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Abstract

Machine learning systems operate under the assumption that training and test data are
sampled from a fixed probability distribution. However, this assumptions is rarely verified
in practice, as the conditions upon which data was acquired are likely to change. In this
context, the adaptation of the unsupervised domain requires minimal access to the data of
the new conditions for learning models robust to changes in the data distribution. Optimal
transport is a theoretically grounded tool for analyzing changes in distribution, especially
as it allows the mapping between domains. However, these methods are usually computa-
tionally expensive as their complexity scales cubically with the number of samples. In this
work, we explore optimal transport between Gaussian Mixture Models (GMMs), which is
conveniently written in terms of the components of source and target GMMs. We experi-
ment with 9 benchmarks, with a total of 85 adaptation tasks, showing that our methods are
more efficient than previous shallow domain adaptation methods, and they scale well with
number of samples n and dimensions d.

1 Introduction

Supervised machine learning models are trained with significant amounts of labeled data, constituting a
training set. The theory of generalization (Redko et al., 2020), provides a theoretical background that
guarantees accurate predictions on unseen samples from the same distribution. Nonetheless, these models
are often forced to predict on related, but different data samples (Quinonero-Candela et al., 2008). This
distinction is modeled by a shift in the probability distributions generating the data (Sugiyama et al.,
2007), which motivates the field of transfer learning (Pan & Yang, 2009), and more specifically the problem
of Unsupervised Domain Adaptation (UDA), in which models are adapted from a labeled source domain,
towards an unlabeled target domain, following different distributions1.

In this context, Optimal Transport (OT) (Villani et al., 2009; Peyré et al., 2019) is a powerful, theoretically
grounded framework for comparing and manipulating probability distributions (Montesuma et al., 2024a).
This framework works by computing a transportation strategy, that moves one probability distribution into
the other at least effort. Based on this core idea, different methods have been proposed for UDA such
as Courty et al. (2017); El Hamri et al. (2022); Chuang et al. (2023) and Struckmeier et al. (2023).

1� Our code is available at https://github.com/eddardd/gmm-otda
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However, this methodology faces a few challenges. For instance, OT maps computed between discrete
distributions are only defined for samples in the training set. Extrapolating these maps to new samples is
the subject of intense research Perrot et al. (2016); Seguy et al. (2017). A possible workaround consists
of using Gaussian approximations (Flamary et al., 2019; Struckmeier et al., 2023). While this approach
effectively defines a mapping over the whole ambient space, its hypothesis do not reflect the possible sub-
populations within the data, which are common in classification problems.

A natural solution to tackle multi-modality in data distributions is using Gaussian Mixture Models (GMMs).
A further advantage of this approach is considering the recently proposed GMM OT (GMMOT) by Delon
& Desolneux (2020), which establishes an efficient, discrete problem between the components in the GMMs.
Furthermore, recent works have established the effectiveness of this idea for multi-source domain adapta-
tion (Montesuma et al., 2024b), notably through the use of mixture-Wasserstein barycenters.

Nonetheless, some questions on the use of GMMs for UDA remain open. For instance, Delon & Desolneux
(2020) propose different mapping strategies between GMMs, but these either fail to map one GMM into
the other, or are subject to randomness when sampling transportation maps between GMM components.
Furthermore, if we label the components of GMMs, it is natural to propagate these labels, in the sense
of Redko et al. (2019) towards the target domain. This paper tackles these two questions.

Summary of contributions. In this paper, we propose 2 new strategies for UDA based on GMMs. First,
we use basic rules of probability theory for propagating the labels of source domain GMM towards the target
domain GMM. We do so, by interpreting the GMMOT plan as the joint probability of source and target
GMM components. Second, we map samples from the source domain into the target domain based on the
GMMOT plan. For a point in the source domain, our strategy consists of first estimating the component,
in the source GMM, most likely to have generated the sample. We then transport this point to components
in the target domain, while assigning importance weights based on the GMMOT plan.

Paper organization. The rest of this paper is organized as follows. Section 2 presents a few related
works on OT for UDA. Section 3 covers the preliminaries on OT and GMMOT theory. Section 4 covers our
methodological contributions. Section 5 details our experiments and discussion on UDA. Finally, section 6
concludes this paper.

Notation. We use uppercase letters P and Q to denote probability distributions, and PS and PT to denote
source and target domain distributions. More generally, we use Pr to denote probabilities. For instance,
Pr(Y = y|X = x) denotes the conditional probability of label Y = y given a feature vector X = x. Let P
be a distribution over feature vectors. We denote samples from P as x(P ). We reserve y(P ) for categorical
labels (i.e., 1, · · · , nc, for nc classes), and y(P ) for its one-hot encoding.

2 Related Works

Optimal transport for domain adaptation. Optimal transport has been extensively employed for the
design of algorithms (Courty et al., 2017), as well as analyzing the domain adaptation problem (Redko
et al., 2017). The key idea of this method is to use the Kantorovich formulation to acquire a matching,
known as transport plan, between source and target domain distributions. This matching defines a map
between points in the source domain, towards the target domain, called barycentric mapping. Based on this
idea, different methods have proposed improvements. For instance, Perrot et al. (2016) proposed learning
linear and kernelized extensions of the barycentric map through convex optimization. El Hamri et al. (2022)
uses clustering for learning matching with additional structural dependencies. Flamary et al. (2019) uses
optimal transport between Gaussian distributions for estimating an affine mapping between source and target
domains. More recently, Chuang et al. (2023) proposed a method that leverages kernel density estimation
for defining a new optimal transport problem based on information maximization.

Gaussian-mixture based optimal transport. An optimal transport problem involving Gaussian mix-
tures was initially proposed by Chen et al. (2018), in which a linear program between the components of
the two mixtures is solved. This setting was further studied by Delon & Desolneux (2020), who proved an
interesting connection to a continuous optimal transport, when the transport plan is constrained to the set
of Gaussian mixtures. Based on the framework of Delon & Desolneux (2020), Montesuma et al. (2024b)
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proposed the extension of multi-source domain adaptation algorithms of Montesuma & Mboula (2021a;b)
and Montesuma et al. (2023). However, these authors focused on performing adaptation through Wasserstein
barycenters. Although based on the same framework, our work focuses on mapping samples and propagating
labels of Gaussian mixtures, especially for single-source domain adaptation.

3 Theoretical Foundations

3.1 Optimal Transport

Founded by Monge (1781), optimal transport is a field of mathematics concerned with transporting mass at
least effort. Let X be a set and P(X ) the set of probability distributions on X . For P, Q ∈ P(X ), the Monge
formulation of the optimal transport problem is,

T ⋆ = arginf
T :T♯P =Q

∫
X

c(x, T (x))dP (x), (1)

where T♯P denotes the pushforward distribution (Santambrogio, 2015, Problem 1.1) of P by the map T , and
c : X × X → R, called the ground-cost, denotes the cost of sending x to position T (x).

Although equation 1 is a formal description of the optimal transport problem, the constraint T♯P = Q poses
technical difficulties. An alternative description was proposed by Kantorovich (1942), in terms of an optimal
transport plan γ,

γ⋆ = arginf
γ∈Γ(P,Q)

∫
X ×X

c(x1, x2)dγ(x1, x2), (2)

where Γ(P, Q) is the set of joint distributions with marginals P and Q. This formulation is simpler to analyze
because the constraint γ ∈ Γ(P, Q) is linear with respect to the optimization variable γ.

When (X , d) is a metric space, it is possible to define a distance on P(X ) in terms of d. Let α ∈ [1, +∞),
and c(·, ·) = d(·, ·)α. One then has the so-called α−Wasserstein distance:

Wα(P, Q)α = inf
γ∈Γ(P,Q)

∫
X ×X

c(x1, x2)dγ(x1, x2). (3)

In the following, we do optimal transport on Euclidean spaces, i.e., X = Rd. In this case, it is natural to
use d(x1, x2) = ∥x1 − x2∥2. Furthermore, we set α = 2. Equations 2 and 3 are linear programs, where the
optimization variable is the joint distribution γ. In the following, we discuss 3 particular cases where optimal
transport either has a closed for, or is approximated by a finite problem, thus tractable by a computer.

