underlying principle / mathematical
ormulation. 

Next, all signal samples from negative / control and
ative / test reads assigned to the same position are combined

nto two distributions. In Step 3 (Figure 1 A), the distance
tatistic between these two distributions is computed position-
ise using the Kuiper test ( 39 ). This computation is performed

ndependently for each position (Figure 1 A, Step 3). In Step 4
Figure 1 B), these distance statistics / ‘scores’ from five neigh-
ouring positions (central position and adjacent positions −2,
1, +1 and +2) are summed to produce a single ‘distance-

um score’. This is an important step since many studies
ave shown that modifications affect signals of neighbour-

ng upstream and downstream positions ( 32 , 37 , 40–42 ). Note
hat this procedure (Step 4) was reported before ( 43 ). The
window-size’ of five was chosen both based on literature ( 43 ),
nd for its theoretic appeal. We also tested other ‘window-
izes’ (three and seven) on the DNA validation set, but a
window-size’ of five showed the best performance. Follow-
ng Step 4, each position is assigned a specific ‘distance-sum
core’, and all positions are ranked according to this score. Fi-
ally, a 1D clustering algorithm partitions the ‘distance-sum
cores’ into two clusters (Figure 1 B, Step 5). Positions as-
igned to the ‘higher-scores cluster’ are classified as positive,
hile those assigned to the ‘lower-scores cluster’ are classified

s negative. 
Novel steps in Modena 

Resampling (Step 2) 
The resampling step (Figure 1 A, Step 2) includes sampling
with the replacement of signal samples assigned to each event
at all positions. Each event contains 30 signal samples after
this step. This number is a hyperparameter and was deter-
mined on the validation dataset ( Supplementary Figure S1 ). 

Kuiper test (Step 3) 
Given a sample realization of size n , i.e. an n -tuple ( X 1 =
x 1 . . . X n = x n ) , where X i ∼ F are independent and identically
distributed random variables, the empirical distribution func-
tion is a stepwise function defined by 

F n ( x ) = 

1 

n 

∑ n 

i =1 
1 ( x i ≤ x ) (1)

where 1( x i ≤ x ) is an indicator function which equals 1 if
x i ≤ x , and is zero otherwise. Given two empirical distribu-
tion functions F n and G m 

, with sample sizes n and m, respec-
tively, the two-sample Kolmogorov–Smirnov test ( 38 ) statistic
is defined by 

KS = sup 

x 

∣∣F n ( x ) − G m 

( x ) 
∣∣ (2)

Kuiper test ( 39 ) is related to the Kolmogorov–Smirnov test,
and its statistic is defined by 

K = sup 

x 

{
F n ( x ) − G m 

( x ) 
} + sup 

x 

{
G m 

( x ) − F n ( x ) 
}

(3)

In this study, we used the Astropy implementation of the
Kuiper test and the Scipy implementation of the Kolmogorov–
Smirnov test. 

1D score-clustering (Step 5) 
The 1D clustering problem (sometimes called univariate clus-
tering) was first described and solved in ( 44 ). Given M -ordered
‘objects’ (represented by numbers 1 to M ), the goal is to find
an optimal partition of these ‘objects’ into K ‘homogenous
groups’ (note that we use terms groups and clusters as syn-
onyms). Each ‘object’ n ∈ { 1 . . . M } has an associated value
v n ∈ R and weight w n ∈ R . A partition P into K-groups (i.e.
clusters, where K ≤ M ) can be defined by a K-tuple ( x 1 , . . . x K )
where each x i ∈ { 1 , . . . M } represents the first element of
group i , where i ∈ { 1 , . . . K } and x i < x i +1 . Since the first el-
ement of the first group is always one, x 1 = 1 . Likewise, x K

equals the first element of the K-th group. Homogeneity of
a partition P , H(P ) is the sum of homogeneities of its K con-
stituent groups. For example, given a group G n comprising ob-
jects k to l ( k < l ) , one can define homogeneity by 

H ( G n ) = 

∑ l 

i = k 
w i ( v i − v̄ ( G n ) ) 

2 (4)

where v̄ ( G n ) is a weighted arithmetic mean of group G n (i.e. its
centroid): 

v̄ ( G n ) = 

∑ l 

i = k 
( w i · v i ) / 

(
l − k + 1 

)
. (5)

The homogeneity of the partition H(P) , is simply the sum of
homogeneities of its constituent groups: H(P) = 

∑ K 
n =1 H( G n ) .

Our case is a particular case of the above-described general
problem setting. Namely, in our setting ‘objects’ are scores,
where each score is formally defined by its rank i, and v i is sim-
ply the score value (as explained previously). All weights w i

are set to 1, and number of groups / clusters is two (i.e. K = 2) .

https://github.com/sbidin/modena
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
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Figure 1. Modena flo w chart. T he algorithm comprises fiv e steps. T he input to Modena (Step 1) consists of tw o sets of basecalled and resquiggled 
reads: one from a control dataset (e.g. in - vitro transcribed reads) and the other from a test dataset (e.g. native reads). Step 2 involves sampling with 
replacement from the signals of each e v ent at all positions. Each e v ent contains a variable number of signal samples before Step 2 and 30 signal 
samples afterwards (only 10 are shown here). In Step 3, these resampled signals are combined into two distributions, and the distance statistic (or 
distance for short) is computed using the Kuiper test. In Step 4, the distances of five neighbouring positions are summed to produce a single score. 
Finally, in Step 5, scores are clustered into two groups using the 1D-clustering algorithm. Note that all boxes in Step 4 (Figure 1 B, left) have the internal 
str uct ure shown in Figure 1 A. 
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Optimal partition in the 1D setting can be found by a dynamic
programming procedure. Several algorithms solve the above-
stated problem optimally but differ in time complexity. Here,
we used ‘kmeans1d’ Python library, which implements an al-
gorithm firstly described in ( 44 ) and further elaborated in ( 45 )
and has O ( kn ) time complexity (where k equals the number of
clusters). Note that the well-known k -means clustering algo-
rithm [i.e. more precisely, Lloyd’s algorithm ( 46 )] is not guar-
anteed to find the optimal solution and should, therefore, be
avoided in the 1D clustering setting. 

Definition of positi ves / negati ves in the test 
datasets 

In this study, all modified positions and positions within
the ±2 nucleotides distance from the modified position are
defined as positive. For example, if position 100 is modified,
then positions 98, 99, 100, 101 and 102 are defined as pos-
itive. We consider the reasons for using this definition to be
of general importance for benchmarking algorithms in the
unsupervised setting and, therefore discuss them in detail in 

Supplementary Discussion (S1) . 

