
Decomposing and Editing Predictions
by Modeling Model Computation

Harshay Shah
MIT

harshay@mit.edu

Andrew Ilyas
MIT

ailyas@mit.edu

Aleksander Mądry
MIT

madry@mit.edu

Abstract

How does the internal computation of a machine learning model turn inputs into
predictions? To tackle this question, we introduce component modeling, a frame-
work for decomposing a prediction in terms of model components—architectural
“building blocks” such as convolution filters or attention heads. We focus on a
sub-case of this framework, component attribution, where the goal is to estimate
the counterfactual impact of individual components on a given prediction. We then
present COAR, a scalable estimator for component attribution, and showcase its
effectiveness on vision and language models. Finally, we show that COAR directly
enables effective model editing.

1 Introduction

Despite their predictive power, machine learning models remain black boxes. In particular, the
internal computation that these models perform to transform inputs into predictions makes it difficult
to understand model behavior and, as a result, detect failure modes prior to deployment [Beery et al.,
2018, Sheng et al., 2019, Geirhos et al., 2020].

In response to this difficulty, a line of work in ML interpretability aims to shed light on model
computation by analyzing model components—“grouped” model parameters such as convolutional
filters or attention heads. Feature visualization methods [Simonyan et al., 2013, Zeiler and Fergus,
2014] identify components in vision models that detect concepts such as curves [Olah et al., 2020a]
and objects [Bau et al., 2020b]. Representation-based probes [Alain and Bengio, 2016] identify
language model components that encode sentiment [Radford et al., 2017], part-of-speech tags [Blevins
et al., 2018], and syntactic structure [Hewitt and Liang, 2019]. Mechanistic interpretability [Wang
et al., 2022, Nanda et al., 2023] uncovers specific components that encode a model behavior of interest,
e.g., “knowledge neurons” [Dai et al., 2021], “induction heads” [Olsson et al., 2022]. Broadly, these
works develop tools to answer: How do individual components shape model behavior?

In this work, we propose a new (and complementary) approach to studying this question. Our point
of start is to rephrase the question, instead asking: How do changes to model components collectively
change individual model predictions?

We turn this question into a concrete framework called component modeling. Specifically, we:

(1) Introduce the component modeling framework: We formalize our goal of understanding how
model components shape predictions through a framework called component modeling (Def 2.1).
The objective is to learn a counterfactual estimator, or component model, that predicts the effect of
ablating a subset of components on a model prediction (Equation 1).

(2) Instantiate the framework via component attribution: We focus our attention on a special
“linear” case of component modeling called component attribution, where we assign a score to each

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

component, and estimate the counterfactual effect of ablating a set of components as the sum of their
corresponding scores (Definition 2.2).

(3) Propose an estimator for component attribution: We develop COAR (component attribution
via regression), a scalable estimator for component attributions (Section 3). Our findings show that
COAR yields component attributions that can accurately predict how predictions of large-scale vision
and language models change in response to component-level ablations (Section 4).

(4) Edit model behavior via component attribution: COAR directly enables zeroth-order model
editing without any additional training. In Section 5, we outline COAR-EDIT, an editing method that
ablates targeted component subsets to induce desired model behavior. We apply COAR-EDIT to five
tasks: boosting subpopulation robustness (§ D.3), fixing model errors (§ D.1), “forgetting” classes
(§ D.2), mitigating typographic attacks (§ D.4), and localizing backdoor attacks (§ D.5).

2 Setup and Problem Statement

Setup. We have a set S of input-label pairs (or examples) zi = (xi, yi), and a trained model M that
maps inputs x to predicted labels M(x). We define the model output fM (z) ∈ R as any statistic that
quantifies the correctness of model M on the example z e.g., cross-entropy loss in a classification
task. We view the model M as a computation graph GM [Bauer, 1974], where each parameterized
node—which we call a component—is a function mapping its incoming edges to an outgoing edge.

Component modeling. Viewing the model M as a computation graph GM over components C, we
can restate our goal as: Given a model M and example z, how does every component c ∈ C combine
to output fM (z)? What we want is an interpretable function capturing how components in C impact
fM (z). To make this precise, we define the component counterfactual fM (z, C ′) as

fM (z, C ′) := model output fM (z) on example z after ablating components C ′ ⊆ C, (1)

where “ablating” here corresponds to any intervention that patches the parameters corresponding to
components c ∈ C ′ (e.g., by zeroing out [Olsson et al., 2022] or adding noise [Meng et al., 2022]).
Eq. (1) allows us to operationalize our goal as the task of estimating component counterfactuals
fM (z, C ′) using a much simpler surrogate function, which we call a component model.

Definition 2.1 (Component modeling). Fix a model M with computation graph GM , components
C = {c1, . . . , cN}, and model output function fM . For any subset of model components C ′ ⊆ C, let
0C′ be the ablation vector of C ′, a N -dimensional vector where 0C′ [i] = 0 if ci ∈ C ′ and 0C′ [i] = 1
otherwise. Given an example z, a component model for z is a function g(z) : {0, 1}N → R that maps
ablation vectors of subsets C ′ to estimates of the counterfactual fM (z, C ′).

The high-level goal of component modeling is to build an estimator that can simulate counterfactauls
like “what would happen to my classifier’s prediction on a given image if I ablated a specific set of
components C ′ ⊆ C?” without having to intervene on the graph GM and ablate components in C ′.

Definition 2.2 (Component attribution). Given a model M with model output fM and com-
ponent a C = {c1, . . . , cN}, a component attribution for example z is a set of coefficients
θ(z) := {w(z)

1 , . . . ,w
(z)
N , b(z)} that parameterize a linear component model, i.e., fM (z;C ′) ≈

g(z)(0C′) := 0⊤
C′w(z) + b(z).

Component attribution. We focus on a subcase of component modeling—which we call component
attribution (Definition 2.2)—where the function g(z) is linear in its input. The component attribution
for example z assigns a score w

(z)
i to each component ci ∈ C and predicts the effect of ablating

C ′ ⊂ C as the sum over scores corresponding to components in C \ C ′. In doing so, the attributions
decompose the output fM (z) into component-wise contributions w(z)

i .

3 Component attribution with COAR

In this section, we describe COAR (component attribution via regression), a general component
attribution method for models ranging from random forests to deep networks. COAR takes in an
example z and outputs its component attribution vector θ(z) ∈ R|C|+1 (Definition 2.2) by casting the
task of predicting component counterfactuals as a supervised learning problem in two steps:

2

(Step 1) Construct a component dataset. We construct a component dataset D(z) =
{(Ci, fM (z, Ci))}mi=1 of component counterfactuals for the example z. where each “datapoint”
consists of a component subset Ci ⊆ C and its counterfactual fM (z, Ci) (see (1)). To compute the
latter, we ablate the components in Ci and evaluate the model on example z. For simplicity, we
choose the component subsets Ci to be random αtrain-fraction subsets of the component set C.

(Step 2) Fit a linear estimator. We then use the dataset D(z) to fit component attribution θ(z) for each
example z (see Definition 2.2). Specifically, we minimize the squared loss between the component
counterfactuals and their attribution-based estimates by solving a linear regression problem:

θ(z) := arg min
b∈R,w∈R|C|

∑
D(z)

(b+ 1⊤
Ci
w − fM (z, Ci))

2, (2)

where again 0Ci is the ablation vector of Ci (Definition 2.1). Our component model is then

g(z)(0C′) := 0⊤
C′w(z) + b(z). (3)

We provide code for COAR in Appendix E.1. The resulting attribution θ(z) := (w(z), b(z)) is
interpretable: w(z)

j estimates how the output on example z would change by ablating component cj .

Instantiating COAR for classification. In this paper, we use COAR to analyze models evaluated on
classification tasks and use correct-class margin [Ilyas et al., 2022] as the model output function

fM (z) := (logit for correct class) − (highest logit for incorrect class), (4)

where the sign indicates the correctness of model M on the example z. We choose to ablate
component subsets C ′ ⊂ S by simply setting the parameters of the components in C ′ to zero [Wang
et al., 2022, Olsson et al., 2022]. We consider alternative model output functions and ablation methods
in Appendices I.3 and I.2.

4 Does COAR learn accurate attributions?

Datasets and models. We evaluate COAR-estimated component attributions in three setups: (A)
ResNet-18 on CIFAR-10, (B) ResNet-50 on ImageNet, and (C) Vision Transformer (ViT-B/16) on
ImageNet. The set of components in setup {A,B,C} comprises 2306 convolutional filters, 22720
convolutional filters, and 82944 weight matrix rows respetively. See Appendix E.2 for details.

Evaluation metric. We evaluate the component attributions for example z based on its ability to
estimate unseen component counterfactuals (1). Specifically, we sample a collection of k component
subsets D(z) := {C ′

1, C
′
2, . . . , Ck} where each C ′

i ∼ Unif(C ′ ⊂ C : |C ′| = αtest|C|), with αtest as a
hyperparameter. Setting αtest = αtrain (or not) evaluates the in-distribution (or out-of-distribution)
performance of COAR. Using D(z), we compute the Pearson correlation ρ(z) between component
counterfactuals fM (z, C ′

i) and their attribution-based estimates g(z)(0C′
i
):

ρ(z) := ρp

(
{fM (z, C1), . . . , fM (z, Ck)}︸ ︷︷ ︸

ground-truth counterfactuals

, {g(z)(0C′
1
), . . . , g(z)(0C′

k
)}︸ ︷︷ ︸

component attribution estimates

)
(5)

Baselines. We compare COAR to four baselines. The first two are adapted from related work:
internal influence (II) [Leino et al., 2018] and neuron conductance (NC) [Dhamdhere et al., 2018].
The other two are natural baselines: leave-one-out (LOO) and gradient-times-parameter (GP). We
provide details to Appendix E.3.

Results. The first row of Figure 1 corresponds to an individual example from each setup. We observe
that COAR learns accurate component attributions that obtain high Pearson correlations ρ(z) with the
true counterfactuals. For each task, the second row of Figure 1 compares COAR to the baselines using
the average correlation Ez[ρ(z)] (5) averaged over all test examples. Our method COAR consistently
outperforms all four baselines for multiple values of αtest across all setups.

Applying COAR to language models. Although we focus on vision models in this work, COAR
is modality-agnostic. In Appendix F, we show that COAR yields accurate component attributions
for language models: GPT-2 [Radford et al., 2019] evaluated on TinyStories [Eldan and Li, 2023]
and Phi-2 [Javaheripi and Bubeck, 2023] evaluated on BoolQ [Clark et al., 2019]. We also evaluate
COAR on additional tasks, architectures, and datasets in Appendix G.

3

4 2 0 2 4
True counterfactuals fM(z, C) on example z

4

2

0

2

4

C
oa

r E
st

im
at

e
 g

(z
) (C

)

Setup A: ResNet-18 trained on CIFAR-10

Example z

Corr. (z) = 0.80

2 0 2 4
True counterfactuals fM(z, C) on example z

2

0

2

4

C
oa

r E
st

im
at

e
 g

(z
) (C

)

Setup B: ResNet-50 trained on ImageNet

Example z

Corr. (z) = 0.70

4 2 0 2
True counterfactuals fM(z, C) on example z

4

2

0

2

C
oa

r E
st

im
at

e
 g

(z
) (C

)

Setup C: ViT-B/16 trained on ImageNet

Example z

Corr. (z) = 0.81

II NC GP LOO Coar

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 c
or

re
la

tio
n

E z
[

(z
)]

.00
.06

.15

.38

.68

.01

.09

.18

.42

.71

.01

.11

.24

.52

.75

Fraction of components ablated

0.15 0.125 0.1*

II NC GP LOO Coar

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 c
or

re
la

tio
n

E z
[

(z
)]

.01 .00
.04

.10

.48

.00 .00

.08

.18

.57

.00 .00

.17

.34

.65

Fraction of components ablated

0.1 0.075 0.05*

II NC GP LOO Coar

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 c
or

re
la

tio
n

E z
[

(z
)]

.01
.05

.31
.39

.58

.02
.06

.42

.52

.69

.02
.07

.54

.65

.76

Fraction of components ablated

0.1 0.075 0.05*

Figure 1: Evaluating COAR. We compare COAR to four baselines (described in Section 4) on three
setups (one per column). In the first row, each subfigure focuses on a single example z (visualized
in each plot), and shows that the component counterfactuals fM (z, ·) (x-axis) and attribution-based
estimates g(z)(·) (y-axis) exhibit high correlation ρ(z). In the second row, we observe that COAR
attributions exhibit high average correlation Ez[ρ(z)] over test examples, outperforming all baselines
and for all ablation fractions αtest.

5 Do COAR Attributions Enable Model Editing?

While component attribution answers questions of the form “how would the model outputs change if
we were to ablate a subset of components?”, model editing inverts this to “which components, when
ablated, would change model outputs in a specific way?” Given target examples ST sampled from
DT and reference examples SR from DR, our three-step editing approach COAR-EDIT identifies
targeted model ablations that change predictions on DT but not on DR as follows:

1. Compute COAR attributions θ(z) = (w(z), b(z)) for all target & reference examples z ∈ ST ∪ SR.
2. For each component ci ∈ C, use a t-test in order to quantify the “importance” of component ci to

set of target examples ST relative to reference examples SR:

τ(ci) :=
µ(ST)− µ(SR)√
σ2(ST)
|ST | + σ2(SR)

|SR|

, where

{
µ(S) = 1

|S|
∑

z∈S w
(z)
i

σ2(S) = 1
|S|

∑
z∈S(w

(z)
i − µ(S))2.

(6)

3. Increase the model outputs (e.g., margin) on target examples ST by ablating the subset Cedit =
arg bottom-k({τ(ci) : ci ∈ C}) comprising the k most negative scores τi. The hyperparameter k
can be tuned by cross-validation. To decrease outputs, we can replace bottom-k with top-k.

The score τ(ci) in Equation 6 is a t-test statistic with the null hypothesis that component ci has
an equal average effect on the target and reference data distributions. Using these scores, we find
components that, if ablated, change target outputs the most relative to the change in reference outputs.

Applications. In Appendix D, we stress-test COAR-EDIT on five model editing tasks: fixing
model errors (§D.1), “forgetting” specific classes (§D.2), boosting subpopulation robustness (§D.3),
localizing backdoor attacks (§D.5), and improving robustness to typographic attacks (§D.4).

6 Conclusion

We introduce component modeling, a framework for decomposing predictions in terms of model
components. We focus on the component attribution sub-case, where the goal is to predict the
counterfactual impact of component ablations on a prediction. Our method, COAR, yields predictive
attributions for large-scale vision and language models, which can directly inform model editing.

Due to space constaints, we discuss related work on localizing, interpreting, and editing model
behavior in Appendix A. We also outline current limitations of COAR and directions for future work
in Appendices B and C.