Empirical Case. If we have samples {x(P )
i }n

i=1 and {x(Q)
j }m

j=1 with probabilities pi and qj respectively, we
can make empirical approximations for P and Q,

P̂ (x) =
n∑

i=1
piδ(x− x(P )

i ). (4)

The approximation in equation 4 is at the core of discrete optimal transport Peyré et al. (2019). If we plug
equation 4 into equation 2, the optimal transport problem becomes computable, i.e., it turns into a linear
programming problem with n×m variables,

γ⋆ = arg min
γ∈Γ(P̂ ,Q̂)

n∑
i=1

m∑
j=1

γijCij , (5)

where Cij = c(x(P )
i , x(Q)

j ). As a linear program, one should keep in mind that solving equation 5 has a
complexity of O(n3 log n). This complexity can be reduced by regularizing the problem in terms of the OT
plan entropy,

γ⋆ = arg min
γ∈Γ(P̂ ,Q̂)

n∑
i=1

m∑
j=1

γijCij + ϵ

n∑
i=1

m∑
j=1

γij(log γij − 1), (6)

3



Published in Transactions on Machine Learning Research (01/2025)

(a) Empirical OT (b) Gaussian OT (c) GMM-OT

Figure 1: Comparison of different ways of solving OT. In empirical OT, P and Q are approximated
non-parametrically through their samples. In Gaussian OT, P and Q are Gaussian distributions, and the
mapping between these distributions is affine. In GMM-OT, P and Q are assumed to be GMMs, and an OT
plan between components, ω, defines an OT plan between samples, γ.

which can be solved through the celebrated Sinkhorn algorithm (Cuturi, 2013). A solution can be found with
complexity O(Ln2), where L is the number of iterations of the algorithm. From the Kantorovich formulation,
we can recover a correspondence between distributions through the barycentric map,

Tγ(x(P )
i ) = min

x∈X

m∑
j=1

γijc(x, x(Q)
j ). (7)

Gaussian Case. When P = N (µ(P ), Σ(P )) (resp., Q), equation 1 has a closed and affine form Takatsu
(2011), T ⋆(x) = Ax + b, where,

A = (Σ(P ))− 1
2 ((Σ(P )) 1

2 Σ(Q)(Σ(P )) 1
2 ) 1

2 (Σ(P ))− 1
2 , and b = µ(Q) −Aµ(P ), (8)

and the Wasserstein distance takes the form,

W2(P, Q)2 = ∥µ(P ) − µ(Q)∥2
2 + Tr(Σ(P ) + Σ(Q) + ((Σ(P ))1/2Σ(Q)(Σ(P ))1/2)1/2). (9)

In contrast with empirical optimal transport, under the Gaussian hypothesis, computing the Wasserstein
distance and a mapping between P and Q has sample-free complexity. Indeed, the complexity of equations 8
and 9 is dominated by computing the square-root of the covariance matrix with complexity O(d3).

Furthermore, in high dimensions and when a only a few data points are available, estimating full covariance
matrices is challenging. In these cases, it is useful to assume axis-aligned Gaussians, i.e., Σ is a diagonal
matrix with diagonal elements Σii = σ2

i . In this case, equations 8 and 9 can be further simplified,

A = diag(σ(Q)
/σ(P )), b = µ(Q) −Aµ(P ), and W2(P, Q)2 = ∥µ(P ) − µ(Q)∥2

2 + ∥σ(P ) − σ(Q)∥2
2. (10)

Gaussian Mixture Case. A Gaussian mixture corresponds to P =
∑K

k=1 π
(P )
k Pk, where Pk =

N (µ(P )
k , Σ(P )

k ). As in Delon & Desolneux (2020), we denote by GMMd(K) the set of distributions P ∈ P(Rd)
written as a mixture of at most K components. In this framework Delon & Desolneux (2020) explores the
optimal transport problem 2 under the constraint that γ is a GMM as well, i.e., γ ∈ Γ(P, Q)∩GMM2d(∞).
This formulation is interesting because it is equivalent to a discrete and hierarchical problem (Delon &
Desolneux, 2020, Proposition 4) in terms of the GMMs’ components

ω⋆ = GMMOT(P, Q) = arg min
ω∈Γ(π(P ),π(Q))

KP∑
k1=1

KQ∑
k2=1

ωk1,k2W2(Pk1 , Qk2)2. (11)

We call this problem GMMOT. This latter equation is an hierarchical optimal transport problem, i.e., a
problem that involves itself an inner optimal transport. As in the previous cases, we have a notion of
distance related to equation 11, MW2(P, Q)2 =

∑K1
k1=1

∑K2
k2=1 ωk1,k2W2(Pk1 , Qk2)2. We show an overview

of different strategies for solving OT, under different assumptions, in Figure 1.
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Remark 3.1. (Computational Complexity) The overall complexity of the GMMOT in equation 11 is
O(K3 log K). However, one should keep in mind that the ground-cost matrix must be computed beforehand,
as given by equation 9, which involves a complexity that scales with the dimension of the ambient space, due
the matrix inversions and square-roots. The complexity of these operations is O(K2d3) in general. However,
assuming diagonal covariance matrices, the computational complexity is drastically reduced to O(K2d), i.e.,
the complexity of computing K2 Euclidean distances between d−dimensional vectors. We refer readers to
our appendix for a running time analysis of our method.
Remark 3.2. (Parameter Estimation) Besides the computational advantage, using diagonal covariance
matrices yields a simpler estimation problem for GMMs. This is pivotal in Domain Adaptation (DA), as
the target domain likely does not have enough samples for the accurate estimation of complete covariance
matrices. Furthermore, data is oftentimes high-dimensional, as feature spaces commonly involve thousands
of features. This is a sharp contrast with previous works in GMMOT, such as Delon & Desolneux (2020)
and Chen et al. (2018), which involved a few dimensions. In our empirical validation (c.f., section 5.3) we
show that using diagonal covariances yields better adaptation performance in high dimensions.

3.2 Learning Theory and Domain Adaptation

In this paper, we deal with DA for classification. This latter problem can be formalized mathematically, as
the learning of a function h : X → Y, from a feature space X (e.g., Rd) to a label space, Y = {1, · · · , nc}
through samples of a probability distribution. As reviewed by Redko et al. (2020), from the point of view of
probability, there multiple ways of formalizing this problem. Here, we use the Empirical Risk Minimization
(ERM) framework of Vapnik (2013). For a probability distribution P , a loss function L : Y × Y → R+, and
a family of classifiers H, one may define a notion of disagreement between pairs h, h′ ∈ H,

RP (h, h′) = E
x∼P

[L(h(x), h′(x))]. (12)

Equation 12 defines the risk of h with respect h′. Given a ground-truth labeling function h0 : X → Y,
classification can be phrased in terms of minimizing the risk of h with respect the ground-truth h0, i.e.,

h⋆ = arg min
h∈H

RP (h, h0).

Henceforth, we adopt RP (h) = RP (h, h0) in short. This formalization equates the problem of learning
a classifier with an optimization problem. Nonetheless, in practice one does not have access to a priori
knowledge from P nor h0. In a more realistic scenario, one has samples {x(P )

i , y
(P )
i }n

i=1, where x(P )
i

iid∼ P ,
and y

(P )
i = h0(x(P )

i ). Based on these samples, one may estimate the risk empirically, by resorting to the
approximation in equation 4,

R̂P (h) = 1
n

n∑
i=1
L(h(x(P )

i ), y
(P )
i ), and ĥ = arg min

h∈H
R̂P (h). (13)

In machine learning literature, the true riskRP (h) is called generalization error, i.e., the error that a classifier
h makes on samples from the distribution P . In contrast, algorithms usually minimize the training error,
R̂P (h), i.e., the error of h on the particular examples available during training.