Definition of correctly identified modifications 

A modified position is considered correctly identified if an al- 
gorithm predicts as positive at least one position within ±2 

nt distance from the truly modified position. For details, see 
Supplementary Discussion (S1) . 

Validation dataset 

Previously published CpG methylation of Esc heric hia coli 
K12 ER2925 strain ( 27 ) was used as a validation dataset for 
determining the sample size after resampling. The dataset was 
downloaded from the European Nucleotide Archive (acces- 
sion number PRJEB13021). 

Constructing ribosomal RNA benchmark datasets 

Recently published data ( 47 ) comprising ribosomal RNA 

(rRNA) of E. coli (16S and 23S subunits) and S. cerevisiae (18S 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
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nd 25S subunits) was used to generate the first benchmark
ataset. Each ribosomal subunit dataset contains two subsets:
ne composed of native / test reads and a second consisting
f negative / control reads. Negative / control reads have been
enerated by in vitro transcription, which removed all mod-
fications. The original rRNA dataset ( 47 ) was downloaded
rom BioProject under accession number PRJNA634693. 

ample structure 
o benchmark five selected algorithms, we generated 10 in-
ependent samples from the native / test and 10 independent
amples from the negative / control datasets, each consisting
f eight subsamples with approximately uniform coverage-
epths of 10, 50, 75, 100, 200, 500, 1000 and 2000. Since
he total number of modifications per rRNA subunit was
elatively low (especially for the E. coli 16S subunit), we
ombined results (i.e. scores) from the four subunits into a
ingle subsample test dataset. This resulted in a total of 80
est datasets (10 samples × 8 coverage-depths). To achieve
pproximately uniform coverage-depth (for each subsample),
e used the procedure outlined by pseudocode shown below: 

for sample in (1 to 10) 
for subunit in (Ec 16S; Ec 23S; Sc 18S; Sc 25S): 

choose multifast5 directory 
sort reads by length descending 
current_set = empty 
curent_set_size = 0 

for cov_depth in (10 to 2000): 
while current_set_size < cov_depth: 

read = next longest read from sorted list 
if read_length > = 3 / 4 ref_seq_length 

add read to current_set 
increase current_set_size by one 

else 
discard the remaining reads 
choose another unused directory 
sort new reads by length descending 

subsample[sample,subunit,cov_depth] = current_set 

This code is run independently on both the negative / control
nd positive / test datasets. As an illustration, the coverage-
epths of E. coli 16S ( in vitro ) rRNA subunit for Sample 1
all coverage-depths) are shown in Supplementary Figure S2 . 

In addition, a recently published human 18S rRNA ( 48 ) was
sed to construct the second benchmark dataset. To achieve
he approximately uniform coverage-depth for each subsam-
le, we used the same procedure as above (the only difference
eing that there is only a single subunit). The subsamples with
overage-depths of 1000 and 2000 could not be constructed
ue to a limited number of reads covering at least 3 / 4 of the
ubunit length. For the same reason, there were insufficient
eads to construct more than one test sample. 

seudouridylation, 2 

′ -O-methylation and ‘other modifica-
ions’ datasets 

e constructed three additional benchmark datasets from
he E. coli / S. cerevisiae dataset. The first, ‘pseudouridy-
ation dataset’, was constructed by filtering out all non-
 modification sites (along with their ±2 nt neighbour-
oods). The second, ‘2 

′ -O-methylation dataset’, was con-
tructed by filtering out all non-Am / Gm / Cm / Um modifica-
ion sites (along with their ±2 nt neighbourhoods). The third
ubset (‘other-modifications dataset’) was constructed by fil-
tering out all ψ and all Am / Gm / Cm / Um modification sites
(along with their ±2 nt neighbourhoods), thus keeping only
non-pseudouridylation and non-2 

′ -O-methylation modifica-
tion sites. 

We also constructed three benchmark datasets (‘pseu-
douridylation dataset’, ‘2 

′ -O-methylation dataset’ and ‘other-
modifications’ dataset) from the human 18S rRNA dataset by
using the same procedures as above. 

Synthetic sequences with m 

6 A (‘curlcak es ’) 
benchmark dataset 

The third benchmark dataset was constructed from a previ-
ously published dataset ( 30 ), and consists of four ‘curlcakes’
(2329, 2543, 2678 and 2795 nt) which contain m 

6 A instead
of adenine. These sequences include all possible k-mers. Due
to the limited number of reads that cover at least 3 / 4 of the
‘curlcake’ length, only one sample with eight subsamples of
coverage-depths ranging from 10 to 2000 was constructed us-
ing the same procedure as above. Similar to the E. coli and S.
cerevisiae rRNA datasets, for a given-coverage-depth results
(i.e. scores) obtained from the four ‘curlcakes’ were combined.

Oligos with different modification types benchmark 

dataset 

The fourth benchmark dataset was taken from ( 37 ). This
dataset consists of three short oligos ( ∼ 100 nt each).
Each oligo contains three artificially induced modifications
at known positions: Oligo 1: three m 

6 A; Oligo 2: one I,
one m 

5 C, one � and Oligo 3: one m 

6 
2 A, one m 

1 G and one
Am. Again, the same procedure was used to construct three
independent samples, each containing eight subsamples with
uniform coverage-depths ranging from 10 to 2000. Note that
there were not enough reads to construct more than three in-
dependent samples. For benchmarking, all three oligos (i.e.
their scores) were combined (for a given coverage-depth) into
a single benchmark dataset, as was done for the rRNA and
the ‘curlcakes’ datasets. 

Stoichiometry dataset 

The stoichiometry dataset was constructed from the ‘oligos
dataset’, described above. For a given coverage-depth and
modified / unmodified condition, we mixed reads from the
three independent samples into a single dataset. Next, for
a given coverage-depth and condition = modified, we mixed
positive / negative reads in 25:75, 50:50 and 75:25 propor-
tions, and performed sampling with replacement 10 times. In
this way, for a given coverage-depth, and modified condition
we obtained 10 samples, each containing three subsamples
with modified to unmodified reads ratios of 25:75, 50:50 and
75:25. This was done for all coverage-depths, ranging from 20
to 2000. Note that we used a coverage-depth of 20 instead of
10 since 0.25 × 10 = 2.5, and at such small coverage-depths,
taking either two or three modified reads makes a substantial
difference. 