4

References
Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes.

arXiv preprint arXiv:1610.01644, 2016.

Omer Antverg and Yonatan Belinkov. On the pitfalls of analyzing individual neurons in language
models. arXiv preprint arXiv:2110.07483, 2021.

Samyadeep Basu, Nanxuan Zhao, Vlad Morariu, Soheil Feizi, and Varun Manjunatha. Localizing and
editing knowledge in text-to-image generative models. arXiv preprint arXiv:2310.13730, 2023.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Computer Vision and Pattern
Recognition (CVPR), 2017.

David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, and Antonio Torralba. Rewriting a deep
generative model. In European Conference on Computer Vision (ECCV), 2020a.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Torralba.
Understanding the role of individual units in a deep neural network. Proceedings of the National
Academy of Sciences (PNAS), 2020b.

Friedrich L Bauer. Computational graphs and rounding error. In SIAM Journal on Numerical Analysis,
volume 11, pages 87–96. SIAM, 1974.

Deniz Bayazit, Negar Foroutan, Zeming Chen, Gail Weiss, and Antoine Bosselut. Discovering
knowledge-critical subnetworks in pretrained language models. arXiv preprint arXiv:2310.03084,
2023.

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In European
Conference on Computer Vision (ECCV), 2018.

Nora Belrose, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell, Edward Raff, and Stella
Biderman. Leace: Perfect linear concept erasure in closed form. arXiv preprint arXiv:2306.03819,
2023.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines.
In International Conference on Machine Learning, 2012.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever,
Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in language mod-
els. URL https://openaipublic. blob. core. windows. net/neuron-explainer/paper/index. html.(Date
accessed: 14.05. 2023), 2023.

Terra Blevins, Omer Levy, and Luke Zettlemoyer. Deep rnns encode soft hierarchical syntax. arXiv
preprint arXiv:1805.04218, 2018.

Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif, Fernanda Viégas, and Martin
Wattenberg. An interpretability illusion for bert. arXiv preprint arXiv:2104.07143, 2021.

Davis Brown, Charles Godfrey, Cody A. Nizinski, Jonathan Tu, and Henry Kvinge. Robustness of
edited neural networks. ArXiv, abs/2303.00046, 2023.

Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial
gender classification. In Conference on fairness, accountability and transparency (FAccT), 2018.

Nick Cammarata, Gabriel Goh, Shan Carter, Ludwig Schubert, Michael Petrov, and Chris Olah.
Curve detectors. Distill, 5(6):e00024–003, 2020.

Steven Cao, Victor Sanh, and Alexander M Rush. Low-complexity probing via finding subnetworks.
arXiv preprint arXiv:2104.03514, 2021.

Stephen Casper, Tilman Rauker, Anson Ho, and Dylan Hadfield-Menell. Sok: Toward transparent ai:
A survey on interpreting the inner structures of deep neural networks. In First IEEE Conference on
Secure and Trustworthy Machine Learning, 2022.

5

Lawrence Chan, Adrià Garriga-Alonso, Nicholas Goldowsky-Dill, Ryan Greenblatt, Jenny Nitishin-
skaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas. Causal scrubbing: A method for
rigorously testing interpretability hypotheses. 2022.

Ting-Yun Chang, Jesse Thomason, and Robin Jia. Do localization methods actually localize memo-
rized data in llms? arXiv preprint arXiv:2311.09060, 2023.

Haozhe Chen, Junfeng Yang, Carl Vondrick, and Chengzhi Mao. Interpreting and controlling vision
foundation models via text explanations. arXiv preprint arXiv:2310.10591, 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple effects of
knowledge editing in language models. ArXiv, abs/2307.12976, 2023.

Arthur Conmy, Augustine N Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. arXiv preprint
arXiv:2304.14997, 2023.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. arXiv preprint arXiv:2104.08696, 2021.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau, and James Glass. What
is one grain of sand in the desert? analyzing individual neurons in deep nlp models. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pages 6309–6317, 2019.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. arXiv
preprint arXiv:2104.08164, 2021a.

Nicola De Cao, Leon Schmid, Dieuwke Hupkes, and Ivan Titov. Sparse interventions in language
models with differentiable masking. arXiv preprint arXiv:2112.06837, 2021b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition (CVPR), 2009.

Kedar Dhamdhere, Mukund Sundararajan, and Qiqi Yan. How important is a neuron? arXiv preprint
arXiv:1805.12233, 2018.

Nadir Durrani, Hassan Sajjad, Fahim Dalvi, and Yonatan Belinkov. Analyzing individual neurons in
pre-trained language models. arXiv preprint arXiv:2010.02695, 2020.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent
english? arXiv preprint arXiv:2305.07759, 2023.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposition.
arXiv preprint arXiv:2209.10652, 2022.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long
tail via influence estimation. In Advances in Neural Information Processing Systems (NeurIPS),
volume 33, pages 2881–2891, 2020.

Matthew Finlayson, Aaron Mueller, Sebastian Gehrmann, Stuart Shieber, Tal Linzen, and Yonatan
Belinkov. Causal analysis of syntactic agreement mechanisms in neural language models. arXiv
preprint arXiv:2106.06087, 2021.

Dan Friedman, Andrew Lampinen, Lucas Dixon, Danqi Chen, and Asma Ghandeharioun. Inter-
pretability illusions in the generalization of simplified models. arXiv preprint arXiv:2312.03656,
2023.

Yossi Gandelsman, Alexei A Efros, and Jacob Steinhardt. Interpreting clip’s image representation via
text-based decomposition. arXiv preprint arXiv:2310.05916, 2023.

6

Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts
from diffusion models. arXiv preprint arXiv:2303.07345, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal abstractions of neural
networks. Advances in Neural Information Processing Systems, 34:9574–9586, 2021.

Atticus Geiger, Chris Potts, and Thomas Icard. Causal abstraction for faithful model interpretation.
arXiv preprint arXiv:2301.04709, 2023.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and
Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness. In International Conference on Learning Representations
(ICLR), 2019.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. In Nature Machine
Intelligence, 2020.

Robert Geirhos, Roland S Zimmermann, Blair Bilodeau, Wieland Brendel, and Been Kim. Don’t
trust your eyes: on the (un) reliability of feature visualizations. arXiv preprint arXiv:2306.04719,
2023.

Kristian Georgiev, Joshua Vendrow, Hadi Salman, Sung Min Park, and Aleksander Madry. The
journey, not the destination: How data guides diffusion models. arXiv preprint arXiv:2312.06205,
2023.

Amin Ghiasi, Hamid Kazemi, Eitan Borgnia, Steven Reich, Manli Shu, Micah Goldblum, An-
drew Gordon Wilson, and Tom Goldstein. What do vision transformers learn? a visual exploration.
arXiv preprint arXiv:2212.06727, 2022.

Amirata Ghorbani and James Y Zou. Neuron shapley: Discovering the responsible neurons. Advances
in neural information processing systems, 33:5922–5932, 2020.

Gabriel Goh, Nick Cammarata, Chelsea Voss, Shan Carter, Michael Petrov, Ludwig Schubert, Alec
Radford, and Chris Olah. Multimodal neurons in artificial neural networks. Distill, 2021.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model
behavior with path patching. arXiv preprint arXiv:2304.05969, 2023.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform editing?
surprising differences in causality-based localization vs. knowledge editing in language models.
arXiv preprint arXiv:2301.04213, 2023.

Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common
corruptions and surface variations. In International Conference on Learning Representations
(ICLR), 2019.

Katherine L Hermann, Hossein Mobahi, Thomas Fel, and Michael C Mozer. On the foundations of
shortcut learning. arXiv preprint arXiv:2310.16228, 2023.

Evan Hernandez, Sarah Schwettmann, David Bau, Teona Bagashvili, Antonio Torralba, and Jacob
Andreas. Natural language descriptions of deep visual features. In International Conference on
Learning Representations, 2021.

John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. arXiv preprint
arXiv:1909.03368, 2019.

7

https://zenodo.org/records/10256836

Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for interpretability
methods in deep neural networks. arXiv preprint arXiv:1806.10758, 2018.

Jing Huang, Atticus Geiger, Karel D’Oosterlinck, Zhengxuan Wu, and Christopher Potts. Rigorously
assessing natural language explanations of neurons. arXiv preprint arXiv:2309.10312, 2023.

Badr Youbi Idrissi, Martin Arjovsky, Mohammad Pezeshki, and David Lopez-Paz. Simple data
balancing achieves competitive worst-group-accuracy. In Conference on Causal Learning and
Reasoning, pages 336–351. PMLR, 2022.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Predicting predictions from training data. In International Conference on Machine
Learning (ICML), 2022.

Mojan Javaheripi and Sébastien Bubeck. Phi-2: The surprising power of small lan-
guage models, Dec 2023. URL https://www.microsoft.com/en-us/research/blog/
phi-2-the-surprising-power-of-small-language-models/.

Alistair EW Johnson, Tom J Pollard, Nathaniel R Greenbaum, Matthew P Lungren, Chih-ying Deng,
Yifan Peng, Zhiyong Lu, Roger G Mark, Seth J Berkowitz, and Steven Horng. Mimic-cxr-jpg, a
large publicly available database of labeled chest radiographs. arXiv preprint arXiv:1901.07042,
2019.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient
for robustness to spurious correlations. arXiv preprint arXiv:2204.02937, 2022.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan
Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, et al. Captum:
A unified and generic model interpretability library for pytorch. arXiv preprint arXiv:2009.07896,
2020.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In Proceedings of the 36th International Conference on Machine
Learning (ICML), 2019.

Alex Krizhevsky. Learning multiple layers of features from tiny images. In Technical report, 2009.

Yair Lakretz, German Kruszewski, Theo Desbordes, Dieuwke Hupkes, Stanislas Dehaene, and Marco
Baroni. The emergence of number and syntax units in lstm language models. arXiv preprint
arXiv:1903.07435, 2019.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Aleksander
Madry. ffcv. https://github.com/libffcv/ffcv/, 2022.

Klas Leino, Shayak Sen, Anupam Datta, Matt Fredrikson, and Linyi Li. Influence-directed explana-
tions for deep convolutional networks. In 2018 IEEE international test conference (ITC), pages
1–8. IEEE, 2018.

Maximilian Li, Xander Davies, and Max Nadeau. Circuit breaking: Removing model behaviors with
targeted ablation. 2023a.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023b.

Yuezun Li, Xin Yang, Pu Sun, Honggang Qi, and Siwei Lyu. Celeb-df: A large-scale challenging
dataset for deepfake forensics. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 3207–3216, 2020.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
International Conference on Computer Vision (ICCV), 2015.

8

https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://github.com/libffcv/ffcv/

Pratyush Maini, Michael C Mozer, Hanie Sedghi, Zachary C Lipton, J Zico Kolter, and Chiyuan
Zhang. Can neural network memorization be localized? In International Conference on Machine
Learning, 2023.

Joanna Materzyńska, Antonio Torralba, and David Bau. Disentangling visual and written concepts in
clip. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 16410–16419, 2022.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. Advances in Neural Information Processing Systems, 36, 2022.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
editing at scale. arXiv preprint arXiv:2110.11309, 2021.

Jesse Mu and Jacob Andreas. Compositional explanations of neurons. Advances in Neural Information
Processing Systems, 33:17153–17163, 2020.

Neel Nanda. Attribution patching: Activation patching at industrial scale. 2023. URL https://www.
neelnanda. io/mechanistic-interpretability/attribution-patching, 2023.

Neel Nanda, Lawrence Chan, Tom Liberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Lauren Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro, and Christopher Ré. Hidden stratification
causes clinically meaningful failures in machine learning for medical imaging. In Proceedings of
the ACM conference on health, inference, and learning, 2020.

Tuomas Oikarinen and Tsui-Wei Weng. Clip-dissect: Automatic description of neuron representations
in deep vision networks. arXiv preprint arXiv:2204.10965, 2022.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine Ye, and
Alexander Mordvintsev. The building blocks of interpretability. In Distill, 2018.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
An overview of early vision in inceptionv1. Distill, 2020a. doi: 10.23915/distill.00024.002.
https://distill.pub/2020/circuits/early-vision.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020b. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

Vedant Palit, Rohan Pandey, Aryaman Arora, and Paul Pu Liang. Towards vision-language mechanis-
tic interpretability: A causal tracing tool for blip. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2856–2861, 2023.

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill localization
in fine-tuned language models. arXiv preprint arXiv:2302.06600, 2023.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
Attributing model behavior at scale. In Arxiv preprint arXiv:2303.14186, 2023.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learning to generate reviews and discovering
sentiment. arXiv preprint arXiv:1704.01444, 2017.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In arXiv preprint arXiv:2103.00020, 2021.

9

Shauli Ravfogel, Michael Twiton, Yoav Goldberg, and Ryan D Cotterell. Linear adversarial concept
erasure. In International Conference on Machine Learning, pages 18400–18421. PMLR, 2022.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining
the predictions of any classifier. In International Conference on Knowledge Discovery and Data
Mining (KDD), 2016.

Elan Rosenfeld and Andrej Risteski. Outliers with opposing signals have an outsized effect on neural
network optimization. arXiv preprint arXiv:2311.04163, 2023.

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generalization.
In International Conference on Learning Representations, 2020.

Shibani Santurkar, Dimitris Tsipras, Mahalaxmi Elango, David Bau, Antonio Torralba, and Alek-
sander Madry. Editing a classifier by rewriting its prediction rules. In Preprint, 2021.

Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The
pitfalls of simplicity bias in neural networks. Advances in Neural Information Processing Systems,
33:9573–9585, 2020.

Harshay Shah, Prateek Jain, and Praneeth Netrapalli. Do input gradients highlight discriminative
features? Advances in Neural Information Processing Systems, 34, 2021.

Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. The woman worked as a
babysitter: On biases in language generation. arXiv preprint arXiv:1909.01326, 2019.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. Understanding arithmetic reasoning in
language models using causal mediation analysis. arXiv preprint arXiv:2305.15054, 2023.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International Conference on Machine Learning (ICML), 2017.

Curt Tigges, Oskar John Hollinsworth, Atticus Geiger, and Neel Nanda. Linear representations of
sentiment in large language models. arXiv preprint arXiv:2310.15154, 2023.

Joshua Vendrow, Saachi Jain, Logan Engstrom, and Aleksander Madry. Dataset interfaces: Diagnos-
ing model failures using controllable counterfactual generation. arXiv preprint arXiv:2302.07865,
2023.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and
Stuart Shieber. Investigating gender bias in language models using causal mediation analysis.
Advances in neural information processing systems, 33:12388–12401, 2020.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Haohan Wang, Songwei Ge, Eric P Xing, and Zachary C Lipton. Learning robust global represen-
tations by penalizing local predictive power. Neural Information Processing Systems (NeurIPS),
2019.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small, 2022. URL
https://arxiv.org/abs/2211.00593.

