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Abstract

In this paper, we study the problem of learning in quantum games – and other
classes of semidefinite games – with scalar, payoff-based feedback. For concrete-
ness, we focus on the widely used matrix multiplicative weights (MMW) algorithm
and, instead of requiring players to have full knowledge of the game (and/or each
other’s chosen states), we introduce a suite of minimal-information matrix multi-
plicative weights (3MW) methods tailored to different information frameworks.
The main difficulty to attaining convergence in this setting is that, in contrast to
classical finite games, quantum games have an infinite continuum of pure states
(the quantum equivalent of pure strategies), so standard importance-weighting
techniques for estimating payoff vectors cannot be employed. Instead, we bor-
row ideas from bandit convex optimization and we design a zeroth-order gradient
sampler adapted to the semidefinite geometry of the problem at hand. As a first
result, we show that the 3MW method with deterministic payoff feedback retains
the O(1/

√
𝑇) convergence rate of the vanilla, full information MMW algorithm

in quantum min-max games, even though the players only observe a single scalar.
Subsequently, we relax the algorithm’s information requirements even further and
we provide a 3MW method that only requires players to observe a random realiza-
tion of their payoff observable, and converges to equilibrium at an O(𝑇−1/4) rate.
Finally, going beyond zero-sum games, we show that a regularized variant of the
proposed 3MW method guarantees local convergence with high probability to all
equilibria that satisfy a certain first-order stability condition.

1 Introduction

The integration of quantum information theory into computer science and machine learning [4, 51, 64]
has the potential ofy providing faster and more efficient computing resources, new encryption and
security protocols, and improved machine learning algorithms, enabling advancements in areas
such as quantum cryptography, shadow tomography, quantum GANs, and adversarial learning
[1, 15, 18, 37]. As a well-known example, Google’s “Sycamore” 54-qubit processor recently
showcased this “quantum advantage” by training an autonomous vehicle model in less than 200
seconds [4], a fact made possible by the ability of quantum computers to prepare superpositions of
qubits that exceed the operational capabilities of standard Boolean gates.

Deploying such models within a multi-agent context, such as the utilization of QGANs or autonomous
vehicles, leads to a significant transformation compared to classical non-cooperative environments.
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Indeed, unlike classical games (where a mixed strategy is a probabilistic mixture of the underlying
pure strategies), quantum games utilize mixed states, which represent probabilistic mixtures of
quantum projectors. As a consequence, a mixed quantum state can yield payoffs that cannot be
expressed as a convex combination of classical pure strategies.

In light of this, quantum learning has drawn significant attention in recent years [2, 27, 28, 33, 34, 60].
In a multi-agent context, the most widely used framework is the so-called matrix multiplicative
weights (MMW) algorithm [2, 16, 27, 28, 35]: First introduced by Tsuda et al. [59] in the context
of matrix and dictionary learning, MMW can be viewed as a semidefinite analogue of the standard
Hedge / EXP3 methods for multi-armed bandits [6, 36, 61], and is a special case of the mirror descent
family of algorithms [47]. Specifically, in the contrete setting of two-player, zero-sum quantum games,
Jain & Watrous [27] showed that players using the MMW algorithm can learn an 𝜀-equilibrium
in O(1/𝜀2) iterations – or, in terms of speed of convergence after 𝑇 iterations, they converge to
equilibrium at a O(1/

√
𝑇) rate.

To the best of our knowledge, this result remains the tightest known bound for equilibrium learning
in quantum games – and the more general class of semidefinite games [26]. At this point, we
highlight that we focus on classical computing algorithms for solving quantum games, unlike recent
results [10, 22] that employ quantum algorithms to solve classical games and semidefinite programs.
Building on [27], Jain et al. [28] studied its continuous-time analogue – the quantum replicator
dynamics (QRD) – in quantum min-max games, focusing on the recurrence and volume conservation
properties of the players’ actual trajectory of play. Going beyond the min-max case, [38] examined
the convergence of the dynamics of “follow the quantum leader” (FTQL), a class of continuous-time
dynamics that includes the QRD as a special case. The main result of [38] was that the only states
that are asymptotically stable under the (continuous-time) dynamics of FTQL are those that satisfy a
certain first-order stationarity condition known as variational stability [44, 46]. In a similar line of
work, Lin et al. [35] studied the continuous-time QRD, and discrete-time MMW in quantum potential
games, utilizing a Riemannian metric to obtain a gradient flow in the spirit of [41, 42].

Our contributions in the context of previous work. All works mentioned above, in both continu-
ous and discrete time, assume full information, i.e., players have access to their individual payoff
gradients – which, among others, might imply that they have full knowledge of the game. How-
ever, this condition is rarely met in online learning environments where players only observe their
in-game payoffs; this is precisely the starting point of our paper which aims to derive a convergent
payoff-based, gradient-free variant of MMW algorithm for learning in quantum games.

A major roadblock in this is that standard approaches from learning in finite games fail in the quantum
setup for two reasons: First and foremost, there is a continuum of pure states available to every player,
unlike classical finite games where there is only a finite set of pure actions. Second, even after the
realization of the pure states of the players, there is an inherent uncertainty and randomness due to the
payoff-generating quantum process (an aspect that has no classical counterpart). To overcome this
hurdle, we employ a continuous-action reformulation of quantum games, and we leverage techniques
from bandit convex optimization for estimating the players’ payoff gradients.

Our first contribution is a variant of MMW that only requires mixed payoff observations and achieves
an O(1/

√
𝑇) equilibrium convergence rate in two-player zero-sum quantum games, matching the

rate of the full information MMW in [27]. Then, to account for information-starved environments
where players are only able to observe their in-game, realized payoff observable, we also develop a
bandit variant of MMW which utilizes a single-point gradient estimation technique in the spirit of
[55] and achieves an O(𝑇−1/4) equilibrium convergence rate. Finally, we also examine the behavior
of the MMW algorithm with bandit information in general 𝑁-player games, where we show that
variationally stable equilibria are locally attracting with high probability.

Importantly, the above results transfer to more general games with a semidefinite structure – such as
multi-agent covariance matrix optimization in signal processing, energy efficiency maximization in
multi-antenna systems, etc. [43, 45, 62]. While we do not provide a complete theory, we discuss a
number of non-quantum applications that showcase how our results can be generalized further.

Notation. Given a (complex) Hilbert space H, we will use Dirac’s bra-ket notation and write |𝜓⟩
for an element of H and ⟨𝜓 | for its adjoint; otherwise, when a specific basis is implied by the context,
we will use the dagger notation “†” to denote the Hermitian transpose 𝜓† of 𝜓. We will also write
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ℍ𝑑 for the space of 𝑑 × 𝑑 Hermitian matrices, and ℍ𝑑
+ for the cone of positive-semidefinite matrices

in ℍ𝑑 . Finally, we denote by ∥A∥𝐹 =
√︁

tr[A†A] the Frobenius norm of A in ℍ𝑑 .

2 Problem setup and preliminaries

We begin by reviewing some basic notions from the theory of quantum games, mainly intended to set
notation and terminology; for a comprehensive introduction, see [23]. To streamline our presentation,
we introduce the primitives of quantum games in a 2-player setting before treating the general case.

Quantum games. Following [20, 23], a 2-player quantum game consists of the following:

1. Each player 𝑖 ∈ N := {1, 2} has access to a complex Hilbert space H𝑖 � ℂ𝑑𝑖 describing the
set of (pure) quantum states available to the player (typically a discrete register of qubits). A
quantum state is an element 𝜓𝑖 of H𝑖 with unit norm, so the set of pure states is the unit sphere
Ψ𝑖 := {𝜓𝑖 ∈ H𝑖 : ∥𝜓𝑖 ∥𝐹 = 1} of H𝑖 . We will write Ψ := Ψ1 × Ψ2 for the space of all ensembles
𝜓 = (𝜓1, 𝜓2) of pure states 𝜓𝑖 ∈ Ψ𝑖 that are independently prepared by each player.

2. The rewards that players receive are based on their individual payoff functions 𝑢𝑖 : Ψ→ ℝ, and
they are derived through a positive operator-valued measure (POVM) quantum measurement
process. Following [17], this unfolds as follows: Given a finite set of measurement outcomes Ω
that a referee can observe from the players’ quantum states (e.g., measure a player-prepared qubit
to be “up” or “down”), each outcome 𝜔 ∈ Ω is associated to a positive semi-definite operator
P𝜔 : H→ H defined on the tensor product H := H1 ⊗H2 of the players’ individual state spaces.
We further assume that

∑
𝜔∈Ω P𝜔 = I so the probability of observing 𝜔 ∈ Ω at state 𝜓 ∈ Ψ is

𝑃𝜔 (𝜓) = ⟨𝜓1 ⊗ 𝜓2 |P𝜔 |𝜓1 ⊗ 𝜓2⟩.
3. The payoff of each player is then generated by this measurement process via a payoff observable

𝑈𝑖 : Ω→ ℝ: specifically, the measurement 𝜔 is drawn from Ω based on the players’ state profile
𝜓 = (𝜓1, 𝜓2), and each player 𝑖 ∈ N receives as reward the quantity 𝑈𝑖 (𝜔). Accordingly, the
player’s expected payoff at state 𝜓 ∈ Ψ is 𝑢𝑖 (𝜓) := ⟨𝑈𝑖⟩ ≡

∑
𝜔 𝑃𝜔 (𝜓)𝑈𝑖 (𝜔).

A quantum game is then defined as a tuple Q ≡ Q(N ,Ψ, 𝑢) with players, states, and payoff as above.

Mixed states. Apart from pure states, each player 𝑖 ∈ N may prepare probabilistic mixtures
thereof, known as mixed states. These mixed states differ from mixed strategies used in classical,
finite games as they do not correspond to convex combinations of their pure counterparts; instead,
given a family of pure quantum states 𝜓𝑖𝛼𝑖

∈ Ψ𝑖 indexed by 𝛼𝑖 ∈ A𝑖 , a mixed state is described by a
density matrix of the form

X𝑖 =
∑︁

𝛼𝑖∈A𝑖
𝑥𝑖𝛼𝑖
|𝜓𝑖𝛼𝑖
⟩⟨𝜓𝑖𝛼𝑖

| (1)

where the mixing weights 𝑥𝑖𝛼𝑖
≥ 0 of each 𝜓𝑖𝛼𝑖

are normalized so that tr X𝑖 = 1. By Born’s rule, this
means that the probability of observing 𝜔 ∈ Ω under X = (X1,X2) is

𝑃𝜔 (X) =
∑︁

𝛼1∈A1

∑︁
𝛼2∈A2

𝑥1,𝛼1𝑥2,𝛼2𝑃𝜔 (𝜓𝛼). (2)

where 𝜓𝛼 = 𝜓1,𝛼1 ⊗ 𝜓2,𝛼2 . Therefore, in a slight abuse of notation, the expected payoff of player
𝑖 ∈ N under X will be 𝑢𝑖 (X) =

∑
𝛼∈A 𝑥𝛼𝑢𝑖 (𝜓𝛼). which, equivalently, can be written as:

𝑢𝑖 (X) =
∑︁

𝜔∈Ω
∑︁

𝛼∈A 𝑥𝛼𝑢𝑖 (𝜓𝛼)𝑈𝑖 (𝜔). (3)

This gives a succint representation of the payoff structure of Q – see also Eq. (5) below.

Continuous game reformulation. In view of the above, treating a quantum game as a “tensorial”
extension of a finite game can be misleading. For our purposes, it would be more suitable to treat a
quantum game as a continuous game where each player 𝑖 ∈ N controls a matrix variable X𝑖 drawn
from the “spectraplex” defined as X 𝑖 = {X𝑖 ∈ ℍ𝑑𝑖

+ : tr X𝑖 = 1}. In this interpretation, the players’
payoff functions 𝑢𝑖 : X ≡ X 1 ×X 2 → ℝ are linear in each player’s density matrix X𝑖 ∈ X 𝑖 , 𝑖 ∈ N .
Since 𝑢1, 𝑢2 are linear in X1 and X2, the individual payoff gradients of each player will be given by

V1 (X) := ∇X⊤1 𝑢1 (X) and V2 (X) := ∇X⊤2 𝑢2 (X) (4)

so we can further write each player’s payoff function as

𝑢1 (X) = tr[X1V1 (X)] and 𝑢2 (X) = tr[X2V2 (X)] for all X ∈ X . (5)
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Since X is compact and each 𝑢𝑖 is multilinear in X, the players’ payoff functions are automatically
bounded, Lipschitz continuous and Lipschitz smooth, i.e., there exist constants 𝐵𝑖 , 𝐺𝑖 and 𝐿𝑖 , 𝑖 ∈ N ,
such that, for all X,X′ ∈ X , we have:

1. Boundedness: |𝑢𝑖 (X) | ≤ 𝐵𝑖

2. Lipschitz continuity: |𝑢𝑖 (X) − 𝑢𝑖 (X′) | ≤ 𝐺𝑖 ∥X − X′∥𝐹
3. Lipschitz smoothness: ∥V𝑖 (X) − V𝑖 (X′)∥𝐹 ≤ 𝐿𝑖 ∥X − X′∥𝐹

Nash equilibrium. The most widely used solution concept in game theory is that of a Nash
equilibrium (NE). In our context, it is mixed profile X∗ ∈ X from which no player has incentive to
deviate, i.e., 𝑢1 (X∗) ≥ 𝑢1 (X1; X∗2) and 𝑢2 (X∗) ≥ 𝑢2 (X∗1; X2) for all X1 ∈ X 1, X2 ∈ X 2. Since X 𝑖 is
convex and 𝑢𝑖 linear in X𝑖 , the existence of Nash equilibria follows from the Debreu’s theorem [19].