DNA dataset 

As a final dataset we used in-house generated DNA dataset
with methylated cytosines in the CpG context. The E. coli K12
MG1655 strain was grown in 1 × LB Broth Miller (1st Base,
Singapore) without antibiotics at 37 

◦C at 160 rpm shaking.
The genomic DNA of E. coli was extracted using PureLink Ge-
nomic DNA Mini Kit (Thermo Fisher, USA). To generate the

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
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Figure 2. Flo w chart of 1D score-clustering applied to Drummer and Epinano. As sho wn, the procedure consists of three steps. In Step 1, the standard 
Drummer or Epinano-DSE algorithm is run. In Step 2, the output scores (G-test statistic or z-score) from five neighbouring positions (positions −2, −1, 0, 
1 and 2) are summed into a single score. The output of Step 2 is a ranked list of scores. Next, in Step 3, 1D clustering algorithm is applied to the list of 
ranked scores, partitioning them into two clusters. Step 3 is crucial and is equivalent to Modena’s Step 5 in Figure 1 B. 
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negative control, modifications on the native genomic DNA
were wiped out using the REPLI-g Mini Kit (Qiagen, Ger-
many). Subsequently, the positive control was produced by
treating the whole genome amplified (WGA) sample (i.e. the
negative control) with M.SssI methyltransferase (NEB, USA),
as per the recommended conditions. Both negative and pos-
itive control reaction mixtures underwent the same purifica-
tion and treatment protocols from this point onwards. They
were digested with Proteinase K (Ambion, Thermo Fisher) at
50 

◦C for 30 min and purified by phenol-chloroform extrac-
tion, following standard protocols, using UltraPure™ Phe-
nol:Chloroform:Isoamyl Alcohol (Thermo Fisher). A single
chloroform extraction was performed to eliminate residual
phenol. The DNA was then precipitated using 2.5 volumes
of absolute ethanol and 10% volume of 3 M sodium acetate
(pH 5.5, Ambion), following standard protocols. It was sub-
sequently washed once with 70% ethanol. The resultant pellet
was dried for 5 min and slowly hydrated at 4 

◦C in 10 mM Tris
(pH 7.5) buffer for over 72 h. The resulting DNA fragments
were quantified and quality-checked using Qubit, Nanodrop,
and the Agilent Genomic DNA ScreenTape on a 2200 TapeS-
tation system. The resultant DNA was then prepared for the
library and sequenced on a MinION R9.4.1 (FLO-MIN106),
adhering to the official library prep ligation protocol for SQK-
LSK109 and standard sequencing parameters. 

Algorithms used for comparison 

We have selected four algorithms to benchmark our algo-
rithm. The selection was made based on the recent reviews
( 23 , 34 , 49 ) and according to the following criteria: 

1. Since many algorithms rely on the same underlying prin-
ciple (e.g. basecaller-errors), our goal was to encompass
various approaches. Therefore, we chose Drummer ( 50 )
and Epinano ( 51 ) as they are both based on basecaller-
errors, albeit utilizing different statistics. Nanocompore
( 37 ) is a signal-based algorithm relying on bivariate
Gaussian mixture model. Note that we used two dif-
ferent Epinano algorithms, which are both based on
the basecaller-error approach: Epinano Delta Sum Er-
ror (Epinano-DSE for short) and Epinano Linear Re- 
gression (Epinano-LR for short). 

2. Selected algorithms were published recently: Nanocom- 
pore and Epinano in 2021 and Drummer in 2022. This 
was done since newer algorithms generally show im- 
proved performance over the older algorithms; 

3. Selected algorithms were published in peer-reviewed sci- 
entific literature, have well-defined default thresholds,
and have been used in benchmark studies before. 

Modifying Drummer and Epinano algorithms with 

the 1D score-clustering approach 

Just like in the case of Modena, both Drummer and Epinano 

use two sets of input reads. One set is control / negative, while 
the other is native / test (Figure 2, novel steps are shown in 

grey). For each position, G-test statistic or z-score of ‘error 
differences’ between two samples are computed by Drummer 
and Epinano-DSE, respectively (Figure 2 , Step 1). Up until 
this point, these are just original Drummer and Epinano al- 
gorithms. Next, in Step 2 (Figure 2 ), G-test statistics (Drum- 
mer) or z-scores (Epinano-DSE) of five neighbouring positions 
(central position flanked by two neighbouring positions) are 
summed into a single score ( 43 ). This step improves the rank- 
ing of all algorithms used in this study which is important 
as good ranking is necessary for both ‘dynamic thresholding’ 
(used by Modena) and the commonly used ‘hard threshold’ 
approach (usually determined by pre-specified P -value cut-off) 
to be applied successfully . Finally , in the crucial Step 3 (analo- 
gous to Step 5 of Modena, shown in Figure 1 B), the 1D clus- 
tering algorithm partitions scores into two clusters. Positions 
assigned to a cluster with higher scores are classified as posi- 
tive, whereas positions assigned to a cluster with lower scores 
are classified as negative. 

Results and discussion 

Modena outperformed other algorithms on the two 

rRNA benchmark datasets 

E. coli and S. cerevisiae rRNA dataset 
As a first dataset we constructed a new benchmark dataset 
based on the recently published data comprising rRNA of 
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Figure 3. Average F1-scores of the five algorithms compared in this study on the E. coli and S. cerevisiae rRNA test dataset ( NC : Nanocompore; DRM : 
Drummer; E - DSE: Epinano Delta-Sum-Error; E - LR : Epinano Linear Regression). The E. coli and S. cerevisiae rRNA datasets comprise 10 independent 
samples. Each sample contains eight subsamples with co v erage-depths ranging from 10 to 2000. Different co v erage-depths w ere used since algorithm 

performance depends on the coverage-depth, as indicated by recent studies ( 37 , 50 ) and also confirmed by our results. Note that all positions are treated 
as either positive or negative since unsupervised algorithms, do not distinguish between different modification types. In line with this, we do not 
compute separate F1-scores for each modification type separately, but rather only one F1-score for the whole dataset (for the given coverage-depth). As 
shown, Modena outperformed other algorithms across all coverage-depths; in some cases by a large margin (e.g. at coverage-depths of 50, 75, 100 and 
200). The performance of all algorithms was very stable across the 10 independent samples ( Supplementary Data S1 ). Thus, although the figure above 
sho ws a v erage F1 -scores, the results are highly consistent across all Samples 1 –1 0. 
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. coli and S. cerevisiae ( 47 ) (see the ‘Materials and meth-
ds’ section). There are several advantages to the new bench-
ark dataset: (i) it contains 23 types of modifications, which is
ore than in previously used studies; (ii) these modifications

re well-characterized (high accuracy of ground-truth labels
s crucial for algorithm benchmarking; see Supplementary 
iscussion S2 ) and abundant ( 47 ); (iii) native molecules are
sed instead of artificial constructs; and (iv) we constructed
0 independent samples, each comprising eight subsamples
ith varying coverage-depths of 10, 50, 75, 100, 200, 500,
000 and 2000. This was done to facilitate comparison, as
lgorithm performance can be strongly affected by coverage-
epth ( 37 ,50 ). Additionally, test datasets with non-uniform
overage-depths would significantly complicate the interpre-
ation of results, as it would be more difficult to attribute
he algorithm’s good or poor performance to other factors,
uch as modification type. That said, all algorithms used in
 

this study (including Modena) also work with datasets with
non-uniform coverage-depths. 

