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ABSTRACT

Current defenses against graph attacks often rely on certain properties to eliminate
structural perturbations by identifying adversarial edges from normal edges.
However, this dependence makes defenses vulnerable to adaptive (white-box)
attacks from adversaries with the same knowledge. Adversarial training seems to
be a feasible way to enhance robustness without reliance on artificially designed
properties. However, in this paper, we show that it can lead to models learning
incorrect information. To solve this issue, we re-examine graph attacks from the out-
of-distribution (OOD) perspective for poisoning and evasion attacks and introduce
a novel adversarial training paradigm incorporating OOD detection. This approach
strengthens the robustness of Graph Neural Networks (GNNs) without reliance
on prior knowledge. To further evaluate adaptive robustness, we develop adaptive
attacks against our methods, revealing a trade-off between graph attack efficacy and
defensibility. Through extensive experiments over 25,000 perturbed graphs, our
method could still maintain good robustness against both adaptive and non-adaptive
attacks. The code is provided at https://github.com/likuanppd/GOOD-AT

1 INTRODUCTION

Adaptive attacks are viewed as a de facto criterion for evaluating the adversarial robustness in vision
community (Tramer et al., 2020). Specifically, with full knowledge of the defense model, many
defenses can be circumvented by some corresponding schemes (Carlini & Wagner, 2017; Athalye
et al., 2018). Recent works show that robust graph neural networks can also be easily bypassed by
adaptive attacks (Mujkanovic et al., 2022). Mujkanovic et al. (2022) divided the defense methods
into three main categories and seven subcategories and proposed an adaptive attack to one defense per
subcategory. The results demonstrate that none of the defenses are as robust as initially assessed in
their papers. Adversarial modifications on graphs often violate some intrinsic properties shared by the
real-world graphs (Jin et al., 2020a) (e.g., increasing heterophily (Zügner & Günnemann, 2019) and
focusing on the high-frequency component (Chang et al., 2021)). The adversary can easily defeat the
defenses by imposing constraints on the same properties during the attack (Mujkanovic et al., 2022).
Therefore, the key to enhancing adaptive robustness is not relying on artificially defined properties.

Adversarial training appears to be a promising approach, as it does not rely on any prior knowledge
of the adversary. Nonetheless, previous studies have demonstrated that adversarial training may
not effectively enhance the robustness of GNNs (Xu et al., 2019; Mujkanovic et al., 2022). Our
theoretical analysis reveals that adversarial training for graph structures can result in the model
learning erroneous (feature, structure)-label mapping. To address this issue, we propose a novel
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adversarial training paradigm that leverages adversarial samples (edges) to help us detect and then
remove perturbations, instead of training the model with adversarial training. We argue that the edges
generated by attacks are inherently out-of-distribution compared to the original edges. Artificially
defined properties used to remove potential perturbation edges reflect incomplete modeling of the
out-of-distribution problem with certain inductive biases. To enhance adaptive robustness, we directly
use adversarial edges to model the entire OOD problem. Specifically, we generate adversarial edges
to train an ensembled OOD detector and then use it to revise the graph during inference. In addition
to evasion attacks, we also revisit poisoning attacks through the lens of OOD perspectives.

To further investigate the adaptive robustness, we conduct adaptive attacks against our defenses.
We find that these adaptive attacks not only reduce the robustness of our method but also decrease
the effectiveness of the attacks themselves. For example, the adaptive design will make the attack
ineffective on the vanilla GCN (Kipf & Welling, 2017), a common GNN without any defense
mechanism. Consequently, a pivotal insight of our work is that attackers seeking to bolster the
adaptivity of their attacks against an OOD-oriented defense may decrease the distribution shift, which,
in turn, naturally diminishes the attacks’ effectiveness. We identify this phenomenon as the trade-off
between attack effectiveness and defensibility.

Main Contributions (1) Based on the evaluation of typical adversarial training, we employ a novel
paradigm that leverages the adversarial samples to enhance robustness. (2) Through the lens of OOD,
we re-examine graph attacks and defenses and, for the first time, propose the existence of a trade-off
between the effectiveness and defensibility of attacks in the context of graph adversarial attacks. (3)
We conduct extensive experiments to compare our methods with other baselines in adaptive and
non-adaptive settings. Our methods consistently outperform the baselines and SOTA.

2 RELATED WORK

Numerous attempts have been made to enhance the robustness of GNNs, and a common approach
adopted by most defenses is to leverage the inherent properties of the original graph that are violated
by graph adversarial attacks, in order to distinguish between clean and adversarial edges. For
example, GNNGuard (Zhang & Zitnik, 2020) and Jaccard-GCN (Wu et al., 2019) find adversarial
edges tend to link to nodes in different classes with dissimilar features, so they prune the edges
based on this. STABLE (Li et al., 2022) utilizes a similar idea of calculating similarity based on
unsupervised representations instead of features. GCN-SVD (Entezari et al., 2020) discovers that
attacks exhibit a specific behavior in the spectrum of the graph: high-rank (low-valued) singular
components of the graph are affected more than low-rank parts and filter out the high-rank components.
GCN-LFR (Chang et al., 2021) studies this problem from the spectral perspective and finds that
the perturbations on the low-frequency components are not always smaller than those in the high-
frequency ones. ProGNN (Jin et al., 2020b), GSML (Wan & Kokel, 2021), and GCN-GT (Yang et al.,
2019) leverage some graph characteristics, e.g., sparsity, low-rankness, and feature smoothness, and
incorporates them as regularization terms in the process of structural learning (Zhu et al., 2021).

However, if a defense is designed based on a specific property, it might be vulnerable to adaptive
attacks. With full knowledge of the defense model, the adversary can probe for obvious weaknesses or
add the differentiable part to the gradient computation during training the attack model (Mujkanovic
et al., 2022). These fixed properties can be seen as a specific characterization of OOD. Instead of
using crafted fixed properties, we improve the robustness of GNNs by directly reducing the OOD
caused by attacks.

3 PRELIMINARY

Notations. Let G = {V, E} represent an undirected and unweighted graph comprising N nodes.
Here, V and E (excluding self-loops) are the sets of nodes and edges, respectively. The graph’s
topology can be represented as a symmetric adjacency matrix A ∈ {0, 1}N×N , where Aij = 1
indicates that node vi connects to node vj , and Aij = 0 represents no connection. The original
features of all nodes are summarized as a matrix X ∈ RN×d, and xi indicates the feature of node vi.
We use Ni to denote the first-order neighborhood of node vi, including the node itself. Additionally,
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the labels of all nodes are denoted as y. Each node has a label yi ∈ C, where C = c1, c2, ..., cK . We
use fθ(A,X) to represent a GNN, with θ referring to its parameters.

Graph Adversarial Attacks In this paper, we mainly adopt the most commonly used setting,
which considers the global attack on transductive node classification task, but we also conduct
experiments in the inductive setting. The attacker’s objective is to find an optimal perturbed graph Ĝ
that maximally impairs the overall performance of the downstream classifier. This can be formulated
as follows (Zügner & Günnemann, 2019; Geisler et al., 2021):

argmin
Â∈Φ(A)

Latk(fθ∗(Â,X),y), (1)

where Â is the perturbed adjacency matrix, and Φ(A) is a set of adjacency matrices that satisfies

the unnoticeability:
∥Â−A∥

0

∥A∥0
≤ ∆, in which ∆ is the maximum perturbation rate. The Latk can be

computed by the training nodes with ground-truth labels and also by the labels (or pseudo-labels) of
the testing nodes. The θ∗ refers to the parameters of the surrogate GNN, which is used to generate
perturbations.