Zero-sum quantum games. In the case where 𝑢1 = −𝑢2, and setting L : X 1 ×X 2 → ℝ, the Nash
equilibria of Q are the saddle points of L, i.e., the solutions of the minimax problem

max
X1∈X 1

min
X2∈X 2

L(X1,X2) = min
X2∈X 2

max
X1∈X 1

L(X1,X2) (6)

By Sion’s minimax theorem [54], the set of Nash equilibria is nonempty. Then, given a Nash
equilibrium X∗, we define the duality gap of X = (X1,X2) as

GapL (X) := L(X∗1,X2) − L(X1,X∗2) (7)

so GapL (X) ≥ 0 with equality if and only if X is itself a Nash equilibrium. In particular, X is an
𝜀-Nash equilibrium of Q if and only if GapL (X) ≤ 𝜀.

Other semidefinite games. In addition to quantum games, our framework can also be used for
learning in other classes of games with a semidefinite structure as per [26, 45]. As an example,
consider the problem of covariance matrix optimization in vector Gaussian multiple-access channels
[9, 43, 57, 62]. In this case, there is a finite set of players indexed by 𝑖 ∈ N = {1, . . . , 𝑁}; each player
𝑖 ∈ N picks a unit-trace semidefinite matrix X𝑖 ∈ X 𝑖 and their payoff is given by the Shannon–Telatar
capacity formula [57], viz.

𝑢𝑖 (X1, . . . ,X𝑁 ) = log det
(
I +∑

𝑗 H 𝑗X 𝑗H†𝑗
)

(8)

where each H𝑖 is a player-specific gain matrix [58]. Even though 𝑢𝑖 is no longer multilinear in X, the
algorithms we derive later in the paper can be applied to this setting essentially verbatim.

3 The matrix multiplicative weights algorithm

Throughout the sequel, we will focus on equilibrium learning in quantum – and semidefinite – games.
In the context of two-player, zero-sum quantum games, the state-of-the-art method is based on the
so-called matrix multiplicative weights (MMW) algorithm [7, 27, 29, 59] which updates as

Y𝑖,𝑡+1 = Y𝑖,𝑡 + 𝛾𝑡V𝑖 (X𝑡 ) X𝑖,𝑡 =
exp(Y𝑖,𝑡 )

tr
[
exp(Y𝑖,𝑡 )

] (MMW)

In the above, (a) X𝑡 = (X1,𝑡 ,X2,𝑡 ) denotes the players’ density matrix profile at each stage
𝑡 = 1, 2, . . . of the process; (b) V𝑖 (X𝑡 ) is the payoff gradient of player 𝑖 ∈ N under X𝑡 ; (c) Y𝑡 is
an auxiliary state matrix that aggregates gradient steps over time; and (d) 𝛾𝑡 > 0, 𝑡 = 1, 2, . . . , is a
learning rate (or step-size) parameter that can be freely tuned by the players.

Importantly, as stated, (MMW) requires full information at the player end: specifically, at each stage
𝑡 = 1, 2, . . . of the process, each player 𝑖 ∈ N must receive their individual payoff gradient V𝑖 (X𝑡 ) in
order to perform the gradient update step in (MMW). Under this assumption, Jain & Watrous [27]
showed that the induced empirical frequency of play

X̄𝑇 =
1
𝑇

∑︁𝑇

𝑡=1 X𝑡 (9)

converges to equilibrium at a rate of O(1/
√
𝑇) as per the formal result below:
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Theorem 1 (Jain & Watrous [27]). Suppose that each player of a 2-player zero-sum game Q follows
(MMW) for 𝑇 epochs with learning rate 𝛾 = 𝐺−1

√︁
2𝐻/𝑇 where 𝐻 = log(𝑑1𝑑2). Then the players’

empirical frequency of play enjoys the bound

GapL (X̄𝑇 ) ≤ 𝐺
√︁

2𝐻/𝑇 (10)

In particular, if (MMW) is run for 𝑇 = O(1/𝜀2) iterations, X̄𝑇 will be an 𝜀-Nash equilibrium of Q.

To the best of our knowledge, this guarantee of Jain & Watrous [27] remains the tightest known bound
for Nash equilibrium learning in 2-player zero-sum quantum games. At the same time, Theorem 1
hinges on the players having perfect access to their individual gradients – which, among others, might
entail full knowledge of the game, observing the other player’s density matrix, etc. Our goal in the
sequel will be to relax precisely this assumption and develop a payoff-based variant of (MMW) that
can be employed without stringent information and observability requirements as above.

4 Matrix learning without matrix feedback

In an online learning framework, it is more realistic to assume that players observe only the outcome
of their actions – i.e., their individual payoffs. In this information-starved, payoff-based setting, our
main goal will be to employ a minimal-information matrix multiplicative weights (3MW) algorithm
that updates as

Y𝑖,𝑡+1 = Y𝑖,𝑡 + 𝛾𝑡 V̂𝑖,𝑡 X𝑖,𝑡 =
exp(Y𝑖,𝑡 )

tr
[
exp(Y𝑖,𝑡 )

] (3MW)

where V̂𝑖,𝑡 is some payoff-based estimate of the payoff gradient V𝑖 (X𝑡 ) of player 𝑖 at X𝑡 , and all
other quantities are defined as per (MMW). In this regard, the main challenge that arises is how to
reconstruct each player’s payoff gradient matrices when they are not accessible via an oracle.

4.1. The classical approach: Importance weighted estimators. In the context of classical, finite
games and multi-armed bandits, a standard approach for reconstructing V̂𝑖,𝑡 is via the so-called
importance weighted estimator (IWE) [12, 14, 32]. To state it in the context of finite games, assume
that each player has at their disposal a finite set of pure strategies 𝛼𝑖 ∈ A𝑖 , and if each player plays
�̂�𝑖 ∈ A𝑖 , then, in obvious notation, their individual payoff will be �̂�𝑖 = 𝑢𝑖 (�̂�𝑖; �̂�−𝑖). Then, if each
player is using a mixed strategy 𝑥𝑖 ∈ Δ(A𝑖) to draw their chosen action �̂�𝑖 , the importance weighted
estimator (IWE) for the payoff of the (possibly unplayed) action 𝛼𝑖 ∈ A𝑖 of player 𝑖 is defined as

IWE𝑖𝛼𝑖
=
1{𝛼𝑖 = �̂�𝑖}

𝑥𝑖𝛼𝑖

𝑢𝑖 (�̂�𝑖; �̂�−𝑖) for all 𝛼𝑖 ∈ A𝑖 (IWE)

with the assumption that 𝑥𝑖 has full support, i.e., each action 𝛼𝑖 ∈ A𝑖 has strictly positive probability
𝑥𝑖𝛼𝑖

of being chosen by the 𝑖-th player.1

This approach has proven extremely fruitful in the context of multi-armed bandits and finite games
where (IWE) is an essential ingredient of the optimal algorithms for each context [5, 12, 32, 65].
However, in our case, there are two insurmountable difficulties in extending (IWE) to a quantum
context: First and foremost, the quantum regime is characterized by a continuum of pure states with
highly correlated payoffs (in the sense that quantum states that are close in the Bloch sphere will have
highly correlated POVM payoff observables); this comes in stark contrast to the classical regime of
finite normal-form games, where players only have to contend with a finite number of actions (with
no prior payoff correlations between them). Secondly, even after the realization of the pure states of
the players, there is an inherent uncertainty and randomness due to the quantum measurement process
that is invovled in the payoff-generating process; as such, the players’ payoffs are also affected by an
exogenous source of randomness which is altogether absent from (IWE).

Our approach to tackle these issues will be to exploit the reformulation of a quantum game as a
continuous game with multilinear payoffs over the spectraplex (or, rather, a product thereof), and
use ideas from bandit convex optimization – in the spirit of [21, 31] – to estimate the players’ payoff
gradients with minimal, scalar information requirements.

1The assumption that 𝑥𝑖,𝑡 has full support is only for technical reasons. In practice, it can be relaxed by using
IWE with explicit exploration – see [32] for more details.
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4.2. Gradient estimation via finite-difference quotients on the spectraplex. To provide some
intuition for the analysis to come, consider first a single-variable smooth function 𝑓 : ℝ→ ℝ and a
point 𝑥 ∈ ℝ. Then, for error tolerance 𝛿 > 0, a two-point estimate of the derivative of 𝑓 at 𝑥 is given
by the expression

𝑓𝑥 =
𝑓 (𝑥 + 𝛿) − 𝑓 (𝑥 − 𝛿)

2𝛿
(11)

Going to higher dimensions, letting 𝑓 : ℝ𝑑 → ℝ be a smooth function, {𝑒1, . . . , 𝑒𝑑} be the standard
basis of ℝ𝑑 and 𝑠 drawn from {𝑒1, . . . , 𝑒𝑑} uniformly at random, the estimator

𝑓𝑥 =
𝑑

2𝛿
[ 𝑓 (𝑥 + 𝛿𝑠) − 𝑓 (𝑥 − 𝛿𝑠)]𝑠 (12)

is a O(𝛿)-approximation of the gradient, i.e., ∥𝔼𝑠 [ 𝑓𝑥] − ∇ 𝑓 (𝑥)∥𝐹 = O(𝛿). This idea is the basis of
the Kiefer–Wolfowitzs stochastic approximation scheme [30] and will be the backbone of our work.

Now, to employ this type of estimator for a function over the set of density matrices X in ℍ𝑑 , we
need to ensure two things: (i) the feasibility of the sampling direction, and (ii) the feasibility of the
evaluation point. The first caveat is due to the fact that the set of the density matrices forms a lower
dimensional manifold in the set of Hermitian operators, and therefore, not all directions from a base
of ℍ𝑑 are feasible. The second one is due to the fact that X is bounded, thus, even if the sampling
direction is feasible, the evaluation point can lie outside the set X . We proceed to ensure all this in a
series of concrete steps below.

Sampling Directions. We begin with the issue of defining a proper sampling set for the estimator’s
finite-difference directions. To that end, we will first construct an orthonormal basis of the tangent
hull Z = {Z ∈ ℍ𝑑 : tr Z = 0} of X , i.e., the subspace of traceless matrices of ℍ𝑑 . Note that if
Z ∈ Z then for any X ∈ ℍ𝑑 it holds (a) X + Z ∈ ℍ𝑑 , and (b) tr[X + Z] = tr[X].
Denoting by 𝚫𝑘ℓ ∈ ℍ𝑑 the matrix with 1 in the (𝑘, ℓ)-position and 0’s everywhere else, it is easy to
see that the set

{
{𝚫 𝑗 𝑗 }𝑑𝑗=1{e𝑘ℓ }𝑘<ℓ , {ẽ𝑘ℓ }𝑘<ℓ

}
is an orthonormal basis of ℍ𝑑 , where

e𝑘ℓ =
1
√

2
𝚫𝑘ℓ +

1
√

2
𝚫ℓ𝑘 and ẽ𝑘ℓ =

𝑖
√

2
𝚫𝑘ℓ −

𝑖
√

2
𝚫ℓ𝑘 (13)

for 1 ≤ 𝑘 < ℓ ≤ 𝑑, where 𝑖 is the imaginary unit with 𝑖2 = −1. The next proposition provides a basis
for the subspace Z , whose proof lies in the appendix.
Proposition 1. Let E 𝑗 be defined as E 𝑗 =

1√
𝑗 ( 𝑗+1)

(
𝚫11 + · · · + 𝚫 𝑗 𝑗 − 𝑗𝚫 𝑗+1, 𝑗+1

)
for 𝑗 = 1, . . . , 𝑑−1.