To benchmark Modena, four algorithms were chosen for
comparison: Drummer ( 50 ), Nanocompore ( 37 ), Epinano
Distance-Sum-Error ( 51 ) and Epinano Linear-Regression ( 51 ).
Criteria for selecting algorithms for benchmarking Modena
are described in the ‘Materials and methods’ section. Since
the F1-scores of all algorithms across all 10 samples varied
only slightly, only the average F1-scores are shown in Figure 3 ,
while detailed results are provided in Supplementary Data S1 .
As shown, Modena outperformed all four algorithms across
all coverage-depths; in some cases, by a large margin (e.g. at
coverage-depths of 50, 75, 100 and 200). 

Human 18S rRNA 

Taking into account a recently published study ( 48 ) that
benchmarked different algorithms on the human 18S rRNA,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
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Figure 4. F1-scores of the five algorithms on the Homo sapiens 18S rRNA test dataset ( NC : Nanocompore; DRM : Drummer; E - DSE: Epinano 
Delta-Sum-Error; E - LR : Epinano Linear Regression). Due to the limited number of reads of sufficient length, only one sample with subsamples with 
co v erage-depths ranging from 10 to 500 was constructed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/53/1/gkae1168/7919996 by A*STAR

 c/o N
U

S C
entral Library user on 14 February 2025
as well as the availability of reliable ground-truth labels [i.e.
modified positions have been mapped with a highly accurate
method ( 52 )], we decided to use human 18S rRNA dataset
( 48 ) as an additional benchmark. Moreover, although the rel-
ative abundance of particular modifications in S. cerevisiae
(18S and 25S) and human 18S rRNA are similar, the modi-
fication stoichiometry levels in human 18S rRNA are gener-
ally quite lower. Namely, while ∼75% of modified positions
in S. cerevisiae rRNA have stoichiometry levels above 90%,
only about 58% of modified positions in human 18S rRNA
do ( 52 ,53 ), thus making the human 18S rRNA a more chal-
lenging benchmark dataset. Unlike in the previous case with
the S. cerevisiae and E. coli rRNA dataset, we could not con-
struct subsamples with coverage-depths above 200 due to a
limited number of reads covering at least 3 / 4 of the subunit
length. Thus, we loosened this criterion to 2 / 3. Note that even
with this lower value, we could not construct subsamples with
coverage-depths of 1000 and 2000. Additionally, there were
not enough reads to construct more than one sample. How-
ever, we do not see this as a serious limitation, as the variability
in F1-scores (as well as Recall, Precision, Accuracy and Speci-
ficity) varied only slightly across the 10 independent samples
in the E. coli and S. cerevisiae cases ( Supplementary Data S1 ).
Thus, we expect this to be the case here as well. As shown in
Figure 4 and Supplementary Data S2 , Modena again outper-
formed other algorithms across all available coverage-depths,
although its F1-scores were somewhat lower. This decrease
could be due to lower stoichiometry levels in human 18S
rRNA mentioned earlier. 

Algorithm performance depends on the 

modification type and sequence context 

The two most prevalent modification types in both E. coli / S.
cerevisiae and the human 18S rRNA datasets are 2 

′ -O-
methylation (Am / Gm / Cm / Um) and pseudouridylation ( ψ ).
In line with this, three additional datasets were constructed
from the E. coli / S. cerevisiae dataset as described in the ‘Ma- 
terials and methods’ section: (i) ‘pseudouridylation dataset’ 
containing only ψ , (ii) ‘2 

′ -O-methylation dataset’ contain- 
ing only Am, Gm, Cm and Um, and (iii) ‘other modifica- 
tions dataset’ containing all other modifications. These three 
datasets were analysed by the five algorithms, and the results 
are shown in Supplementary Table S1 . While Modena has 
the highest F1-scores on the ‘pseudouridylation’ and ‘2 

′ -O- 
methylation datasets’ (except for the coverage-depth of 10),
no algorithm can be singled out as the best on the ‘other- 
modifications dataset’. In particular, Modena has the high- 
est F1-scores at coverage-depths of 50, 100 and 1000; Drum- 
mer has the highest F1-scores at coverage-depths of 200 and 

500, while Epinano-LR has the highest F1-scores at coverage- 
depths of 10, 75 and 2000 (although difference to Modena 
at the coverage-depth of 2000 is negligible). As shown, F1- 
scores are generally lower for the ‘other modifications dataset’ 
than for the other two datasets ( Supplementary Table S1 ). It is 
important to emphasize that F1-scores are generally sensitive 
to the relative ratio of positives to negatives. Namely, lower- 
ing the ratio of positives to negatives will, in general, lower 
the F1-score ( 54 ,55 ). While this is not a problem when com- 
paring the performance of different algorithms on the same 
dataset (as done here), one should be cautious when compar- 
ing the performance of the same algorithm across different 
datasets. For example, the lower F1-scores of Modena, Drum- 
mer and Nanocompore on the ‘other-modifications dataset’,
compared to the ‘pseudouridylation dataset’, does not neces- 
sarily indicate that these algorithms are ‘worse’ at recognizing 
‘other modifications’, since their weaker performance on the 
‘other modifications dataset’ could potentially also be due to 

the lower ratio of positives to negatives in that dataset. 
Using the same procedure, we also generated datasets 

for pseudouridylation, 2 

′ -O-methylation and ‘other modifica- 
tions’ from the human 18S rRNA dataset (see the ‘Materials 
and methods’ section). As shown in Supplementary Table S2 ,
Modena again has the highest F1-scores on the pseudouridy- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
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Figure 5. F1-scores of the five algorithms on the artificial ‘curlcakes test dataset’ ( NC : Nanocompore; DRM : Drummer; E - DSE: Epinano Delta-Sum-Error; 
E - LR : Epinano Linear Regression). This dataset comprises four curlcakes with m 