Zhenyi Wang, Enneng Yang, Li Shen, and Heng Huang. A comprehensive survey of forgetting in
deep learning beyond continual learning. arXiv preprint arXiv:2307.09218, 2023.

Kaiyue Wen, Yuchen Li, Bingbin Liu, and Andrej Risteski. Transformers are uninterpretable with
myopic methods: a case study with bounded dyck grammars. arXiv preprint arXiv:2312.01429,
2023.

10

https://arxiv.org/abs/2211.00593

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pages 818–833. Springer, 2014.

Fred Zhang and Neel Nanda. Towards best practices of activation patching in language models:
Metrics and methods. arXiv preprint arXiv:2309.16042, 2023.

Xiaosen Zheng, Tianyu Pang, Chao Du, Jing Jiang, and Min Lin. Intriguing properties of data
attribution on diffusion models. arXiv preprint arXiv:2311.00500, 2023.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 million
image database for scene recognition. In IEEE transactions on pattern analysis and machine
intelligence, 2017.

Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Revisiting the importance of individual
units in cnns via ablation. arXiv preprint arXiv:1806.02891, 2018.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv
Kumar. Modifying memories in transformer models. arXiv preprint arXiv:2012.00363, 2020.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
top-down approach to ai transparency. arXiv preprint arXiv:2310.01405, 2023.

11

Appendices

A Related work 14

B Discussion 16

C Future work 17

D Additional COAR-EDIT experiments 18

D.1 Editing individual model predictions . 18

D.2 “Forgetting” a class . 18

D.3 Improving subpopulation robustness . 20

D.4 Improving robustness to typographic attacks . 21

D.5 Mitigating a backdoor attack . 21

E Evaluation setup 23

E.1 Pseudocode . 23

E.2 Datasets, models, components, and applying COAR. 23

E.3 Baselines . 24

E.4 Implementation details . 25

F Applying COAR to language models 26

F.1 Evaluating GPT-2 on the TinyStories dataset . 26

F.2 Evaluating Phi-2 on the BoolQ dataset . 26

G Additional evaluation of COAR 29

G.1 Evaluating COAR on additional datasets . 29

G.2 Evaluating COAR on additional model architectures 29

G.3 Evaluating COAR on additional tasks . 29

G.4 Comparing COAR attributions estimated with different ablation fractions 29

G.5 Comparing COAR attributions estimated with different sample sizes 30

G.6 Analyzing COAR attributions at the example level 30

G.7 Qualitatively analyzing COAR attributions . 30

H Additional evaluation of COAR-EDIT 39

H.1 Editing individual predictions . 39

H.2 Forgetting a class . 39

H.3 Improving subpopulation robustness. 39

H.4 Mitigating backdoor attacks. 41

H.5 Improving robustness to typographic attacks. 42

I Analyzing design choices in COAR 46

12

I.1 Effect of ablation fraction . 46

I.2 Effect of ablation method . 46

I.3 Effect of model output function . 47

13

A Related work

Our work relates to several lines of work in machine learning interpretability, which we categorize
into works that localize model behavior, works that interpret specific model components, and works
that perform model editing.

Localizing model behavior. One line of work (within the field of mechanistic interpretability),
attempts to localize specific capabilities or behaviors of neural networks (especially language models)
to specific “subnetworks” or “circuits” [Olah et al., 2020b]. For example, prior work has used a
variety of methods to localize gender bias Vig et al. [2020]; specifical factual associations Meng et al.
[2022]; and other behavior Wang et al. [2022], Li et al. [2023a], Goldowsky-Dill et al. [2023], Tigges
et al. [2023] within model parameters.

More recent work has tried to automate this localization process, using techniques based on fine-
tuning Panigrahi et al. [2023], activation patching Conmy et al. [2023], Goldowsky-Dill et al. [2023],
or differentiable masking Bayazit et al. [2023], Cao et al. [2021], De Cao et al. [2021b], Chang et al.
[2023]. These techniques (or variants thereof) have been subsequently used to localize properties
such as arithmetic reasoning Stolfo et al. [2023], syntactic agreement Finlayson et al. [2021], visual
question answering Palit et al. [2023], and visual attributes in diffusion models Basu et al. [2023].
Other work has also developed methods Dhamdhere et al. [2018], Leino et al. [2018], Nanda [2023],
Ghorbani and Zou [2020] to attribute model behavior to specific components.

Recently, however, Zhang and Nanda [2023] showed that the design choices underlying many
automated localization methods (e.g., the way they ablate components) can drastically change their
results. Furthermore, Hase et al. [2023] show that localizing factual associations does not directly
inform how to erase or amplify these associations via model editing. In contrast, COAR can (a)
adapt to any reasonable choice of ablation method and (b) yield actionable insights for model editing
(Section 5).

Editing model behavior. Another related line of work focuses on model editing, the goal of which is
to make small, targeted changes to model representations in order to induce or suppress a specific
behavior. Model editing methods include “hypernetworks” De Cao et al. [2021a], Mitchell et al.
[2021], rank-one updates to model parameters Bau et al. [2020a], Santurkar et al. [2021], Meng et al.
[2022], constrained fine-tuning [Zhu et al., 2020], and weight interpolation Ilharco et al. [2022], Zou
et al. [2023], among other methods. Recent work has also studied erasing concepts and suppressing
spurious correlations from models using layer-wise linear probing Belrose et al. [2023], Ravfogel
et al. [2022], CLIP-specific text-based methods Gandelsman et al. [2023], Chen et al. [2023], and
fine-tuning variants Gandikota et al. [2023], Kirichenko et al. [2022]. In this work, we treat model
editing as an application, and show how attributions can enable model edits that modify individual
model predictions (§D.1,§D.2), improve subpopulation-level robustness (§D.3) and suppress spurious
concepts (§D.5, §D.4).

Interpreting specific model components. Instead of starting with a functionality and trying to local-
ize it to specific components, another line of work introduces methods for studying the functionality
of individual model components. Such methods include, feature visualization Zeiler and Fergus
[2014], Ghiasi et al. [2022], Olah et al. [2020a], activation maps Bau et al. [2017], Mu and Andreas
[2020], ablations Zhou et al. [2018], saliency maps Olah et al. [2018], probing Dalvi et al. [2019],
Durrani et al. [2020], and natural language descriptions Hernandez et al. [2021], Oikarinen and Weng
[2022], Bills et al. [2023]. Subsequent analyses use these methods to identify and ascribe meaning
to specific model components by labeling them as, e.g., “curve detectors” Cammarata et al. [2020],
“knowledge neurons” Dai et al. [2021], “multimodal neurons” Goh et al. [2021], and “syntax units”
Lakretz et al. [2019] to name a few. Recently, however, the reliability and robustness of these methods
has been called into question Bolukbasi et al. [2021], Antverg and Belinkov [2021], Hewitt and Liang
[2019], Huang et al. [2023], Geirhos et al. [2023], Hooker et al. [2018], Shah et al. [2021]. Here,
our goal is not to interpret specific model components, but rather to study how different components
jointly influence model predictions through the lens of component modeling (Definition 2.1).

Understanding machine learning models by proxy. Finally, our work connects to a line of research
that aims to understand machine learning models by constructing interpretable proxies. For example,
certain feature attribution methods like LIME [Ribeiro et al., 2016] approximate a given ML model
with a linear model in input space. Similarly, a line of work on datamodeling [Ilyas et al., 2022, Park
et al., 2023] approximates a given learning algorithm by a linear model in “dataset space.” More

14

generally, one can view a component attribution (or in fact, any component model) as a causal
abstraction [Geiger et al., 2021, 2023] of a given machine learning model—that is, a simple, high-
level model that predicts how an intricate, low-level process (in this case, the computation graph GM)
behaves.

15

B Discussion

In this section, we put component modeling in context with work in mechanistic interpretability and
model editing. We also discuss some key limitations of COAR.

How does component attribution differ from mechanistic interpretability? In one sense, compo-
nent attribution falls under the realm of mechanistic interpretability (e.g., Vig et al. [2020], Casper
et al. [2022], Wang et al. [2022], Meng et al. [2022]) since our goal is indeed to understand how
models internally process examples. However, our approach differs from a typical “mechanistic
approach” in that rather than attempting to find circuits for a specific capability or uncovering the
function of a specific component, component modeling takes a top-down, capability-agnostic per-
spective. That is, our main goal is to find a proxy for model behavior on a specific example as a
function of model components. Analyzing this proxy then turns out to be a reliable way of editing
models and uncovering subpopulations, as shown in Section 5. The top-down nature of our approach
makes COAR immediately scalable to large models, and our focus on specific examples rather than
human-prescribed capabilities eliminates some subjectivity (and inevitable misspecification) from
the method itself, deferring it instead to a deliberate human decision. Furthermore, recent work Wen
et al. [2023], Friedman et al. [2023] demonstrates that bottom-up mechanistic analyses that solely
analyze specific model components or its hidden representations in isolation can lead to misleading
conclusions about model behavior.

Does localization help with model editing? The extent to which localizing specific model behavior
to a subset of model components helps with model editing remains contested. On one hand, Hase
et al. [2023] show that localizing factual associations in language models does not necessarily
help with editing these associations. Additional evaluation studies show that model edits can fail
to consistently modify model behavior as targeted Cohen et al. [2023] and degrade robustness to
distribution shifts Brown et al. [2023]. On the other hand, recent work shows that localization
methods can in fact recover “ground truth” localization in controlled settings Chang et al. [2023]
and improve calibration of fine-tuned language models Panigrahi et al. [2023]. Our findings in
Section 5 substantiate the latter view, as COAR-EDIT directly enable model editing in a variety of
settings. Based on these findings, we hypothesize that the effectiveness of localization methods for
model editing (a) depends on the causal efficacy of the localization method itself and (b) the intrinsic
difficulty of different editing tasks.

Limitations. Our proposed method for estimating component attributions, COAR, is not without
its limitations. First, the major computation bottleneck in COAR is that constructing a component
dataset for a given example requires a moderately large number of forward passes through the model.
In Appendix G.5, we show that the sample size required to estimate component attributions can be
reduced by 2-5× without significantly impacting the quality of the resulting attributions. Improving
the sample efficiency of component attribution through better sampling or approximation techniques
would further mitigate this bottleneck. Second, specifying the “right” computational graph for a
given task can be tricky. For example, a computation graph over neurons rather than over attention
heads would lead to finer-grained localization, and thus better model editing, but would also make
estimating component attributions more expensive. Similarly, COAR requires a choice of ablation
method (Equation 1). While we use zero ablations due to its simplicity, more sophisticated ablations
(e.g., Chan et al. [2022]) may be more appropriate for different tasks and/or model architectures Zhang
and Nanda [2023]. In Appendix G.4, we show that COAR is not dependent on the zero-ablation
method and can be used with an alternative ablation method that simply scales down the activations
of ablated components by a constant factor. Finally, while we extensively test the effectiveness of
COAR in editing model behavior, we do so in a proof-of-concept manner. Developing finer-grained
editing methods that leverage component attributions as a building block is an interesting avenue for
future work.

16

C Future work

Below, we highlight a few directions that, while outside the scope of this work, may be interesting
avenues for future work to explore.

Attributing generative models. In this work, we focus our study to image classifiers. However,
COAR is a general method in that given an appropriate model output function, it can estimate
component attributions for any given machine learning model. Future work might thus explore
possible model output functions (and their corresponding component attributions) for generative
models. For diffusion-based generative models, one might study the denoising error for a fixed
timestep, as in [Georgiev et al., 2023, Zheng et al., 2023]. For language models, a possible point
of start (following Park et al. [2023]) would be to use the average correct-class margin (4) of a
sequence of tokens as the model output function. In fact, our preliminary experiments in Appendix F
demonstrate that COAR yields predictive component attributions for GPT-2 Radford et al. [2019]
and Phi-2 Javaheripi and Bubeck [2023] without requiring any modifications to the algorithm. In
general, estimating and applying component attributions for generative models is a promising avenue
for future work.

Beyond linear attributions. Recall from Definition 2.2 that component attribution is a linear
instantiation of the component modeling task (Definition 2.1). Linearity makes component attributions
rather interpretable, and our results (Section 4) indicate that component attributions can still accurately
predict model behavior. Still, the fact that component attributions’ predictiveness decreases on out-of-
distribution component subsets (i.e., when αtest ̸= αtrain) suggests that linear models might not be
expressive enough to fully capture the map between model components and outputs. An potential
avenue for future work would thus be to explore other (non-linear) model classes that map between
ablated components and model output (e.g., decision trees or kernel methods). Note that the generality
of COAR allows one to learn component models for any model class of choice.

Studying neural network representations. Finally, another interesting direction for future work
would be to use component attribution (and component models, more generally) to study empirically
documented phenomena in deep learning. There are a plethora of questions to ask here which,
although beyond the scope of this work, are natural extensions of the results here. For example, ex-
tending our results from Appendix D.1, can we use component attribution to better isolate “conflicting
features” [Ilyas et al., 2022, Rosenfeld and Risteski, 2023] for a given task, and to understand their
role in the training process [Rosenfeld and Risteski, 2023]? Can we study redundancy in how concepts
are represented by neural networks, and how this representation evolves over the course of training?
Similarly, can we develop improved methods for localizing memorized inputs to specific model
components [Feldman and Zhang, 2020, Maini et al., 2023]? Given that component attributions are
causally meaningful, can we use them as a kernel with which to compare different models [Kornblith
et al., 2019] or learning algorithms [?]? Relatedly, are component models transferable across tasks
(allowing us to view them as sparse “subpopulation vectors” [Ilharco et al., 2022])?

17

0 1 2 3 4 5 6 7 8

Number of model components ablated

3

2

1

0

1

2

3

4

C
or

re
ct

-c
la

ss
 m

ar
gi

n
f M

()

(a) Editing a misclassified ImageNet example

Before: "Keyboard"
After: "Ballpoint Pen"

Train example z

Train set (avg) Val set (avg) Example z

80 81 82 83 84 85 86

Accuracy on train set

D
en

si
ty

(c) Effect of edits on overall performance

Model accuracy

Before edit: 86.09%

After edit: 85.93% (median)

70 71 72 73 74 75

Accuracy on val set

D
en

si
ty

Model accuracy

Before edit: 75.36%

After edit: 75.18% (median)

(b) Effect of edit on ImageNet val examples

0.0 0.0
Examples on which margin does not change

0.0

+3.59 +3.49
Examples on which margin increases

+2.70

-5.44 -5.32
Examples on which margin decreases

-5.09

Figure 2: Editing individual model predictions with COAR-EDIT. We edit a ResNet50 model
to correct a misclassified ImageNet example z shown on the left. Ablating a few components via
COAR-EDIT increases the correct-class margin (4) on example z (red) without changing the average
margin on the train set (light blue) or validation set (dark blue). In the middle, we observe that the
examples on which model outputs change the least (top row) due to the edit are visually dissimilar to
example z as well as examples on which model outputs change most positively (middle row) and
negatively (bottom row). On the right, we find that individually performing model edits to correct
every misclassified example in the validation set incurs a median accuracy drop of at most 0.2% on
the train set (top row) and validation set (bottom row).