Then, the set E =

{
{E 𝑗 }𝑑−1

𝑗=1 , {e𝑘ℓ }𝑘<ℓ , {ẽ𝑘ℓ }𝑘<ℓ
}

is an orthonormal basis of Z .

In the sequel, we will use this basis as an orthnormal sampler from which to pick the finite-difference
directions for the estimation of V.

Feasibility Adjustment. After establishing an orthonormal basis for Z as per Proposition 1, we
readily get that for any X ∈ X , any Z ∈ E± :=

{
{±E 𝑗 }𝑑−1

𝑗=1 , {±e𝑘ℓ }𝑘<ℓ , {±ẽ𝑘ℓ }𝑘<ℓ
}

and 𝛿 > 0, the
point X + 𝛿Z belongs to Z . However, depending on the value of the exploration parameter 𝛿 and the
distance of X from the boundary of X , the point X + 𝛿Z ∈ ℍ𝑑 may fail to lie in X due to violation
of the positive-semidefinite condition. On that account, we now treat the latter restriction, i.e., the
feasibility of the evaluation point.

To tackle this, the idea is to transfer the point X toward the interior of X and move along the sampled
direction from there. For this, we need to find a reference point R ∈ ri(X ) and a “safety net” 𝑟 > 0
such that R + 𝑟Z ∈ X for any Z ∈ E±. Then, for 𝛿 ∈ (0, 𝑟), the point

X(𝛿 ) := X + 𝛿

𝑟
(R − X) (14)

lies in ri(X ), and moving along Z ∈ E±, the point X(𝛿 ) + 𝛿Z = (1 − 𝛿
𝑟
)X + 𝛿

𝑟
(R + 𝑟Z) remains

in X as a convex combination of two elements in X . The following proposition provides an exact
expression for R and 𝑟 , which we will use next to guarantee the feasibility of the sampled iterates.

Proposition 2. Let R = 1
𝑑

∑𝑑
𝑗=1 𝚫 𝑗 𝑗 . Then, for 𝑟 = min

{
1√

𝑑 (𝑑−1)
,
√

2
𝑑

}
, it holds that R + 𝑟Z ∈ X for

any direction Z ∈ E±.
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5 Bandit learning in zero-sum quantum games

With all these in hand, we are now ready to proceed to the presentation of the MMW with limited
feedback information. To streamline our presentation, before delving into the more difficult “bandit
feedback” case – where each player 𝑖 ∈ N only observes the realized payoff observable 𝑈𝑖 (𝜔) – we
begin with the simpler case where players observe their mixed payoffs 𝑢𝑖 at a given profile X ∈ X .

5.1. Learning with mixed payoff observations. Our main idea to exploit the observation of mixed
payoffs and the finite-difference sampling to the fullest will be to introduce a “coordination phase”
where players take a sampling step before updating their state variables and continue playing. In
more detail, we will take an approach similar to Bervoets et al. [8] and assume that players alternate
between an “exploration” and an “exploitation” update that allows them to sample the landscape of L
efficiently at each iteration. Concretely, writing X𝑡 and 𝛿𝑡 for the players’ state profile and sampling
radius 𝛿𝑡 at stage 𝑡 = 1, 2, . . . , the sequence of events that we envision proceeds as follows:

Step 1. Draw a sampling direction Z𝑖,𝑡 ∈ E𝑖 and 𝑠𝑖,𝑡 ∈ {±1} uniformly at random.

Step 2. (a) Play X(𝛿 )
𝑖,𝑡
+ 𝑠𝑖,𝑡 𝛿𝑡 Z𝑖,𝑡 and observe 𝑢𝑖 (X(𝛿 )𝑡 + 𝑠𝑡𝛿𝑡Z𝑡 ).

(b) Play X(𝛿 )
𝑖,𝑡
− 𝑠𝑖,𝑡 𝛿𝑡 Z𝑖,𝑡 and observe 𝑢𝑖 (X(𝛿 )𝑡 − 𝑠𝑡𝛿𝑡Z𝑡 ).

Step 3. Approximate V𝑖 (X𝑡 ) via the two-point estimator (2PE):

V̂𝑖,𝑡 :=
𝐷𝑖

2𝛿𝑡

[
𝑢𝑖 (X(𝛿 )𝑡 + 𝑠𝑡𝛿𝑡Z𝑡 ) − 𝑢𝑖 (X(𝛿 )𝑡 − 𝑠𝑡𝛿𝑡Z𝑡 )

]
𝑠𝑖,𝑡Z𝑖,𝑡 (2PE)

where 𝐷𝑖 = 𝑑2
𝑖
− 1 is the dimension of ℍ𝑑𝑖 , and 𝐷 := max𝑖∈N 𝐷𝑖 .

The main guarantee of the resulting (3MW) + (2PE) algorithm may then be stated as follows:
Theorem 2. Suppose that each player of a 2-player zero-sum game Q follows (3MW) for 𝑇 epochs
with learning rate 𝛾, sampling radius 𝛿, and gradient estimates provided by (2PE). Then the players’
empirical frequency of play enjoys the duality gap guarantee

𝔼
[
GapL (X̄𝑇 )

]
≤ 𝐻

𝛾𝑇
+ 8𝐷2𝐺2𝛾 + 16𝐷𝐿𝛿 (15)

where 𝐻 = log(𝑑1𝑑2). In particular, for 𝛾 = (𝐷𝐺)−1
√︁
𝐻/(8𝑇) and 𝛿 = (𝐺/𝐿)

√︁
𝐻/(8𝑇), the players

enjoy the equilibrium convergence guarantee

𝔼
[
GapL (X̄𝑇 )

]
≤ 8𝐷𝐺

√︁
2𝐻/𝑇. (16)

Compared to Theorem 1, the convergence rate (16) of Theorem 2 is quite significant because it only
differs by a factor which is linear in the dimension of the ambient space and otherwise maintains
the same O(

√
𝑇) dependence on the algorithm’s runtime. In this regard, Theorem 2 shows that

the “explore-exploit” sampler underlying (2PE) is essentially as powerful as the full information
framework of Jain & Watrous [27] – and this, despite the fact that players no longer require access to
the gradient matrix V of L. This echoes a range of previous findings in stochastic convex optimization
for the efficiency of two-point samplers [3, 53], a similarity we find particularly surprising given the
stark differences between the two settings – non-commutativity, min-max versus min-min landscape.
The key ingredients for the equilibrium convergence rate of Theorem 2 are the two technical results
below. The first is a feedback-agnostic “energy inequality” which is tied to the update structure of
(MMW) and is stated in terms of the quantum relative entropy function

𝐷 (P,X) = tr[P(log P − log X)] (17)

for P,X ∈ X with X ≻ 0. Concretely, we have the following estimate.
Lemma 1. Fix some P ∈ X , and let X𝑡 ,X𝑡+1 be two successive iterates of (3MW), without any
assumptions for the input sequence V̂𝑡 . We then have

𝐷 (P,X𝑡+1) ≤ 𝐷 (P,X𝑡 ) + 𝛾𝑡 tr[V̂𝑡 (X𝑡 − P)] +
𝛾2
𝑡

2
∥V̂𝑡 ∥2𝐹 . (18)

The proof of Lemma 1 follows established techniques in the theory of (MMW), so we defer a detailed
discussion to the appendix. The second result that we will need is tailored to the estimator (2PE) and
provides a tight estimate of its moments conditioned on the history F𝑡 = F (X1, . . . ,X𝑡 ) of X𝑡 .
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Algorithm 1: MMW with bandit feedback
1: Input: Y1 ← 0; safety parameter 𝑟𝑖 and anchor point R𝑖 , 𝑖 ∈ N ; step-size 𝛾𝑡 ; sampling radius 𝛿𝑡
2: for 𝑡 = 1, 2, . . . do simultaneously for all 𝑖 ∈ N
3: Set X𝑖,𝑡 = exp(Y𝑖,𝑡 )/tr[exp(Y𝑖,𝑡 )].
4: Sample Z𝑖,𝑡 uniformly from E±

𝑖
.

5: Play X(𝛿 )
𝑖,𝑡
+ 𝛿𝑡Z𝑖,𝑡 .

6: Observe 𝑈𝑖 (𝜔𝑡 ).
7: Set V̂𝑖,𝑡 := 𝐷𝑖/𝛿𝑡 ·𝑈𝑖 (𝜔𝑡 )Z𝑖,𝑡 .
8: Update Y𝑖,𝑡+1 ← Y𝑖,𝑡 + 𝛾𝑡 V̂𝑖,𝑡 .
9: end for

Proposition 3. The estimator (2PE) enjoys the conditional bounds

(𝑖)
𝔼[V̂𝑡 |F𝑡 ] − V(X𝑡 )


𝐹
≤ 4𝐷𝐿𝛿𝑡 and (𝑖𝑖) 𝔼

[
∥V̂𝑡 ∥2𝐹

��F𝑡

]
≤ 16𝐷2𝐺2 (19)

The defining element in Proposition 3 is that even though the estimator (2PE) is biased, its second
moment is bounded as O(1). This is ultimately due to the multilinearity of the players’ payoff
functions and plays a pivotal role in showing that the duality gap of X̄𝑡 under (3MW) is of the same
order as under (MMW), because the bias can be controlled with affecting the variance of the estimator.
We provide a detailed proof of Lemma 1, Proposition 3, and Theorem 2 in the appendix.

5.2. Learning with bandit feedback. Despite its strong convergence guarantees, a major limiting
factor in the applicability of Theorem 2 is that, in many cases, the game’s players may only be able to
observe their realized payoff observables 𝑈𝑖 (𝜔), and their mixed payoffs 𝑢𝑖 (X) could be completely
inaccessible. In particular, as we described in Section 2, each outcome 𝜔 ∈ Ω of the POVM occurs
with probability 𝑃𝜔 (X𝑡 ) under the strategy profile X𝑡 . Accordingly, if this is the only information
available to the players, they will need to estimate their individual payoff gradients through the single
observation of the (random) scalar 𝑈𝑖 (𝜔𝑡 ) ∈ ℝ. In view of this, and inspired by previous works
on payoff-based learning and zeroth-order optimization [8, 9, 11, 25, 49, 50], we will consider the
single-point stochastic approximation approach of [21, 55] which unfolds as follows:

Step 1. Each player draws a sampling direction Z𝑖,𝑡 ∈ E±𝑖 uniformly at random.

Step 2. Each player plays X(𝛿 )
𝑖,𝑡
+ 𝛿𝑡 Z𝑖,𝑡 .

Step 3. Each player receives 𝑈𝑖 (𝜔𝑡 ).
Step 4. Each player approximates V𝑖 (X𝑡 ) via the the one-point estimator (1PE):

V̂𝑖,𝑡 :=
𝐷𝑖

𝛿𝑡
𝑈𝑖 (𝜔𝑡 ) Z𝑖,𝑡 (1PE)

In this case, the players’ gradient estimates may be bounded as follows:
Proposition 4. The estimator (1PE) enjoys the conditional bounds

(𝑖) ∥𝔼[V̂𝑡 |F𝑡 ] − V(X𝑡 )∥𝐹 ≤ 4𝐷𝐿𝛿𝑡 and (𝑖𝑖) 𝔼[∥V̂𝑡 ∥2𝐹 |F𝑡 ] ≤ 4𝐷2𝐵2/𝛿2
𝑡 . (20)

The crucial difference between Propositions 3 and 4 is that the former leads to a gradient estimator
with O(1) variance and magnitude, whereas the magnitude of the latter is inversely proportional
to 𝛿𝑡 ; however, since 𝛿𝑡 in turn controls the bias of the gradient estimator, we must now resolve a
bias-variance dilemma, which was absent in the case of (2PE). This leads to the following variant of
Theorem 2 with bandit, realization-based feedback:
Theorem 3. Suppose that each player of a 2-player zero-sum game Q follows (3MW) for 𝑇 epochs
with learning rate 𝛾, sampling radius 𝛿, and gradient estimates provided by (1PE). Then the players’
empirical frequency of play enjoys the duality gap guarantee

𝔼
[
GapL (X̄𝑇 )

]
≤ 𝐻

𝛾𝑇
+ 2𝐷2𝐵2𝛾

𝛿2 + 16𝐷𝐿𝛿 (21)

where 𝐻 = log(𝑑1𝑑2). In particular, for 𝛾 =
(
𝐻
2𝑇

)3/4 1
2𝐷
√
𝐵𝐿

and 𝛿 =
(
𝐻
2𝑇

)1/4
√︃

𝐵
4𝐿 , the players enjoy

the equilibrium convergence guarantee:

𝔼
[
GapL (X̄𝑇 )

]
≤ 23/4 8𝐻1/4𝐷

√
𝐵𝐿

𝑇1/4 . (22)
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An important observation here is that the players’ equilibrium convergence rate under (3MW)+ (1PE)
no longer matches the convergence rate of the vanilla MMW algorithm (Theorem 1). The reason
for this is the bias-variance trade-off in the estimator (1PE), and is reminiscent of the drop in the
rate of regret minimization from O(𝑇1/2) to O(𝑇2/3) under (IWE) with bandit feedback and explicit
exploration in finite games. A kernel-based approach in the spirit of Bubeck et al. [13] could possibly
be used to fill the O(𝑇1/4) gap between Theorems 1 and 3, but this would come at the cost of a
possibly catastrophic dependence on the dimension (which is already quadratic in our setting). This
consideration is beyond the scope of our work, but it would constitute an important future direction.