6 A modification in all sequence contexts. Due to the limited number of 
reads of sufficient length, only one sample comprising eight subsamples with co v erage-depths ranging from 10 to 20 0 0 was constructed. Interestingly 
Modena sho w ed strong perf ormance at the co v erage-depth 10 subsample. On the other hand, Drummer had zero F1-score on the co v erage-depth of 10, 
but significantly outperformed Modena at coverage-depths 50 0–20 0 0. Out of all benchmark datasets, Modena had the worst performance on this 
dataset (e x cluding the co v erage-depth of 10 case). 
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ation and methylation datasets (across all coverage depths)
nd has the highest F1-scores on the ‘other-modifications’
ataset at coverage-depths of 10, 50, 200 and 500, while
rummer has the highest F1-scores at coverage-depths of 75

nd 100. These results are consistent with those shown in
upplementary Table S1 , with some minor differences that are
xpected, since the E. coli / S. cerevisiae and human 18S rRNA
atasets, while somewhat similar, are different in terms of the
umber and types of modifications, as well as their respective
-mer contexts. 
Next, we analysed the performance of algorithms with re-

pect to each modification type. This was done for Sample 1
or the E. coli and S. cerevisiae ( Supplementary Data S3 ) and
or the human 18S rRNA ( Supplementary Data S4 ). 

Results follow the same trend as in Figures 3 and 4 .
amely, Modena, Epinano-DSE and Epinano-LR show stable
erformance across coverage-depths, whereas Drummer and
anocompore improve with higher coverage-depths. In gen-

ral, given the modification type and coverage-depth, it is not
he case that all test examples are either recognized or missed
by any algorithm. Instead, some are identified while others
are missed. This shows that the same modification types pro-
duce different ‘error signatures’, depending on the sequence
context and coverage-depth, which is in line with recent lit-
erature ( 40 ). Thus, only the same modification type within a
same k-mer context can be considered truly unique (or more
precisely similar) in terms of basecaller-error patterns and dis-
tributions shifts. This should not be surprising since the se-
quence context (i.e. k-mer) significantly affects current inten-
sity as well as dwell times. However, some modifications (e.g.
m62A) do seem to be generally more easily identifiable than
others (e.g. m 

6 A). While Modena was better at recognizing
m 

3 U compared to other algorithms (irrespective of coverage-
depth), it was the only algorithm that missed 3 out of 3 m 

6 A
in the two rRNA datasets. It was unclear if these were just
statistical outliers or if Modena cannot detect m 

6 A modifica-
tions in general. To investigate this in detail, we used the arti-
ficial m 

6 A curlcake dataset from ( 30 ). This particular dataset
set has highly reliable ground-truth labels which is crucial for
conducting benchmarking (see Supplementary Discussion S2 ).

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
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Figure 6. Average F1-scores of the five algorithms on the artificial ‘oligos dataset’ ( NC : Nanocompore; DRM : Drummer; E - DSE : Epinano 
Delta-Sum-Error; E-LR : Epinano Linear Regression). This dataset comprises three short oligos, each containing three modifications (Oligo 1: three m 

6 A; 
Oligo 2: one I, one m 

5 C, one �; Oligo 3: one m 

6 
2 A, one m 

1 G one Am). Due to the limited number of reads with sufficient length, only three 
independent samples comprising eight subsamples with co v erage-depths ranging from 10 to 20 0 0 were constructed. 

Figure 7. F1-scores of the three algorithms compared on the DNA 

methylation test dataset ( DSE: Delta-Sum-Error; LR : Linear Regression). 
‘Co v erage’ is the percentage of genomic positions for which the 
respective algorithm made a prediction. Note that test datasets are not 
identical since Epinano’s F1-score was computed based on the 42.23% 

of predicted positions, whereas Modena’s F1-score was computed based 
on 99.97% of predicted positions. 
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As shown in Figure 5 and Supplementary Data S5 , Mod- 
ena’s performance was indeed somewhat weaker on this par- 
ticular modification type, which is in line with the fact that 
it failed to detect m 

6 A in the rRNA datasets. While Modena 
still outperformed other algorithms at lower coverage-depths 
(10–100) and had very similar performance as Drummer at 
coverage-depth of 200, Drummer clearly outperformed Mod- 
ena at coverage-depths of 500, 1000 and 2000. However, it is 
important to emphasize that if the goal is to identify a specific 
modification type like m 

6 A, for which a supervised algorithm 

(e.g. m6ANet) exists, a supervised algorithm should be pre- 
ferred since these algorithms are specifically trained for that 
modification. Finally, although this dataset features only one 
modification type, it is still suitable for benchmarking because 
the same modifications produce different ‘error signatures’ de- 
pending on the sequence context, as previously stated. 

Modena shows robust performance across 

different stoichiometry levels 

To test Modena’s performance across different stoichiometry 
levels, we used another benchmark dataset ( 37 ). This dataset 
(‘oligos dataset’) is artificial and has highly reliable ground- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
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Figure 8. P recision–R ecall curv es (PR curv es) f or Sample 1 ( E. coli and S. cere visiae rRNA dataset) f or different co v erage-depths. As sho wn, resampling 
increases the area under the PR curves (i.e. AUPRC scores) across all coverage-depths. Kuiper test further improves AUPRC scores across all 
co v erage-depths, although to a lesser extent. 
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ruth labels, making it suitable for testing algorithm perfor-
ance across various stoichiometry levels. Specifically, rRNA
atasets are in vivo datasets where the stoichiometries of mod-

fied positions vary. In contrast, the artificial m 

6 A ‘curlcakes’
nd ‘oligos’ datasets have very high stoichiometry levels of
odified positions and are ideal for in silico stoichiometry

ests. Out of the two, ‘oligos-dataset’ comprises seven dif-
erent modification types as opposed to just one in the m 

6 A
curlcakes’ benchmark dataset, and was therefore chosen for
esting stoichiometry. We first analysed the performance of
ll algorithms at ∼100% stoichiometry levels. Note that we
ere not able to test Nanocompore due to several ‘bus errors’,
hich are presumably caused by short read lengths (i.e. short

ranscript lengths). However, considering its performance on
ther datasets, it is highly unlikely that Nanocompore would
e competitive to Modena. Following the approach described
n the ‘Materials and methods’ section, we were able to con-
truct three independent samples, each comprising eight sub-
samples with coverage-depths ranging from 10 to 2000. De-
tailed results are shown in Supplementary Data S6 , and av-
erage F1-scores are shown in Figure 6 . As shown, the same
general trends are observed as before: (i) Modena outper-
forms other algorithms at all coverages, (ii) Modena, Epinano-
DSE and Epinano-LR show stable performance irrespective
of the coverage-depth, and (iii) while uncompetitive at lower
coverages, Drummer becomes competitive with Modena at
coverage-depths > 200. 