D Additional COAR-EDIT experiments

D.1 Editing individual model predictions

In this section, we test whether COAR-EDIT can modify individual predictions of an ImageNet
ResNet50 classifier (Setup B in Section 4) without impacting its overall performance. Specifically, we
study the case where the target distribution DT is a singleton example on which we want to improve
performance. An effective model edit here would increase the model margin (4) on z to be greater
than zero without degrading overall performance.

Results. We apply COAR-EDIT to edit individual misclassified examples z, setting ST = {z}
and SR to be a small set of random samples from the ImageNet dataset. We present our findings
in Figure 2. Figure 2a illustrates a single such edit, where we correct the model’s prediction on
a specific ImageNet example from “keyboard” to “ballpoint pen” by ablating k = 3 components
(0.01% of all components). Specifically, increasing the number of ablated components k consistently
improves the correct-class margin on target example z (red) without changing the average margin
over the training set (light blue) or validation set (dark blue). Figure 2b then visualizes (again, for the
specific example being edited in Figure 2a) the examples on which model outputs changes most (and
least) drastically. Finally, Figure 2c shows that we can individually fix every misclassification in the
ImageNet validation set while incurring a median accuracy drop of 0.2% on the training set (top row)
and validation set (bottom row). We defer additional details and results to Appendix H.1.

D.2 “Forgetting” a class

We now consider “selective forgetting” problem Wang et al. [2023], where the goal is to impair model
performance on (only) a specific set of examples. In this experiment, we edit the same ImageNet
ResNet-50 classifier (Setup B) as in Appendix D.1, with the goal of forgetting the entire “chain-link
fence” class. Like before, we use our editing approach COAR-EDIT (see (6)) to identify components
that, when ablated, decrease the model’s correct-class margin on examples from the “chain-link fence”
class, but not on reference examples from other classes.

Results. Figure 3 summarizes our findings. In Figure 3a, we show that ablating just eight (out
of 22, 720) model components degrades accuracy on the “chain fence” class from 66% to 20%
while preserving overall accuracy on the train and validation set. Then, in Figure 3b, a comparison
of class-wise accuracies before and after the edit shows that our approach specifically targets the
“chain fence” class without impacting performance on any other class. Finally, Figure 3c uses the

18

ImageNet-Sketch [Wang et al., 2019] (top) and ImageNet⋆ [Vendrow et al., 2023] (bottom) datasets
to show that the our edit is robust to distribution shifts in both the target and reference distribution.

Through additional experiments in Appendix H.2, we highlight that (a) our approach is sample-
efficient, not needing many samples from the target and reference distributions to find effective edits;
and (b) our findings are robust to the choice of class to forget.

0 1 2 3 4 5 6 7 8
Number of model components ablated

20

30

40

50

60

70

80

90

100

M
od

el
 a

cc
ur

ac
y

(%
)

(a) Editing to "forget" an ImageNet class

Accuracy over

Train set Test set Class "chain fence"

10 20 30 40 50 60 70 80 90 100
Class-level accuracy before edit (%)

10

20

30

40

50

60

70

80

90

100

C
la

ss
-le

ve
l a

cc
ur

ac
y

af
te

r e
di

t (
%

)
-46%

(b) Effect of edit on ImageNet classes

All classes

Class "chain fence" before edit

Class "chain fence" after edit

(c) Edit generalizes to OOD ImageNet data

Class "chain fence" All classes
0

20

40

60

A
cc

ur
ac

y
(%

)

54.9%

24.5%27.5% 24.5%

Dataset: ImageNet-Sketch

Before edit

After edit

Class "chain fence" All classes
0

20

40

60

80

A
cc

ur
ac

y
(%

)

70.3%
60.8%

42.9%

60.8%

Dataset: ImageNet*

Figure 3: “Forgetting” a class with COAR-EDIT. We edit an ImageNet-trained ResNet-50 (Setup B
from Section 4) to forget the “chain-link fence” class. On the left, we show how model accuracy on
the class of interest (red) degrades as a function of k (the number of components removed), while
model accuracy on the train (blue) and test (black) sets remains constant. In the center panel, we
show the per-class accuracy of the model before and after an edit with k = 8 components—while
accuracy on the chain-link fence class degrades significantly, accuracy on other classes stays roughly
constant. Finally, on the right we evaluate the effects of the edit on class-specific and overall accuracy
for distribution-shifted versions of ImageNet (namely ImageNet-Sketch [Wang et al., 2019] and
ImageNet⋆ [Vendrow et al., 2023]). As desired, our edit has a significant effect on the chain-link
fence class, while leaving average model performance unchanged.

19

0 30 60 90 120 150 180 210

Number of model components ablated

60

65

70

75

80

85

90

Te
st

 a
cc

ur
ac

y
(%

)
64%

83%

(a) Waterbirds dataset

Averaged over examples Averaged over subpopulations On worst-performing subpopulation.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of model components ablated

45

55

65

75

85

95

Te
st

 a
cc

ur
ac

y
(%

)

47%

85%

(b) CelebA dataset

Figure 4: Improving subpopulation robustness with COAR-EDIT. We edit pre-trained ResNet-50
models to improve their worst-subpopulation accuracy on Waterbirds Sagawa et al. [2020] and
CelebA Liu et al. [2015]. Before editing, Waterbirds and CelebA models attain 87% and 96% test
accuracy but only 64% and 47% accuracy on their worst-performing subpopulations, respectively.
On the left, applying COAR-EDIT by ablating 210 of 22, 720 components in the Waterbirds model
increases its worst-subpopulation accuracy from 64% to 83% without degrading its accuracy on
examples (light blue) and subpopulations (dark blue). On the right, editing the CelebA model by
ablating just 26 components improves worst-subpopulation accuracy from 47% to 85%.

D.3 Improving subpopulation robustness

Machine learning models often latch onto spurious correlations in the training dataset Geirhos et al.
[2019], Shah et al. [2020], Hermann et al. [2023], resulting in subpar performance on subpopulations
where these correlations do not hold Buolamwini and Gebru [2018], Oakden-Rayner et al. [2020]. In
this section, we test whether our editing approach can boost performance on such underperforming
subpopulations without degrading overall performance.

In particular, we evaluate COAR-EDIT on two benchmarks —Waterbirds Sagawa et al. [2020] and
CelebA Liu et al. [2015]—where models fare poorly on subpopulations that are underrepresented
in the training data. On both datasets, our goal is to improve a given model’s worst-subpopulation
accuracy—we defer details to Appendix H.3.

Results. On both datasets, COAR successfully identifies component subsets that correspond to
effective model edits. On Waterbirds (Figure 4a), ablating 0.9% of all components improves worst-
subpopulation accuracy from 64% to 83% (red) without degrading its accuracy uniformly averaged
over examples and subpopulations. On CelebA, Figure 4b shows that zeroing out 26 of 22, 720
components improves worst-subpopulation accuracy from 47% to 85% and average-subpopulation
accuracy from 84% to 90% while only incurring a 5% drop in test set accuracy.

Before continuing, we make two observations. First, COAR-EDIT is sample-efficient—it does not
require subpopulation-level annotations for the training set; only 20 random examples from each
subpopulation suffice. Second, our results show that simply ablating a few components from models
trained via “standard” empirical risk minimization (ERM) can lead to worst-subpopulation accuracy
improvements comparable to gains from specialized methods (e.g., via robust optimization Sagawa
et al. [2020], dataset selection Idrissi et al. [2022])

20

(a) Effect of attacks on model predictions

 heater

Test data

 books hat

 taxi

+ synthetic typographic attacks

 twitter EU

 taxi

+ real typographic attacks

 twitter EU

(b) Improving robustness to synthetic attacks

0 50 100 150 200 250 300

Number of model components ablated

45

55

65

75

85

95

M
od

el
 a

cc
ur

ac
y

(%
)

(c) Robustness transfers to real attacks

0 50 100 150 200 250 300

Number of model components ablated

45

55

65

75

85

95

M
od

el
 a

cc
ur

ac
y

(%
)

Model accuracy on
Test data

+ all attacks (averaged)

+ "twitter" attack

+ "taxi" attack

+ "EU" attack

+ "iPad" attack

Figure 5: Improving robustness to typographic attacks with COAR-EDIT. We edit a zero-shot
CLIP ViT-B/16 classifier to improve its robustness to typographic attacks Goh et al. [2021]. On the
left, we find that predictions on images of household objects (top row) can be manipulated to “taxi”,
“twitter”, or “EU” via synthetic (middle row) and real (last row) attacks. In the center panel, we use
COAR-EDIT to identify components that, when ablated, improve average accuracy on examples with
synthetic attacks (red) from 51% to 89% while maintaining accuracy on examples without attacks
(blue). On the right, we find that the edit transfers robustness to real attacks too, improving accuracy
from 54% to 86% on average.

D.4 Improving robustness to typographic attacks

Zero-shot CLIP classifiers Radford et al. [2021] are vulnerable to typographic attacks Goh et al.
[2021] that simply overlay text on images to induce misclassifications. We evaluate whether COAR-
EDIT can improve the zero-shot robustness of a CLIP ViT-B/16 classifier using data Materzyńska
et al. [2022] comprising 180 images with and without multiple typographic attacks. Specifically, we
use COAR-EDIT to identify component subset that, when ablated, fix the misclassifications induced
by synthetic attacks without impacting predictions on images without attacks. We defer details
to Appendix H.5.

Results. Figure 5 summarizes our findings. In Figure 5a, we show that the predictions of a zero-
shot CLIP ViT-B/16 classifier on images of household objects (top row) can be manipulated to
“taxi”, “twitter”, or “EU” via synthetic (middle row) or real (last row) typographic attacks. More
quantitatively, we find that the zero-shot accuracy on images with synthetic and real typographic
attacks drops from 95% to 51% and 54%, respectively. Figure 5b shows that ablating a subset
of 300 components (0.4%) identified via COAR-EDIT improves the accuracy on held-out images
with synthetic typographic attacks from 51% to 89% on average (red), without impacting accuracy
on images without attacks (dark blue). Furthermore, in Figure 5c, we find that our edit transfers
robustness to real typographic attacks as well, improving accuracy on held-out images from 54% to
86% on average. Similar to previous experiments, our approach is sample-efficient in that it only
requires 15 pairs of target and reference examples with and without synthetic attacks to identify the
edit described above.

Additional experiments. We also apply COAR-EDIT to two additional settings in Appendix D:
selectively “forgetting” a class (§D.2) and localizing backdoor attacks (§D.5).

To summarize, simply ablating targeted subsets of components identified via COAR-EDIT can induce
specific model behavior without requiring additional training. More broadly, our findings highlight
how accurate component attribution alone can directly inform model editing.

D.5 Mitigating a backdoor attack

We now use COAR to edit a model in order to reduce its sensitivity to backdoor attacks Biggio et al.
[2012], Gu et al. [2017]. In a backdoor attack, an adversary introduces an artificial correlation into
the training dataset of a machine learning model, causing the resulting model to rely on a spurious
signal at test time. (For example, Gu et al. [2017] place a small square in the top corner of a random
subset of training examples and relabel them with the “horse” class—models trained on this dataset
will label any image containing a square as a horse.)

Experiment setup. In this experiment, our goal is to edit a model and remove its dependence on
a spurious backdoor feature. We consider a ResNet18 with a computation graph that comprises all

21

2, 344 convolution filters that is trained on a modified CIFAR-10 dataset. Specifically, the dataset is
“backdoored” in that an adversary has constructed a spurious correlation between a small blue-squared
pattern and the “airplane” class (Figure 6a). As shown in Figure 6a, the resulting model latches on to
the spurious pattern—simply adding the “airplane” trigger to CIFAR-10 test examples drops model
accuracy from 89% (middle row) to 37% (bottom row).

Results. To edit this model, we apply COAR-EDIT over paired examples—i.e., examples with and
without the backdoor trigger—to identify and ablate trigger-specific components. The trigger-specific
components correspond to components that, when ablated, correct the misclassifications induced
by the trigger without impacting predictions on test examples without the trigger. Figure 6b shows
that ablating 25 components (1%) is sufficient to boost model accuracy on test examples with the
trigger (red) from 37% to 84%—a 47% improvement. Furthermore, the model edit does not degrade
accuracy on test examples without the trigger (blue) by more than 1%. In Figure 6c, we compare
how model outputs on paired test examples with the trigger (y-axis) and without the trigger (x-axis)
correlate before (top) and after the edit (bottom). Both subplots show that the model edit suppresses
the effect of the trigger even at the example level, improving correlation between model outputs
on examples with and without the trigger from 0.41 to 0.92. We also note that our approach is
sample-efficient, requiring only 5 paired target and reference examples with and without the trigger
to effectively “remove” the trigger via model editing. We defer additional details to Appendix H.4.

(a) Effect of backdoor trigger on model predictions
CIFAR-10 training data with airplane-specific trigger

 car horse airplane airplane

CIFAR-10 test data without trigger (89% accuracy)

 frog ship horse airplane
CIFAR-10 test data with trigger (37% accuracy)

 airplane airplane airplane airplane

(b) Editing to "remove" the trigger

0 5 10 15 20 25
Number of model components ablated

40

50

60

70

80

90

M
od

el
 a

cc
ur

ac
y

(%
)

88%

89%

84%

37%

Model accuracy on
Test data without trigger

Test data with trigger

(c) Effect of edit on model outputs

-4 4Examples w/o trigger

-6

6

Ex
am

pl
es

 w
/

tr
ig

ge
r

Model outputs before edit

= 0.41

-4 4Examples w/o trigger

-4

4

Ex
am

pl
es

 w
/

tr
ig

ge
r

Model outputs after edit

= 0.92

Figure 6: Mitigating backdoor attacks with COAR-EDIT. We edit a ResNet18 trained on a backdoored
CIFAR-10 dataset to remove its dependence on a planted blue-squared trigger that is spuriously
correlated with the “airplane” class. On the left, we show that the model is sensitive to the trigger—
adding the blue trigger to CIFAR-10 test examples drops model accuracy from 89% (middle row) to
37% (bottom row). In the center panel, we show that ablating 25 components (1%) is sufficient to
boost model accuracy on test examples with the trigger (red) from 37% to 84% without impacting
accuracy on test examples without the trigger (blue). On the right, we show that the model edit
suppresses the effect of the trigger even at the example level—the correlation between model outputs
on paired test examples with and without the trigger improves from 0.41 to 0.92.