6 Bandit learning in 𝑁-player quantum games

We conclude our paper with an examination of the behavior of the MMW algorithm in general,
𝑁-player quantum games. Here, a major difficulty that arises is that, in stark contrast to the min-max
case, the set of the game’s equilibria can be disconnected, so any convergence result will have to
be, by necessity, local. In addition, because general 𝑁-games do not have the amenable profile of a
bilinear min-max problem – they are multilinear, multi-objective problems – it will not be possible
to obtain any convergence guarantees for the game’s empirical frequency of play (since there is no
convex structure to exploit). Instead, we will have to focus squarely on the induced trajectory of play,
which carries with it a fair share of complications.

Inspired by the very recent work of [38], we will not constrain our focus to a specific class of games,
but to a specific class of equilibria. In particular, we will consider the behavior of MMW-based
learning with respect to Nash equilibria X∗ ∈ X that satisfy the variational stability condition

tr[V(X) (X − X∗)] < 0 for all X ∈ U\{X∗}. (VS)

This condition can be traced back to [44], and can be seen as a game-theoretic analogue of first-order
stationarity in the context of continuous optimization, or as an equilibrium refinement in the spirit
of the seminal concept of evolutionary stability in population games [39, 40].2 Importantly, as was
shown in [38], variationally stable equilibria are the only equilibria that are asymptotically stable
under the continuous-time dynamics of the “follow the regularized leader” (FTRL) class of learning
policies, so it stands to reason to ask whether they enjoy a similar convergence landscape in the
context of bona fide, discrete-time learning with minimal, payoff-based feedback.

Our final result provides an unambiguously positive answer to this question:3

Theorem 4. Fix some tolerance level 𝜂 ∈ (0, 1) and suppose that the players of an 𝑁-player quantum
game follow (3MW) with bandit, realization-based feedback, and surrogate gradients provided by
the estimator (1PE) with step-size and sampling radius parameters such that

(𝑖) ∑∞
𝑡=1 𝛾𝑡 = ∞, (𝑖𝑖) ∑∞

𝑡=1 𝛾𝑡𝛿𝑡 < ∞, and (𝑖𝑖) ∑∞
𝑡=1 𝛾

2
𝑡 /𝛿2

𝑡 < ∞. (23)

If X∗ is variationally stable, there exists a neighborhoold U of X∗ such that

ℙ(lim𝑡→∞ X𝑡 = X∗) ≥ 1 − 𝜂 whenever X1 ∈ U . (24)

It is worth noting that the last-iterate convergence guarantee of Theorem 4 is considerably stronger
than the time-averaged variants of Theorems 1–3, and we are not aware of any comparable conver-
gence guarantee for general quantum games. [Trivially, last-iterate convergence implies time-averaged
convergence, but the converse, of course, may fail to hold] As such, especially in cases that require
to track the trajectory of the system or the players’ day-to-day rewards, Theorem 4 provides an
important guarantee for the realized sequence of events.

On the other hand, in contrast to Theorem 4, it should be noted that the guarantees of Theorems 1–3
are global. Given that general quantum games may in general possess a large number of disjoint
Nash equilibria, this transition from global to local convergence guarantees seems unavoidable. It is,
however, an open question whether (VS) could be exploited further in order to deduce the rate of
convergence to such equilibria; we leave this as a direction for future research.

2It should be noted here that, if reduced to the simplex, the stability condition (VS) is exactly equivalently to
the variational characterization of evolutionarily stable states due to Taylor [56].

3Strictly speaking, the algorithms (3MW) and (1PE) have been stated in the context of 2-player games. The
extension to 𝑁-player games is straightforward, so we do not present it here; for the details (which hide no
subtleties), see the appendix.
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Figure 1: Performance evaluation of the (3MW) with the (2PE) and (1PE) estimators and comparison with the
full information (MMW). The solid lines correspond to the mean values of the duality gap of each method, and
the shaded regions enclose the area of ±1 (sample) standard deviation among the different runs.

7 Numerical Experiments

In this last section, we provide numerical simulations to validate and explore the performance of
(MMW) with payoff-based feedback. Additional experiments can be found in Appendix E.

Game setup. Our testbed is a two-player zero-sum quantum game, which is the quantum analogue
of a 2 × 2 min-max game with actions {𝛼1, 𝛼2} and {𝛽1, 𝛽2}, and payoff matrix

𝑃 =

(
(4,−4) (2,−2)
(−4, 4) (−2, 2)

)
(25)

In the quantum regime, the payoff information of the quantum game is encoded in the Hermitian
matrices W1 = diag(4, 2,−4,−2), and W2 = −W1 as per Eq. (3) in Section 2. By elementary
considerations, the action profile (𝛼1, 𝛽2) is a strict Nash equilibrium of the classical zero-sum
game, which corresponds to the pure quantum state with density matrix profile X∗ = (X∗1,X

∗
2) where

X∗1 = 𝑒1 ⊗ 𝑒1 and X∗2 = 𝑒2 ⊗ 𝑒2 in the standard basis in which W1 and W2 are diagonal.

Convergence speed analysis. In Fig. 1, we evaluate the convergence properties of (3MW) using
the estimators (2PE) and (1PE), and compare it with the full information variant (MMW). For each
method, we perform 10 different runs, with 𝑇 = 105 steps each, and compute the mean value of the
duality gap as a function of the iteration 𝑡 = 1, 2, . . . , 𝑇 . The solid lines correspond to the mean
values of the duality gap of each method, and the shaded regions enclose the area of ±1 (sample)
standard deviation among the 10 different runs. Note that the red line, which corresponds to the full
information (MMW), does not have a shaded region, since there is no randomness in the algorithm.
All the runs for the three different methods were initialized for Y = 0 and we used 𝛾 = 10−2 for
all methods. In particular, for (3MW) with gradient estimates given by (2PE) estimator, we used a
sampling radius 𝛿 = 10−2, and for (3MW) with (1PE) estimator, we used 𝛿 = 10−1 (in tune with our
theoretical results which suggest the use of a tighter sampling radius when mixed payoff information
is available to the players).

Figure 1 has several important take-aways. First and foremost, as is to be expected, the payoff-based
methods lag behind the full-information variant of (MMW); however, what is particularly surprising
is that the drop in performance is singularly mild. As we see in the second plot in Fig. 1, the
various algorithms achieved a rate of convergence closer to O(1/𝑇), which is significantly faster
than O(1/

√
𝑇) and/or O(1/𝑇1/4). This suggests that, in practice, the bandit variants of (MMW) may

yield excellent performance benefits, despite the high degree of uncertainty incurred by the complete
lack of information on the game being played.
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Appendix

In the series of technical appendices that follow, we provide the missing proofs from the main part of
our paper, and we provide some numerical illustrations of the performance of the proposed algorithms.
As a roadmap, we begin in Appendix A with some auxiliary results that are required throughout
our analysis. Subsequently, in Appendices B–D, we provide the proofs of the results presented in
Sections 4–6 respectively. Finally, in Appendix E, we provide a suite of numerical experiments to
assess the practical performance of (3MW) using the estimators (2PE) and (1PE), and we compare it
with the full information setting underlying (MMW).

A Auxiliary Results

We now introduce some notation for quantum games in a 𝑁-player setting, and explain how the
extension from the 2-player setting is straightforward.

𝑁-player quantum games. First of all, a quantum game Q consists of a finite set of players
𝑖 ∈ N = {1, . . . , 𝑁}, where each player 𝑖 ∈ N has access to a complex Hilbert space H𝑖 � ℂ𝑑𝑖 . The
set of pure states is the unit sphere Ψ𝑖 := {𝜓𝑖 ∈ H𝑖 : ∥𝜓𝑖 ∥𝐹 = 1} of H𝑖 . We will write Ψ := ∏

𝑖 Ψ𝑖 for
the space of all ensembles 𝜓 = (𝜓1, . . . , 𝜓𝑁 ) of pure states 𝜓𝑖 ∈ Ψ𝑖 that are independently prepared
by each 𝑖 ∈ N .

In analogy with the 2-player case, each outcome 𝜔 ∈ Ω is associated to a positive semi-definite
operator P𝜔 : H → H defined on the tensor product H := ⊗

𝑖 H𝑖 of the players’ individual state
spaces; we further assume that

∑
𝜔∈Ω P𝜔 = I, thus, the probability of observing 𝜔 ∈ Ω at state 𝜓 ∈ Ψ

is
𝑃𝜔 (𝜓) = ⟨𝜓1 ⊗ · · · ⊗ 𝜓𝑁 |P𝜔 |𝜓1 ⊗ · · · ⊗ 𝜓𝑁 ⟩ (A.1)

and, the player’s expected payoff at state 𝜓 ∈ Ψ will be

𝑢𝑖 (𝜓) := ⟨𝑈𝑖⟩ ≡
∑︁

𝜔
𝑃𝜔 (𝜓)𝑈𝑖 (𝜔) (A.2)

Similarly to the 2-player setting, if each player 𝑖 ∈ N prepares a density matrix X𝑖 as per (1), the
expected payoff of player 𝑖 ∈ N under X = (X1, . . . ,X𝑁 ) will be

𝑢𝑖 (X) =
∑︁
𝜔∈Ω

𝑈𝑖 (𝜔) tr[P𝜔X1 ⊗ · · · ⊗ X𝑁 ] = tr[W𝑖 X1 ⊗ · · · ⊗ X𝑁 ] (A.3)

where W𝑖 =
∑

𝜔∈Ω𝑈𝑖 (𝜔)P𝜔 ∈ H for 𝑖 ∈ N . Finally, we denote by V𝑖 (X) the individual payoff
gradient of player 𝑖 under X as

V𝑖 (X) := ∇X⊤
𝑖
𝑢𝑖 (X) (A.4)

All other notions are extended, accordingly. ♦

As noted in Section 2, we define the norm ∥𝐴∥𝐹 =
√︁

tr[𝐴†𝐴] for any 𝐴 ∈ ℍ𝑑𝑖 , i.e., (ℍ𝑑𝑖 , ∥·∥𝐹) is an
inner-product space. With a slight abuse of notation, we define for X = (X1, . . . ,X𝑁 ) ∈ X its norm
as:

∥X∥𝐹 =

√︄
𝑁∑︁
𝑖=1
∥X𝑖 ∥2𝐹 (A.5)

Lemma A.1. For any X𝑖 ∈ X 𝑖 , it holds ∥X𝑖 ∥𝐹 ≤ 1, and diam(X ) = 2
√
𝑁 .