Next, to test the ability of different algorithms to detect
modifications at different stoichiometry levels (25%, 50%
and 75%), we followed a standard approach ( 40 ) and re-
placed a given percentage of modified with unmodified reads
(see the ‘Materials and methods’ section). Average results
across 10 independent samples are shown in Table 1 . As
shown, the same general trend can be observed. Modena
strongly outperforms Drummer at lower coverage-depths,
while Epinano-DSE and Epinano-LR are quite stable with re-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
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Figure 9. Violin plots of Modena score distributions for positive and negative test cases across different coverage-depths for Sample 1 of the E. coli / S. 
cerevisiae benchmark dataset are shown. Two well-separated clusters can be seen for all coverage-depths. The final Step 5 of our algorithm (1D 

score-clustering) le v erages this separation to determine the classification threshold. Note that this represents a different paradigm from the standardly 
used P -value based thresholds. As shown in our study, this approach is not limited to Modena and can, in principle, be applied to any threshold-based 
unsupervised algorithm. 

Table 1. Average F1-scores of the five algorithms on the artificial ‘oligos dataset’ with different stoichiometry le v els ( NC : Nanocompore; DRM : Drummer; 
E - DSE: Epinano Delta-Sum-Error; E - LR : Epinano Linear Regression) 

Average F1-scores 

Co ver age-depth 20 50 

Stoichiometry level 25% 50% 75% 25% 50% 75% 

Modena 0.189 0.266 0.406 0.212 0.365 0.505 
Drummer 0 0 0.017 0 0.088 0.206 
Epinano-DSE 0.075 0.155 0.210 0.163 0.242 0.240 
Epinano-LR 0.068 0.19 0.239 0.146 0.247 0.243 

Co ver age-depth 75 100 

Stoichiometry level 25% 50% 75% 25% 50% 75% 

Modena 0.204 0.448 0.505 0.258 0.467 0.557 
Drummer 0.026 0.186 0.294 0.068 0.257 0.35 
Epinano-DSE 0.226 0.235 0.240 0.219 0.243 0.243 
Epinano-LR 0.223 0.239 0.262 0.204 0.258 0.266 

Co ver age-depth 200 500 

Stoichiometry level 25% 50% 75% 25% 50% 75% 

Modena 0.384 0.53 0.595 0.494 0.586 0.639 
Drummer 0.177 0.367 0.448 0.344 0.502 0.56 
Epinano-DSE 0.218 0.247 0.247 0.234 0.251 0.251 
Epinano-LR 0.217 0.258 0.273 0.239 0.266 0.273 

Co ver age-depth 1000 2000 

Stoichiometry level 25% 50% 75% 25% 50% 75% 

Modena 0.549 0.618 0.624 0.568 0.617 0.623 
Drummer 0.435 0.566 0.575 0.516 0.573 0.575 
Epinano-DSE 0.232 0.251 0.259 0.232 0.247 0.255 
Epinano-LR 0.232 0.273 0.270 0.232 0.262 0.259 

For a given coverage-depth and modified / unmodified condition, we mixed reads from the three independent samples into a single dataset (with one positive 
and one negative subset) and performed sampling with replacement 10 times. In this way, for a given coverage-depth, and modified / unmodified condition 
we obtained 10 samples, each comprising three subsamples with modified to unmodified read ratios of 25:75, 50:50 and 75:25. Modena outperformed other 
algorithms for all combinations except for the coverage-depth 75, at 25% stoichiometry level. 
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Figure 10. Average F1-scores (for Samples 1 through 10, E.coli / S. cerevisiae dataset) with coverage-depths ranging from 10 to 20 0 0 are shown. 
Drummer : original Drummer algorithm with P -value and odds ratio-based threshold; Drummer + 1D clustering : Drummer algorithm (i.e. G-test statistic) 
with 1D score-clustering step (see Figure 2 ). For detailed results across all samples, see Supplementary Table S5 and Supplementary Data S8 . 
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pect to coverage-depths and modification stoichiometry. We
lso analysed the performance of different algorithms with
espect to stoichiometry on the in vivo human 18S rRNA
ataset. Not surprisingly, the detection rates of all algorithms
ere much lower for positions with very low stoichiometries.
owever, increasing the coverage-depth improves detection

ates ( Supplementary Data S7 ). 

odena shows consistently strong performance on
he DNA test dataset 

inally, we tested Modena’s performance on a DNA test
ataset. Although the authors of Nanocompore, Drummer
nd Epinano did not address their applicability to a DNA set-
ing, we assumed these algorithms should, in principle, be ap-
licable to DNA molecules as well. We selected DNA methyla-
ion as a test dataset for two reasons. Firstly, the methyl group
CH 3 ) is a ‘small molecule’, which is not expected to signifi-
antly alter current intensity signals, thus making it more chal-
enging for computational algorithms to detect. Secondly, the
5mC modification has been utilized in several previous studies
as a DNA test dataset ( 27 ,28 ). 

To create the negative / control sample, all modifications on
the native genomic DNA were removed as described in the
‘Materials and methods’ section. The positive sample was cre-
ated by treating the WGA sample with M.SssI methyltrans-
ferase, which converts nearly all cytosines in a CpG context
to 5mC ( 27 ). 

As shown in Figure 7 , Modena performed very well on this
dataset, whereas the results of other algorithms suggest they
are likely optimized for the RNA setting. Modena achieved an
F1-score of 0.779 (Recall 0.769 and Precision 0.789), cover-
ing 99.97% of the genome, meaning that the algorithm pre-
dicted 99.97% of genomic positions as either positive or neg-
ative. In contrast, the second-best method, Epinano Distance-
Sum-Error, achieved an F1-score of 0.111 (with Recall 0.059
and Precision 0.843) but covered only 42.23% of the genome.
The genome coverages of Drummer and Nanocompore were
just 0.016% and 0.229%, respectively, and were therefore not
analysed. Additionally, we also tested Modena’s performance
on only the 42.23% of genomic positions that were predicted

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
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Figure 11. Average F1-scores (for Samples 1 through 10, E.coli / S. cerevisiae dataset) with coverage-depths ranging from 10 to 20 0 0 are depicted. 
Epinano: Epinano-DSE algorithm with z-score based threshold; Epinano + 1D clustering : Epinano-DSE algorithm with 1D score-clustering step (see 
Figure 2 ). For detailed results across all samples, see Supplementary Table S6 and Supplementary Data S8 . 
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(as positive or negative) by Epinano-DSE. On these positions,
Modena achieved an F1-score of 0.762 (Recall 0.713 and Pre-
cision 0.818). 