22

E Evaluation setup

In this section, we outline the experiment setup—datasets, models, baselines, implementation details—
used in Section 4 to evaluate whether COAR attributions can accurately estimate ground-truth
component counterfactuals.

E.1 Pseudocode

Figure 7: Pseudocode for estimating component attributions with COAR.

E.2 Datasets, models, components, and applying COAR.

We now outline the datasets and models used to evaluate COAR (§4) and COAR-EDIT (§5).

CIFAR-10. We use the standard CIFAR-10 [Krizhevsky, 2009] image classification dataset to
evaluate COAR attributions (Section 4, Appendix G.2) and for an editing task (Appendix D.5). We
train ResNet, ViT, and MLP models that attain test accuracies of 91%, 83% and 56% respectively. We
specify a computation graph over 2, 344 components for the ResNet-18 model, 31, 728 components
for the ViT model, and 3, 072 components for the MLP model. Each component in the ResNet-18
model corresponds to a convolution filter. Similarly, each component in the ViT and MLP models
corresponds to a neuron.

*ImageNet. We use the standard ImageNet [Deng et al., 2009] image classification dataset to evaluate
COAR attributions in Section 4 and for editing tasks in Appendix D.2. We use ImageNet-Sketch
[Wang et al., 2019] and five random shifts from ImageNet⋆ [Vendrow et al., 2023]—“in the water”,
“at dusk simple”, “orange”, “pencil sketch”, “green”— to evaluate the out-of-distribution performance
of edited ImageNet models in Appendix D.2. We use the pre-trained ResNet50 and ViT-B/16 models1

that attain test accuracies of 75.4% and 80.7% respectively. For the ResNet-50 model, we specify a
computation graph over 22, 720 components, each corresponding to a convolution filter. Similarly, for
the ViT-B/16 model, we specify a computation graph over 82, 944 components, each corresponding
to a neuron.

Waterbirds. The Waterbirds dataset Sagawa et al. [2020] comprises images of birds taken from
the CUB dataset Wah et al. [2011] and pasted on backgrounds from the Places dataset Zhou et al.
[2017]. The task here is to classify “waterbirds” and “landbirds” in the presence of spurious correlated
“land” and “water” backgrounds in the training dataset. Sagawa et al. [2020] introduce Waterbirds
as a benchmark to improve model performance under subpopulation shifts induced by spurious
correlations. We use this dataset to evaluate whether COAR-EDIT can improve subpopulation
robustness via model editing. In this experiment, we fine-tune an ImageNet ResNet50 model and use
a computation graph over 22, 720 components, each corresponding to a convolution filter.

CelebA. The CelebA dataset Li et al. [2020] comprises images of celebrities with binary attributes
such as “smiling”, “wearing hat”, “wearing lipstick”, etc. Similar to previous work on subpopulation
robustness (e.g., Sagawa et al. [2020]), we repurpose CelebA as a binary classification task where
the goal is to predict whether a person in a given image has blond hair. The attributes “hair color”
and “gender” are spuriously correlated in the training dataset, resulting in models that latch on to a

1Model and pre-trained weights taken from torchvision: https://pytorch.org/vision/stable/
models.html

23

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html

“gender → blond hair” shortcut and underperform on the “blond males” subpopulation. Similar to the
Waterbirds setting, we fine-tune an ImageNet ResNet50 model and specify a computation graph over
22, 720 components, each corresponding to a convolution filter.

Typographic attacks dataset. We use a dataset of typographic attacks Materzyńska et al. [2022] for
an editing task in Appendix D.4. This dataset comprises 180 images of household objects with and
without eight typographic attacks such as “taxi”, “twitter”, “EU”, and “iPad”. We visualize some
examples from this dataset in Figure 5. Our experiment in Appendix D.4 uses this dataset along with
a zero-shot CLIP ViT-B/16 classifier Radford et al. [2021]. For this model, we specify a computation
graph over all 82, 944 components, corresponding to the set of all weight vectors (individual rows in
weight matrices) in all self-attention and MLP modules. See Appendix H.5 for more details.

TinyStories. We use the TinyStories dataset Eldan and Li [2023] to evaluate COAR attributions over
the GPT-2 language model (Appendix F). This dataset contains short stories synthetically generated
by GPT-3.5 and GPT-4. To compute component attributions for GPT-2, we specify a computation
graph over 64, 512 components, which correspond to the set of all weight vectors, i.e., in every
self-attention module and feed-forward module of the model. See Appendix F.1 for experiment
details and findings.

BoolQ. We use the BoolQ dataset Clark et al. [2019] to evaluate COAR attributions for the Phi-2
model Li et al. [2023b]. Each example in this dataset comprises a passage of text, a question, and a
binary answer. We evaluate the zero-shot performance of Phi-2 using the prompting and evaluation
procedure from Gao et al. [2023]2. Given the size of the Phi-2 model, we specify a computation
graph over 55, 552 components, each corresponding to a contiguous block of 10 weight vectors in
every self-attention module and feed-forward module of the model. See Appendix F.2 for experiment
details and findings.

Applying COAR. We use COAR to obtain component attributions (one for each test example) in
each setup. Specifically, for a given model, we first construct a component dataset D(z) for each
example z (as in Step 1 of Section 3) by randomly ablating αtrain fraction of all components and
evaluating the resulting margin (4) on z, where αtrain = {10%, 5%, 5%} for setup {A,B,C} above.
We repeat this m times, yielding a component dataset D(z) of size m for each example z—we
use m = {50000, 100000, 200000} for setup {A,B,C} above. We then run linear regressions on
these datasets (as in Step 2 of Section 3) to yield the component attributions. We defer details
to Appendix E.4 and study the effect of the dataset size m and ablation fraction αtrain on the
attributions in Appendices G.4 and G.5.

E.3 Baselines

In Section 4, we compare COAR against four baseline methods for estimating component attributions:
Leave-One-Out (LOO), Gradient-times-parameters (GP), Neuron Conductance (NC), and Internal
Influence (II). Each baseline computes an attribution vector w(z) ∈ R|C| for a given example z
by assigning an “importance” score w

(z)
j to each component cj ∈ C. Then, as per Equation 3, we

estimate a component counterfactual fM (z, C ′) as the sum of importance scores of components in
C \ C ′, i.e., scores of components that are not ablated. We describe each baseline in more detail
below:

• Leave-One-Out (LOO): This method ablates each component cj ∈ C and sets the coefficient θ(z)j
to the change in model output fM (z) before and after ablation:

w(z)
j = fM (z, {cj})− fM (z, ∅)

• Gradient-times-Parameters (GP): This method approximates the leave-one-out estimate described
above. Specifically, it estimates the leave-one-out effect of each component cj ∈ C using a
first-order Taylor approximation of fM (z, {cj}) around fM (z, ∅):

w
(z)
j = ∇cjfM (z, ∅) · δcj

where δcj is the parameter-space change in cj induced by the ablation method of choice.
• Neuron Conductance (NC) Dhamdhere et al. [2018]: This method extends the Integrated Gradients

method Sundararajan et al. [2017]—an input-space feature attribution method—to compute impor-
tance scores for each component cj ∈ C. Intuitively, NC modifies the computation in Integrated

2https://github.com/EleutherAI/lm-evaluation-harness/

24

https://github.com/EleutherAI/lm-evaluation-harness/

Gradients in order to quantify the “flow” through each component cj ∈ C. See Equation 3 in
Dhamdhere et al. [2018] for a formal description.

• Internal Influence (II) Leino et al. [2018]: Similar to NC, this method also adapts Integrated
Gradients Sundararajan et al. [2017] to compute importance scores. At a high level, II directly
applies Integrated Gradients to layerwise activations by treating the output of each layer as an input
to subsequent layers. See Definition 1 in Leino et al. [2018] for a formal description.

We implement the first two baselines (LOO and GP) from scratch3 and use the captum library
Kokhlikyan et al. [2020] 4 to implement NC and II. As per Definition 2.2, we estimate the component
counterfactual fM (z, C ′) using these baselines by setting the bias term b(z) to zero and taking the
sum over attribution scores of components that are not ablated.

E.4 Implementation details

Sample size for component attribution estimation. The computational cost of our approach
linearly scales with the sample size m used to estimate component attributions (see Figure 7). Each
sample in the component dataset D(z) corresponds to a single forward pass through the model
M in order to compute the counterfactual fM (z, C ′) (1), i.e., model output fM (z) after ablating
a subset of components C ′ ⊂ C. The setups {A,B,C} considered in Section 4 use sample size
m = {50000, 100000, 200000} respectively. In Appendix G.5, we show that the sample size m used
in Section 4 can be reduced by 2-5×, resulting in a direct speedup while only reducing the predictive
power of COAR attributions by a small amount.

Data loading. We use the FFCV library5 [Leclerc et al., 2022] to train and evaluate models. FFCV
removes the data loading bottleneck for small models, gives a 3-4× improvement in throughput
compared to standard PyTorch data loading.

Speeding up regression. The second step of COAR—fitting component attributions to the component
dataset—requires solving a linear regression problem (Equation 2) for each example z. We parallelize
this step by using the fast-l1 package6, a SAGA-based GPU solver for linear regression.

Computing resources. We train our models and compute COAR attributions on a cluster of machines,
each with 9 NVIDIA A100 or V100 GPUs and 96 CPU cores. We also use half-precision to increase
training speed.

3Our code is available at https://github.com/MadryLab/modelcomponents
4Github repository: https://github.com/pytorch/captum
5Github repository: https://github.com/libffcv/ffcv
6Github repository: https://github.com/MadryLab/fast_l1

25

https://github.com/MadryLab/modelcomponents
https://github.com/pytorch/captum
https://github.com/libffcv/ffcv
https://github.com/MadryLab/fast_l1

F Applying COAR to language models

In Section 4 and Appendix G, we showed that our proposed method COAR attributions accurately
estimate component counterfactuals (1) on large-scale vision tasks across several datasets and model
architectures. In this section, we apply COAR to language models. Specifically, we consider two
experiments: (a) GPT-2 [Radford et al., 2019] evaluated on the next-token prediction task and (b)
Phi-2 [Li et al., 2023b] evaluated on a zero-shot classification task. In both cases, we show that COAR
attributions accurately predict how model outputs change in response to component ablations.

F.1 Evaluating GPT-2 on the TinyStories dataset

Task and model output function. We apply COAR to the next-token prediction task. Following Park
et al. [2023], we interpret this task as a sequence as a v-way classification problem, where v is the
vocabulary size, and set the model output function to be the average correct-class margin (4) over all
tokens in a given sequence.

Model and dataset. In this experiment, we consider the GPT-2 model7 [Radford et al., 2019], with
a computation graph over 64, 512 components. These components correspond to the set of weight
vectors in every self-attention module and feed-forward module in the model. We evaluate model
performance on the next-token prediction task using the TinyStories dataset8 [Eldan and Li, 2023],
where each sequence corresponds to a synthetically generated short story.

Computing COAR attributions. We apply COAR (without any modifications) to compute component
attributions for a random subset of 1000 examples in the TinyStories validation set using a component
dataset of 200, 000 component counterfactuals and a ablation fraction of α = 2.5%.

Evaluating COAR attributions. Similar to the results in Section 4, COAR attributions are predictive
in the language modeling setting as well. Specifically, these attributions accurately predict the
effect of ablating components on the average correct-class margin of GPT-2 on examples from the
TinyStories validation set. In Figure 8a, we pick a random example z from the TinyStories validation
set and compute the correlation between ground-truth component counterfactuals fM (z, ·) and the
corresponding estimate (3) using its COAR attributions θ(z), as defined in Equation 5. In Figure 8b,
we plot a histogram over example-level correlations of 1000 examples and find that COAR attributions
attain an average correlation of {0.83, 0.85, 0.89} with ground-truth component counterfactuals
sampled using ablation fraction α = {5%, 2.5%, 1%} respectively.

F.2 Evaluating Phi-2 on the BoolQ dataset

Task and model output function. We now turn to a reading comprehension task, where the goal
is to answer a question given a passage of text. We evaluate this classification task in a zero-shot
manner: the language model is prompted with a passage of text and a question, and the goal is to
output the correct answer from {yes, no}. Like in vision tasks (Section 4), we use the correct-class
margin (4) as the model output function for this zero-shot binary classification task.

Model and dataset. We consider the Phi-2 model9 [Li et al., 2023b] and specify a computation graph
over 55, 552 components. Here, each component corresponds to a contiguous block of 10 weight
vectors in the model. We evaluate this model on the BoolQ dataset10 [Clark et al., 2019], where each
example consists of a passage of text, a question, and a binary {yes, no} answer. Using the prompting
and evaluation procedure from the Gao et al. [2023]11, Phi-2 attains an 83.6% accuracy on this task.

Computing COAR attributions. Like in Appendix F.1, we apply compute COAR attributions
for a random subset of 500 examples in the BoolQ validation set using a component dataset of
m = 100, 000 component counterfactuals and a ablation fraction of α = 0.025.

Evaluating COAR. We find that COAR attributions are predictive of unseen component coun-
terfactuals on this task as well. Figure 9a plots the correlation between ground-truth component

7https://huggingface.co/gpt2
8https://huggingface.co/datasets/roneneldan/TinyStories
9https://huggingface.co/microsoft/phi-2

10https://huggingface.co/datasets/google/boolq
11https://github.com/EleutherAI/lm-evaluation-harness

26

https://huggingface.co/gpt2
https://huggingface.co/datasets/roneneldan/TinyStories
https://huggingface.co/microsoft/phi-2
https://huggingface.co/datasets/google/boolq
https://github.com/EleutherAI/lm-evaluation-harness

counterfactuals fM (z, ·) and the corresponding COAR estimate (3) of a random BoolQ example z.
The histograms in Figure 9b show that COAR attributions attain correlation {0.58, 0.66, 0.66} with
component counterfactuals sampled using ablation fraction α = {5%, 2.5%, 1%} respectively.

27

6 5 4 3 2 1 0 1
Ground-truth model output (avg margin over tokens)

6

4

2

0

Es
tim

at
ed

 m
od

el
 o

ut
pu

t v
ia

 C
oa

r

Once upon a time, there was a 3 year old boy named...

Correlation: 0.85

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Model output correlation

0

20

40

60

80

100

120

Co
un

t

Average correlation
Subsampling fraction and avg correlation

0.050 (0.83)
0.025 (0.85)
0.010 (0.89)

Attributing GPT-2 on TinyStories | Next-token prediction task

Figure 8: Evaluating COAR on GPT-2. We apply COAR to the GPT-2 model [Radford et al., 2019]
on the TinyStories dataset [Eldan and Li, 2023]. The resulting component attributions are predictive
of component counterfactuals. The left plot shows that component attributions can estimate the effect
of ablating components on the average correct-class margin (over tokens in a sequence) of GPT-2
on a random TinyStories example with high correlation. The histograms in the right plot show that
COAR attributions attain high average correlation for multiple values of ablation fraction α.