Proof. For the first part, since X𝑖 ∈ X 𝑖 , it admits an orthonormal decomposition 𝑄Λ𝑄† such that
𝑄𝑄† = 𝑄†𝑄 = I and Λ = diag(𝜆1, . . . , 𝜆𝑑𝑖 ) with

∑𝑑𝑖
𝑗=1 𝜆 𝑗 = 1, and 𝜆 𝑗 ≥ 0 for all 𝑗 . Hence

∥X𝑖 ∥2𝐹 = tr[X†
𝑖
X𝑖] = tr[𝑄Λ𝑄†𝑄Λ𝑄†] = tr[𝑄Λ2𝑄†] =

𝑑𝑖∑︁
𝑗=1

𝜆2
𝑖 ≤

𝑑𝑖∑︁
𝑗=1

𝜆𝑖 = 1 (A.6)

where the last inequality holds, since 0 ≤ 𝜆 𝑗 ≤ 1, and the result follows.
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For the second part, letting X = (X1, . . . ,X𝑁 ) and X′ = (X′1, . . . ,X
′
𝑁
) be two points in X , we have

∥X − X′∥𝐹 =

√︄
𝑁∑︁
𝑖=1
∥X𝑖 − X′

𝑖
∥2
𝐹
≤

√︄
𝑁∑︁
𝑖=1
(2∥X𝑖 ∥2𝐹 + 2∥X′

𝑖
∥2
𝐹
) ≤ 2

√
𝑁 (A.7)

and since the equality is attained, we get the result. ■

Our next result concerns the quantum relative entropy

𝐷 (P,X) =
𝑁∑︁
𝑖=1

𝐷𝑖 (P𝑖 ,X𝑖) (A.8)

where P = (P1, . . . ,P𝑁 ) ∈ X and X = (X1, . . . ,X𝑁 ) ∈ ri(X ) and
𝐷𝑖 (P𝑖 ,X𝑖) := tr[P𝑖 (log P𝑖 − log X𝑖)] (A.9)

The lemma we will require is a semidefinite version of Pinsker’s inequality which reads as follows:
Lemma A.2. For all P ∈ X and X ∈ ri(X ) we have

𝐷 (P,X) ≥ 1
2
∥P − X∥2𝐹 (A.10)

Proof. Focusing on player 𝑖 ∈ N , we will show first that

𝐷𝑖 (P𝑖 ,X𝑖) ≥
1
2
∥P𝑖 − X𝑖 ∥2𝐹 (A.11)

for all P = (P1, . . . ,P𝑁 ) ∈ X and X = (X1, . . . ,X𝑁 ) ∈ ri(X ).

To this end, we define the function ℎ𝑖 : ℍ𝑑𝑖
+ → ℝ as ℎ𝑖 (X𝑖) = tr[X𝑖 log X𝑖], which is 1-strongly

convex with respect to the nuclear norm ∥·∥1 [63], and since ∥X𝑖 ∥1 ≥ ∥X𝑖 ∥𝐹 for all X𝑖 ∈ X 𝑖 , we
readily get that ℎ𝑖 is 1-strongly convex with respect to the Frobenius norm, as well.

Letting ∇ℎ𝑖 (X𝑖) = log X𝑖 + I, by 1-strong convexity, we have for P = (P1, . . . ,P𝑁 ) ∈ X and
X = (X1, . . . ,X𝑁 ) ∈ ri(X ):

ℎ𝑖 (P𝑖) ≥ ℎ𝑖 (X𝑖) + tr[∇ℎ𝑖 (X𝑖) (P𝑖 − X𝑖)] +
1
2
∥P𝑖 − X𝑖 ∥2𝐹

= tr[X𝑖 log X𝑖] + tr[(P𝑖 − X𝑖) log X𝑖] + tr[P𝑖 − X𝑖] +
1
2
∥P𝑖 − X𝑖 ∥2𝐹

= tr[P𝑖 log X𝑖] +
1
2
∥P𝑖 − X𝑖 ∥2𝐹 (A.12)

where we used that tr[P𝑖 − X𝑖] = 0. Hence, by reordering, we automatically get that

𝐷𝑖 (P𝑖 ,X𝑖) ≥
1
2
∥P𝑖 − X𝑖 ∥2𝐹 (A.13)

Therefore, we have:

𝐷 (P,X) ≥ 1
2

𝑁∑︁
𝑖=1
∥P𝑖 − X𝑖 ∥2𝐹 =

1
2
∥P − X∥2𝐹 (A.14)

and the proof is completed. ■

B Omitted proofs from Section 4

In this appendix, we develop the basic scaffolding required for the estimators (2PE) and (1PE). We
begin with the construction of the estimators’ sampling basis, as encoded in Proposition 1, which we
restate below for convenience:
Proposition 1. Let E 𝑗 be defined as E 𝑗 =

1√
𝑗 ( 𝑗+1)

(
𝚫11 + · · · + 𝚫 𝑗 𝑗 − 𝑗𝚫 𝑗+1, 𝑗+1

)
for 𝑗 = 1, . . . , 𝑑−1.

Then, the set E =

{
{E 𝑗 }𝑑−1

𝑗=1 , {e𝑘ℓ }𝑘<ℓ , {ẽ𝑘ℓ }𝑘<ℓ
}

is an orthonormal basis of Z .

Proof. First of all, note that

𝚫𝑘ℓ𝚫𝑚𝑛 =

{
0 if ℓ ≠ 𝑚

𝚫𝑘𝑛 if ℓ = 𝑚
(B.1)
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Unit norm. To begin with, we will show that all elements in E have unit norm. Indeed, we have:

• For 𝑗 = 1, . . . , 𝑑 − 1, we have:

∥E 𝑗 ∥2𝐹 = tr[E†
𝑗
E 𝑗 ] =

1
𝑗 ( 𝑗 + 1) tr

[(
𝑗∑︁

𝑘=1
𝚫𝑘𝑘 − 𝑗𝚫( 𝑗+1) ( 𝑗+1)

) (
𝑗∑︁

𝑘=1
𝚫𝑘𝑘 − 𝑗𝚫( 𝑗+1) ( 𝑗+1)

)]
=

1
𝑗 ( 𝑗 + 1) tr

[(
𝑗∑︁

𝑘=1
𝚫𝑘𝑘 + 𝑗2𝚫( 𝑗+1) ( 𝑗+1)

)]
=

1
𝑗 ( 𝑗 + 1) ( 𝑗 + 𝑗2) = 1 (B.2)

• For 𝑘 < ℓ, we have:

∥e𝑘ℓ ∥2𝐹 = tr[e†
𝑘ℓ

e𝑘ℓ] = tr
[(

1
√

2
𝚫ℓ𝑘 +

1
√

2
𝚫𝑘ℓ

) (
1
√

2
𝚫𝑘ℓ +

1
√

2
𝚫ℓ𝑘

)]
= tr

[
1
2
𝚫𝑘𝑘 +

1
2
𝚫ℓℓ

]
=

1
2
+ 1

2
= 1 (B.3)

• For 𝑘 < ℓ, we also have:

∥ẽ𝑘ℓ ∥2𝐹 = tr[ẽ†
𝑘ℓ

ẽ𝑘ℓ] = tr
[(
− 𝑖
√

2
𝚫ℓ𝑘 +

𝑖
√

2
𝚫𝑘ℓ

) (
𝑖
√

2
𝚫𝑘ℓ −

𝑖
√

2
𝚫ℓ𝑘

)]
= tr

[
1
2
𝚫𝑘𝑘 +

1
2
𝚫ℓℓ

]
=

1
2
+ 1

2
= 1 (B.4)

Orthogonality. Now, we will show that any two elements of E are orthogonal to each other.

• For 𝑚 < 𝑛, we have:

tr[E†𝑚E𝑛] =
1√︁

𝑚(𝑚 + 1)
√︁
𝑛(𝑛 + 1)

tr

[(
𝑚∑︁
𝑘=1

𝚫𝑘𝑘 − 𝑚𝚫(𝑚+1) (𝑚+1)

) (
𝑛∑︁

𝑘=1
𝚫𝑘𝑘 − 𝑛𝚫(𝑛+1) (𝑛+1)

)]
=

1√︁
𝑚(𝑚 + 1)

√︁
𝑛(𝑛 + 1)

tr

[(
𝑚∑︁
𝑘=1

𝚫𝑘𝑘 − 𝑚𝚫(𝑚+1) (𝑚+1)

)]
=

1√︁
𝑚(𝑚 + 1)

√︁
𝑛(𝑛 + 1)

(𝑚 − 𝑚) = 0 (B.5)

• For 𝑘 < ℓ, we have:

tr[e†
𝑘ℓ

ẽ𝑘ℓ] = tr
[(

1
√

2
𝚫ℓ𝑘 +

1
√

2
𝚫𝑘ℓ

) (
𝑖
√

2
𝚫𝑘ℓ −

𝑖
√

2
𝚫ℓ𝑘

)]
= tr

[
𝑖

2
𝚫ℓℓ −

𝑖

2
𝚫𝑘𝑘

]
=

𝑖

2
− 𝑖

2
= 0 (B.6)

• For (𝑘, ℓ) ≠ (𝑚, 𝑛) with 𝑘 < ℓ and 𝑚 < 𝑛, we have:

tr
[
e†
𝑘ℓ

e𝑚𝑛

]
= tr

[
e†
𝑘ℓ

ẽ𝑚𝑛

]
= tr

[
ẽ†
𝑘ℓ

ẽ𝑚𝑛

]
= 0 (B.7)

since all the nonzero terms in e†
𝑘ℓ

e𝑚𝑛, e†𝑘ℓ ẽ𝑚𝑛 and ẽ†
𝑘ℓ

ẽ𝑚𝑛 are of the form 𝑐 · 𝚫𝛼𝛽 for some 𝑐 ∈ ℂ,
and 𝛼, 𝛽 ∈ {𝑘, ℓ, 𝑚, 𝑛} with 𝛼 ≠ 𝛽. Thus, tr

[
𝑐 · 𝚫𝛼𝛽

]
= 0, since all the diagonal elements are equal

to 0. Note that it is not possible to have 𝛼 = 𝛽 because this would imply that (𝑘, ℓ) = (𝑚, 𝑛).
• For 𝑘 < ℓ and 𝑗 = 1, . . . , 𝑑 − 1, we have:

tr
[
e†
𝑘ℓ

E 𝑗

]
= tr

[
ẽ†
𝑘ℓ

E 𝑗

]
= 0 (B.8)

since the non-zero terms of both e†
𝑘ℓ

E 𝑗 and ẽ†
𝑘ℓ

E 𝑗 are of the form 𝚫𝑘𝑛,𝚫ℓ𝑚 for 𝑘 ≠ 𝑛 and ℓ ≠ 𝑚.
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We thus conclude that any two elements of E are orthogonal.

Finally, it is clear E ⊆ aff (X 0), since E ⊆ ℍ𝑑 and tr[e𝑘ℓ] = tr[ẽ𝑘ℓ] = tr
[
E 𝑗

]
= 0, for 𝑘 < ℓ

and 𝑗 = 1, . . . , 𝑑 − 1. Therefore, the elements in E form an orthonormal basis of aff (X 0) and
dim(aff (X 0)) = 𝑑2 − 1. ■

We now proceed with the construction of the precise “safety net” that guarantees that the sampling
perturbation of the gradient estimator remains within the problem’s feasible region. Again, for
convenience, we restate the relevant result below:

Proposition 2. Let R = 1
𝑑

∑𝑑
𝑗=1 𝚫 𝑗 𝑗 . Then, for 𝑟 = min

{
1√

𝑑 (𝑑−1)
,
√

2
𝑑

}
, it holds that R + 𝑟Z ∈ X for

any direction Z ∈ E±.

Proof. To begin with, it is clear that R ∈ ℍ𝑑 and tr[R] =
∑𝑑

𝑗=1 1/𝑑 = 1. Moreover, for any
𝑢 ∈ ℂ𝑑 \ {0}, we have:

𝑢†R𝑢 =
1
𝑑

𝑑∑︁
𝑗=1
|𝑢 𝑗 |2 > 0 (B.9)

where |𝑢 𝑗 | is the modulus of the complex number 𝑢 𝑗 ∈ ℂ. Therefore, R is positive definite, i.e., lies
in ri(X ).
Now, we need to find 𝑟 > 0 such that

R + 𝑟Z ∈ X (B.10)
for any Z ∈ E±.