Gradient-based Attacks Most attack methods are gradient-based (Chen et al., 2020; Wu et al.,
2019; Zügner & Günnemann, 2019; Xu et al., 2019; Geisler et al., 2021), which treat the adjacency
matrix as an optimizable parameter and perform malicious modifications on the graph structure
by leveraging the gradient of the adjacency matrix with respect to the attack loss. As Eq. (1) is a
non-convex discrete optimization problem, some approximations are required for its solution. One
way is based on greedy rules, which selects the entry in the adjacency matrix with the largest gradient
for flipping, such as Metattack (Zügner & Günnemann, 2019). Another commonly used trick is
gradient projection (Xu et al., 2019), which first treats the adjacency matrix as continuous weights,
then iteratively updates it using gradients and re-projects it back into the range of [0, 1] to obtain a
probability flipping matrix. Finally, the perturbed graph is obtained by sampling according to the
probability matrix.

Poisoning and Evasion Poisoning attacks perturb the graph during the model training phase to
fool the classifier. Evasion attacks corrupt the graph during the inference phase, where the model is
trained on a clean graph and will be tested on a perturbed graph.

Adaptive Attack Adaptive attacks are a type of white-box attack in which the attacker has complete
information, including features, graph structure, labels, and all details of the defender’s model.
Mujkanovic et al. (2022) categorize defense methods into seven types (Günnemann, 2022) and design
adaptive attacks for the most representative method in each category. Previous methods are easily
bypassed by these adaptive attacks, because they enhance the robustness of GNNs by depending on
some specific properties. For instance, Jaccard-GCN (Wu et al., 2019) assumes that perturbed edges
tend to connect dissimilar nodes, and thus filters out all edges in the graph with similarity below a
certain threshold. An adversary can render the defense strategy ineffective simply by incorporating
the same prior knowledge.

4 DEFENSE AGAINST EVASION ATTACK

Graph Adversarial Training vs. Image Adversarial Training. Adversarial training is one way
to improve robustness that does not rely on specific properties, and it is proven to be the most
effective against adversarial attacks in vision domain (Pang et al., 2020; Maini et al., 2020; Pang et al.,
2022). Specifically, adversarial training optimizes a hybrid loss function, which is a combination of a
standard classification loss and an adversarial loss term:

L = LCELoss(f(x; θ), y), Ladv = max
x′∈B(x)

L(f(x′; θ), y), (2)

where B(x) = {x+ δ | ∥δ∥∞ ≤ ϵ} is the allowed perturbation set. The idea of adversarial training
is straightforward: it augments training data with adversarial examples in each training loop, and then
the learned model tends to be local invariant for any input: for ∀x′ ∈ B(x), the model is encouraged
to output y.
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Figure 1: The framework of GOOD-AT. First, we train a GCN on the clean graph, and then we
use PGD to generate K perturbed graphs. On each perturbed graph, we label the adversarial edges
as positive examples (OOD samples) and the original edges in the graph as negative examples (In-
distribution samples). All these samples are used to train a detector. During inference, we leverage an
ensemble detector to optimize the graphs structure before using the GCN to predict.

However, it is observed that current graph adversarial training methods for structural attacks do not
achieve comparable robustness(Xu et al., 2019; Mujkanovic et al., 2022; Zhang et al., 2022). We
theoretically show it will lead to the model learning incorrect mapping relationships.

Motivation: Failure of Traditional Adversarial training 1. Traditional adversarial training for
graph structure will result in GNNs learning incorrect (feature, structure)-label mapping. During the
adversarial training process, the ground truth label of some nodes has changed, i.e., argmax

y
pd(y |

x,Sx) ̸= argmax
y

pd(y | x, Ŝx), but the model is still encouraged to output the label before

the change, namely argmax
y

pθ(y|x, Ŝx) = argmax
y

pd(y | x,Sx), where pd is the ground truth

distribution and pθ is the model distribution. S and Ŝx respectively represent the original and
perturbed local structure of node x.

We provide the more details on this motivation in Appendix B, and it demonstrates that directly
applying adversarial training from image to graph structure is not feasible. But here’s the problem, is
it really necessary to apply adversarial training to GNNs? For image data, learning an invariant model
via adversarial training is the preferred approach due to the continuous and indistinguishable nature of
perturbations, which blend into the original image as indistinguishable noise. However, perturbations
on graphs are discrete and separated from clean edges so that they can be directly removed once get
identified. With the advantage of this, we turn to utilize these adversarial samples (edges) by training
a detector that aims to identify perturbations without depending on any specific properties.

Assuming that the edges on the clean graph are sampled from a ground-truth distribution, the edges
generated by the attack algorithm can be viewed as OOD samples on the edge level. From this
perspective, previous methods that use artificially defined properties to detect perturbations can be
viewed as modeling such OOD detection in an incomplete manner. We avoid this flaw by more
comprehensively modeling this problem using neural networks and adversarial samples.

OOD-detection-based Adversarial Training. We thus propose our approach Graph OOD-
Detection-based Adversarial Training as GOOD-AT. On a high level, GOOD-AT generates
perturbations through adversarial attacks during training and uses these adversarial edges as OOD
samples, while keeping the initial edges as in-distribution samples. Once we have defined the positive
and negative samples, we proceed to train a classifier, namely an OOD detector, on these samples.
We train multiple detectors and then combine them into an ensemble detector.

First, we define an OOD detector as a classifier capable of detecting edges that originate from a
data-generating distribution (perturbations) distinct from that of the in-distribution edges (clean data).
Specifically, the objective of the OOD detection is to identify a suitable decision function (associated
with the detector fd) such that for any given input:

Γ (e; fd) =

{
0, e is an in-distribution edge,
1, e is an out-of-distribution edge,

(3)
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where e is the embedding of an arbitrary edge. In this work, fd is a binary MLP, and Γ is a step
function that determines whether an edge is an OOD sample or not based on the output of the detector
and a threshold t.

Then, we train a two-layer Graph Convolutional Network (GCN) (Kipf & Welling, 2017) fGCN on
the clean graph and fix its parameters during the whole training and testing phases. For an detector f i

d,
we attack the clean graph by the PGD (Xu et al., 2019) attack τi with tanh logit margin loss (Geisler
et al., 2021) to obtain the perturbed graph Ĝi, and the edge representation is computed as followed:

euv = CONCAT
[
fGCN (Â,X)u, fGCN (Â,X)v,xu,xv

]
. (4)

The representation of an edge is obtained by concatenating the representations and the original
features of two end nodes u and v. To prevent learned representations from becoming unreliable
due to significant changes in the local structure of nodes, we add a residual connection scheme,
where node features are concatenated at the end. We employ a two-layer MLP as the detector and
subsequently train it using the in-distribution samples (original edges) and OOD samples (adversarial
edges).