A key limitation of the presented theory is its assumption that data originates from a single probability
distribution P . As discussed by Quinonero-Candela et al. (2008), this is seldom happens in practice. For
instance, in fault diagnosis, process conditions influence the statistical properties of measured signals (Mon-
tesuma et al., 2022). As a result, generalization must be carried to a new, related probability distribution.
This problem is known in the literature as DA, a sub-field within transfer learning.

As discussed by Pan & Yang (2009), in transfer learning, a domain is a pair D = (X , P ) of a feature space and
a probability distribution over X . Likewise, a task is a pair T = (Y, h0) of a label space and a ground-truth
labeling function. Transfer learning is characterized by different source and target domains and tasks, i.e.,
(DS , TS ,DT , TT ), where at least one element from the source is different from the target. In this work, we
assume different domains DS ̸= DT but the same label space, YS = YT = {1, · · · , nc}.
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In this paper, we deal primarily with distributional shift. In this case, we assume XS = XT = Rd, so
that source and target domains are characterized by different probability distributions PS ̸= PT . Further-
more, we place ourselves in the unsupervised DA setting, that is, we assume labeled source domain data,
{x(PS)

i , y
(PS)
i }n

i=1, and unlabeled target domain data {x(PT )
j }m

j=1. Our goal is to use these samples to learn
a classifier h that works well on the target domain, i.e., that achieves small target risk RPT

.

From the point of view of DA, the quality and similarity of source domain data plays a prominent role, since
supervision comes from this distribution. For instance, if source domain data contains noisy labels, these
can be transferred to the target domain, leading to poor results. Likewise, the success of domain adaptation
is correlated with the distance, in distribution, between these two domains. We refer readers to (Ben-David
et al., 2010; Redko et al., 2017) for further discussion.

Optimal Transport for Domain Adaptation was proposed by Courty et al. (2017), and primarily tries
to match samples from P to those of Q based on the empirical OT problem in equation 5. After acquiring
γ⋆, the authors propose mapping samples from P towards those of Q via the baryncetric map. This strategy
effectively constitutes a new dataset {Tγ⋆(x(P )

i ), y
(P )
i }n

i=1, where Tγ⋆ is defined by equation 7. Note, here,
that under Tγ⋆ , the source domain points carry their labels, to the target domain. This operation is valid,
as long as the conditionals PS(Y |X) = PT (Y |T (X)), which is restrictive, but reasonable under the covariate
shift hypothesis. A few problems plague this strategy. First, Tγ⋆ is only defined on the support of P . The
mapping of new points has been extensively studied in the literature (Perrot et al., 2016; Seguy et al., 2017;
Chuang et al., 2023). Second, it is desirable to have mappings with additional structure with respect the
classes in DA. This problem is partially solved by considering special regularization schemes, as covered
in Courty et al. (2017). Third, this method is not scalable with respect the number of samples n, due
its prohibitive complexity O(n3 log n). In this paper, we offer a solution for the aforementioned problems
through the GMM-OT framework of Delon & Desolneux (2020).

4 Domain Adaptation via Optimal Transport between Gaussian Mixtures

Algorithm 1: Fitting procedure for GMMs.
1 function EM(X(P ), KP )
2 for it = 1, · · · , niter do

// Expectation Step

3 Gi,k =
π

(P )
k N (x(P )

i |µ
(P )
k , Σ(P )

k )∑
k′ π

(P )
k′ N (x(P )

i |µ
(P )
k′ , Σ(P )

k′ )
;

// Maximization Step
4 nk =

∑n
i=1 Gi,k;

5 µ
(P )
k ← 1

nk

∑n
i=1 Gikx(P )

i ;

6 Σ(P )
k ← 1

nk

∑n
i=1 Gi,k(x(P )

i − µ
(P )
k )(x(P )

i − µ
(P )
k )T ;

7 π
(P )
k ← nk

n
;

8 return µ(P ), Σ(P ), π(P );

Algorithm 2: Fitting procedure for labeled
GMMs.

1 function ConditionalEM(X(P ), Y(P ), KP )
2 cpc← KP /nc;
3 for y = 1, · · · , nc do

// Samples from y-th class

4 X(Py) ← {x(P )
i : y

(P )
i = y};

// EM on conditionals
5 µ(Py), Σ(Py), π(Py) ← EM(X(Py), cpc);
6 ν(Py) ← {one_hot(y)}cpc

k=1;
// Concatenates all parameters

7 µ(P ) = {{µ(Py)
k }cpc

k=1}
nc
y=1;

8 ν(P ) = {{ν(Py)
k }cpc

k=1}
nc
y=1;

9 Σ(P ) = {{Σ(Py)
k }cpc

k=1}
nc
y=1;

10 π(P ) =
{{

π
(Py)
k∑cpc

k=1
∑nc

y=1 π
(Py)
k

}cpc

k=1

}nc

y=1
;

11 return µ(P ), Σ(P ), ν(P ), π(P );

In this section, we develop new tools for DA through OT between GMMs. As we discussed in our preliminaries
section, we are particularly interested in DA for classification. In this context, data is naturally multi-modal,
which justifies the mixture modeling. As we previously defined in Section 3, a GMM is a mixture model
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with parameters {µ(P )
k , Σ(P )

k , π
(P )
k }K

k=1. These parameters can be determined through maximum likelihood:

{µ(P )
k , Σ(P )

k , π
(P )
k }K

k=1 = arg max
{µk,Σk,πk}K

k=1

n∑
i=1

log P (x(P )
i ), (14)

where P =
∑K

k=1 πK
k Pk. A practical approach for optimizing equation 14 was proposed by Dempster et al.

(1977), and is known as Expectation Maximization (EM). We show a pseudo-code for this strategy in
Algorithm 1. We refer readers to (Bishop M., 2006, Chapter 9) for further details on GMMs.

In our approach, we need to define labels for the components of GMMs in the transportation problem. We
do so through an heuristic, that is, we model each Py = P (X|Y = y) through a GMM, for y = 1, · · · , nc.
As a result, we fit a GMM to the data X(Py) = {x(P )

i }i:y(P )
i

=y
, using cpc = KP /nc components. Here, we

conveniently choose KP as a multiple of nc, for ensuring that cpc is an integer. We present in Algorithm 2 a
pseudo-code for this strategy. Furthermore, we create a one-hot encoded vector of component labels, denoted
ν(P ) ∈ (∆nc

)K , where ν
(P )
k,y = 1 if the k−th component comes from the y−th class, and 0 otherwise. We

interpret the vector ν
(P )
k as the conditional probability Pr(Y |K = k).

In the following, we discuss two strategies for domain adaptation. The first, based on label propagation,
leverages the optimal transport plan between components to define pseudo-labels for the components of the
target domain GMM. The second, based on mapping estimation, leverages the hierarchical nature of the
GMMOT problem for defining a map between source and target domain. These methods are summarized
in Algorithms 3 and 4.