It is clear that for any Z ∈ E±, we have tr[R + 𝑟Z] = tr[R] = 1, since tr[Z] = 0. Hence, it remains to
consider the positive semi-definite constraint. For this, we will use the following identities, for 𝑘 < ℓ:

𝑢† (𝚫𝑘ℓ + 𝚫ℓ𝑘)𝑢 = �̄�𝑘𝑢ℓ + �̄�ℓ𝑢𝑘 = 2Re(�̄�𝑘𝑢ℓ) (B.11)

and
𝑢† (𝑖𝚫𝑘ℓ − 𝑖𝚫ℓ𝑘)𝑢 = 𝑖(�̄�𝑘𝑢ℓ − �̄�ℓ𝑢𝑘) = −2 Im(�̄�𝑘𝑢ℓ) (B.12)

• For Z = 1√
2
(𝚫𝑘ℓ + 𝚫ℓ𝑘) and 𝑢 ∈ ℂ𝑑 \ {0}, and using (B.11), we have:

𝑢† (R + 𝑟Z)𝑢 =
1
𝑑

𝑑∑︁
𝑗=1
|𝑢 𝑗 |2 +

𝑟
√

2
2Re(�̄�𝑘𝑢ℓ)

=
1
𝑑

∑︁
𝑗≠𝑘,ℓ

|𝑢 𝑗 |2 +
1
𝑑

(
|𝑢𝑘 |2 + |𝑢ℓ |2 +

𝑟𝑑
√

2
2Re(�̄�𝑘𝑢ℓ)

)
(B.13)

If Re(�̄�𝑘𝑢ℓ) > 0, we get that 𝑢† (R + 𝑟Z)𝑢 > 0, while if Re(�̄�𝑘𝑢ℓ) ≤ 0 and 𝑟 ≤
√

2/𝑑:

𝑢† (R + 𝑟Z)𝑢 ≥ 1
𝑑

∑︁
𝑗≠𝑘,ℓ

|𝑢 𝑗 |2 +
1
𝑑
|𝑢𝑘 + 𝑢ℓ |2 ≥ 0 (B.14)

Hence, for 𝑟 ≤
√

2/𝑑, and Z = 1√
2
(𝚫𝑘ℓ + 𝚫ℓ𝑘), we have that 𝑢† (R + 𝑟Z)𝑢 ≥ 0 for all 𝑢 ∈ ℂ𝑑 .

• For Z = − 1√
2
(𝚫𝑘ℓ + 𝚫ℓ𝑘), we have

𝑢† (R + 𝑟Z)𝑢 =
1
𝑑

𝑑∑︁
𝑗=1
|𝑢 𝑗 |2 −

𝑟
√

2
2Re(�̄�𝑘𝑢ℓ)

=
1
𝑑

∑︁
𝑗≠𝑘,ℓ

|𝑢 𝑗 |2 +
1
𝑑

(
|𝑢𝑘 |2 + |𝑢ℓ |2 −

𝑟𝑑
√

2
2Re(�̄�𝑘𝑢ℓ)

)
(B.15)

If Re(�̄�𝑘𝑢ℓ) < 0, we get that 𝑢† (R + 𝑟Z)𝑢 > 0, while if Re(�̄�𝑘𝑢ℓ) ≥ 0 and 𝑟 ≤
√

2/𝑑:

𝑢† (R + 𝑟Z)𝑢 ≥ 1
𝑑

∑︁
𝑗≠𝑘,ℓ

|𝑢 𝑗 |2 +
1
𝑑
|𝑢𝑘 − 𝑢ℓ |2 ≥ 0 (B.16)

Hence, for 𝑟 ≤
√

2/𝑑, and Z = − 1√
2
(𝚫𝑘ℓ + 𝚫ℓ𝑘), we have that 𝑢† (R + 𝑟Z)𝑢 ≥ 0 for all 𝑢 ∈ ℂ𝑑 .
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• For Z = 𝑖√
2
(𝚫𝑘ℓ − 𝚫ℓ𝑘) and 𝑢 ∈ ℂ𝑑 \ {0}, and using (B.11), we have:

𝑢† (R + 𝑟Z)𝑢 =
1
𝑑

𝑑∑︁
𝑗=1
|𝑢 𝑗 |2 −

𝑟
√

2
2Im(�̄�𝑘𝑢ℓ)

=
1
𝑑

∑︁
𝑗≠𝑘,ℓ

|𝑢 𝑗 |2 +
1
𝑑

(
|𝑢𝑘 |2 + |𝑢ℓ |2 −

𝑟𝑑
√

2
2Im(�̄�𝑘𝑢ℓ)

)
(B.17)

If Im(�̄�𝑘𝑢ℓ) < 0, we get that 𝑢† (R + 𝑟Z)𝑢 > 0, while if Im(�̄�𝑘𝑢ℓ) ≥ 0 and 𝑟 ≤
√

2/𝑑:

𝑢† (R + 𝑟Z)𝑢 ≥ 1
𝑑

∑︁
𝑗≠𝑘,ℓ

|𝑢 𝑗 |2 +
1
𝑑
|𝑢𝑘 + 𝑖 𝑢ℓ |2 ≥ 0 (B.18)

Hence, for 𝑟 ≤
√

2/2𝑑, and Z = 𝑖√
2
(𝚫𝑘ℓ − 𝚫ℓ𝑘), we have that 𝑢† (R + 𝑟Z)𝑢 ≥ 0 for all 𝑢 ∈ ℂ𝑑 .

• For Z = − 𝑖√
2
(𝚫𝑘ℓ − 𝚫ℓ𝑘) and 𝑢 ∈ ℂ𝑑 \ {0}, and using (B.11), we have:

𝑢† (R + 𝑟Z)𝑢 =
1
𝑑

𝑑∑︁
𝑗=1
|𝑢 𝑗 |2 +

𝑟
√

2
2Im(�̄�𝑘𝑢ℓ)

=
1
𝑑

∑︁
𝑗≠𝑘,ℓ

|𝑢 𝑗 |2 +
1
𝑑

(
|𝑢𝑘 |2 + |𝑢ℓ |2 +

𝑟𝑑
√

2
2Im(�̄�𝑘𝑢ℓ)

)
(B.19)

If Im(�̄�𝑘𝑢ℓ) > 0, we get that 𝑢† (R + 𝑟Z)𝑢 > 0, while if Im(�̄�𝑘𝑢ℓ) ≤ 0 and 𝑟 ≤
√

2/𝑑:

𝑢† (R + 𝑟Z)𝑢 ≥ 1
𝑑

∑︁
𝑗≠𝑘,ℓ

|𝑢 𝑗 |2 +
1
𝑑
|𝑢𝑘 − 𝑖 𝑢ℓ |2 (B.20)

Hence, for 𝑟 ≤
√

2/2𝑑, and Z = − 𝑖√
2
(𝚫𝑘ℓ − 𝚫ℓ𝑘), we have that 𝑢† (R + 𝑟Z)𝑢 ≥ 0 for all 𝑢 ∈ ℂ𝑑 .

• For Z = 1√
𝑗 ( 𝑗+1)

(
𝚫11 + · · · + 𝚫 𝑗 𝑗 − 𝑗𝚫( 𝑗+1) ( 𝑗+1)

)
, we have:

𝑢† (R + 𝑟Z)𝑢 =
1
𝑑

𝑑∑︁
𝑘=1
|𝑢𝑘 |2 +

𝑟√︁
𝑗 ( 𝑗 + 1)

𝑗∑︁
𝑘=1
|𝑢𝑘 |2 −

𝑗𝑟√︁
𝑗 ( 𝑗 + 1)

|𝑢 𝑗+1 |2

=
1
𝑑

∑︁
𝑘≠ 𝑗+1

|𝑢𝑘 |2 +
𝑟√︁

𝑗 ( 𝑗 + 1)

𝑗∑︁
𝑘=1
|𝑢𝑘 |2 +

(
1
𝑑
− 𝑗𝑟√︁

𝑗 ( 𝑗 + 1)

)
|𝑢 𝑗+1 |2 (B.21)

Thus, we need to ensure that
1
𝑑
− 𝑗𝑟√︁

𝑗 ( 𝑗 + 1)
≥ 0 (B.22)

for all 𝑗 = 1, . . . , 𝑑−1. Because the function 𝑥 ↦→
√︁
𝑥(𝑥 + 1)/𝑥 is decreasing, it obtains the smallest

value from 𝑥 = 𝑑 − 1. Therefore, for 𝑟 ≤ 1/
√︁
𝑑 (𝑑 − 1), we readily obtain that 𝑢† (R + 𝑟Z)𝑢 ≥ 0 for

all 𝑢 ∈ ℂ𝑑 .

• For Z = − 1√
𝑗 ( 𝑗+1)

(
𝚫11 + · · · + 𝚫 𝑗 𝑗 − 𝑗𝚫( 𝑗+1) ( 𝑗+1)

)
, we have:

𝑢† (R + 𝑟Z)𝑢 =
1
𝑑

𝑑∑︁
𝑘=1
|𝑢𝑘 |2 −

𝑟√︁
𝑗 ( 𝑗 + 1)

𝑗∑︁
𝑘=1
|𝑢𝑘 |2 +

𝑗𝑟√︁
𝑗 ( 𝑗 + 1)

|𝑢 𝑗+1 |2

=

(
1
𝑑
− 𝑟√︁

𝑗 ( 𝑗 + 1)

)
𝑗∑︁

𝑘=1
|𝑢𝑘 |2 +

1
𝑑

𝑑∑︁
𝑘= 𝑗+1
|𝑢𝑘 |2 +

𝑗𝑟√︁
𝑗 ( 𝑗 + 1)

|𝑢 𝑗+1 |2 (B.23)

Thus, we need to ensure that
1
𝑑
− 𝑟√︁

𝑗 ( 𝑗 + 1)
≥ 0 (B.24)
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for all 𝑗 = 1, . . . , 𝑑 − 1. Because it holds that

1
𝑑
− 𝑟√︁

𝑗 ( 𝑗 + 1)
≥ 1

𝑑
− 𝑗𝑟√︁

𝑗 ( 𝑗 + 1)
(B.25)

we obtain the inequality for free by the previous case, i.e., for 𝑟 ≤ 1/
√︁
𝑑 (𝑑 − 1).

Therefore, for

𝑟 = min

{
1√︁

𝑑 (𝑑 − 1)
,

√
2
𝑑

}
(B.26)

we readily obtain that 𝑢† (R + 𝑟Z)𝑢 ≥ 0 for all 𝑢 ∈ ℂ𝑑 , and our proof is complete. ■

C Omitted proofs from Section 5

Our aim in this appendix will be to prove the basic guarantees of (3MW) with payoff-based feedback.
The structure of this appendix shadows that of Section 5 and is broken into two parts, depending on
the specific type of input available to the players. The only point of departure is the energy inequality
of Lemma 1, which is common to both algorithms, and which we restate and prove below:

Lemma 1. Fix some P ∈ X , and let X𝑡 ,X𝑡+1 be two successive iterates of (3MW), without any
assumptions for the input sequence V̂𝑡 . We then have

𝐷 (P,X𝑡+1) ≤ 𝐷 (P,X𝑡 ) + 𝛾𝑡 tr[V̂𝑡 (X𝑡 − P)] +
𝛾2
𝑡

2
∥V̂𝑡 ∥2𝐹 . (18)

Proof. By the definition of 𝐷, it is easy to see that for P ∈ X and X,X′ ∈ ri(X ), we have

𝐷 (P,X′) = 𝐷 (P,X) + 𝐷 (X,X′) + tr[(log X′ − log X) (X − P)] (C.1)

Since ∇ℎ(X) = log X + I, the above equality can be written as:

𝐷 (P,X′) = 𝐷 (P,X) + 𝐷 (X,X′) + tr[(∇ℎ(X′) − ∇ℎ(X)) (X − P)] (C.2)

Setting X as X𝑡+1, and X′ as X𝑡 , and invoking the easily verifiable fact that ∇ℎ(X𝑡+1)−∇ℎ(X𝑡 ) = 𝛾𝑡 V̂𝑡 ,
we get

𝐷 (P,X𝑡 ) = 𝐷 (P,X𝑡+1) + 𝐷 (X𝑡+1,X𝑡 ) − 𝛾𝑡 tr[V̂𝑡 (X𝑡+1 − P)] (C.3)

and hence:

𝐷 (P,X𝑡+1) = 𝐷 (P,X𝑡 ) − 𝐷 (X𝑡+1,X𝑡 ) + 𝛾𝑡 tr[V̂𝑡 (X𝑡+1 − P)]

≤ 𝐷 (P,X𝑡 ) −
1
2
∥X𝑡+1 − X𝑡 ∥2𝐹 + 𝛾𝑡 tr[V̂𝑡 (X𝑡+1 − P)]

= 𝐷 (P,X𝑡 ) −
1
2
∥X𝑡+1 − X𝑡 ∥2𝐹 + 𝛾𝑡 tr[V̂𝑡 (X𝑡 − P)] + 𝛾𝑡 tr[V̂𝑡 (X𝑡+1 − X𝑡 )]

≤ 𝐷 (P,X𝑡 ) + 𝛾𝑡 tr[V̂𝑡 (X𝑡 − P)] +
𝛾2
𝑡

2
∥V̂𝑡 ∥2𝐹 (C.4)

where the first inequality holds due to Lemma A.2, and in the last step we used that ∥·∥𝐹 is an
inner-product norm on X , so

1
2
∥X𝑡+1 − X𝑡 ∥2𝐹 +

𝛾2
𝑡

2
∥V̂𝑡 ∥2𝐹 ≥ 𝛾𝑡 tr[V̂𝑡 (X𝑡+1 − X𝑡 )] (C.5)

This concludes our proof. ■

With this template inequality in hand, we proceed with the guarantees of (3MW) in the next sections.
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C.1. Learning with mixed payoff observations. We begin with the statistics of the 2-point sampler
(2PE), which we restate below:
Proposition 3. The estimator (2PE) enjoys the conditional bounds

(𝑖)
𝔼[V̂𝑡 |F𝑡 ] − V(X𝑡 )


𝐹
≤ 4𝐷𝐿𝛿𝑡 and (𝑖𝑖) 𝔼

[
∥V̂𝑡 ∥2𝐹

��F𝑡

]
≤ 16𝐷2𝐺2 (19)

Proof. We prove each part separately.