We utilize PGD (Xu et al., 2019) to generate OOD samples by flipping the adjacency matrix in the
following way:

Â = A+C ◦ S,C = A−A, (5)

where A = 11T − I−A, and the edge connecting nodes u and v is modified (added or removed) if
Sij = Sji = 1. During gradient-based optimization in PGD, the discrete adjacency matrix is relaxed
from (0, 1)N×N to [0, 1]N×N , and the final weights of the adjacency matrix indicate the probabilities
of flipping. The flip matrix S is then sampled from the weighted adjacency matrix. The sampling
strategy of PGD guarantees that even with the same parameters, the generated adversarial graphs are
distinct each time. To comprehensively model OOD samples, we need to repeat the detector training
process multiple times on different perturbed graphs to obtain multiple different detectors. Finally,
we have an ensemble detector fD = {f1

d , f
2
d , ...f

K
d }, where K is a hyper-parameter representing the

number of detectors.

Training an OOD detector without any OOD data can be challenging, so there is a setting in OOD
detection that uses extra OOD training data (OOD Exposure) (Hendrycks et al., 2018; Liu et al., 2020;
Bitterwolf et al., 2022; Liu et al., 2023). OOD exposure can significantly improve the performance
of OOD detection (Wu et al., 2023; Hendrycks et al., 2018; Liu et al., 2024; Huang et al., 2022),
but obtaining OOD data is challenging in real-world scenarios. In graph adversarial attack, we can
generate a large number of OOD samples by repeatedly attacking clean graphs, which enables our
OOD detector to achieve stronger performance.

Inference. During testing, we first use the ensemble detector fD to determine whether each edge in
the graph is an OOD edge:

∆(e; fD,Γ) =

{
e is an in-distribution edge, if Γ(e; f1

d ) = Γ(e; f2
d ) = ...Γ(e; fK

d ) = 0,

e is an OOD edge, if ∃Ki=1Γ(e; f
i
d) = 1.

(6)

If one detector is confident that this edge is an OOD sample, then it is classified as an adversarial
edge. We remove all the detected OOD edges and finally test the classifier fGCN on the revised
graph. We provide an overall algorithm of GOOD-AT in Appendix C.

5 DEFENSE AGAINST POISONING ATTACK

Previous work has suggested that poisoning attacks can be directly neutralized by certain tricks (Li
et al., 2023; Zhan & Pei, 2022), so defense against such attacks is not the focus of this paper. Therefore,
we refer to the self-training strategy proposed in (Li et al., 2023) and make minor modifications. This
section primarily discusses the working mechanism of poisoning attacks from the out-of-distribution
perspective.

In transductive setting, there are two ways in which poisoning attacks can be effective. One is to
attack the local structure of training nodes, causing the model to fit incorrect data. The other is to
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attack the local structure of testing nodes, causing the model to infer perturbed data. Both types
of attacks can occur simultaneously. Attackers can shift the training data away from the original
distribution or shift the testing data away as well, and then OOD generalization happens. This is a
global-level OOD, which refers to the overall distribution shift between the training set and the testing
set. According to Li et al. (2023); Zhan & Pei (2022), the perturbations generated by gradient-based
attacks (Zügner & Günnemann, 2019; Xu et al., 2019; Geisler et al., 2021) are nearly all around the
training nodes. In the common data split ( 10%/10%/80% (train/val/test)) in graph adversarial attack,
the size of training set is relatively small, so concentrating the limited attack budget on the smaller
one of training set and testing set can cause a larger distribution shift.

Self-training Defense. Knowing that most perturbations are around training nodes, it is
straightforward to design a defense strategy - Using the testing nodes’ local structure and pseudo-
labels for training, i.e., self-training. In poisoning attacks, the defender does not have the clean
graph to train an accurate GNN. Therefore, we employ an MLP to generate pseudo-labels instead.
Firstly, we train the MLP by labeled samples and then pseudo-label m testing nodes with the highest
confidence in each class. Secondly, we isolate the testing graph from the whole graph by pruning the
connections between training nodes and testing nodes. Indeed, this defense strategy can be bypassed
by some simple adaptive designs, such as imposing the constraint that the generated adversarial edges
must be between testing nodes. We will delve into this matter extensively in the following section.

6 AN ADAPTIVE VIEW TOWARDS OUR DEFENSES

To more comprehensively assess the adaptive robustness of our proposed technique, we design
corresponding adaptive attacks.

Evasion Attack. We consider two types of adaptive attacks against GOOD-AT, both assuming
that the attacker has access to the detectors. The first approach is to only generate perturbations that
cannot be identified by the detectors. In the second approach we incorporate the detector’s output as
a regularization term in the PGD training loss. However, we find that both strategies will lead to a
notable decrease in attack effectiveness. Even the adaptive design will make the attack ineffective on
the vanilla GCN (Kipf & Welling, 2017), a normal GNN without any defense mechanism. For the
experimental details, see Appendix D).

Poisoning Attack. Self-training can be easily circumvented by a strategy that distributes the
perturbations across the entire graph. However, if an attacker were to do so, the effectiveness of the
attack would be greatly reduced(for details, see Appendix E).

Trade-off Between Effectiveness And Defensibility. During the process of the aforementioned
adaptive attacks, we observe a trade-off between the defensibility and effectiveness of attack methods:
The adaptive designs concurrently mitigate the robustness of our defenses and diminish the inherent
efficacy of the attack itself. We postulate that the cause of this phenomenon is that the greater the
difference between the generated perturbations and the original edges, the stronger its destructive
power, yet the more detectable and defensible. Conversely, the smaller the difference, the less likely
it is to cause significant performance degradation, making these adversarial edges less distinguishable
from the original graph. Based on this, we propose Hypothesis 1 and elaborate on this point in
Appendix F.

Hypothesis 1. When facing an ideal OOD detector, the more effective the attack algorithm, the
further the perturbations it generates deviate from the ground-truth distribution, which, in turn, makes
it easier to be defended against. On the other hand, to increase stealthiness, the effectiveness of the
attack method will be reduced.

7 EXPERIMENTS

In this section, we empirically analyze the robustness of our methods on both transductive and
inductive settings.
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7.1 SETUP

Implementation Details Following a recent work (Mujkanovic et al., 2022), we compare our
methods with the 7 most representative defense methods, i.e., RGCN (Zhu et al., 2019), Jaccard-
GCN (Wu et al., 2019), GNNGuard (Zhang & Zitnik, 2020), ProGNN (Jin et al., 2020b), SVD-
GCN (Entezari et al., 2020), GRAND (Feng et al., 2020), Soft-Median-GDC (Geisler et al., 2021), on
two widely used datasets, namely Cora (Bojchevski & Günnemann, 2017) and Citeseer (Giles
et al., 1998). We take two attack methods, PGD (Xu et al., 2019) and Metattack (Zügner &
Günnemann, 2019), and a unit test with 7 adaptive attacks into account Mujkanovic et al. (2022).
More implementation details can be seen in Appendix A. We only conduct poisoning attacks on
ProGNN, as its structure learning is coupled with model training. If we were to perform structure
learning in evasion attack, the model would have to be retrained, turning evasion attack into poisoning
attack. Therefore, we do not show the performance of ProGNN in evasion attacks.
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Figure 2: Each dotted line represents an
adaptive attack against GCN on the Cora
dataset. The best-performing attack at each
budget is connected to form the solid black
envelope. The blue dashed line represents
the clean accuracy of GCN, and the black
line represents the accuracy of MLP. The
region between the envelope and the accuracy
of MLP corresponds to the RAUC. The
region between the two dashed lines can be
considered the upper bound of RAUC.