2 1 0 1 2 3
Ground-truth model output (correct-class margin)

2

1

0

1

2

3

Es
tim

at
ed

 m
od

el
 o

ut
pu

t v
ia

 C
oa

r

will there be a season 5 of steven universe?

Correlation: 0.67

0.45 0.50 0.55 0.60 0.65 0.70 0.75
Model output correlation

0

10

20

30

40

50

60

70

Co
un

t

Average correlation
Subsampling fraction and avg correlation

0.050 (0.58)
0.025 (0.66)
0.010 (0.66)

Attributing Phi-2 on BoolQ | Zero-shot classification

Figure 9: Evaluating COAR on Phi-2. We apply COAR to the Phi-2 model [Javaheripi and Bubeck,
2023] on the BoolQ dataset [Clark et al., 2019]. The resulting component attributions are predictive of
component counterfactuals. The left plot shows that component attributions can estimate the effect of
ablating components on the average correct-class margin of Phi-2 on a random BoolQ example with
high correlation. The histograms in the right plot show that COAR attributions attain high average
correlation for multiple values of ablation fraction α.

28

G Additional evaluation of COAR

In this section, we first show that COAR learns accurate component attributions on additional datasets,
model architectures, and tasks (Appendices G.1 to G.3). This supplements our findings in Section 4,
where we showed that COAR learns component attributions that accurately predict component coun-
terfactuals (1) on three image classification setups: CIFAR-10 ResNet-18, ImageNet ResNet-50,
and ImageNet ViT-B/16. Then, we show that COAR attributions retain its predictive power when
estimated with fewer samples (Appendix G.5) or with different ablation fractions (Appendix G.4).
Finally, we supplement our example-level evaluation of COAR attributions in Section 4 with addi-
tional example-level comparisons of ground-truth component counterfactuals and attribution-based
estimates (Appendix G.6).

G.1 Evaluating COAR on additional datasets

Our experiments in Section 4 evaluated the predictiveness of COAR attributions corresponding
to in-distribution test examples from the CIFAR-10 and ImageNet datasets. Now, we show that
COAR attributions remain predictive on training examples as well as out-of-distribution examples.
Specifically, we apply COAR to compute attributions of ResNet-18 predictions on the CIFAR-10
training set and on six corrupted versions of the CIFAR-10 test set Hendrycks and Dietterich [2019].
as shown in Figure 10, COAR attributions exhibit high correlation on average (between 0.6 and 0.8)
depending on the ablation fraction α used to ablate random α-fraction sized components subsets.
Note that the correlation is maximum when α = 0.05 because the component attributins are estimated
with the same ablation fraction, i.e., αtrain = 0.05.

G.2 Evaluating COAR on additional model architectures

Recall that COAR is model-agnostic in that it is not tied to any specific model architecture. In Section 4,
we applied COAR to ResNets trained on CIFAR-10 and ImageNet and a ViT-B/16 model trained on
ImageNet. In this section, we apply COAR to two additional model architectures: a ViT model trained
on CIFAR-10 (83% accuracy) and a one-layer fully-connected network trained on CIFAR-10 (56%
accuracy). Figure 11 shows that COAR attributions on both architectures yield accurate estimates of
how model outputs change in response to ablating random α-fraction sized components subsets, with
correlation 0.65 and 0.85 for the ViT and MLP models when α = αtrain respectively.

G.3 Evaluating COAR on additional tasks

We now evaluate COAR attributions on four additional tasks:

• First, we apply COAR to pre-trained ImageNet ResNet50 model fine-tuned on two datasets—
Waterbirds and CelebA—that we use in Appendix D.3—see first row of Figure 12. We find that
COAR attributions are predictive on both datasets, attaining higher correlation with ground-truth
component counterfactuals when α is closer to αtrain = 0.05.

• Second, we apply COAR to a pre-trained ImageNet ResNet50 model fine-tuned on MIMIC-
CXR Johnson et al. [2019], a dataset of labeled chest radiographs. In this case, we set the model
output function to be the logit of the “Cardiomegaly” class instead of correct-class margin that we
use in Section 4. Figure 12 shows that COAR attributions attain a correlation of 0.7 and 0.6 with
ground-truth logits when α = αtrain = 0.05 and α = 0.10 respectively.

• The fourth plot in Figure 12 corresponds to the CLIP setting considered in Section 5. In this
setting, we take the zero-shot CLIP ViT-B/16 classifier and evaluate it on a dataset of images with
and without typographic attacks Materzyńska et al. [2022]. As shown in the plot, the correlation
between COAR attributions and ground-truth margins is close to 0.7 when α = αtrain = 0.03, i.e.,
ablating 3% of the components in the CLIP model.

G.4 Comparing COAR attributions estimated with different ablation fractions

We now analyze how changing the ablation fraction αtrain used to fit COAR attributions affects their
predictiveness over different ablation fractions at test time. Specifically, we consider the ImageNet
ResNet-50 setting from Section 4 and compute two sets of COAR attributions, corresponding to

29

two values of αtrain: 0.05 and 0.10. Then, for each of these two sets of attributions, we evaluate its
correlation with ground-truth component counterfactuals over a range of ablation fractions α. As
shown in Figure 13, the correlation “profile” over α depends on the value of αtrain used to fit the
attributions. When α is small, the correlation is higher for attributions estimated with αtrain = 0.05.
Analogously, when α is large, the correlation is higher for attributions estimated with αtrain = 0.10.
This is because the component attributions fare better as counterfactual predictors on component
counterfactuals that are “similar” to the ones used to fit them—i.e., when αtest ≈ αtrain.

G.5 Comparing COAR attributions estimated with different sample sizes

In Section 4, we computed COAR attributions using sample sizes m = 50000 for the ResNet-18
model trained on CIFAR-10 and m = 100000 for the ResNet-50 model trained on ImageNet. Recall
that the sample size m here corresponds to the number of component counterfactuals used to fit the
component attributions. In this section, we vary the sample size m and show that COAR attributions
remain predictive even when trained on k× fewer examples, where k ∈ {2, 5, 10}. Specifically, the
left column of Figure 14 shows that COAR attributions estimated on CIFAR-10 and ImageNet data
with sample size m and m/k have high cosine similarity on average, with the similarity increasing as
k decreases. The right column of Figure 14 shows that decreasing the sample size m by a factor of
k ∈ {2, 5, 10} does not significantly impact the correlation between COAR attributions and ground-
truth component counterfactuals. For example, reducing the sample size by 5× only reduces the
correlation from 0.7 to 0.65 in the CIFAR-10 ResNet-18 setting. Additionally, we observe that COAR
attributions fare better than attributions estimated with the best-performing baseline (LOO) even when
trained on 10× fewer examples on CIFAR-10 and 5× fewer examples on ImageNet.

G.6 Analyzing COAR attributions at the example level

To supplement our evaluation in Section 4, we provide additional example-level scatterplot compar-
isons between ground-truth component counterfactuals and the corresponding estimates obtained
using component attributions estimated with COAR and all baselines from Section 4. We plot these
comparisons on CIFAR-10 examples in Figure 15 and on ImageNet examples in Figure 16. Our
findings further substantiate that COAR attributions exhibit higher correlation with ground-truth
component counterfactuals than all four baseliens on both CIFAR-10 and ImageNet.

G.7 Qualitatively analyzing COAR attributions

We qualitatively analyze COAR attributions using two visualization techniques:

Visualizing component-specific attributions across examples. Given examples {z1, . . . , zn} with
corresponding component attributions {θ(z1), . . . , θ(zn)}, we analyze how the attribution estimates
of individual components vary across the set of examples. Specifically, for a component ci ∈ C,
we visualize the examples with the most positive attribution values θ(z)i for component ci. In this
experiment, we visualize a random subset of components from the ImageNet ResNet-50 model (setup
B in Section 4). As shown in Figure 17, the examples with the most positive attributions for a given
component exhibit high visual similarity at different levels of granularity:

• The first, third and fifth row in Figure 17 show that the examples with the most positive attributions
for layer4.0.conv3[477] and layer4.2.conv3[53] contain purple flowers, watch faces, and
glass-shaped objects respectively.

• However, consistent with recent work on superposition in deep networks Elhage et al. [2022],
we observe that some components such as layer4.2.conv2[336] in the second row as well as
layer3.1.conv3[655] in the last row can surface dissimilar subsets of examples and do not
readily map to a single semantic concept.

Visualizing nearest neighbors in attribution space. We also use component attributions as feature
embeddings in order to visualize the nearest neighbors of a given example in “component attribution”
space. Intuitively, this technique allows us to identify examples on which model outputs change
similarly in response to component ablations. In this experiment, we visualize a random subset of
examples from the CelebA dataset along with their 5 nearest neighbors using COAR attributions
of a fine-tuned ImageNet ResNet-50 model. Figure 18 shows that the nearest neighbors of a given
example in attribution space high visual similarity, i.e., similar facial attributes such as background

30

(first row), hair color (second and fourth row), accessories (third row), or even the same person in
different poses (last row).

31

0.2 0.1 0.05* 0.03 0.01
0.0

0.2

0.4

0.6

0.8
Av

g.
 M

od
el

 O
ut

pu
t C

or
re

la
tio

n
Dataset = Train

0.2 0.1 0.05* 0.03 0.01
0.0

0.2

0.4

0.6

0.8

Dataset = Test

0.2 0.1 0.05* 0.03 0.01
0.0

0.2

0.4

0.6

0.8

Dataset = Brightness corruption

0.2 0.1 0.05* 0.03 0.01
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

Av
g.

 M
od

el
 O

ut
pu

t C
or

re
la

tio
n

Dataset = Gaussian Blur corruption

0.2 0.1 0.05* 0.03 0.01
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

Dataset = Gaussian Noise corruption

0.2 0.1 0.05* 0.03 0.01
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

Dataset = Snow corruption

Figure 10: Do COAR attributions generalize to out-of-distribution examples? COAR attributions
remain predictive on the CIFAR-10 training set and on six corrupted versions of the CIFAR-10 test
set Hendrycks and Dietterich [2019] over a range of ablation fractions α. See Appendix G.1 for more
details.

0.05 0.1* 0.15 0.2
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
g.

 M
od

el
 O

ut
pu

t C
or

re
la

tio
n

Evaluating Coar on a CIFAR-10 ViT

0.1 0.25 0.5* 0.8
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

Av
g.

 M
od

el
 O

ut
pu

t C
or

re
la

tio
n

Evaluating Coar on a CIFAR-10 MLP

Figure 11: Do COAR attributions generalize to other model architectures? COAR attributions
yield accurate estimates of component counterfactuals on two additional model architectures: a
ViT-based model (left) and a one-layer fully-connected network (right) trained on CIFAR-10. See Ap-
pendix G.2 for more details.

32

0.01 0.03 0.05* 0.1 0.15
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
od

el
 o

ut
pu

t c
or

re
la

tio
n

ImageNet ResNet50 fine-tuned on Waterbirds

0.03 0.05* 0.1 0.15
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
od

el
 o

ut
pu

t c
or

re
la

tio
n

ImageNet ResNet50 fine-tuned on CelebA

0.03 0.05* 0.1 0.15
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
od

el
 o

ut
pu

t c
or

re
la

tio
n

ImageNet ResNet50 fine-tuned on MIMIC-CXR
 ("Cardiomegaly" logit as model output)

0.01 0.03 0.05* 0.1
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
od

el
 o

ut
pu

t c
or

re
la

tio
n

Zero-shot CLIP ViT-B/16 classifier evaluated
 on images with typographic attacks

Figure 12: Evaluating COAR attributions on additional tasks. We find that component attributions
estimated using COAR are predictive on four additional tasks: fine-tuning ImageNet ResNet50 on
Waterbirds, CelebA and MIMIC-CXR, and a zero-shot CLIP ViT-B/16 classification task on a dataset
containing typographic attacks (Appendix D.4). Note that the MIMIC-CXR setting uses the logit of
the “Cardiomegaly” class as the model output function. See Appendix G.3 for additional information
about these tasks.

0.3 0.2 0.1 0.05 0.03 0.01
Subsampling fraction used at evaluation time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

m
od

el
 o

ut
pu

t c
or

re
la

tio
n

Effect of train-time subsampling fraction
 on model output correlation

Train-time subsampling fraction
= 0.10 = 0.05

Figure 13: Comparing COAR attributions estimated with different ablation fractions α. COAR
attributions estimated with different ablation fractions αtrain attain a different correlation “profile”
over α at test time. The correlation between ground-truth component counterfactuals and attribution-
based estimates is higher for attributions estimated with αtrain = 0.05 when α is small, and higher
for attributions estimated with αtrain = 0.10 when α is large. This empirically shows that COAR
attributions are more predictive on component counterfactuals that are “similar” to the ones used to
fit them—i.e., when αtest ≈ αtrain. See Appendix G.4 for more details.

33

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Cosine similarity with attributions trained with 50000 samples

0

10000

20000

30000

40000

50000

Co
un

t

Comparing CIFAR-10 attributions
 estimated with different sample sizes

Sample size m
5000
10000
15000
20000
25000
30000
35000
40000
45000
50000

5000 10000 25000 50000
Sample size used to compute attributions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

m
od

el
 o

ut
pu

t c
or

re
la

tio
n

Evaluating CIFAR-10 attributions estimated with
 different sample sizes (ablation fraction 0.1)

Best baseline (LOO): 0.52

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cosine similarity with attributions trained with 100000 samples

0

10000

20000

30000

40000

Co
un

t

Comparing ImageNet attributions
 estimated with different sample sizes

Sample size m
10000
20000
30000
40000
50000
60000
70000
80000
90000

10000 20000 50000 100000
Sample size used to compute attributions

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

m
od

el
 o

ut
pu

t c
or

re
la

tio
n

Evaluating ImageNet attributions estimated with
 different sample sizes (ablation fraction 0.05)

Best baseline (LOO): 0.34

Figure 14: Comparing COAR attributions estimated with different sample sizes. COAR attribu-
tions for CIFAR-10 ResNet-18 and ImageNet ResNet-50 (Setup A and B respectively in Section 4)
estimated with smaller sample sizes m are still predictive of component counterfactuals. On the left,
we show that COAR attributions estimated with sample size m and m/k have high cosine similarity
on average, with the similarity increasing as k decreases. On the right, we show that decreasing
the sample size m by a factor of k ∈ {2, 5, 10} does not significantly affect the correlation between
COAR attributions and ground-truth component counterfactuals. In particular, COAR outperforms the
best-performing baseline (LOO) even with 10× fewer samples on CIFAR-10 (top row) and 5× fewer
samples on ImageNet (bottom row).