(i) Let Ξ(+)
𝑖,𝑡

and Ξ
(−)
𝑖,𝑡

be defined for all players 𝑖 ∈ {1, 2} as

Ξ
(+)
𝑖,𝑡

= (X(𝛿 )
𝑖,𝑡
+ 𝑠𝑖,𝑡𝛿𝑡Z𝑖,𝑡 ) − X𝑖,𝑡

= 𝑠𝑖,𝑡𝛿𝑡Z𝑖,𝑡 +
𝛿𝑡

𝑟𝑖
(R𝑖 − X𝑖,𝑡 ) = 𝛿𝑡

[
𝑠𝑖,𝑡Z𝑖,𝑡 +

1
𝑟𝑖
(R𝑖 − X𝑖,𝑡 )

]
(C.6)

and

Ξ
(−)
𝑖,𝑡

= (X(𝛿 )
𝑖,𝑡
− 𝑠𝑖,𝑡𝛿𝑡Z𝑖,𝑡 ) − X𝑖,𝑡 = 𝛿𝑡

[
−𝑠𝑖,𝑡Z𝑖,𝑡 +

1
𝑟𝑖
(R𝑖 − X𝑖,𝑡 )

]
(C.7)

Taking a first-order Taylor expansion of 𝑢𝑖 , we obtain:

𝑢𝑖 (X(𝛿 )𝑡 + 𝑠𝑡𝛿𝑡Z𝑡 ) = 𝑢𝑖 (X𝑡 ) +
∑︁
𝑗∈N

tr
[
∇X⊤

𝑗
𝑢𝑖 (X𝑡 )†Ξ(+)𝑗 ,𝑡

]
+ 𝑅2 (Ξ(+)𝑡 ) (C.8a)

and

𝑢𝑖 (X(𝛿 )𝑡 − 𝑠𝑡𝛿𝑡Z𝑡 ) = 𝑢𝑖 (X𝑡 ) +
∑︁
𝑗∈N

tr
[
∇X⊤

𝑗
𝑢𝑖 (X𝑡 )†Ξ(−)𝑗 ,𝑡

]
+ 𝑅2 (Ξ(−)𝑡 ) (C.8b)

where 𝑅2 (·) is the 2nd order Taylor remainder. Now, for 𝑗 ≠ 𝑖 ∈ N , since 𝑠𝑖,𝑡 is zero-mean
and independent of any other process:

𝔼

[
tr
[
∇X⊤

𝑗
𝑢𝑖 (X𝑡 )† (Ξ(+)𝑗 ,𝑡

− Ξ(−)
𝑗 ,𝑡
)
]
𝑠𝑖,𝑡Z𝑖,𝑡

���F𝑡

]
= 0 (C.9)

and using that Ξ(+)
𝑖,𝑡
− Ξ(−)

𝑖,𝑡
= 2𝑠𝑖,𝑡𝛿𝑡Z𝑖,𝑡 , we have:

𝔼

[
tr
[
∇X⊤

𝑖
𝑢𝑖 (X𝑡 )† (Ξ(+)𝑖,𝑡

− Ξ(−)
𝑖,𝑡
)
]
𝑠𝑖,𝑡Z𝑖,𝑡

���F𝑡

]
= 𝔼

[
tr
[
V𝑖 (X𝑡 )† (2𝑠𝑖,𝑡𝛿𝑡Z𝑖,𝑡 )

]
𝑠𝑖,𝑡Z𝑖,𝑡 | F𝑡

]
= 2𝛿𝑡 𝔼

[
tr
[
V𝑖 (X𝑡 )†Z𝑖,𝑡

]
𝑠2
𝑖,𝑡Z𝑖,𝑡 | F𝑡

]
= 2𝛿𝑡 𝔼

[
tr
[
V𝑖 (X𝑡 )†Z𝑖,𝑡

]
Z𝑖,𝑡 | F𝑡

]
=

2𝛿𝑡
𝐷𝑖

∑︁
𝑊∈E𝑖

tr
[
V𝑖 (X𝑡 )†𝑊

]
𝑊

=
2𝛿𝑡
𝐷𝑖

projE𝑖
(V𝑖 (X𝑡 )) =

2𝛿𝑡
𝐷𝑖

V𝑖 (X𝑡 ) (C.10)

where in the last step, with a slight abuse of notation, we identify projE𝑖
(V𝑖 (X𝑡 )) with V𝑖 (X𝑡 ).

The reason for this is that we apply the differential operator V𝑖 (X𝑡 ) only on elements of X 𝑖 ,
and thus, we can ignore the component of V𝑖 (X𝑡 ) that is orthogonal to span(E𝑖).
Moreover, we have that

|𝑅2 (Ξ(+)𝑡 ) | ≤
𝐿

2
∥Ξ(+)𝑡 ∥2𝐹 ≤ 𝐿𝛿2

𝑡 (C.11)

and similarly, we get the same bound for |𝑅2 (Ξ(−)𝑡 ) |. Therefore, in light of the above, we obtain
the bound:

∥𝔼[V̂𝑖,𝑡 |F𝑡 ] − V𝑖 (X𝑡 )∥𝐹 ≤
1
2
𝐷𝑖𝐿𝛿𝑡 (C.12a)

and, hence

∥𝔼[V̂𝑡 |F𝑡 ] − V(X𝑡 )∥𝐹 ≤
√

2
2

𝐷𝐿𝛿𝑡 (C.12b)
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(ii) By the definition of V̂𝑖,𝑡 , we have:

∥V̂𝑖,𝑡 ∥𝐹 =
𝐷𝑖

2𝛿𝑡

���𝑢𝑖 (X(𝛿 )𝑡 + 𝑠𝑡 𝛿𝑡 Z𝑡 ) − 𝑢𝑖 (X(𝛿 )𝑡 − 𝑠𝑡 𝛿𝑡 Z𝑡 )
��� ∥𝑠𝑖,𝑡Z𝑖,𝑡 ∥𝐹

≤ 𝐷𝑖

2𝛿𝑡
𝐺∥2𝑠𝑡 𝛿𝑡 Z𝑡 ∥𝐹 ≤

√
2𝐷𝑖𝐺 (C.13)

and therefore, we readily obtain that:

𝔼
[
∥V̂𝑖,𝑡 ∥2𝐹

��F𝑡

]
≤ 2𝐷2

𝑖𝐺
2 (C.14)

so

𝔼
[
∥V̂𝑡 ∥2𝐹

��F𝑡

]
≤ 4𝐷2𝐺2 (C.15)

and our proof is complete. ■

With all these technical elements in place, we are finally in a position to prove our convergence
result for (3MW) run with 2-point gradient estimators. As before, we restate our result below for
convenience:

Theorem 2. Suppose that each player of a 2-player zero-sum game Q follows (3MW) for 𝑇 epochs
with learning rate 𝛾, sampling radius 𝛿, and gradient estimates provided by (2PE). Then the players’
empirical frequency of play enjoys the duality gap guarantee

𝔼
[
GapL (X̄𝑇 )

]
≤ 𝐻

𝛾𝑇
+ 8𝐷2𝐺2𝛾 + 16𝐷𝐿𝛿 (15)

where 𝐻 = log(𝑑1𝑑2). In particular, for 𝛾 = (𝐷𝐺)−1
√︁
𝐻/(8𝑇) and 𝛿 = (𝐺/𝐿)

√︁
𝐻/(8𝑇), the players

enjoy the equilibrium convergence guarantee

𝔼
[
GapL (X̄𝑇 )

]
≤ 8𝐷𝐺

√︁
2𝐻/𝑇. (16)

Proof. Let X∗ ∈ X be a NE point. By Lemma 1 for P = X∗, and setting 𝐹𝑡 := 𝐷 (X∗,X𝑡 ) for all
𝑡 = 1, 2 . . . , we have

𝐹𝑡+1 ≤ 𝐹𝑡 + 𝛾𝑡 tr[V̂†𝑡 (X𝑡 − X∗)] +
𝛾2
𝑡

2
∥V̂𝑡 ∥2𝐹 (C.16)

or, equivalently

tr[V̂†𝑡 (X∗ − X𝑡 )] ≤
1
𝛾𝑡
(𝐹𝑡 − 𝐹𝑡+1) +

𝛾𝑡

2
∥V̂𝑡 ∥2𝐹 (C.17)

Summing over the whole sequence 𝑡 = 1, . . . , 𝑇 , we get:

𝑇∑︁
𝑡=1

tr[V̂†𝑡 (X∗ − X𝑡 )] ≤
𝑇∑︁
𝑡=1

1
𝛾𝑡
(𝐹𝑡 − 𝐹𝑡+1) +

1
2

𝑇∑︁
𝑡=1

𝛾𝑡 ∥V̂𝑡 ∥2𝐹 (C.18)

which can be rewritten by setting 𝛾0 = ∞, as:

𝑇∑︁
𝑡=1

tr[V̂†𝑡 (X∗ − X𝑡 )] ≤
𝑇∑︁
𝑡=1

𝐹𝑡

(
1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 1

2

𝑇∑︁
𝑡=1

𝛾𝑡 ∥V̂𝑡 ∥2𝐹 (C.19)

Decomposing V̂𝑡 as
V̂𝑡 = V(X𝑡 ) + 𝑏𝑡 +𝑈𝑡 (C.20)

with

(i) 𝑏𝑡 = 𝔼
[
V̂𝑡

��F𝑡

]
− V(X𝑡 )

(ii) 𝑈𝑡 = V̂𝑡 − 𝔼
[
V̂𝑡

��F𝑡

]
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equation (D.18) becomes:

𝑇∑︁
𝑡=1

tr[V(X𝑡 )† (X∗ − X𝑡 )] ≤
𝑇∑︁
𝑡=1

𝐹𝑡

(
1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 1

2

𝑇∑︁
𝑡=1

𝛾𝑡 ∥V̂𝑡 ∥2𝐹

+
𝑇∑︁
𝑡=1

tr[𝑏†𝑡 (X𝑡 − X∗)] +
𝑇∑︁
𝑡=1

tr[𝑈†𝑡 (X𝑡 − X∗)]

≤
𝑇∑︁
𝑡=1

𝐹𝑡

(
1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 1

2

𝑇∑︁
𝑡=1

𝛾𝑡 ∥V̂𝑡 ∥2𝐹

+ 4
𝑇∑︁
𝑡=1
∥𝑏𝑡 ∥𝐹 +

𝑇∑︁
𝑡=1

tr[𝑈†𝑡 (X𝑡 − X∗)] (C.21)

The left-hand side (LHS) of (D.20) gives:

𝑇∑︁
𝑡=1

tr[V(X𝑡 )† (X∗ − X𝑡 )] =
𝑇∑︁
𝑡=1

tr[V1 (X𝑡 )† (X∗1 − X1,𝑡 )] +
𝑇∑︁
𝑡=1

tr[V2 (X𝑡 )† (X∗2 − X2,𝑡 )]

=
𝑇∑︁
𝑡=1

(
𝑢1 (X∗1,X2,𝑡 ) − 𝑢1 (X𝑡 )

)
+

𝑇∑︁
𝑡=1

(
𝑢2 (X1,𝑡 ,X∗2) − 𝑢2 (X𝑡 )

)
=

𝑇∑︁
𝑡=1

(
L(X∗1,X2,𝑡 ) − L(X1,𝑡 ,X∗2)

)
(C.22)

Hence, dividing by 𝑇 , we get:

L(X∗1, X̄2,𝑇 ) − L(X̄1,𝑇 ,X∗2) ≤
1
𝑇

𝑇∑︁
𝑡=1

tr[V(X𝑡 )† (X∗ − X𝑡 )] (C.23)

or, equivalently,

GapL (X̄𝑇 ) ≤
1
𝑇

𝑇∑︁
𝑡=1

tr[V(X𝑡 )† (X∗ − X𝑡 )]

≤ 1
𝑇

𝑇∑︁
𝑡=1

𝐹𝑡

(
1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 1

2𝑇

𝑇∑︁
𝑡=1

𝛾𝑡 ∥V̂𝑡 ∥2𝐹

+ 4
𝑇

𝑇∑︁
𝑡=1
∥𝑏𝑡 ∥𝐹 +

1
𝑇

𝑇∑︁
𝑡=1

tr[𝑈†𝑡 (X𝑡 − X∗)] (C.24)

Now, we focus on the right-hand side (RHS) of (D.20). Specifically, we have:

𝔼[tr[𝑈†𝑡 (X𝑡 − X∗)]] = 𝔼[𝔼[tr[𝑈†𝑡 (X𝑡 − X∗)] |F𝑡 ]] = 0 (C.25)

since X𝑡 is F𝑡 -measurable and 𝔼[𝑈𝑡 |F𝑡 ] = 0.