Algorithm 3: Pseudo-label target GMM.
1 function

propagate_labels(X(PS), Y(PS), X(PT ))
2 P ← CondtionalEM(X(PS), Y(PS));
3 Q← EM(X(PT ));
4 ω ← GMMOT(PS , PT );
5 ν(PT ) = ωT ν(PS )

/π(PT );
6 return ν(PT );

Algorithm 4: Tweight.
1 function Tweight(x(PS), y(PS), PS , ω, τ)

// Using Equation 17
2 k1 ← estimate_components(x(PS), PS);
3 for j such that ωk1,j ≥ τ do

// Using eq. 8 or 10

4 x̃(PS)
k2
← Tk1,k2(x(PS));

5 ỹ
(PS)
k2

← y(PS)

6 wk2 ← ωk1,k2

7 return {wk2 , x̃(P )
k2

, y
(P )
k2
}k2:ωk1,k2 ≥τ ;

Limitations. In this work, we assume that data is multi-modal, which is often the case in classification.
Furthermore, we assume that it can be modeled accurately through GMMs, i.e., data is well separated into
clusters. While we can expect estimation and inference to be difficult in high-dimensions, we show in our
experiments that our method outperform previous baselines based on empirical OT. Finally, we show in our
appendix that our methods are robust to the over estimation of GMM components.

4.1 Label Propagation and Maximum a Posterior Estimation

Recall that, in equation 11, the result of the GMMOT problem is a transportation plan ω, between compo-
nents of the GMMs P and Q. As a result, ω has as marginals the probability vectors π(P ) and π(Q). Fur-
thermore, in the original probabilistic view of GMMs, π

(PS)
k1

= Pr(KS = k1), whereas π
(PT )
k2

= Pr(KT = k2).
Given this interpretation, it is natural to see the transportation plan as ωk1,k2 = Pr(KS = k1, KT = k2).
Note that we can estimate the probability Pr(Y |KT ) using the law of total probabilities,

Pr(Y |KT = k2) =
KS∑

k1=1
Pr(Y |KS = k1, KT = k2)Pr(KS = k1|KT = k2).
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Figure 2: Illustration of the label propagation strategy. (a) Shows the source and target GMMs.
GMMs are represented through their means (stars) and covariance matrices (ellipses). The labels of com-
ponents are represented through colors. Since the target domain is unlabeled, their means are gray colored.
(b) Shows the OT plan between components, ω. ω allows us to propagate the labels of source domain GMM
towards the target. (c) Shows the obtained target GMM. Finally, (d) shows the MAP classifier.

Here, assuming that Y and K2 are conditionally independent given K1, we have,

Pr(Y |KT = k2) =
KS∑

k1=1
Pr(Y |KS = k1)Pr(KS = k1|KT = k2),

This assumption plays the same role as covariate shift hypothesis (Sugiyama et al., 2007) in conventional
DA works. On an intuitive level, our assumption explicit the fact that KT is redundant with respect to KS .
The conditional Pr(KS |KT ) = Pr(KS ,KT )/Pr(KT ) can be computed through the optimal transport plan, i.e.,

ν̂
(PT )
k2

= 1
π

(PT )
k2

KS∑
k1=1

ωk1,k2ν
(PS)
k1

, or, ν̂(PT ) = ωT ν(PS)

π(QT ) , (15)

where the division should be understood elementwise. Equation 15 is known in the OT literature as label
propagation (Redko et al., 2019), and, as we discussed in the related works section, has been used extensively
in the context of empirical OT. Given the estimated labels ν̂

(PT )
k2

, we effectively defined a labeled GMM for
the target domain. Based on this GMM, we can perform Maximum A Posteriori (MAP) estimation to define
a classifier in the target domain,

ĥMAP (x) = arg max
y=1,··· ,nc

Pr(Y = y|X = x) = arg max
y=1,··· ,nc

KT∑
k=1

Pr(Y = y|X = x, KT = k)Pr(KT = k|X = x),

= arg max
y=1,··· ,nc

KT∑
k=1

(
π

(PT )
k PT,k(x)∑KT

k′=1 π
(PT )
k′ PT,k′(x)

)
ν

(PT )
k , (16)

where, from the second to the third equality we assumed that Y and K are conditionally independent given
X. This hypothesis is intuitive, as classes and components are representing the same structures within the
data points. We show an illustration of these ideas in Figure 2.

4.2 Mapping Estimation

In this section, we propose a new mapping estimation technique between two GMMs, PS and PT . As
discussed in (Delon & Desolneux, 2020, Section 6.3), this problem is not straightforward. Indeed, since γ
is a GMM, it cannot be, in general, written as (Id, T )♯PS . Thus, these authors consider two strategies: a
mean map and a random map. First, samples are mapped Tmean(x(PS)) = Ex(PT )∼γ(·|x(PS ))[x(PT )], but it
may end up not actually matching PS with PT (see, e.g., (Delon & Desolneux, 2020, Section 6.3)).
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(c) Tweight.

Figure 3: Mapping estimation using GMMOT. In (a) and (b), we show the Tmean and Trand strategies
of Delon & Desolneux (2020), respectively. In (c), we show our strategy Tweight. Our mapping reduces
randomness by first estimating the component k1 most likely to have generated x(P ). Then, we weight the
importance of transported samples by ωk1,k2 .

Second, Delon & Desolneux (2020) defines

Trand(x(PS)) = Tk1,k2(x(PS)) with probability pk1,k2(x(PS)) = ω⋆
k1,k2

N (x(PS)|µ(PS)
k1

, Σ(PS)
k1

)∑
k pkN (x(PS)|µ(PS)

k , Σ(PS)
k )

,

which has the advantage of matching PS with PT . However, as noted by Delon & Desolneux (2020), Trand

usually leads to irregular mappings due the sampling procedure of indices (k1, k2) as shown in (Delon &
Desolneux, 2020, Figure 7).

We put forth a third strategy for mapping PS into PT . Our intuition is twofold. First, we can increase the
regularity of Trand, by estimating the component k1 that most likely originated x(PS), that is,

k1 := arg max
k=1,··· ,KS

Pr(KS = k|XS = x(PS)) =
π

(PS)
k PS,k(x(PS))∑KS

k′=1 π
(PS)
k′ PS,k′(x(PS))

. (17)

Second, we map x(PS) into the components of PT . Note that, since the marginals π(PS) and π(PT ) are
different, the optimal transport plan ω may split the mass of PS,k1 into several PT,k2 . As a result, we
produce {Tk1,k2(x(PS))}k2:ωk1,k2 ≥τ , i.e., we map x(PS) to all components PT,k2 such that ωk1,k2 ≥ τ ≥ 0. In
principle, one may choose τ = 0 and filter only the components that are not matched with PS,k1 . Third,
we further weight the importance of generated samples, by using ωk1,k2 as sample weights. At the end,
we generate a weighted dataset {(ωk1,k2 , Tk1,k2(x(PS)

i ), y
(PS)
i )}m

i=1, where m is the total amount of samples
generated. We call our overall mapping Tweight, for which a pseudo-code is presented in 4.

The mapping we just defined has a few interesting properties. First, it is a piece-wise affine map, as each
Tk1,k2 is affine. This property contrast with the Gaussian hypothesis, which defines an affine map between PS

and PT . Second, with respect the transportation of samples, our mapping strategy is naturally group-sparse,
in the sense of Courty et al. (2017). This claim comes from the fact that samples in PS are transported
based on the Gaussian component they belong to. Third, our mapping is defined on the whole support of
the GMM PS . In contrast, empirical OT is only defined on the samples {x(PS)

i }n
i=1 of PS .

5 Experiments

In this section, we present our experiments with DA. We consider a wide range of 9 benchmarks in computer
vision and fault diagnosis. In the first case, we consider Caltech-Office (Gong et al., 2012), ImageCLEF (Ca-
puto et al., 2014), Office31 (Saenko et al., 2010), Office-Home (Venkateswara et al., 2017), (MNIST, USPS,
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SVHN) (Seguy et al., 2017) and VisDA Peng et al. (2017). In the second case, we consider the CWRU2,
CSTR (Pilario & Cao, 2017; Montesuma et al., 2022) and TE process benchmarks (Montesuma et al., 2024c).
Further details on these benchmarks are available in the appendix. In our experiments, an adaptation task is
a pair (S, T ) of a source domain S and a target domain T . To summarize our experimentation, there are in
total 9 benchmarks, and 85 domain adaptation tasks. Our experiments with Cross-Domain Fault Diagnosis
(CDFD) are available in our appendix.