34

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #6820
Corr. 0.80

2 0 2
Ground-truth margin

2
1
0
1
2
3

Co
ar

 e
st

im
at

e

Leave-one-out | #6820
Corr. 0.56

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Grad-times-param | #6820
Corr. 0.35

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Neuron cond. | #6820
Corr. 0.29

0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Int. Infl. | #6820
Corr. 0.01

2.5 0.0 2.5
Ground-truth margin

3
2
1
0
1
2

Co
ar

 e
st

im
at

e

Coar | #8458
Corr. 0.81

2.5 0.0 2.5
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Leave-one-out | #8458
Corr. 0.69

2 0 2
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Grad-times-param | #8458
Corr. 0.33

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Neuron cond. | #8458
Corr. 0.05

2.5 0.0 2.5
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Int. Infl. | #8458
Corr. 0.13

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #4756
Corr. 0.78

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Leave-one-out | #4756
Corr. 0.56

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Grad-times-param | #4756
Corr. 0.28

2 0 2
Ground-truth margin

3

2

1

0

1

2

Co
ar

 e
st

im
at

e

Neuron cond. | #4756
Corr. -0.06

2 0 2
Ground-truth margin

2

1

0

1

2

3

Co
ar

 e
st

im
at

e

Int. Infl. | #4756
Corr. 0.15

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #4518
Corr. 0.82

2 0 2
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Leave-one-out | #4518
Corr. 0.65

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Grad-times-param | #4518
Corr. 0.25

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Neuron cond. | #4518
Corr. 0.21

2.5 0.0 2.5
Ground-truth margin

3

2

1

0

1

2
Co

ar
 e

st
im

at
e

Int. Infl. | #4518
Corr. 0.09

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #7168
Corr. 0.78

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Leave-one-out | #7168
Corr. 0.71

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Grad-times-param | #7168
Corr. 0.40

2 0
Ground-truth margin

3
2
1
0
1
2

Co
ar

 e
st

im
at

e

Neuron cond. | #7168
Corr. 0.03

2 0 2
Ground-truth margin

2

1

0

1

2

3

Co
ar

 e
st

im
at

e

Int. Infl. | #7168
Corr. -0.00

Example-level evaluation of component attributions | CIFAR-10 ResNet-18

Figure 15: Additional example-level evaluation of component attributions on CIFAR-10. Each
row corresponds to a different example z randomly picked from the CIFAR-10 test set and each
column corresponds to a different attribution method. The left-most subfigure in each row shows
that COAR attributions and the corresponding ground-truth component counterfactuals exhibit high
correlation on example z. In comparison, the other subfigures in each row, one for baseline method,
consistently exhibit lower correlation. See Appendix G.5 for more details.

35

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #4838
Corr. 0.70

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Leave-one-out | #4838
Corr. 0.47

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Grad-times-param | #4838
Corr. 0.41

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Neuron cond. | #4838
Corr. 0.02

0 5
Ground-truth margin

4

2

0

2

Co
ar

 e
st

im
at

e

Int. Infl. | #4838
Corr. -0.00

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #9960
Corr. 0.73

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Leave-one-out | #9960
Corr. 0.59

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Grad-times-param | #9960
Corr. 0.34

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Neuron cond. | #9960
Corr. 0.08

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Int. Infl. | #9960
Corr. -0.01

5 0
Ground-truth margin

4

2

0

2

Co
ar

 e
st

im
at

e

Coar | #8630
Corr. 0.67

2 0 2
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Leave-one-out | #8630
Corr. 0.39

2.5 0.0
Ground-truth margin

2
1
0
1
2
3

Co
ar

 e
st

im
at

e

Grad-times-param | #8630
Corr. 0.20

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Neuron cond. | #8630
Corr. -0.06

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Int. Infl. | #8630
Corr. -0.02

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Coar | #9788
Corr. 0.77

2 0 2
Ground-truth margin

2

1

0

1

2

Co
ar

 e
st

im
at

e

Leave-one-out | #9788
Corr. 0.61

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Grad-times-param | #9788
Corr. 0.50

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Neuron cond. | #9788
Corr. 0.01

2.5 0.0 2.5
Ground-truth margin

2

0

2
Co

ar
 e

st
im

at
e

Int. Infl. | #9788
Corr. 0.04

2.5 0.0 2.5
Ground-truth margin

4

2

0

2

Co
ar

 e
st

im
at

e

Coar | #4871
Corr. 0.66

2 0 2
Ground-truth margin

2
1
0
1
2
3

Co
ar

 e
st

im
at

e

Leave-one-out | #4871
Corr. 0.28

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Grad-times-param | #4871
Corr. 0.22

2.5 0.0 2.5
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Neuron cond. | #4871
Corr. 0.01

5 0
Ground-truth margin

2

0

2

Co
ar

 e
st

im
at

e

Int. Infl. | #4871
Corr. 0.03

Example-level evaluation of component attributions | ImageNet ResNet-50

Figure 16: Additional example-level evaluation of component attributions on ImageNet. Similar
to the results in Figure 15, each row corresponds to a different example z randomly picked from
the ImageNet test set. The left-most subfigure in each row shows that COAR attributions and the
corresponding ground-truth component counterfactuals exhibit high correlation on example z. In
comparison, the other subfigures in each row, corresponding to a baseline method, consistently exhibit
worse correlation. See Appendix G.5 for more details.

36

la
ye

r4
.0
.c
on

v3
[4
77

] 0.019 0.018 0.018 0.018 0.017 0.017 0.017

la
ye

r4
.2
.c
on

v2
[3
36

] 0.025 0.023 0.023 0.022 0.021 0.021 0.017

la
ye

r4
.2
.c
on

v3
[5
3] 0.025 0.023 0.022 0.021 0.021 0.021 0.021

la
ye

r3
.5
.c
on

v2
[4
4] 0.042 0.04 0.033 0.029 0.026 0.024 0.023

la
ye

r4
.0
.c
on

v3
[1
16

5] 0.038 0.032 0.03 0.027 0.025 0.025 0.023

la
ye

r3
.1
.c
on

v3
[6
55

] 0.041 0.034 0.028 0.028 0.027 0.027 0.027

Figure 17: Visualizing component-specific attributions across examples. We sample a random
set of components from the ImageNet ResNet-50 model (setup B in Section 4) and visualize the
examples with the most positive attributions for each component. In general, the examples with
the most positive attributions for a given component exhibit visual similarity at different levels of
granularity. For example, the first, third and fifth row in Figure 17 show that the examples with the
most positive attributions for layer4.0.conv3[477] and layer4.2.conv3[53] contain purple
flowers, watch faces, and glass-shaped objects respectively. However, consistent with recent work
on superposition in deep networks Elhage et al. [2022], we observe that some components such as
layer4.2.conv2[336] (second row) and layer3.1.conv3[655] (last row) can surface dissimilar
subsets of examples or do not readily map to a single semantic concept.

37

Query Neighbor #1 Neighbor #2 Neighbor #3 Neighbor #4 Neighbor #5

Figure 18: Visualizing nearest neighbors in COAR attribution space. We also use component
attributions as feature embeddings in order to visualize the five nearest neighbors of examples from
the CelebA dataset in “component attribution” space. Intuitively, this technique allows us to identify
examples on which model outputs change similarly in response to component ablations. In general,
we observe that the nearest neighbors of a given example in attribution space high visual similarity,
e.g, similar facial attributes such as background (first row), hair color (second and fourth row),
accessories (third row), or even the same person in different poses (last row).

38

H Additional evaluation of COAR-EDIT

We use COAR-EDIT in five different editing tasks: correcting misclassifications (§D.1); forgetting a
class (§D.2); improving subpopulation robustness (§D.3); localizing backdoor attacks (§D.5); and
improving robustness to typographic attacks (§D.4). In this section, we provide additional details
and/or supplementary experiments for each task.

H.1 Editing individual predictions

Experiment details. In Appendix D.1, we use COAR-EDIT to correct misclassifications of a ResNet-
50 model on ImageNet examples. In this experiment, we set the “target” example to be a misclassified
ImageNet example and the “reference” example to a set of 50 randomly selected ImageNet examples.
Then, we use these examples to identify and ablate components that increase the correct-class margin
(4) of the target example without impacting the average margin over the reference examples.

Additional experiments. We first show that COAR-EDIT is not sensitive to the choice of misclassified
examples, model, or dataset. In Figure 20, we reproduce the experiment in Appendix D.1 on additional
ImageNet examples misclassified by a ResNet-50 model. In Figure 19, we use COAR-EDIT to
similarly fix misclassifications of a ResNet-18 model on the CIFAR-10 dataset. In Figure 21, we show
that COAR-EDIT can also be used to adversarially induce misclassifications on ImageNet examples
by ablating the top-k components corresponding to the “target” example. Similar to our findings
in Appendix D.1, we observe that ablating a few components via COAR-EDIT is sufficient to change
the individual example-level prediction without changing overall model performance.

Additional analysis. Which components does COAR-EDIT ablate to correct misclassifications?
To answer this question, we first aggregate all components ablated by COAR-EDIT in order to
(individually) correct ImageNet examples misclassified by a ResNet-50 model. Then, we plot the
most common convolution layers corresponding to these ablated components in Figure 22. We find
that COAR-EDIT primarily targets convolution filters from the last few layers (closet to the output) of
the ResNet-50 model in order to make fine-grained edits that do not impact overall model performance.
For example, more than 25% of the ablated components belong to layer4.{0,1,2}.conv3—the
last convolution layer in the first three residual blocks of the last layer group of the ResNet-50 model.

H.2 Forgetting a class

*Experiment details. In Appendix D.2, we use COAR-EDIT to selectively forget a class of a ResNet-
50 model on ImageNet. In this experiment, we set the “target” examples to be set of 10 examples
from the class to be forgotten and the “reference” examples to be a set of 50 randomly selected
ImageNet examples. Using these examples, we use COAR-EDIT to ablate components that decrease
the average correct-class margin (4) of the target examples without impacting the average margin
over the reference examples.

*Additional experiments We show that COAR-EDIT can be used to selectively forget additional Ima-
geNet classes. Specifically, in Figure 23, we reproduce the COAR-EDIT experiment in Appendix D.2
on three additional ImageNet classes: “folding chair”, “military uniform”, and “revolver”. Like
in Figure 3, we again observe that COAR-EDIT can specifically degrade the accuracy on the target
class without impacting the average accuracy over the train or test set by ablating a few components
(convolution filters) in the ResNet-50 model.

H.3 Improving subpopulation robustness.

*Experiment details. In Appendix D.3, we use COAR-EDIT to improve subpopulation robustness
of models trained on two benchmark datasets: Waterbirds and CelebA. In both cases, we fine-tune
a ResNet-50 model via standard “empirical risk minimization” using SGD hyperparameters taken
from Sagawa et al. [2020]. The resulting fine-tuned models attain 64% and 47% worst-subpopulation
accuracy on the Waterbirds and CelebA test sets, respectively. To improve subpopulation robustness
on Waterbirds, we set the “target” examples to a set of 10 random training examples from the
“waterbirds on land” (the worst-performing subpopulation) and the “reference” examples to be
10 random examples from other subpopulations. Analogously, for CelebA, we set the “target”
examples to the set of 20 random examples from the “blond male” worst-performing subpopulation

39

and the “reference” examples to 20 random examples from other subpopulations. Then, we use
COAR-EDIT to identify components that, when ablated, increase the average correct-class margin
(4) of the target examples without impacting the average margin over the reference examples. In
both cases, the number of components to ablate is a hyperparameter that we select by tracking the
worst-subpopulation accuracy on a validation set.

Figure 19: Correcting misclassified CIFAR-10 examples via COAR-EDIT. We reproduce the
COAR-EDIT experiment from Appendix D.1 on the CIFAR-10 dataset. Specifically, each row
corresponds to CIFAR-10 test example that is misclassified by a ResNet-18 model. The left subplot
in each row shows how applying COAR-EDIT (by ablating components increases the correct-class
margin (4) of the misclassified example without impacting the average margin over the train or test set.
The right subplot reports the drop in overall test accuracy and visualizes examples with correct-class
margins that change the most or least due to the edit.

40

H.4 Mitigating backdoor attacks.

Experiment details. We now describe the experiment setup in Appendix D.5, where we used COAR-
EDIT to mitigate the effect of a backdoor attack on a ResNet-18 model trained on a backdoored
CIFAR-10 dataset. The CIFAR-10 dataset is modified by adding a small blue-squared trigger to the
upper left corner of 50% of examples in the “airplane” class. Training a model with standard SGD
hyperparameter on this dataset causes the model to spuriously associate the trigger with the “airplane”
class, leading to a backdoor attack. That is, while the resulting model attains 89% test accuracy,
applying the attack to examples in the test set causes the model to misclassify them as “airplanes”,
resulting in 37% accuracy on test examples with the trigger. To mitigate the effect of the backdoor

Figure 20: Correcting misclassified ImageNet examples via COAR-EDIT. We reproduce the
COAR-EDIT experiment from Appendix D.1 on additional ImageNet examples (one per row) mis-
classified by a ResNet-50 model. The left subplot shows that applying COAR-EDIT (by ablating
components) increases the correct-class margin (4) of the misclassified example without impacting
the average margin over the train or test set. (Right) The right subplot visualizes examples with
margins that change the most or least due to the edit.

41

attack, we first sample ten examples from the training set. Then, we set the “target” examples to
these two examples with the trigger and the “reference” examples to these two examples without the
trigger. Then, we use COAR-EDIT to ablate components that increase the correct-class margin (4) of
the target examples without impacting the average margin over the reference examples.

Additional analysis. Recall that our experiment in Appendix D.5 shows that COAR-EDIT can
significantly mitigate the effect of a backdoor attack on a ResNet-18 model by ablating a few
backdoor-specific components. We now qualitatively analyze the components ablated via COAR-
EDIT to mitigate the effect of a backdoor attack in Figure 24. Specifically, we visualize the ablated
components (convolution filters in this case) using the input-times-gradient saliency map method
from the Captum library Kokhlikyan et al. [2020]. As shown in Figure 24, these visualizations
suggest that the ablated components are sensitive to the blue-squared trigger.

H.5 Improving robustness to typographic attacks.

Experiment details. In Appendix D.4 and Figure 5 in particular, we show that COAR-EDIT can be
used to improve robustness of zero-shot CLIP classifiers to typographic attacks. In this experiment,
we consider a zero-shot CLIP ViT-B/16 classifier Radford et al. [2021] and specify a computation
graph over 82, 944 components, where each component corresponds to a weight vector in the ViT

Figure 21: Adversarially inducing misclassifications on ImageNet examples via COAR-EDIT.
Each row corresponds to an ImageNet test example that is correctly classified by a ResNet-50
model. In the left subplot of each row, we show that applying COAR-EDIT (by ablating the top-
k components) decreases the correct-class margin (4) of the correctly classified example without
impacting the average margin over the train or test set. On the right, we shw that the edit does
not impact visually dissimilar examples, but does increase or decrease the correct-class margin of
examples containing visually similar objects, e.g., tennis balls in the second row.