Adversarial Unit Test. To comprehensively
evaluate the robustness of defense methods,
Mujkanovic et al. (2022) propose a unit test
consisting of seven adaptive attack methods.
Referring to (Günnemann, 2022), they categorize
the attack methods into seven classes and select the
most representative methods from each class as the
targets of adaptive attacks. The adversarial graphs
generated from these attacks can be encapsulated
together to test other defenses, and it can be regarded
as the minimum criterion for assessing the adaptive
robustness of the defense models. The adaptive
attack to the vanilla GCN can be viewed as a
non-adaptive attack because GCN is one of the
most basic GNNs. In the unit test, the attack budget
ranges from 0 to 15%, and each unit test consists of
poisoning and evasion attacks, 5 random data splits,
with a total of approximately 2700 graphs.

Metric of Unit Test. We adopt the RAUC, a budget-
agnostic metric, proposed in Mujkanovic et al. (2022)
as the main metric. It means the Relative Area
Under the Envelope Curve (AUC), which is the area
enclosed by the envelope curve and the accuracy of
MLP – a model that is oblivious to the graph structure.
For each budget, we can obtain an envelope by selecting the adversarial accuracy of the strongest
attack among all attacks. Figure 2 shows an example of the envelope line drawn using GCN.

Formally speaking, RAUC(c) =
∫ b0
0

(c(b)− aMLP) db s.t. b ≶ b0 =⇒ c(b) ≷ aMLP, where c(·) is
a piecewise linear curve representing the robustness per budget, and aMLP is the accuracy of the
MLP. We normalize RAUC so that the RAUC of MLP is 0, and 1 is the maximum value (accuracy
remains 100%). RAUC provides a comprehensive evaluation of the robustness of defense methods
under various attacks, reflecting the worst-case robustness. The schematic of RAUC is illustrated in
Figure 2.

An Upper Bound of Unit Test. We represent the accuracy of GCN on clean data using a straight
line and calculate the area enclosed by this line and the accuracy line of MLP. The area can be viewed
as an upper bound of RAUC that indicates the model’s accuracy does not decrease as the perturbation
rates increase. The value of this upper bound is RAUCmax = 0.61 on Cora and RAUCmax = 0.22
on Citeseer.

7.2 UNIT TEST

In this subsection, we present the main experimental results, comparing the adaptive and non-adaptive
robustness of our method with other competitive methods using the adversarial unit test.
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Figure 3: RAUC of different defenses on Cora and Citeseer. Each bar plot has five colors representing
the results of five different data splits, and the best performance is highlighted by a different color.

Are Our Methods More Robust Than The Competitive Defenses? In Fig. 3, we compare the
RAUC values of our methods with seven robust GNNs and the vanilla GCN in the adversarial unit test.
The black vertical lines represent the mean value of each method, and the horizontal lines represent
the standard deviation.

The self-training strategy exhibits extremely significant robustness on poisoning attacks, with RAUC
values almost 3-5 times higher than other methods. Especially on Cora, the RAUC of Self-training is
close to the upper bound RAUCmax. This indicates that existing poisoning attacks must incorporate
adaptive attacks against the self-training strategy. We provide a corresponding analysis for this point
in Appendix E.

In the evasion attack, GOOD-AT consistently outperformed other methods. The results show that the
ensemble detector can indeed help to identify the perturbations. Especially in Cora the RAUC of
GOOD-AT is already close to the upper bound RAUCmax, indicating that the accuracy of GOOD-AT
decreases very slowly as the perturbation rate increases. In addition, the standard deviation of RAUC
is relatively small, meaning that this GOOD-AT is not sensitive to data split and remains stable under
various partitioning schemes.

The full experimental results of the unit test are provided in Appendix G.2.

Transferability Study. Here we conduct a systematic investigation of the transferability of adaptive
attacks across different defenses. In Fig. 4, we present the RAUC of each defense model under each
adaptive attack and highlight the most robust model for each adaptive attack with a black box. Our
method achieves the best performance on all attacks except for the adaptive attack on GCN-SVD.
This is because GCN-SVD has weak inherent transferability and relatively poor attack effectiveness
on all defenses.

7.3 ADDITIONAL ANALYSIS

Table 1: The mean accuracy of GOOD-AT against PGD
on Cora and Citeseer with different number of detectors.
We highlight the best model with purple.

Dataset K/Ptb Rate 0% 3% 6% 9% 12% 15%

Cora

5 84.51 80.94 78.47 76.61 74.6 73.39
10 84.83 81.79 79.02 79.12 76.41 75.40
15 84.87 82.75 80.63 79.48 77.72 76.36
20 85.31 83.16 82.93 81.14 79.28 76.81

Citeseer

5 74.76 71.50 68.48 65.71 64.87 63.51
10 74.99 72.32 68.54 66.65 68.69 63.86
15 74.82 72.39 69.61 69.57 68.25 67.54
20 75.54 71.75 70.68 69.49 69.19 67.82

Number of Detectors. Next, we
evaluate the impact of the number of
the detectors K. Table. 1 presents the
accuracy of GOOD-AT against PGD on
Cora and Citeseer. We observe that the
accuracy significantly improves as the
number of detectors increases, up to less
than 10 detectors. However, the increase
in accuracy becomes limited when using
15 detectors. Our other experimental
results during the tuning of hyper-
parameters indicate that increasing the
number of detectors beyond 20 does not
yield further improvements.

Inductive Classification. To further investigate the robustness of GOOD-AT, we evaluate the
robustness of GOOD-AT on inductive classification in Appendix G.1 to ensure the model does not
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Figure 4: RAUC values for transferring adaptive attacks designed for one defense to other defenses.
Each column represents one adaptive attack, while each row corresponds to a defense model. For the
results on Citeseer, see Appendix G.3

utilize the clean local structure of testing nodes. In this setting, during the training process, we remove
the testing nodes from the graph to guarantee that clean edges of the testing nodes are not exposed
to the classifier and detectors. GOOD-AT outperforms other defenses and likewise demonstrates
remarkable robustness.

Generality. GOOD-AT is a plug-in method, which can be applied to any GNNs, so we test its
generality by changing the base classifier in Appendix G.4. The results demonstrate that substituting
GCN with other GNN models not only does not result in a decline in performance but can actually
improve robustness. This observation may be attributed to the comparatively weaker representation
learning capability of GCN as a basic GNN model.

8 LIMITATIONS

While we do not rigorously prove Hypothesis 1 theoretically, we believe it is a valuable concept for
research in graph adversarial attacks. This trade-off is primarily based on empirical and intuitive
observations from a large number of attack and defense experiments. Notably, this phenomenon is
unique to graph attacks. While we leave the more thorough study of this aspect for future research,
our findings provide valuable insights into this unique nature of graph attacks and potential avenues
for further exploration. We do not consider feature perturbations as most work in this area (Entezari
et al., 2020; Geisler et al., 2020; 2021; Lei et al., 2022; Zhang & Zitnik, 2020; Li et al., 2022), and
this does not affect our core contributions.