For computer vision benchmarks, we follow previous research (El Hamri et al., 2022; Chuang et al., 2023)
and pre-train ResNet (He et al., 2016) networks on the source domains. We then use the encoder branch
as a feature extractor, and perform shallow DA on the extracted features. These feature serve as the basis
for each domain adaptation algorithm. With the exception of GMM-OTDAMAP , performance on the target
domain is based on the generalization of a 1-layer neural network trained with transformed data. For GMM-
OTDAMAP we use the MAP strategy described in equation (16). For the MNIST, USPS, SVHN benchmark,
we follow Seguy et al. (2017) to obtain comparable results. For M → U and U → M we downsize MNIST
to the resolution of USPS, i.e., we downscale images to (16, 16). For M → S, we upscale MNIST images to
match the resolution of SVHN, i.e., (32, 32), then we use features extracted from the last layer of a LeNet5.
We refer readers to Seguy et al. (2017) and Struckmeier et al. (2023) for further details on these benchmarks.

Our main point of comparison is with other OT-based DA methods. We compare our GMM-OTDA strategies
with other OT methods for DA, namely, we consider the OT for DA (OTDA) strategy of Courty et al. (2017)
(Exact and Sinkhorn), the linear mapping estimation of Flamary et al. (2019), and the InfoOT strategy
of Chuang et al. (2023) (barycentric and conditional mappings). For the scalability experiment using the
MNIST, USPS, SVHN benchmark, we consider the large scale OT methods of Seguy et al. (2017), denoted
as Alg. 1 and 2. Furthermore, for completeness, we consider the Linearly Alignable Optimal Transport
(LaOT) strategy of Struckmeier et al. (2023).

5.1 Scalability with respect d

In this section, our goal is to evaluate how our method scales with the data dimensionality d. To do so,
we evaluate methods based on their performance on visual adaptation benchmarks. The goal is to classify
images into categories, based on 2048−dimensional vectors from ResNets (He et al., 2016) fine-tuned on the
source domain of each adaptation task. We summarize our results in Figure 4. The detailed results may be
found in the appendix, i.e., Table 4.

Over Caltech-Office and ImageCLEF, our methods outperform other state-of-the-art methods. For Office
31 and Office-Home, Info-OTc and OTDAaffine proved to be more effect than our methods, but ours still
ranks second. For Office 31, the density estimation strategy of Info-OTc proves effective in finding a better
map between the domains. For Office-Home, the baseline is already one of the best performing methods.
An affine transformation is therefore sufficient for an effective adaptation.

Nonetheless, our method surpasses empirical OT over all tested benchmarks, especially preventing negative
transfer in the Office-Home benchmark. Likewise, approximating class conditional distributions P (X|Y )
through GMMs proves effective over empirical OT. Indeed, our method improves over HOT-DA of El Hamri
et al. (2022), which is based on empirical distributions.

These experiments prove that our method can effectively perform UDA between high-dimensional distri-
butions. Note that, for these benchmarks, we use 2048−dimensional vectors, which is by far the largest
dimensionality values considered in this study.

5.2 Scalability with resepct n

In this section, we use the MNIST, USPS, SVHN benchmark. Our goal is to evaluate how our method
scales with the number of samples n. As we discussed in Remark 3.1, a major advantage of the GMM
formulation is reducing OT complexity from O(n3 log n) to O(K3 log K), i.e., we replace number of samples

2https://engineering.case.edu/bearingdatacenter
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Figure 4: Average adaptation performance over 4 visual domain adaptation benchmarks.

by number of components, which are orders of magnitude inferior. To give a practical comparison, while
MNIST has n = 6 × 105 samples, we represent its probability distribution through a GMM with K = 102

components. This modeling choice improves scalability, especially when the components of GMMs have
diagonal covariance matrices.

With respect performance, table 1 shows that GMM-OTDA has a similar performance to LaOT, i.e., per-
formance degrades on M → U , but increases on U → M and M → S. Curiously, this corresponds to
the case where a simpler dataset (e.g., MNIST) is transferred to a more complex dataset (e.g., SVHN).
The performance similarity is not surprising, since LaOT and GMM-OTDA work under similar principles.
However, the GMM modeling, again, proves superior to the Gaussian hypothesis, as we are able to improve
performance on U →M and M → S tasks.

Algorithm M → U U →M M → S

Baseline 73.47 36.97 54.33
OTDAEMD 57.75 52.46 -
OTDASink 68.75 57.35 -
Alg. 1 of Seguy et al. (2017) with H 68.84 57.55 58.87
Alg. 1 of Seguy et al. (2017) with ℓ2. 67.80 57.47 60.56
Alg. 1 + 2 of Seguy et al. (2017) with H 77.92 60.02 61.11
Alg. 1 + 2 of Seguy et al. (2017) with ℓ2. 72.61 60.50 62.88
LaOT 72.57 62.28 60.36
GMM-OTDA (ours) 71.83 63.11 87.19

Table 1: Large scale OT experiment. We consider the adaptation between 3 digit recognition benchmarks,
namely, USPS, MNIST and SVHN. Overall, GMM-OTDA largely outperforms other methods on harder
adaptation tasks, i.e., U →M and M → S.

5.3 VisDA-C Benchmark

We experiment with the VisDA benchmark (Peng et al., 2017), a large scale DA dataset containing 152397
and 55388 source and target domain samples. As in the previous benchmarks, we pre-train the feature
extractor using source domain data, then proceed to perform adaptation over the extracted features. This
experiment stresses the scalability of our strategy in comparison with empirical OT methods, since solving
an OT problem over this benchmark would lead to a linear program with nS × nT = 8.44 × 109 variables.
More dramatically, for running the barycentric map over this benchmark one would need to store γ, leading
to nS × nT floating point coefficients, that is, approximately 270.11 GB of memory.

To cope with the sheer volume of data, we run empirical OT methods on a sub-sample of nS = nT = 15000
samples. Parametric versions of OT methods, such as OTDAaffine and GMM-OTDA are run with the full
datasets, which illustrates the advantage of having a compact representation for distributions. Besides, we
explore how these methods improve performance over different feature extractors. Hence, besides ResNet 50
and 101, we also consider a ViT-16-b (Dosovitskiy et al., 2021). Our results are shown in table 2.
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Algorithm ResNet 50 ResNet101 ViT-b-16
Source-Only 47.93 53.90 56.70
OTDAEMD 53.69 (∆ + 5.76) 57.42 (∆ + 3.52) 63.25 (∆ + 6.55)
OTDASinkhorn 53.02 (∆ + 5.09) 10.54 (∆ − 43.36) 66.75 (∆ + 10.05)
OTDAAffine 7.46 (∆ − 40.47) 11.82 (∆ − 42.08) 6.75 (∆ − 49.95)
OTDAAffine-Diag 51.41 (∆ + 3.48) 56.91 (∆ + 3.01) 59.94 (∆ + 3.24)
HOTDA 47.51 (∆ − 0.42) 47.64 (∆ − 6.26) 62.55 (∆ + 5.85)
GMM-OTDAT 58.35 (∆ + 10.42) 56.57 (∆ + 2.67) 74.10 (∆ + 17.40)
GMM-OTDAMAP 57.36 (∆ + 9.43) 58.77 (∆ + 4.87) 74.44 (∆ + 17.74)

Table 2: Comparison of domain adaptation performance over different feature extractors pre-trained with
source domain data. We report the classification accuracy (in %) and the difference ∆ over the source-only
baseline. Our methods GMM-OTDA T and MAP consistently outperform other OT-based methods.