To the best of our knowledge, and according to recent re-
views ( 56 ,57 ), the only algorithms developed for the detec-
tion of DNA modifications are either supervised, e.g. Dorado
(ONT), Remora (ONT), Megalodon (ONT) or ( 28 , 29 , 58 ),
or are unsupervised, but provide only ranking score as their
output ( 43 ,59 ). Therefore, they cannot be compared to Mod-
ena in any meaningful way since Modena is an unsupervised
classifier and its output are class labels, not ranking scores.
That said, if the goal is to find a particular modification type
for which a supervised algorithm exists (e.g. 5mC), a super-
vised algorithm should be used since these are specifically
trained for that modification. Modena and other unsuper-
vised algorithms should be used when no such supervised
algorithm / tool is available. 
Analysis of specific steps in Modena showed the 

usefulness of resampling and the Kuiper test 

In order to assess the importance of specific steps in the Mod- 
ena’s ‘pipeline’, we conducted an ablation test by omitting 
the resampling step and / or replacing the Kuiper test with the 
standard KS-test. Both resampling and the Kuiper test have 
improved ranking (Figure 8 ; green curves represent standard 

KS-test without resampling, orange curves represent KS-test 
with resampling and blue curves represent Kuiper test with re- 
sampling) and F1-scores ( Supplementary Table S3 ), although 

the benefit of using the Kuiper test instead of the KS-test 
was more modest. Additionally, we compared the running 
times of the algorithms ( Supplementary Table S4 ). As shown,
Nanocompore was the slowest with a mean running time of 
444.7 s, followed by Modena with a mean running time of 
298.7 s, then by Drummer (125.0 s) and the fastest Epinano 

(37 s). 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
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rinciples of 1D score-clustering approach 

mportantly, Modena employs a non-standard 1D score-
lustering approach to determine the classification threshold
n the final step (Step 5 in Figure 1 B). This represents a differ-
nt paradigm from the commonly used ‘hard-threshold’ based
pproaches, typically determined by P -values. To illustrate this
pproach, the Modena output-score distributions for Sample
 are displayed in Figure 9 . 
As shown in Figure 9 , the score distributions of posi-

ives and negatives form two distinct clusters, and 1D score-
lustering leverages this. A successful 1D score-clustering re-
uires two conditions: (i) good ranking (which is also a re-
uirement for any standard P -value based threshold) and (ii)
he existence of two ‘well-separated’ clusters. The aim of re-
ampling (Step 2 in Figure 1 A), Kuiper test (Step 3 in Figure
 A) and distance summing (Step 4 in Figure 1 B) is to achieve
good ranking’, and these steps are specific to Modena. The fi-
al 1D score-clustering step (Step 5 in Figure 1 B) is more gen-
ral and can, in principle, be applied to any threshold-based
nsupervised algorithm. Its success, though, depends on satis-
ying the two conditions mentioned above. 

The requirement for two well-separated clusters (i.e. con-
ition two) offers another advantage over the standard ap-
roach. Namely, the existence of two clusters can be rel-
tively quickly established either by simple visual inspec-
ion ( Supplementary Figure S3 ) or by employing quanti-
ative measures for assessing the ‘goodness of clustering’
 60 ). On the other hand, P -value based cut-offs require
trict mathematical conditions to be met, which is often
ot the case in practice. Otherwise, they are not theo-
etically justified and might be greatly misleading in their
nterpretation. 

dding the 1D score-clustering step significantly 

mproves Drummer and Epinano 

e applied 1D score-clustering approach to the three compar-
son algorithms to demonstrate (as a proof-of-concept) that
D score-clustering is not limited to Modena. First, we exam-
ned the PR curves of Drummer, Epinano and Nanocompore
 Supplementary Figures S4 –S6 ). Since the areas under the PR
urves were not particularly high, we summed scores (i.e. G-
est statistics in the case of Drummer and z-scores in the case
f Epinano-DSE) of the five neighbouring positions (i.e. cen-
ral position and positions −2, −1, +1 and + 2) for all three
lgorithms (Step 2, Figure 2 ). This was done to improve rank-
ngs (i.e. areas under the PR curves) since ‘good ranking’ is
 prerequisite for applying 1D score-clustering, as mentioned
arlier. Summing the scores of neighbouring positions is a gen-
ral approach reported previously ( 43 ). This significantly im-
roved the rankings of all algorithms. Specifically, Drummer
nd Epinano rankings were improved considerably after this
tep ( Supplementary Figures S4 and S5 ), while Nanocompore
ankings, although also improved ( Supplementary Figure S6 ),
till remained quite low in the ‘absolute sense’ (ranging from
0.124 to ∼0.54). Nanocompore was therefore discarded

rom further analyses since suboptimal ranking will not yield
ood classification results, neither through the ‘dynamic’ 1D
core-clustering approach nor the standard P -value based
hard-threshold’ approaches. Since ‘good ranking’ (measured
y an AUPRC score) has a limited value in the absence of a
lassification threshold, the crucial next step is to determine
he classification threshold. Here, we applied Modena’s 1D
score-clustering approach instead of standardly used P -values
and / or other measures like odds ratios (used for example, in
Drummer). 

As shown in Figures 10 and 11 , the application of ‘score-
summing’ and 1D score-clustering (Steps 2 and 3, Figure 2 ),
led to significant improvements in the F1-scores of Drummer
and Epinano-DSE. The improvement was particularly strik-
ing in the case of Drummer. For example, incorporating the
1D score-clustering step increased the average F1-score at
coverage-depth of 50 from 0.25 to 0.752, which is a three-
fold increase. Notably, both Drummer and Epinano belong to
a different class of algorithms (basecaller -error -based) com-
pared to Modena (signal-based). 