9 CONCLUSION

In this paper, we adopt an OOD perspective to re-examine graph adversarial attacks and analyze the
distributional shift phenomena in both poisoning and evasion attacks. Our theoretical analysis reveals
the limitations of traditional adversarial training in enhancing the adversarial robustness of graph
neural networks, leading us to propose a novel adversarial training method that trains multiple OOD
detectors to improve the GNN’s robustness. Through extensive experiments, we validate the adaptive
and non-adaptive robustness of our approach, and our results demonstrate superior performance
compared to other methods in both evasion and poisoning attacks.
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A IMPLEMENTATION DETAILS

Datasets. Following a recent work (Mujkanovic et al., 2022), most of our experiments are conducted
on the two most widely used datasets, Cora (Bojchevski & Günnemann, 2017) and Citeseer (Giles
et al., 1998). In order to systematically evaluate the robustness of our method and other defenses, we
have to relinquish the use of large-scale datasets, as most attacks and defenses are not scalable to
such datasets. The data split follows 10%/10%/80% (train/validation/testing). Following other works
in graph adversarial attack (Zügner & Günnemann, 2019; Jin et al., 2020a; 2021; Liu et al., 2021), we
only use the largest connected component (LCC) of the graphs. The statistics are listed in Table. 2.

Table 2: Dataset statistics.

Datasets NLCC ELCC Classes Features

Cora 2,485 5,069 7 1,433
Citeseer 2,110 3,668 6 3,703

Baselines. We evaluated the robustness of 8 graph neural networks under three attack algorithms,
Metattack, PGD, and MetaPGD (used only for adaptive unit testing). A brief introduction to these
methods is provided below.

• GCN (Kipf & Welling, 2017): GCN is a popular graph convolutional network based on
spectral theory.

• RGCN (Zhu et al., 2019): RGCN leverages Gaussian distributions to represent nodes and
employs a variance-based attention mechanism to mitigate the propagation of adversarial
attacks.

• Jaccard-GCN (Wu et al., 2019): Jaccard-GCN preprocesses the adjacency matrix by
removing edges connecting nodes with low Jaccard similarity.

• GNNGuard (Zhang & Zitnik, 2020): GNNGuard utilizes cosine similarity to model the edge
weights and then calculates edge pruning probability through a non-linear transformation.

• ProGNN (Jin et al., 2020b): ProGNN treats the adjacency matrix as a learnable parameter
and trains it by minimizing the classification loss and three regularization terms, i.e., feature
smoothness, low-rank and sparsity.

• SVD-GCN (Entezari et al., 2020): SVD-GCN observe that most of the perturbations
lie in the high-rank components of the adjacency matrix, and thus performs low-rank
approximation on the adjacency matrix.

• GRAND (Feng et al., 2020): GRAND randomly mask the features and adopt a mixed-order
propagation, i.e., X = AX̃, whereA =

∑K
k=0

1
K+1Â

k is a combination of multi-order
message passing.

• Soft-Median-GDC (Geisler et al., 2021): Soft-Median-GDC first applies GCN
normalization and adds self-loops to the adjacency matrix. Then, it preprocesses the matrix
with Personalized Page Rank and calculates the weights for message passing based on the
distance between neighboring nodes and the median of their neighborhood representations.

• Metattack (Zügner & Günnemann, 2019): Metattack uses meta-gradients to solve the bilevel
problem underlying poisoning attacks, essentially treating the graph as a hyperparameter to
optimize.

• PGD (Xu et al., 2019): During gradient-based optimization in PGD, the discrete adjacency
matrix is relaxed from (0, 1)N×N to [0, 1]N×N , and the final weights of the adjacency
matrix indicate the probabilities of flipping.

• Meta-PGD (Mujkanovic et al., 2022): Meta-PGD is a combination of PGD and meta
gradient. It unrolls the training procedure to obtain gradients in PGD training.
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Hyper-parameters. We use DeepRobust, an adversarial attack repository (Li et al., 2020), to
implement Metattack (Zügner & Günnemann, 2019), PGD (Xu et al., 2019), RGCN (Zhu et al., 2019),
Jaccard-GCN (Wu et al., 2019), SVD-GCN (Entezari et al., 2020), and ProGNN (Jin et al., 2020b).
GNNGuard(Zhang & Zitnik, 2020), GRAND (Feng et al., 2020), and Soft-Median-GDC (Geisler
et al., 2021) are implemented with the code provided by the authors. Mujkanovic et al. (2022)
invest a significant effort in tuning the hyperparameters of these models, obtaining more satisfactory
accuracies than those reported in their original papers. Therefore, we adopt their hyperparameter
values in our experiments.

We tune all the hyper-parameters of our methods based on the results of the validation set. For
GOOD-AT, K is the number of detectors and tuned from {5, 10, 15, 20}. The budgets of PGD used to
generate OOD samples are tuned from 0.1− 1.0 We consider grid-search for the dimension of hidden
layer of the detectors within 32, 64, 128, 256, 512 and learning rate within {0.1, 0.01, 0.001}. The
threshold of the step function Γ is tuned from {0.2, 0.5, 0.6, 0.7, 0.8, 0.9}. For the GCN classifier,
we follow Mujkanovic et al. (2022) to set the drop-out to 0.9, hidden size to 64, and weight decay to
0.001. For self-training, the only hyper-parameter is the number of pseudo-labels in each class, and
we tune it from{20− 100}.

Running Environment. In this study, all experiments were conducted on a computing cluster
equipped with NVIDIA Tesla A100 GPUs. Each GPU has 80 GB of memory and is powered by
CUDA 11.8. Most of the experiments can be conducted on a single GPU. The operating system
used for the experiments is Ubuntu 20.04 LTS. The deep learning models were implemented using
PyTorch framework (version 2.0.0) with Python (version 3.8.8) as the programming language. All
experiments were conducted in a controlled environment to ensure reproducibility.

B ADVERSARIAL TRAINING ON GRAPHS

Details on Motivation 1. Here we try explain why adversarial training fails on graphs. (Madry
et al., 2017) propose adversarial training to boost the robustness in image classification and define the
robust error with the Cross-Entropy loss as follow:

RADV(θ) =

[
max

x′∈B(x)
Epd(x,y)LCE (x′, y; fθ)

]
= Epd(x) max

x′∈B(x)
−

[∑
y

pd(y | x) log pθ(y | x′)

]
,

(7)
here, the reason why the expectation operator can be placed outside the max operator is that the
samples are independent. Trough minimizing the robust error, we have:

argmin
θ

Epd(x) max
x′∈B(x)

−

[∑
y

pd(y | x) log pθ(y | x′)

]

= argmin
θ

Epd(x) max
x′∈B(x)

−

[∑
y

pd(y | x)
(
log pθ(y | x′)− log pd(y | x)

)]

= argmin
θ

Epd(x)

[
max

x′∈B(x)
KL(pd(y|x))∥pθ(y|x′))

]
,

(8)

where pd is the ground-truth distribution KL(P∥Q) denotes the KL divergence between distribution
P and Q. The optimal solution of Eq. (8) will encourage pθ(y|x′) smooth around the sample x
and be locally invariant. As the perturbation generated by the attack algorithm also falls within the
range of B(x), the model may maintain the correct output. Here is an assumption that the ground-
truth label of the sample in the perturbation range B(x) remains unchanged, i.e. argmax pd(y |
x) = argmax pd(y | x′), meaning that the semantic information is preserved. This assumption is
reasonable because the budget is often small so the sample x is well bound to a small range around x.
Additionally, the perturbed images are usually indistinguishable by the human eyes, so we consider
the semantic information of the sample remains unchanged. This assumption ensures that the model
will not learn incorrect knowledge like incorrect feature-label mappings and is also well-known as
unoticeability in graph adversarial attack domain.