(a) OTDAEMD (b) OTDASink (c) OTDAaffine

(d) GMM-OTDAMAP (e) GMM-OTDAT

Figure 5: t-SNE visualization OT map-based DA techniques on the VisDA-C benchmark with ViT-16-b
features. Colors represent different classes. In (d), stars represent the components of source and target
GMMs, obtained through the conditional EM, and the EM algorithm respectively.

From table 2, note that our GMM-OTDA methods consistently outperform other OT-based methods. Fur-
thermore, we ablate on the choice of using diagonal covariances, by comparing the performance of estimating
an OT map between Gaussian measures with full (equation 8) and diagonal covariances (equation 10). Hence,
using diagonal covariances provide a regularizing effect, improving the estimation of an OT map between
Gaussian measures when the full-covariances are singular.

Finally, we analyze how the different mapping strategies match source and target domain measures. We
summarize this analysis in Figure 5, where we show the t-Stochastic Neighbor Embeddings (SNE) of the
concatenation of mapped source and target domain data. In contrast with OTDAEMD, OTDASinkhorn and
GMM-OTDAT , OTDAaffine does not manage to match source and target data, mainly due the simplicity of
the Gaussian assumption. Furthermore, GMM-OTDAT manages to map source domain data in a way that
does not mixes the classes (for instance, compare Figure 5 (a) with (e)). The label propagation approach is
also discriminative of target domain classes, as is evidenced in Figure 5 (d). These considerations explain
the superior performance of GMM-OTDAT with ViT-16-b features. We provide a similar analysis for the
CWRU benchmark in the appendix.
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6 Conclusion

In this paper, we consider the GMMOT framework of Delon & Desolneux (2020) as a candidate for UDA.
Based on probability and OT theory, we devise 2 new effective strategies for UDA. The label propagation
interprets the OT plan between GMM components as a joint probability distribution over source-target
component pairs. This modeling choice allows us to predict the label of target GMM components through
a label propagation equation similar to Redko et al. (2019). Furthermore, we propose a mapping strategy
that transports samples from the same component together through an affine map, which has 2 advantages.
First, it enforces group sparsity (Courty et al., 2017). Second, it has an analytical form in terms of GMM
parameters. We show through a series of 85 UDA tasks that our methods outperform, or are competitive
with the state-of-the-art in shallow domain adaptation, while being scalable with both number of samples
n, and number of dimensions d. Our work further confirms previous studies on the intersection of GMMs
and UDA, such as Montesuma et al. (2024b), showing that the GMMOT is a powerful candidate for shallow
domain adaptation.
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A Additional Details about Benchmarks

Benchmark Domains Backbone # Samples # Classes

ImageCLEF

Caltech (C)

ResNet 50

600

12Bing (B) 600
ImageNet (I) 600

Pascal (P) 600
Total 2400

Caltech-Office 10

Amazon (A)

ResNet 101

958

10dSLR (D) 157
Webcam (W) 295
Caltech (C) 1123

Total 2533

Office 31
Amazon (A)

ResNet 50
2817

31dSLR (D) 498
Webcam (W) 795

Total 4110

Office-Home

Art (Ar)

ResNet 101

2427

65Clipart (Cl) 4365
Product (Pr) 4439

Real World (Rw) 4357
Total 15588

(a) Visual Domain Adaptation Benchmarks

Benchmark Domains Backbone # Samples # Classes

CWRU

1772rpm (A)

MLP

8000

101750rpm (B) 8000
1730rpm (C) 8000

Total 24000

TEP

Mode 1

Fully Convolutional

2900

29

Mode 2 2845
Mode 3 2899
Mode 4 2865
Mode 5 2883
Mode 6 2897
Total 17289

CSTR

N = 1.0, ϵ = 0.00

-

1300

13

N = 1.0, ϵ = 0.10 260
N = 1.0, ϵ = 0.15 260
N = 0.5, ϵ = 0.15 260
N = 1.5, ϵ = 0.15 260
N = 2.0, ϵ = 0.15 260

Total 2860

(b) Cross-Domain Fault Diagnosis Benchmarks

Table 3: Overview of Visual Domain Adaptation and Cross-Domain Fault Diagnosis benchmarks

In table 3, we show an overview of the used benchmarks. We run our experiments on 4 visual DA datasets,
and 3 CDFD datasets. For vision, we use Residual Networkss (ResNets) pre-trained on ImageNET as the
backbone. For each adaptation task (e.g., C → B in ImageCLEF) we fine tune the network using labeled
source domain data. For all methods, we extract the features of source, and target domain, using the fine-
tuned checkpoint. The size of the ResNet is used to agree with previous research, such as Peng et al. (2019)
and Montesuma et al. (2023). We refer readers to3 for further technical details on the fine-tuning of vision
backbones.

For CDFD, we considered the same setting as previous works using these benchmarks, such as Montesuma
et al. (2023), Montesuma et al. (2024c) and Montesuma et al. (2022), for Case Western Reserve University
(CWRU), Tennessee Eastman (TE) process and Continuous Stirred Tank Reactor (CSTR) respectively.
For CWRU, we extract windows out of raw signals of size 2048, then get the frequency representation for
these windows using a fast Fourier transform. These are treated as 2048 feature vectors, that are then fed
to a neural network. In the TE process, we consider the same setting of Montesuma et al. (2024c), i.e.,
we use a fully convolutional neural net. For the CSTR, we directly use the signals, concatenated into a
1400−dimensional vector as the features. The data for these benchmarks is publicly available here4, and
here5.

Note that, for each dataset, there are ndomains(ndomains − 1) adaptation tasks, except for CSTR, which is a
multi-target benchmark (i.e., a single source, and 6 targets). As a result, we have 12×3+6×2+30+6 = 84
adaptation tasks.

3� https://github.com/eddardd/DA-baselines
4https://www.kaggle.com/datasets/eddardd/tennessee-eastman-process-domain-adaptation
5https://www.kaggle.com/datasets/eddardd/continuous-stirred-tank-reactor-domain-adaptation
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B Additional Experiments

B.1 Detailed Results

Benchmark Task Baseline OTDAEMD OTDASink OTDAaffine InfoOTb InfoOTc HOT-DA GMM-OTDAMAP GMM-OTDAT

Caltech-Office

A→ D 87.10 77.42 87.10 93.55 93.55 83.87 96.77 93.55 80.65
A→W 91.53 93.22 96.61 96.61 96.61 94.92 96.61 93.22 91.53
A→ C 88.44 91.56 73.33 91.11 87.11 90.67 74.67 88.44 88.44
D → A 88.54 90.10 93.23 92.19 91.15 92.71 96.88 96.35 95.83
D →W 98.31 93.22 93.22 94.92 100.00 91.53 94.92 100.00 98.31
D → C 75.56 67.11 17.33 71.56 68.44 75.11 51.11 86.67 71.56
W → A 85.94 82.81 15.62 81.25 60.94 86.46 69.79 87.50 84.90
W → D 100.00 93.55 93.55 96.77 90.32 93.55 90.32 96.77 93.55
W → C 84.89 87.56 87.56 88.44 87.56 87.56 84.89 87.56 88.00
C → A 98.44 96.88 98.44 98.44 98.44 96.88 98.44 98.44 98.44
C → D 93.55 87.10 90.32 93.55 87.10 87.10 100.0 93.55 80.65
C →W 91.53 94.92 94.92 94.92 93.22 93.22 98.31 96.61 94.92