Next, we analysed the ability of Drummer + 1D score-
clustering and Epinano + 1D score-clustering to detect spe-
cific modification types on the E. coli and S. cerevisiae dataset
(Sample 1). In general, detection rates of specific modifi-
cations by all algorithms on the E. coli and S. cerevisiae
datasets are quite similar ( Supplementary Data S9 ). However,
there are also some differences between them. For example,
the m 

4 Cm modification was identified by both Modena and
Epinano + 1D but missed by Drummer + 1D. Additionally,
two ac4C modifications are correctly identified by Modena
(across all coverage-depths), but are missed by Epinano + 1D
(across all coverage depths). One of these modifications is
correctly identified by Drummer + 1D, but only at lower
coverage-depths (50–100). Another example is m 

5 C, where
all five positions are identified by Modena across all cover-
age depths. In contrast, Drummer + 1D identifies two out of
five positions, and Epinano + 1D detects two or three out of
five, depending on the coverage-depth. Another example is
Cm, where Modena detects 10 out of 11 Cm modifications.
In contrast, Drummer + 1D and Epinano + 1D identify six
or seven of those, depending on the coverage-depth. These
examples illustrate that algorithms do not return identical
results. 

We also conducted a Precision / Recall analysis. The sum-
mary is shown in Table 2 below, while detailed results can
be found in Supplementary Data S8 . As shown, Drummer +
1D clustering outperforms Modena in terms of F1-scores at
lower coverage-depths (10–100), while Modena outperforms
Drummer + 1D at coverage-depths above 100. Drummer + 1D
also outperforms Epinano + 1D at all coverage-depths (except
at a coverage-depth of 10, where there is a very small differ-
ence in favour of Epinano + 1D). Interestingly, Modena has
substantially higher Recall rates across all coverage-depths,
whereas Drummer + 1D and Epinnao + 1D outperform Mod-
ena in terms of Precision at all coverage-depths. This shows
that Modena discovers more modifications, but it has a higher
False Positive rate. This suggests that these algorithms are fun-
damentally different and that it might be beneficial to combine
them. 

In summary, a vast number of epigenetic and epitran-
scriptomic modifications, coupled with significant limitations
of existing experimental methods, limit the application of
supervised learning algorithms to a small number of well-
characterized modifications. Consequently, the utilization of
unsupervised machine learning algorithms becomes essen-
tial. Given the recent successes of several unsupervised al-
gorithms in various biological settings ( 37 , 42 , 50 ), this study
focused on advancing computational aspects. Here, we de-
veloped a new signal-based unsupervised learning algorithm,
Modena, which features three novel steps: (i) resampling, (ii)

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
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Table 2. Average Precision, Recall and F1-scores of Modena compared to ‘hybrid algorithms’ 

Co ver age-depth 10 Modena Drummer + 1D clustering E-DSE + 1D clustering 

Recall / Sensitivity 0.802 0.713 0.647 
Precision 0.267 0.470 0.505 
F1 0.396 0.560 0.562 

Co ver age-depth 50 Modena Drummer + 1D clustering E-DSE + 1D clustering 

Recall / Sensitivity 0.736 0.646 0.616 
Precision 0.721 0.900 0.861 
F1 0.729 0.752 0.717 

Co ver age-depth 75 Modena Drummer + 1D clustering E-DSE + 1D clustering 

Recall / Sensitivity 0.756 0.635 0.608 
Precision 0.680 0.913 0.860 
F1 0.713 0.749 0.713 

Co ver age-depth 100 Modena Drummer + 1D clustering E-DSE + 1D clustering 

Recall / Sensitivity 0.761 0.642 0.611 
Precision 0.731 0.907 0.864 
F1 0.745 0.752 0.716 

Co ver age-depth 200 Modena Drummer + 1D clustering E-DSE + 1D clustering 

Recall / Sensitivity 0.774 0.641 0.637 
Precision 0.736 0.910 0.870 
F1 0.755 0.752 0.735 

Co ver age-depth 500 Modena Drummer + 1D clustering E-DSE + 1D clustering 

Recall / Sensitivity 0.784 0.647 0.635 
Precision 0.737 0.913 0.869 
F1 0.760 0.758 0.734 

Co ver age-depth 1000 Modena Drummer + 1D clustering E-DSE + 1D clustering 

Recall / Sensitivity 0.792 0.637 0.641 
Precision 0.730 0.911 0.869 
F1 0.760 0.750 0.738 

Co ver age-depth 2000 Modena Drummer + 1D clustering E-DSE + 1D clustering 

Recall / Sensitivity 0.799 0.639 0.644 
Precision 0.725 0.913 0.870 
F1 0.760 0.752 0.740 
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Kuiper test and (iii) 1D score-clustering. Additionally, we con-
structed several new benchmark datasets offering advantages
over previously used test datasets. Modena showed excellent
performance on various datasets (Figures 3–7 , Table 1 and
Supplementary Data S1 , S2 , S5 and S6 ). To the best of our
knowledge, Modena is currently the only unsupervised al-
gorithm which detects both epigenetic and epitranscriptomic
modifications. 

Finally, we provided a proof-of-concept demonstration of
how Modena’s ‘dynamic clustering’ approach, which relies
on the 1D clustering of output scores, offers an attractive al-
ternative to the commonly used ‘hard-thresholds’, based on
P -values. Specifically, when the 1D score-clustering step was
combined with two existing algorithms, it led to a consider-
able improvement in their performance (Figures 10 and 11 ,
and Supplementary Tables S5 and S6 ). In some cases, this im-
provement was quite remarkable, achieving up to a threefold
increase in F1-score (Figure 10 , coverage-depth of 50). Our re-
sults suggest that the 1D score-clustering approach should, in
principle, have broader applicability in various unsupervised
learning contexts. However, exploring this broader applicabil- 
ity extends beyond this study’s scope and is a topic for future 
research. 

Data availability 

Esc heric hia coli and S. cerevisiae rRNA test datasets are avail- 
able at https:// zenodo.org/ records/ 12659159 (Samples 1–5) 
and https:// zenodo.org/ records/ 12659174 (Samples 6–10). 

The DNA test dataset is available at https://zenodo.org/ 
records/10031901 . 

Other test datasets are available at https://zenodo.org/ 
records/13236618 . 

Modena code is available at https:// github.com/ sbidin/ 
modena ( https:// doi.org/ 10.5281/ zenodo.14036835 ). 

Supplementary data 

Supplementary Data are available at NAR Online. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
https://zenodo.org/records/12659159
https://zenodo.org/records/12659174
https://zenodo.org/records/10031901
https://zenodo.org/records/13236618
https://github.com/sbidin/modena
https://doi.org/10.5281/zenodo.14036835
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1168#supplementary-data
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