Unlike adversarial training in images, which perturbs features (pixels) during training, the most
common adversarial training on graphs perturbs the graph structure:
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RG
ADV(θ) = max

Â∈B(A)
Epd(G={A,X})LCE

(
fθ

(
Â,X

)
,y

)
= max

Â∈B(A)
−Epd(G)

[∑
y

pd(y | x,Sx) log pθ(y | x, Ŝx)

]
,

(9)

where S and Ŝ are the substructure of node x in the clean graph and perturbed graph, respectively.
They are necessary for message passing in GNN. Then we minimize the robust error on graphs:

argmin
θ

RG
ADV(θ) = max

Â∈B(A)
−Epd(G)

[∑
y

pd(y | x,Sx) log pθ(y | x, Ŝx)

]

= argmin
θ

max
Â∈B(A)

−Epd(G)

[∑
y

pd(y | x,Sx)
(
log pθ(y | x, Ŝx)− logpd

pd(y | x,Sx)
)]

= argmin
θ

max
Â∈B(A)

Epd(G)KL(pd(y|x,Sx))∥pθ(y|x, Ŝx)).

(10)

The perturbation is defined at the graph level rather than the node level, so the local structures of
nodes are not explicitly constrained, allowing for dramatic change to the local structure of each
node and resulting in a pronounced dissimilarity between Ŝx and Sx. Previous works show that
attack methods tended to attack low-degree nodes (Zügner & Günnemann, 2019; Li et al., 2022),
causing drastic changes in the local structure S of these nodes and potentially altering their semantic
information (Gosch et al., 2023b). In this manner, while the node labels remain unchanged, their local
structural semantic information may undergo significant alterations, leading to the invalidation of
the smoothness assumption in images, i.e., argmax pd(y | x,Sx) ̸= argmax pd(y | x, Ŝx). However,
while the semantic information changes, the model is still encouraged to output the label before
the structural modification, namely argmax

y
pθ(y|x, Ŝx) = argmax

y
pd(y | x,Sx). Thus, this graph-

level adversarial training may lead to the model learning incorrect mapping relationships, mapping
nodes with completely altered semantic structural information to the original labels. Based on the
above analysis, if we want to conduct adversarial training on the structure, a feasible way is to define
the constraints at the node or edge level to ensure that the semantic information of nodes remain
unchanged.

A recent work (Gosch et al., 2023a) also notices the problem with the too loose definition of the
constraint of the perturbations during graph adversarial training. The key difference between our
work and theirs is that they attempt to address this problem using local constraints and a flexible
GNN (Chien et al., 2020), while we explore a different paradigm of adversarial training. Current
adversarial training for GNNs is derived from the visual AT through a one-to-one correspondence.
Rather than directly porting existing image AT methods to graph, we advocate for more domain-
specific design for graphs. Specifically, compared with the perturbations on images, perturbations
on graphs are discrete so that they can be directly removed once get identified. Motivated by this,
we relinquish the conventional notion of adversarial training in pursuit of learning an invariant
model and propose the GOOD-AT pipeline as a new method of using adversarial samples to enhance
the robustness of GNNs. Based on the experimental results, we propose a trade-off between the
effectiveness and defensibility of attacks. Although we do not provide a thorough proof for this
hypothesis as we claim in the Limitations, we think this idea can be insightful and helpful to the
community.

Unoticeability. Based on the above analysis, we believe that the semantic information at the node
level is altered, and the perturbations are not unnoticeable. So far, the definition of unnoticeability in
graph adversarial attack remains an open issue. Prior researches attempt to define it based on degree
distribution (Zügner et al., 2018), overall perturbation rate (Zügner & Günnemann, 2019), and graph
homophily (Chen et al., 2022), but all these definitions are mostly at the graph level. Based on the
aforementioned analysis, a reasonable definition of unnoticeability should be at the sample level.
Some attempts have been made in this regard by Gosch et al. (2023b), who uses Bayes optimal
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classifiers to determine whether a node’s ground-truth label has changed, but Bayes classifiers are
often infeasible in real-world data. How to define unnoticeability well is still not well resolved.

C ALGORITHM OF GOOD-AT

We provide the overall algorithm of GOOD-AT in Algorithm 1. After determining the number of
detectors K, we train each detector separately (Line 2-7). Firstly, we use PGD to generate a perturbed
graph (Line 3). Then we define the generated perturbed edges as OOD samples and the original edges
as in-distribution samples (Line 5). The detector is trained via the positive and negative samples (Line
6). Finally, we ensemble the outputs of all detectors, and purify the graph during inference (Line 8).

Algorithm 1: GOOD-AT

Input: Graph G = {V, E}, Perturbed Graph Ĝ, Features X, Labels yL, K Detectors, GCN
Classifier fGCN , K PGD Attackers

Output: The predicted labels of VU

1 Train the GCN fGCN on labeled nodes VL ▷ Start Training;
2 for i=1, ..., K do
3 Generate the perturbed graph Ĝi via the PGD attacker τi;
4 Generate the representations of edges using Eq. (4);
5 Label the adversarial edges as OOD samples and the original edges as in-distribution

samples;
6 Train the detector f i

d by the edges;
7 end
8 Optimize the perturbed graph Ĝ using Eq. (6) ▷ Starting Inference;
9 Predict the labels of VU ;

10 Return predicted labels;

D ADAPTIVE ATTACK TOWARDS GOOD-AT

We design two variants of PGD to perform adaptive attacks on GOOD-AT. These include resampling
detected perturbations and incorporating the detector’s output as a regularization term in the PGD
training loss. Both of them have access to all the information of the trained detectors.

The process of generating adversarial edges using PGD can be devided into three steps. Firstly, the
adjacency matrix is relaxed to continuous values in the range during the gradient-based optimization
and the resulting weighted change reflects the probability of flipping an edge (Xu et al., 2019;
Mujkanovic et al., 2022). Secondly, after each gradient update, the changes are projected back to
ensure they do not exceed the permissible budget. Finally, sample the adversarial edges multiple
times based on the optimized flipping matrix, selecting one that achieves the best attack performance.

Resample. The most direct adaptive attack against GOOD-AT is that we do not generate the
perturbations which can be detected. When designing this adaptive attack, we do not modify the
first two steps of PGD. In the final step, if the sampled edge can be detected by the detectors, it is
discarded, and the corresponding reversal probability in the flipping matrix is set to zero. Sampling
then continues until the budget is reached. This ensures that the final generated adversarial edges will
not be detected by the detectors in GOOD-AT.

Regularization. This adaptive attack modifies the first step of PGD by adding the detector’s output
as a regularization in the PGD training loss. It can be formulated as:

Lall = Latk + λLreg,where Lreg =
1

N2K

K∑
k=1

N∑
i=1

N∑
j=1

Âijf
k
d (eij), (11)
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where fk
d is the k-th detector, and eij is the representation of the edge Âij . Considering every element

in Â would result in a significant computational cost. Therefore, we apply a sparsity operation here,
only calculating the elements in the adjacency matrix greater than a threshold t.

The experimental results, shown in Table. 3, display the accuracies of GCN under PGD in the first
column and GOOD-AT under PGD in the second column. PGDres and PGDreg are resampling and
regularization adaptive strategies, respectively.

Table 3: The adaptive robustness on Cora. PGD-GCN indicates GCN is attacked by normal PGD,
PGD-GOOD is GOOD-AT under normal PGD, and PGDres is GOOD-AT under PGD with adaptive
design.