Avg. 90.32 87.95 78.44 91.11 87.87 89.46 87.72 93.22 88.90

ImageCLEF

B → C 92.50 95.00 95.00 94.17 97.50 96.67 96.67 95.00 94.17
B → I 90.00 89.17 89.17 91.67 94.17 91.67 95.00 95.00 93.33
B → P 68.33 69.17 70.00 71.67 73.33 75.83 74.17 72.50 74.17
C → B 65.00 65.83 65.83 65.00 51.67 62.50 62.50 65.00 66.67
C → I 89.17 96.67 96.67 95.00 92.50 97.50 95.83 94.17 96.67
C → P 71.67 74.17 73.33 71.67 75.00 75.83 72.50 70.83 75.83
I → B 68.33 70.00 68.33 70.00 65.00 66.67 61.67 67.50 70.00
I → C 93.33 95.83 95.83 95.83 95.83 96.67 95.83 95.00 95.83
I → P 71.67 74.17 75.00 73.33 73.33 71.67 72.50 73.33 75.00
P → B 67.50 69.17 66.67 68.33 57.50 65.83 62.50 62.50 64.17
P → C 95.00 95.83 95.83 95.00 96.67 96.67 96.67 95.00 95.00
P → I 90.83 92.50 92.50 90.83 95.83 95.83 95.00 94.17 95.00
Avg. 80.28 82.29 82.01 81.88 80.69 82.78 81.74 81.67 82.99

Office 31

A→ D 66.07 68.75 69.64 69.64 75.89 76.79 72.32 69.64 72.32
A→W 76.02 74.27 80.12 80.12 79.53 79.53 73.68 76.61 80.70
D → A 65.68 65.85 67.77 66.90 67.60 66.20 61.15 68.29 73.52
D →W 94.15 95.32 98.25 98.25 95.91 97.08 84.80 98.83 95.32
W → A 63.41 66.90 67.42 65.51 67.60 67.60 61.67 66.38 65.68
W → D 96.43 90.18 92.86 95.54 87.50 91.96 81.25 91.96 91.07

Avg. 76.96 76.88 79.34 79.32 79.00 79.86 72.48 78.62 79.77

Office-Home

Ar → Cl 55.10 54.98 54.87 56.24 17.41 53.95 47.88 53.95 57.96
Ar → Pr 70.95 68.69 71.96 71.96 30.97 70.27 67.23 74.89 74.10
Ar → Rw 79.68 79.68 80.83 80.71 40.53 80.25 76.00 77.96 82.43
Cl→ Ar 63.51 60.62 63.09 62.68 31.34 62.68 53.81 59.79 64.33
Cl→ Pr 69.26 66.89 68.81 70.72 41.78 68.92 63.51 70.05 71.73
Cl→ Rw 72.68 69.92 71.18 72.33 38.81 71.18 67.97 68.66 74.63
Pr → Ar 66.80 62.47 64.12 66.39 32.16 64.33 55.88 57.73 62.89
Pr → Cl 36.88 38.83 25.32 38.83 8.59 30.93 23.71 30.70 31.62
Pr → Rw 78.76 77.84 79.22 79.22 47.99 78.30 71.64 73.59 80.94
Rw → Ar 72.99 71.96 72.37 73.81 51.13 70.72 62.47 66.39 69.69
Rw → Cl 53.15 57.85 57.39 56.93 37.00 56.59 47.65 50.63 56.36
Rw → Pr 82.32 80.86 81.87 82.21 64.86 81.31 72.30 80.41 82.09

Avg. 66.84 65.88 65.92 67.67 36.88 65.79 59.17 63.73 67.40

Table 4: Single-source domain adaptation results. We compare 8 methods over 5 benchmarks, with a total
of 42 adaptation tasks.

B.2 Ablations and Visualization

Ablating the number of components and entropic regularization. In this experiment, we ablate the
two parameters of our methods, namely, the number of components K, and the entropic regularization ϵ.
Recall that we normalize the ground-cost by the maximum value, i.e., C̃ij = Cij/(maxijCij), which improves
the numerical stability of the Sinkhorn algorithm. We summarize our results in Figure 6.

For the number of components K, the relationship with performance is mostly clear. Indeed, except for
ϵ = 10−1 on the mapping strategy, using more components enhances performance. Note that, even though
this implies a more complex GMMs, we still have far less components than samples (n = 600 per domain,
i.e., 5 times more samples than components).
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Figure 6: Ablation on number of components K, and entropic penalty ϵ, for the MAP estimation strategy
based on labeled propagation (left), and the mapping estimation strategy (right).

For the entropic penalty ϵ, we have two drastically different scenarios. For the MAP estimation, using
higher entropic regularization coefficients improve performance, whereas the mapping strategy works better
for smaller regularization coefficients (or exact OT). While this may seem contradictory, we note that, in
the mapping strategy, we actually filter out irrelevant matchings between components based on a parameter
τ . However, the entropic regularization is known to generate smoother couplings, which means that more
entries of ω are non-zero, or possibly greater than a fixed τ . As a consequence, the mapping strategy ends
up behaving like Trand, which causes a bad reconstruction for the target domain. Naturally, this effect gets
amplified with more components in both GMMs, as there are more possible matchings.

Source: A Target: C

Figure 7: Source and target domain samples alongside the centroids (denoted by stars) found through EM.
colors reflect the different classes.

Visualizing components and mapped samples. In this experiment, we use the CWRU benchmark
adaptation task A → C. We start by embedding the source and target domain data with the t-SNE
technique of Van der Maaten & Hinton (2008). We do this in 2 separate plots, where we concatenate the
source domain features with the centroids obtained by running the EM algorithm (resp. target). This
visualization is shown in Figure 7. Next, we map samples from the source to the target domain, with the
various strategies described in this section, with the exception of InfoOT, which did not had a reasonable
running time. These are shown in Figure 8.

Overall, while the exact OT solution provides a measure that better reflects the feature positions, it mixes
the classes, as evidenced by the orange and blue classes being mapped to the same place, as well as the green
and violet classes. This phenomenon does not happen for other methods, at the cost of having mapped
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(a) OTDAEMD (b) OTDASink (c) OTDAaffine (d) GMM-OTDAT

Figure 8: t-SNE visualisation of mapped samples to the target domain, on the CWRU task A→ C.

points distributed in a different way. However, for OTDAsink and GMM-OTDAT , the mapped points better
respect the class boundaries. For OTDAaffine, note that the mapped distribution does not actually match
the target. Overall, we achieve a better mapping through the GMM modeling.

B.3 Cross-Domain Fault Diagnosis

For CDFD benchmarks, we follow the experimental settings of Montesuma et al. (2023), Montesuma et al.
(2022) and Montesuma et al. (2024c), which roughly follows a similar idea to visual adaptation tasks.
This means that we pre-train a neural network with source domain data, then use its encoder for feature
extraction. We refer readers to the original papers, and our appendix, for further information. To summarize
our experimentation, there are in total 8 benchmarks, and 84 domain adaptation tasks.

Case Western Reserve University Benchmark. With respect other benchmarks, the CWRU has the
most number of samples per domain, i.e., 8000. In this case, InfoOT was intractable due its computational
complexity. Furthermore, this benchmark illustrate the advantage of employing a grouping technique for
enforcing the class structure in OT.

Task Baseline OTDAEMD OTDASink OTDAaffine InfoOTb InfoOTc HOT-DA GMM-OTDAMAP GMM-OTDAT

A→ B 51.12 72.00 75.19 78.12 - - 69.88 79.75 79.75
A→ C 62.88 94.12 100.00 95.62 - - 100.00 99.94 100.00
B → A 42.50 76.12 78.50 75.88 - - 79.75 80.00 80.00
B → C 37.44 77.62 78.88 75.38 - - 79.81 79.56 79.94
C → A 52.81 98.38 99.25 94.12 - - 98.75 99.12 99.88
C → B 55.62 70.25 74.50 75.50 - - 83.12 79.75 80.00

Avg. 50.40 81.42 84.39 82.44 - - 85.22 86.35 86.59

Table 5: Experimental results on the CWRU benchmark. For each task (i.e., each row), we highlight the
best performing method in bold. Overall, InfoOT did not have a reasonable running time due the large
number of samples on each domain.