42

0 2 4 6 8 10 12
Percent of ablated components from the given layer

layer4.0.conv3
layer4.1.conv3
layer4.2.conv3
layer4.2.conv1
layer4.0.conv1
layer4.0.conv2
layer3.0.conv3
layer4.2.conv2
layer4.1.conv2
layer4.1.conv1
layer3.1.conv3
layer3.2.conv3
layer3.3.conv3
layer3.4.conv3
layer3.5.conv3
layer3.0.conv1
layer3.5.conv1
layer3.5.conv2
layer3.0.conv2
layer2.0.conv3
layer2.1.conv3
layer3.4.conv1
layer3.4.conv2
layer3.1.conv2
layer3.2.conv2
layer3.3.conv2
layer3.3.conv1
layer2.2.conv3
layer3.1.conv1
layer2.3.conv3

Co
nv

ol
ut

io
n

La
ye

r i
n

Im
ag

eN
et

 R
es

Ne
t5

0
m

od
el

Layers from which Coar-Edit ablates
 components in order to fix model errors

Percent
2
4
6
8
10

Figure 22: Which components does COAR-EDIT target to fix model errors? We analyze the
specific convolution layers from which COAR-EDIT ablates components (convolution filters) to
correct ImageNet examples misclassified by a ResNet-50 model. On the y-axis, we plot the 30 most
common convolution layers corresponding to the ablated components. On the x-axis, we plot the
percentage of ablated components that belong to each convolution layer. We find that COAR-EDIT
primarily targets convolution filters from the last few layers (closet to the output) of the ResNet-50
model in order to make fine-grained edits that do not impact overall model performance. For example,
more than 25% of the ablated components belong to layer4.{0,1,2}.conv3—the last convolution
layer in the first three residual blocks of the last layer group of the ResNet-50 model.

(across all layers). We evaluate the robustness of this model in a zero-shot setting on 180 images and
four real-world typographic attacks—“taxi”, “twitter”, “EU”, and “iPad”—taken from the dataset
in Materzyńska et al. [2022]. We also consider synthetic typographic attacks, where we render a blob
of text on a white background and place it in the center of a given image. The zero-shot performance
of the CLIP model drops from 95% to 51% and 54% on the real and synthetic typographic attacks,
respectively. To improve robustness, we set the “target” examples to be the 25 examples with a
randomly picked synthetic attack and the “reference” examples to the same set of examples without
any attack. Then, we use COAR-EDIT to ablate components that increase the average correct-class

43

margin (4) of the target examples without impacting the average margin over the reference examples.
We use a validation set comprising examples with and without the synthetic attack to select the
number of components to ablate from the model.

0 2 4 6 8 10 12 14
Number of model components ablated

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Class: "folding chair"

Train set
Val set
Class "folding chair"

0 2 4 6 8 10 12 14
Number of model components ablated

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Class: "military uniform"

Train set
Val set
Class "military uniform"

0 2 4 6 8 10 12 14
Number of model components ablated

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Class: "chain-link fence"

Train set
Val set
Class "chain-link fence"

0 2 4 6 8 10 12 14
Number of model components ablated

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Class: "revolver"

Train set
Val set
Class "revolver"

Forgetting ImageNet classes via Coar-Edit

Figure 23: Forgetting ImageNet classes via COAR-EDIT. We reproduce the COAR-EDIT exper-
iment from Appendix D.2 on additional ImageNet classes (one per subplot). Specifically, in each
subplot, we find that ablating 15 of 22, 720 convolution filters (identified via COAR-EDIT) suffices
to significantly degrade the accuracy of a ResNet-50 model on a specific class (in green). This edit
is targeted in that it does not impact the average accuracy over the train set (in blue) or test set (in
orange).

44

CIFAR-10 examples with backdoor patch

(1) block2.conv1:120

(2) block1.conv2:134

(3) block3.conv1:98

(4) block1.conv1:99

(5) block2.conv2:118

(6) block2.conv1:177

(7) block1.conv2:33

(8) block2.conv2:31

Figure 24: Visualizing components ablated via COAR-EDIT to mitigate a backdoor attack.
Recall that in Appendix D.5, we used COAR-EDIT to mitigate the effect of a backdoor attack (a
blue-squared spurious trigger) on a ResNet-18 model trained on a backdoored CIFAR-10 dataset.
Here, we visualize the components ablated via COAR-EDIT to reduce the model’s reliance on this
spurious feature. The first row shows a set of random examples from the modified CIFAR-10 test set
that contain the trigger. Each subsequent row corresponds to an ablated component—a convolution
filter of the ResNet-18 model in this case. In each of these rows, we use the input-times-gradient
saliency map method from the Captum library Kokhlikyan et al. [2020] to (qualitatively) highlight
parts of the examples that are most “important” for the ablated component’s output. These maps
suggest that all ablated components are sensitive to the blue-squared trigger.

45

I Analyzing design choices in COAR

In this section, we analyze three design choices in COAR: (a) the train-time ablation fraction α used
to sample a subset of components C ′ ⊂ C of size α|C|, (b) the ablation method used to intervene on
the sampled components C ′, and (c) the specific model output function used to compute component
counterfactuals fM (·, C ′) (1), i.e., model output fM (·) after ablating the component subset C ′.

I.1 Effect of ablation fraction

The first step of COAR—constructing a component dataset—requires choosing a ablation fraction
α ∈ (0, 1). This hyperparameter determines the size of the random α-fraction subsets C ′ ⊂ C used
to compute component counterfactuals. A priori, however, it is not clear which ablation fraction α is
best suited for learning accurate component attributions. For example, ablating too large a component
subset (large α) can induce a significant drop in model performance to a point where the ablated
model is no longer representative of the original model.

*Effect of train-time ablation fraction αtrain We use two metrics to quantify the effect of ablation
fraction α on model outputs:

• Change in model performance. We measure the effect of ablating random α-fraction subsets
C ′ ⊂ C of components on model performance, e.g., test accuracy.

• Correlation between example-level model outputs. We measure the correlation between model
outputs before and after ablation, e.g., logits or margins.

We use these (heuristic) metrics to ensure that the ablations are not too severe to nullify model
performance and that the outputs of the ablated models are still predictive of the outputs of the
original model.

*Effect of train-time ablation fraction αtrain. Figure 25 evaluates how varying the train-time ablation
fraction αtrain changes both metrics—model performance and correlation between model outputs—for
all three settings considered in Section 4: CIFAR-10 ResNet-18, ImageNet ResNet-50, and ImageNet
ViT-B/16. In all three settings, we find that model accuracy and margin correlation decrease as
the ablation fraction α increases. For instance, ablating 15% of components (α = 0.15) results in
a significant accuracy drop for ResNets, but not for ViTs. On the other hand, ablating 1% of all
components (α = 0.01) results in a small drop in accuracy and correlation, e.g., for the ResNet-18
model trained on CIFAR-10 (first row of Figure 25). Therefore, our experiments in Section 4 use
α = 0.10 for the CIFAR-10 model and α = 0.05 for both ImageNet models. These findings also
suggest that the choice of α depends on the model architecture and the task at hand, e.g., ViTs are
more robust to zero ablations than ResNets.

I.2 Effect of ablation method

We use a simple ablation method that sets the weights/activations of a subset of components C ′ ⊂ C
to zero. However, our method COAR is not dependent on any specific ablation method, and can be
used to compute component attributions with other ablation methods as well.

Alternative ablation method based on scaling. In this section, we consider an alternative ablation
method that scales down the activations of a component by a factor of γ ∈ [0, 1]. Note that setting
γ = 0 corresponds to the zero ablation method; we use γ = 0.5 in our experiments.

Experiment results. We find that the alternative scaling-based ablation maintains high correlation
between model outputs before and after ablations, resulting in accurate component attributions.
Specifically, we make three key observations.

• We first observe that on a ResNet-18 model trained on CIFAR-10, the scaling-based ablation method
described above maintains high correlation between model outputs before and after ablation, even
at high ablation fractions α ∈ {0.30, . . . , 0.05} (fourth row of Figure 25).

• Then, in Figure 26, we apply COAR with the scaling-based ablation method to a CIFAR-10 ResNet-
18 model. The resulting component attributions attain an average correlation of more than 0.75 for
most ablation fractions α ∈ {0.40, . . . , 0.01}. The correlation between COAR attribution estimates
and ground-truth counterfactuals is high across a range of ablation fractions α from 0.01 to 0.45.

46

• In Figure 27, we compare COAR attributions computed with the scaling ablations to attributions
computed with zero-ablations. We find that (a) these attributions exhibit high cosine similarity
(Figure 27a) and that (b) attributions learned with scaling-based ablations are predictive of ground-
truth component counterfactuals computed using zero-ablations (Figure 27b). This indicates that
both ablations—scaling down the activations of a component by a factor of γ = 0.5 and setting the
activations of a component to zero—change model outputs in a similar manner.

I.3 Effect of model output function

Recall that in Section 4, we use the correct-class margin (4) as the model output function to estimate
COAR attributions for classification tasks. However, our approach is not tied to a specific model
output function. Depending on the task at hand, one can use an alternative model output function to
estimate COAR attributions. For example, in a multi-label classification task, we can also use the logit
of a fixed class of interest as the model output function to estimate COAR attributions. In Figure 12,
we apply COAR to a pre-trained ImageNet ResNet50 model fine-tuned on MIMIC-CXR Johnson et al.
[2019]—a dataset of labeled chest radiographs—and set the model output function to be the logit
of the “Cardiomegaly” class. Our results show that COAR attributions remain predictive with this
model output function, and attain a correlation of 0.7 and 0.6 with the ground-truth counterfactuals
on “Cardiomegaly” logits when α = αtrain = 0.05 and α = 0.10 respectively. Additionally,
in Appendix F, we also apply COAR to the next-token prediction task in language modeling, using
average correct-class margin over all tokens in a given sequence as the model output function.

47

0.01 0.05 0.1 0.15
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

M
od

el
 a

cc
ur

ac
y

Setting: ResNet-10 trained on CIFAR-10

0.01 0.05 0.1 0.15
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

1.0

M
ar

gi
n

co
rre

la
tio

n

Setting: ResNet-10 trained on CIFAR-10

0.01 0.025 0.05 0.1
Subsampling fraction

0.0

0.2

0.4

0.6

M
od

el
 a

cc
ur

ac
y

Setting: ResNet-50 trained on ImageNet

0.01 0.025 0.05 0.1
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

M
ar

gi
n

co
rre

la
tio

n

Setting: ResNet-50 trained on ImageNet

0.01 0.025 0.05 0.1
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

M
od

el
 a

cc
ur

ac
y

Setting: VIT-B/16 trained on ImageNet

0.01 0.025 0.05 0.1
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

1.0

M
ar

gi
n

co
rre

la
tio

n

Setting: VIT-B/16 trained on ImageNet

0.05 0.1 0.15 0.2 0.25 0.3
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

M
od

el
 a

cc
ur

ac
y

Setting: ResNet-10 trained on CIFAR-10
 with alternative ablation method

0.05 0.1 0.15 0.2 0.25 0.3
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

1.0

M
ar

gi
n

co
rre

la
tio

n

Setting: ResNet-10 trained on CIFAR-10
 with alternative ablation method

Effect of subsampling fraction on model outputs

Figure 25: Effect of ablation fraction α on model outputs. We evaluate the effect of ablating
α-fraction subsets C ′ ⊂ C of components (x-axis) on model accuracy (y-axis in the left column) and
the correlation between model outputs before and after ablation (y-axis in the right column). In all
settings considered in Section 4 (one per row), we find that model accuracy and margin correlation
gradually decrease as the ablation fraction α increases. See Appendix I.1 for more details.

48

0.01 0.03 0.05 0.10 0.15 0.20* 0.25 0.30 0.35 0.40
Subsampling fraction

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n

Evaluating COAR attributions | CIFAR-10 ResNet-18 | Alternative ablation method

Figure 26: Effect of ablation method on COAR attributions. We estimate COAR attributions for a
CIFAR-10 ResNet-18 model using an alternative ablation method that scales down the activations
of a subset of components C ′ ⊂ C by a factor of γ (0.5 in this case) instead of setting them to zero.
The resulting attribution-derived estimates (3) exhibit high correlation (y-axis) with ground-truth
component counterfactuals. See Appendix I.2 for more details.

0.50 0.55 0.60 0.65 0.70 0.75 0.80
Cosine similarity

0

20

40

60

80

100

120

Co
un

t

Comparing CIFAR-10 attributions
 corresp. to 0x and 0.5x ablation methods

0.01 0.03 0.05 0.10 0.15
Subsampling fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Co
rre

la
tio

n

Predicting 0x-ablation counterfactuals
 using 0.5x-ablation attributions

Effect of ablation method | CIFAR-10 ResNet-18

Figure 27: Comparing COAR attributions estimated with different ablation methods. We
compare COAR attributions on a CIFAR-10 ResNet18 model computed with the zero-ablation method
to attributions computed with the alternative ablation method described in Appendix I.2. The left plot
shows that the paired attributions (corresponding to each example) exhibit high cosine similarity. The
right plot shows that the counterfactual estimates (3) computed using attributions from the alternative
ablation method are predictive of ground-truth component counterfactuals computed using the zero
ablation method. See Appendix I.2 for more details.

49

	Introduction
	Setup and Problem Statement
	Component attribution with Coar
	Does Coar learn accurate attributions?
	Do Coar Attributions Enable Model Editing?
	Conclusion
	Appendices
	Related work
	Discussion
	Future work
	Additional Coar-Edit experiments
	Editing individual model predictions
	``Forgetting'' a class
	Improving subpopulation robustness
	Improving robustness to typographic attacks
	Mitigating a backdoor attack

	Evaluation setup
	Pseudocode
	Datasets, models, components, and applying Coar.
	Baselines
	Implementation details

	Applying Coar to language models
	Evaluating GPT-2 on the TinyStories dataset
	Evaluating Phi-2 on the BoolQ dataset

	Additional evaluation of Coar
	Evaluating Coar on additional datasets
	Evaluating Coar on additional model architectures
	Evaluating Coar on additional tasks
	Comparing Coar attributions estimated with different ablation fractions
	Comparing Coar attributions estimated with different sample sizes
	Analyzing Coar attributions at the example level
	Qualitatively analyzing Coar attributions

	Additional evaluation of Coar-Edit
	Editing individual predictions
	Forgetting a class
	Improving subpopulation robustness.
	Mitigating backdoor attacks.
	Improving robustness to typographic attacks.

	Analyzing design choices in Coar
	Effect of ablation fraction
	Effect of ablation method
	Effect of model output function