Ptb Rate 3% 6% 9% 12% 15%

PGD-GCN 78.26 ± 1.56 75.10 ± 0.71 72.15 ± 1.45 67.83 ± 1.48 66.39 ± 1.28
PGD-GOOD 84.25 ± 1.90 83.60 ± 1.77 82.71 ± 1.14 82.21 ± 1.73 81.61 ± 1.10

PGDres-GOOD 82.59 ± 1.53 81.06 ± 1.06 79.38 ± 1.15 77.46 ± 1.68 76.54 ± 1.62
PGDreg-GOOD 82.94 ± 1.50 81.72 ± 1.33 80.54 ± 1.66 79.38 ± 2.01 78.63 ± 1.40

After incorporating the adaptive design, the robustness of GOOD-AT decreases but still significantly
outperforms GCN under normal PGD. We also compare the performance of GOOD-AT and other
methods under their respective adaptive attacks (provided by the unit test (Mujkanovic et al., 2022)),
as depicted in Figure 5.It can be observed that the adaptive robustness of GOOD-AT is superior to
that of other methods.
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Figure 5: The mean accuracy of GOOD-AT combined with different GNNs agianst PGD.

It is worth noting that, GOOD-AT is a combination of vanilla GCN and the ensembled detectors. Due
to the adversarial perturbations generated by PGDres being able to bypass the detector, GOOD-AT
degrades to a vanilla GCN in this scenario. In other words, the transferability of PGD decreases,
and the generated perturbations in this case are ineffective against a regular GCN model without
any defense. By making the perturbations bypass the detector, the effectiveness of the attack is
reduced, which brings a trade-off between effectiveness and defensibility of the attack methods.
Hence, perturbations that circumvent detectors are more likely to be in-distribution, which are not
that harmful to GNNs.

E THE DISTRIBUTION OF PERTURBATIONS IN POISONING ATTACK

Distribution of Adversarial Edges. Previous works discover that perturbations generated by the
effective poisoning attacks are unevenly distributed on the graph (Li et al., 2023; Zhan & Pei, 2022).
Nearly all the adversarial edges are located around the training nodes. Specifically, we can divide the
edges into three groups:

• Group 1: The edges connect two training nodes.
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Table 4: Distribution of adversarial edges on Cora

Edges Ptb Rate Group 1 Group 2 Group 3
Clean 0.7% 18.3% 81.0%

Metattack

5% 5.1% 94.1% 0.8%
10% 11.9% 87.5% 0.6%
15% 9.1% 88.7% 2.2%
20% 7.8% 90.7% 1.5%

DICE

5% 0.9% 17.1% 82.0%
10% 0.9% 16.8% 83.3%
15% 1.0% 17.0% 82.0%
20% 0.9% 17.4% 81.7%

PGD

5% 28.6% 70.2% 1.2%
10% 24.6% 73.7% 1.7%
15% 21.7% 77.0% 1.3%
20% 23.9% 74.9% 1.2%

• Group 2: The edges connect a training node and a testing node.

• Group 3: The edges connect two testing nodes.

We provide the distribution of the adversarial edges and original edges on Cora in Table. 4. As
training nodes account for 80% of all nodes, Group 3 is the largest part of the clean graph. However,
Metattack allocates nearly all budgets around the training nodes, i.e., in Group 1 and Group 2.
DICE (Waniek et al., 2018) is a heuristic method that directly increases the heterophily of the graph
by randomly connecting nodes from different classes and disconnecting nodes from the same class,
and we observe that the distribution of perturbation generated by DICE is almost identical to that of
the original edges, indicating the existence of bias in gradient-based attacks.

(Li et al., 2023) provide an explanation for this phenomenon. In poisoning attacks, the effectiveness
of the attack algorithm comes from increasing the distribution shift between the training set and
the testing set, and a smaller training set means that limited perturbations can be more effective in
increasing the distance between the training and testing distributions when applied to the training
set. This makes poisoning attacks that are effective, with perturbations focused on the training set,
very easy to defensd, such as using a self-training strategy or training the model with the validation
set (Zhan & Pei, 2022).

The distribution of the attack algorithm in the graph can be adjusted by the mask used during the
attack (Li et al., 2023), i.e., selecting which nodes to compute the attack loss latk. For example,
there are two commonly used loss in graph attack, Ltrain = L(fθ∗(Â,X)L,yL) and Lself =

L(fθ∗(Â,X)U , ŷU ). The former calculates the loss by the predictions of GNN and labels of training
nodes, while the latter uses those of testing nodes. In Lself , ŷU are the pseudo-labels in gray-box
attack and ground-truth labels in white-box attack. Ltrain is calculated based on the local structure
of the training nodes, and therefore, during backpropagation, gradients are only propagated to the
portion of the adjacency matrix corresponding to the training nodes. Similarly, attacks with Lself can
only affect the local structure of testing nodes.

Adaptive Attack. From the perspective of a white-box attack, we can bypass the self-training
defense by spreading perturbations throughout the entire graph.

Distributing the attack across the entire graph may effectively bypass self-training defense, but it
could also significantly reduce the effectiveness of the attack. We adapt Metattack to uniformly
distribute the perturbations and improve DICE by fixing its attack to the training nodes. Table. 5
shows the results of these two attacks on GCN. The efficacy of Metattack significantly declines,
whereas DICE shows notable improvement when the perturbations are concentrated on training
nodes, demonstrating that distributing the attack across the entire graph can potentially compromise
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the performance. If attackers opt to target test nodes due to self-training strategy, they inherently
compromise their attack performance.

Table 5: The performance of Metattack and DICE on Cora. The asterisk means the modification of
the basic models.

Ptb Rate Meta Meta* DICE DICE*
5% 76.36 79.23 (↗2.87) 81.89 80.68 (↘1.21)
10% 71.62 75.60 (↗5.98) 80.92 78.12 (↘2.80)
15% 66.37 71.37 (↗5.00) 79.93 75.35 (↘4.58)
20% 60.31 66.84 (↗6.53) 77.10 73.79 (↘3.31)

F TRADE-OFF BETWEEN EFFECTIVENESS AND DEFENSIBILITY

We observe from the experimental results in Appendix E and Appendix D that once the attacker
attempts to consider circumventing our defenses, the effectiveness of the attack will significantly
decrease. This is not exhibited by adaptive attacks designed for defense methods. According to the
results in Fig. 4, the adaptive attacks for other defenses have strong transferability.

Referring to Theorem 4.1 in Li et al. (2023), the efficacy of graph attacks stems from their capacity
to increase the distribution shift. The greater the difference between the perturbations and the
original distribution, whether in terms of global graph distribution or local edge distribution, the more
destructive the perturbations are to GNNs. However, from the perspective of OOD detection, samples
that deviate further from the original distribution are more easily detected. In order to enhance the
stealthiness of an attack, the attacker must sacrifice a portion of the efficacy of the perturbations. For
example, in poisoning attack, if attackers opt to spread perturbations throughout the whole graph due
to self-training strategy, the global distribution shift (between training and testing nodes) caused by
the attack will not be as significant as when the attack is concentrated solely on the training nodes,
so they inherently compromise their attack performance. In evasion attack, to evade detection by a
ideal detector as GOOD-AT, the attacker must relinquish the generation of those OOD adversarial
edges and instead select edges that are relatively in distribution. Additionally, a neural network
based detector possibly considers all the potential properties that can be used to distinguish between
adversarial and normal edges. When an attacker incorporates such a detector as a regularization term
into their attack loss, the generated edges become similar to normal edges. Obviously, these edges
inflict less damage on the performance of the GNNs.