Continuous Stirred Tank Reactor. As covered in Montesuma et al. (2022), the CSTR process carries an
exothermic reaction A→ B. The reactor is jacketed, and an inflow of coolant is controlled by a Proportional,
Integral, Derivative (PID) controller as described in Pilario & Cao (2017). From this reactor, a set of 7
variables are measured throughout simulation, corresponding to different temperatures, concentrations and
flow-rates. We refer readers to Montesuma et al. (2022) for further details. Associated with this process,
there are a set of 12 different faults, ranging from process and sensors faults, and input disturbances. On
top of these 12 faults, there is the no-fault scenario, characterizing a classification problem with 13 classes.

The different domains in this benchmark correspond to changes in the process conditions. These are of 2
kinds. First, one introduces a noise, η, in the process parameters (e.g., reactor or jacket volume), reflecting
the possible uncertainty in the mathematical modeling of the reactor. Second, one changes the reaction
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Target Domain 1 2 3 4 5 6
ScoreReaction Order (N) 1.0 1.0 1.0 0.5 1.5 2.0

Parameter Noise (η) 10% 15% 20% 15% 15% 15%
Baseline 69.23 67.30 73.07 53.84 63.46 57.69 64.10
OTDAEMD 71.15 71.15 71.15 61.53 57.69 50.00 63.78
OTDASink 67.31 67.31 69.23 55.76 51.92 53.84 60.89
OTDAAffine 65.38 71.15 71.15 61.54 65.38 53.84 64.74
InfoOTb 67.31 67.31 67.31 50.00 51.92 40.07 58.65
InfoOTc 71.15 67.31 71.15 53.84 51.92 48.07 60.57
HOT-DA 55.77 40.38 44.23 55.77 40.38 42.31 46.47
GMM-OTDAMAP 78.84 73.07 73.07 61.54 57.69 55.77 66.67
GMM-OTDAT 76.92 73.07 73.07 63.46 53.84 50.00 65.04

Table 6: Average classification accuracy with confidence intervals over a 5-fold cross-validation.

order, N , of the reaction A → B, which drastically changes the dynamics of the system. As Montesuma
et al. (2022), we consider η ∈ {0.1, 0.15, 0.2}, and N ∈ {1, 0.5, 1.5, 2}. The source domain corresponds to
N = 1, η = 0.0, whereas the 6 different targets correspond to combinations of η and N . These are shown in
Table 6.

The CSTR benchmark poses a few challenges. First, it has a small number of samples on domains. While the
source is composed of 1300 samples, each target only has 260. Second, each sample lies in a 1400−dimensional
space. Third, target domains are noisy, due the parameter noise η. As a result, most methods have difficulty
in adapting, and performance usually degrades for more intense shifts (e.g., N = 2.0 and η = 0.15). However,
GMM-OTDAMAP and GMM-OTDAT outperform other methods.

Tennessee Eastman Process. Our last experiment consists of the TE process, a benchmark widely used
by the chemical engineering community (Reinartz et al., 2021). This benchmark has the largest number of
domains, i.e., 6. Each of these domains is characterized by a different mode of production for the products of
a chemical reaction, which affects the measured signals from the chemical plant. We summarize our results
in Figure 9, which comprises the 30 adaptation tasks.

For this benchmark, we compare 11 methods. We divide those into shallow DA methods, and deep DA meth-
ods. Shallow methods try to cope with distributional shift by transforming or re-weighting the samples in a
feature space. In the case of this benchmark, we use the encoder’s activations as features. In contrast, deep
methods cope with distribution shift by learning discriminative, domain invariant features, by penalizing
the encoder’s parameters θg so that, after encoding the data points, the domains are indistinguishable from
each other. Besides the 6 shallow methods compared throughout this paper, we also consider classic deep
methods, such as Domain Adversarial Neural Network (DANN) (Ganin et al., 2016), Domain Adaptive Net-
work (DAN) (Ghifary et al., 2014), Wasserstein Distance Guided Representation Learning (WDGRL) (Shen
et al., 2018) and Deep Joint Distribution Optimal Transport (DeepJDOT) (Damodaran et al., 2018).

In comparison with other benchmarks, the TE feature vectors have fewer dimensions (i.e., 128). As a result,
OTDAEMD is the best performing method. However, GMM-OTDA manages to improve over OTDAaffine

and HOT-DA. Overall, our methods are especially better on harder adaptation tasks, such as 6 → 2 and
3→ 2. We refer readers to the exploratory data analysis of Montesuma et al. (2024c) for further insights on
why these adaptation tasks are harder.

Furthermore, note that shallow methods are comparatively better to deep methods. Indeed, the deep neural
nets use considerably less data than, for instance, the image benchmarks considered in our experiments
section. In this latter case, previously to the fine-tuning step on the source domain data, ResNets and ViTs
are pre-trained on the ImageNet benchmark (Deng et al., 2009), which provides a good starting model for
natural image classification. In the context of the TE process benchmark, this is not possible since data are
time series of a specific chemical process.
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Figure 9: Domain adaptation results on the Tennessee Eastman Process. In (a), we show the baseline
adaptation tasks, where each row represents a source domain, and each column represents a target domain.
From (b) to (k), we show the performance offset with respect (a) of adaptation algorithms. Note that (i)
through (k) are deep learning-based algorithms.

B.4 Running Time Analysis

Besides our remark 3.1, we also run a running time analysis of the tested algorithms. Our experimental setting
is as follows. We use the adaptation task A → W of the Office 31 benchmark. In this case, nS = 2817,
nT = 624, nc = 31 and d = 2048. We ran each algorithm 10 independent times, then computed the mean
and standard deviation of their running time. Our results are reported on tables 7 and 8.

Algorithm Running Time (seconds) Accuracy (%)
OTDAEMD 0.775 ± 0.007 74.27
OTDASink 14.119 ± 0.125 80.12
OTDAAffine 8.503 ± 0.097 80.12
InfoOT 105.407 ± 0.716 79.53
HOTDA 2.508 ± 0.023 73.68

Table 7: Running time (in seconds) and classification accuracy (in %) of different OT-based strategies.
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Starting from table 7, the fastest algorithm is OTDAEMD, which has complexity O(n3 log n). In comparison,
OTDASink has complexity O(n2) per iteration. Here, it is important to note that we run the Sinkhorn
algorithm until convergence, for 1000 iterations, which explains its superior running time. It is noteworthy
that OTDAaffine also has a higher running time, since its complexity is dimension-dependent, i.e., O(d3).
Due the high dimensional character of the data at hand, this results in a higher running time.

Another example of higher running time comes from HOTDA, which solves n2
c −nc = 465 sub empirical OT

problems, resulting in a higher running time in comparison with OTDAEMD. Finally, it is noteworthy that
InfoOT is considerably slower than other methods, due to its O(n3) complexity by iteration.

In comparison with previous methods, we show the running time and classification accuracy of GMM-OTDAT
and GMM-OTDAMAP for K = {31, 62, · · · , 217}. We do so for ϵ = 10−2, which in practice yielded the best
empirical performance. As a result, the running time should be directly compared to OTDASink. For all
number of components, our algorithm has an inferior running time to almost all methods, with the expection
of OTDAEMD and HOTDA.

Number of Components Running Time (seconds) GMM-OTDAT GMM-OTDAMAP

31 0.742 ± 0.074 78.94 64.91
62 1.329 ± 0.015 79.53 70.76
93 1.995 ± 0.035 76.02 70.17
124 2.679 ± 0.051 80.70 74.85
155 3.517 ± 0.025 78.36 75.44
186 4.343 ± 0.090 80.70 70.17
217 5.069 ± 0.059 77.77 76.02

Table 8: Running time (in seconds) and classification accuracy (in %) of GMM-OTDAT and GMM-
OTDAMAP as a function of number of components.
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