Achieving complete robustness against adversarial attack is not realistic with existing technologies,
but we speculate that there may exist a balance point in graph structural attack, where neither the
attacker nor the defender can further enhance their performance by improving their strategies. A
detector that meets this condition can be referred to as an ideal detector. At this stage, relying more on
specific inductive biases can improve its robustness against certain type of attacks, but incorporating
the corresponding adaptive design into the attack will render the defense ineffective. In this work, we
do not provide a thorough or theoretical proof for this point, so it is more of a conjecture. We leave
the exploration of this balance point for future research.

G MORE EXPERIMENTS

G.1 INDUCTIVE CLASSIFICATION

Under the transductive setting, evasion defense assumes knowing the clean graph, including test nodes.
To further investigate the robustness of GOOD-AT, we conduct experiments within an inductive
setting to ensure that clean edges of the testing nodes are not exposed to the classifier and detectors.
We randomly selected 10% of the nodes for training, 80% for validation, and the remaining 10% for
testing. During the training process, we removed the testing nodes from the graph.

• Training: During the training process, the testing nodes and the edges connected to them are
removed so that we only use the subgraph of training and validation nodes to train a GCN
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and detectors. This ensures that clean testing data are not used. To generate adversarial
edges, utilized for training the detectors, we use PGD to attack validation nodes. Throughout
these operations, a GCN model served as the surrogate model.

• Testing: During the testing phase, we employ PGD on the entire graph targeting the testing
nodes initially, followed by utilizing a detector to cleanse the graph. Finally, we use the
trained GCN to predict the labels of testing nodes.

This scenario is similar to node injection, where we ensure that clean structural information of testing
nodes is not used during training. The experimental results on Cora are listed in Table. 6. GOOD-AT
outperforms other defenses and still exhibits strong robustness. This indicates that GOOD-AT does
not rely on utilizing the clean structure of testing nodes during training. Even in the scenario where
the features and local structures of testing nodes are completely unknown, the detectors in GOOD-AT
are capable of detecting adversarial edges.

Table 6: The inductive performance on Cora. We highlight the best model with purple and the
runner-up with brown.

Dataset Ptb Rate GCN GOOD-AT Soft-Median Jaccard SVD-GCN

Cora

2.5% 75.40 ± 2.11 79.21 ± 2.34 75.89 ± 2.13 75.03 ± 1.86 74.82 ± 2.12
5% 68.72 ± 2.37 78.58 ± 2.58 72.36 ± 2.73 73.18 ± 3.06 68.06 ± 3.07

7.5% 63.10 ± 2.36 76.91 ± 1.99 70.65 ± 2.82 70.60 ± 2.41 62.51 ± 3.69
10% 59.28 ± 1.73 76.00 ± 2.23 67.22 ± 2.75 70.33 ± 3.27 58.90 ± 2.81

Citeseer

2.5% 68.25 ± 2.41 71.62 ± 2.07 69.80 ± 1.56 69.07 ± 1.96 67.83 ± 2.63
5% 61.83 ± 2.62 70.54 ± 2.58 66.38 ± 2.30 65.42 ± 1.02 61.55 ± 2.41

7.5% 55.51 ± 2.00 69.88 ± 2.16 65.11 ± 0.99 63.34 ± 3.13 55.49 ± 2.85
10% 49.76 ± 1.91 69.22 ± 2.79 62.30 ± 2.57 59.81 ± 1.88 50.03 ± 3.37
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G.2 THE FULL RESULTS OF THE UNIT TEST

There are 5 random data split in the unit test, and we report the full results on the split-0.

(a) GCN on Cora (b) GNNGuard on Cora (c) GOOD-AT on Cora (d) Grand on Cora

(e) Jaccard-GCN on Cora (f) RGCN on Cora (g) Soft-Median-GDC on
Cora

(h) SVD-GCN on Cora

(i) GCN on Citeseer (j) GNNGuard on Citeseer (k) GOOD-AT on Citeseer (l) Grand on Citeseer

(m) Jaccard-GCN on
Citeseer

(n) RGCN on Citeseer (o) Soft-Median-GDC on
Citeseer

(p) SVD-GCN on Citeseer

Figure 6: Unit test of evasion attack
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(a) GCN on Cora (b) GNNGuard on Cora (c) Self-training on Cora (d) Grand on Cora

(e) Jaccard-GCN on Cora (f) Pro-GNN on Cora (g) RGCN on Cora (h) Soft-Median-GDC on
Cora

(i) SVD-GCN on Cora (j) GCN on Citeseer (k) GNNGuard on Citeseer (l) Self-training on Citeseer

(m) Grand on Citeseer (n) Jaccard-GCN on Citeseer (o) ProGNN on Citeseer (p) RGCN on Citeseer

(q) Soft-Median-GDC on
Citeseer

(r) SVD-GCN on Citeseer

Figure 7: Unit test of poisoning attack
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G.3 TRANSFER ATTACK ON CITESEER

The results on Citeseer are consistent with those on Cora is shown in Fig. 8, but Citeseer is noticeably
much more vulnerable when facing attacks. This conclusion aligns with the findings of Mujkanovic
et al (Mujkanovic et al., 2022).
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Figure 8: RAUC values for transferring adaptive attacks designed for one defense to other defenses.
Each column represents one adaptive attack, while each row corresponds to a defense model.

G.4 GENERALITY OF GOOD-AT
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Figure 9: The accuracy of GOOD-AT using different GNNs as base classifier against PGD.

GOOD-AT is a plug-in training approach that can be combined with any GNN. To verify its generality,
we replaced the base classifier with GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al.,
2017), and APPNP (Gasteiger et al., 2018). The results, as shown in Fig. 9, demonstrate that replacing
GCN with other GNN models does not lead to performance degradation. On the contrary, GCN
exhibits the lowest overall robustness. We speculate that the reason for this could be that GCN,
as one of the earliest and fundamental GNN models, may have a relatively weaker representation
learning capability compared to other GNNs. From this experiment, we can conclude that GOOD-AT
demonstrates strong generality and can be transferred to any GNN model.

The OOD detectors are trained specifically for an individual GNN classifier instance, raising a
question that can it transfer well to a different GNN instance. To verify this, we incorporate the OOD
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Figure 10: The accuracy of GOOD-AT using different downstream GNN classifiers against PGD.

detector which is trained by GCN with other downstream GNN models, including GAT, GraphSAGE,
and APPNP. The results in Fig. 10 demonstrate that the ensemble detector still can successfully
defend against attack.

H AGAINST OTHER ATTACKS

GOOD-AT is trained on the adversarial edges generated by PGD, raising a question that can it
successfully defend against other attacks. To address this concern, we test GOOD-AT on two
other attacks PR-BCD and GR-BCD (Geisler et al., 2021). From the Table. 7, we can observe that
attacking with PR-BCD and GR-BCD on PGD-trained GOOD-AT are also not effective. Compared to
image perturbation, structural perturbations have a much smaller search space due to its discreteness.
Therefore, we surmise that the OOD edges generated by different attack methods are similar within
this limited range.

Table 7: The performance of GOOD-AT against PR-BCD and GR-BCD on Cora

Ptb Rate NLCC ELCC Classes

3% 84.25 84.17 84.36
6% 83.60 83.85 84.06
9% 82.71 82.44 83.73
12% 82.21 82.78 83.54
15% 81.61 82.03 83.22
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