Moreover, by Proposition 3, we have:

∥𝑏𝑖,𝑡 ∥𝐹 =
𝔼[

V̂𝑖,𝑡 | F𝑡

]
− V𝑖 (X𝑡 )


𝐹
≤ 2𝐷𝑖𝐿𝛿𝑡 (C.26a)

and

𝔼

[V̂𝑖,𝑡

2
𝐹

]
= 𝔼

[
𝔼

[V̂𝑖,𝑡

2
𝐹
| F𝑡

] ]
≤ 4𝐷2

𝑖𝐺
2 (C.26b)

Hence, taking expectation in (D.20), we obtain:

𝔼
[
GapL (X̄𝑇 )

]
≤ 1

𝑇

𝑇∑︁
𝑡=1

𝔼[𝐹𝑡 ]
(

1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 1

2𝑇

𝑇∑︁
𝑡=1

𝛾𝑡 𝔼[∥V̂𝑡 ∥2𝐹] +
4
𝑇

𝑇∑︁
𝑡=1

𝔼[∥𝑏𝑡 ∥𝐹]

≤ 1
𝑇

𝑇∑︁
𝑡=1

𝔼[𝐹𝑡 ]
(

1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 8𝐷2𝐺2

𝑇

𝑇∑︁
𝑡=1

𝛾𝑡 +
16𝐷𝐿

𝑇

𝑇∑︁
𝑡=1

𝛿𝑡 (C.27)

22



Setting 𝛾𝑡 = 𝛾 and 𝛿𝑡 = 𝛿, we obtain:

𝔼
[
GapL (X̄𝑇 )

]
≤ 𝐹1

𝛾𝑇
+ 8𝐷2𝐺2𝛾 + 16𝐷𝐿𝛿 (C.28)

and finally, noting that

𝐹1 = 𝐷 (X∗,X1) ≤ log(𝑑1𝑑2) (C.29)

we get:

𝔼
[
GapL (X̄𝑇 )

]
≤ 𝐻

𝛾𝑇
+ 8𝐷2𝐺2𝛾 + 16𝐷𝐿𝛿 (C.30)

for 𝐻 = log(𝑑1𝑑2). Hence, after tuning 𝛾 to optimize this last expression, our result follows by

setting 𝛾 =

√︃
𝐻

8𝑇𝐷2𝐺2 and 𝛿 =

√︃
𝐺2𝐻
8𝐿2𝑇

. ■

C.2. Learning with bandit feedback. We now proceed with the more arduous task of proving the
bona fide, bandit guarantees of (3MW) with 1-point, stochastic, payoff-based feedback. The key
difference with our previous analysis lies in the different statistical properties of the 1-point estimator
(1PE). The relevant result that we will need is restated below:
Proposition 4. The estimator (1PE) enjoys the conditional bounds

(𝑖) ∥𝔼[V̂𝑡 |F𝑡 ] − V(X𝑡 )∥𝐹 ≤ 4𝐷𝐿𝛿𝑡 and (𝑖𝑖) 𝔼[∥V̂𝑡 ∥2𝐹 |F𝑡 ] ≤ 4𝐷2𝐵2/𝛿2
𝑡 . (20)

Proof. We prove each part separately.

(i) Let Ξ𝑖,𝑡 be defined for all players 𝑖 ∈ N :

Ξ𝑖,𝑡 = X(𝛿 )
𝑖,𝑡
− X𝑖,𝑡 = 𝛿𝑡Z𝑖,𝑡 +

𝛿𝑡

𝑟𝑖
(R𝑖 − X𝑖,𝑡 ) = 𝛿𝑡

[
Z𝑖,𝑡 +

1
𝑟𝑖
(R𝑖 − X𝑖,𝑡 )

]
(C.31)

Taking a first-order Taylor expansion of 𝑢𝑖 , we obtain:

𝑢𝑖 (X(𝛿 )𝑡 + 𝛿𝑡Z𝑡 ) = 𝑢𝑖 (X𝑡 ) +
∑︁
𝑗∈N

tr
[
∇X⊤

𝑗
𝑢𝑖 (X𝑡 )†Ξ 𝑗 ,𝑡

]
+ 𝑅2 (Ξ𝑡 ) (C.32)

Since 𝔼[𝑈𝑖 (𝜔𝑡 ) |F𝑡 ,Z𝑡 ] = 𝑢(X(𝛿 )𝑡 + 𝛿𝑡Z𝑡 ), combining it with (D.3), we readily get:

𝔼[V̂𝑖,𝑡 |F𝑡 ,Z𝑡 ] =
𝐷𝑖

𝛿𝑡
𝑢𝑖 (X(𝛿 )𝑡 + 𝛿𝑡Z𝑡 ) Z𝑖,𝑡 (C.33)

=
𝐷𝑖

𝛿𝑡
𝑢𝑖 (X𝑡 )Z𝑖,𝑡 +

𝐷𝑖

𝛿𝑡

∑︁
𝑗∈N

tr
[
∇X⊤

𝑗
𝑢𝑖 (X𝑡 )†Ξ 𝑗 ,𝑡

]
Z𝑖,𝑡 +

𝐷𝑖

𝛿𝑡
𝑅2 (Ξ𝑡 )Z𝑖,𝑡 (C.34)

Now, because 𝔼
[
Z𝑖,𝑡

��F𝑡

]
= 0 and Z𝑖,𝑡 is sampled independent of any other process, we have:

𝔼
[
𝑢𝑖 (X𝑡 )Z𝑖,𝑡

��F𝑡

]
= 𝑢𝑖 (X𝑡 ) 𝔼

[
Z𝑖,𝑡

��F𝑡

]
= 0 (C.35)

and for 𝑗 ≠ 𝑖 ∈ N :

𝔼

[
tr
[
∇X⊤

𝑗
𝑢𝑖 (X𝑡 )†Ξ 𝑗 ,𝑡

]
Z𝑖,𝑡

���F𝑡

]
= 0 (C.36)

Therefore, we obtain:

𝔼

[∑︁
𝑗∈N

tr
[
∇X⊤

𝑗
𝑢𝑖 (X𝑡 )†Ξ 𝑗 ,𝑡

]
Z𝑖,𝑡 | F𝑡

]
= 𝔼

[
tr
[
V𝑖 (X𝑡 )†Ξ𝑖,𝑡

]
Z𝑖,𝑡 | F𝑡

]
= 𝛿𝑡 𝔼

[
tr
[
V𝑖 (X𝑡 )†Z𝑖,𝑡

]
Z𝑖,𝑡 | F𝑡

]
=

𝛿𝑡

𝐷𝑖

∑︁
𝑊∈E𝑖

tr
[
V𝑖 (X𝑡 )†𝑊

]
𝑊

=
𝛿𝑡

𝐷𝑖

projE𝑖
(V𝑖 (X𝑡 )) =

𝛿𝑡

𝐷𝑖

V𝑖 (X𝑡 ) (C.37)
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where in the last step, we identify projE𝑖
(V𝑖 (X𝑡 )) with V𝑖 (X𝑡 ), as explained in the proof of

Proposition 3. Moreover, we have that

|𝑅2 (Ξ𝑡 ) | ≤
𝐿

2
∥Ξ𝑡 ∥2𝐹 ≤ 𝐿𝛿2

𝑡 (C.38)

In view of the above, we have:

∥𝔼[V̂𝑖,𝑡 |F𝑡 ] − V𝑖 (X𝑡 )∥𝐹 = 𝐷𝑖𝐿𝛿𝑡 (C.39)

and, therefore,

∥𝔼[V̂𝑡 |F𝑡 ] − V(X𝑡 )∥𝐹 =
√

2𝐷𝐿𝛿𝑡 (C.40)

(ii) By the definition of V̂𝑖,𝑡 , we have:

∥V̂𝑖,𝑡 ∥𝐹 =
𝐷𝑖

𝛿𝑡

���𝑢𝑖 (X(𝛿 )𝑡 + 𝛿𝑡 Z𝑡 )
��� ∥Z𝑖,𝑡 ∥𝐹 ≤

𝐷𝑖𝐵

𝛿𝑡
(C.41)

and therefore, we readily obtain that:

𝔼
[
∥V̂𝑖,𝑡 ∥2𝐹

��F𝑡

]
≤

𝐷2
𝑖
𝐵2

𝛿2
𝑡

(C.42)

We thus obtain

𝔼
[
∥V̂𝑡 ∥2𝐹

��F𝑡

]
≤ 2𝐷2𝐵2

𝛿2
𝑡

(C.43)

and our proof is complete. ■

The only step missing is the proof of the actual guarantee of (3MW) with bandit feedback. We restate
and prove the relevant result below:
Theorem 3. Suppose that each player of a 2-player zero-sum game Q follows (3MW) for 𝑇 epochs
with learning rate 𝛾, sampling radius 𝛿, and gradient estimates provided by (1PE). Then the players’
empirical frequency of play enjoys the duality gap guarantee

𝔼
[
GapL (X̄𝑇 )

]
≤ 𝐻

𝛾𝑇
+ 2𝐷2𝐵2𝛾

𝛿2 + 16𝐷𝐿𝛿 (21)

where 𝐻 = log(𝑑1𝑑2). In particular, for 𝛾 =
(
𝐻
2𝑇

)3/4 1
2𝐷
√
𝐵𝐿

and 𝛿 =
(
𝐻
2𝑇

)1/4
√︃

𝐵
4𝐿 , the players enjoy

the equilibrium convergence guarantee:

𝔼
[
GapL (X̄𝑇 )

]
≤ 23/4 8𝐻1/4𝐷

√
𝐵𝐿

𝑇1/4 . (22)

Proof. Following the same procedure as in the proof of Theorem 2, we readily obtain:

GapL (X̄𝑇 ) ≤
1
𝑇

𝑇∑︁
𝑡=1

tr[V(X𝑡 )† (X∗ − X𝑡 )]

≤ 1
𝑇

𝑇∑︁
𝑡=1

𝐹𝑡

(
1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 1

2𝑇

𝑇∑︁
𝑡=1

𝛾𝑡 ∥V̂𝑡 ∥2𝐹

+ 4
𝑇

𝑇∑︁
𝑡=1
∥𝑏𝑡 ∥𝐹 +

1
𝑇

𝑇∑︁
𝑡=1

tr[𝑈†𝑡 (X𝑡 − X∗)] (C.44)

Now, we have:

𝔼[tr[𝑈†𝑡 (X𝑡 − X∗)]] = 𝔼[𝔼[tr[𝑈†𝑡 (X𝑡 − X∗)] |F𝑡 ]] = 0 (C.45)

since X𝑡 is F𝑡 -measurable and 𝔼[𝑈𝑡 |F𝑡 ] = 0.

24



Moreover, by Proposition 4, we have:

∥𝑏𝑖,𝑡 ∥𝐹 =
𝔼[

V̂𝑖,𝑡 | F𝑡

]
− V𝑖 (X𝑡 )


𝐹
≤ 2𝐷𝑖𝐿𝛿𝑡 (C.46)

and

𝔼

[V̂𝑖,𝑡

2
𝐹

]
= 𝔼

[
𝔼

[V̂𝑖,𝑡

2
𝐹
| F𝑡

] ]
≤

𝐷2
𝑖
𝐵2

𝛿2
𝑡

(C.47)

Hence, taking expectation in (D.34), we obtain:

𝔼
[
GapL (X̄𝑇 )

]
≤ 1

𝑇

𝑇∑︁
𝑡=1

𝔼[𝐹𝑡 ]
(

1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 1

2𝑇

𝑇∑︁
𝑡=1

𝛾𝑡 𝔼[∥V̂𝑡 ∥2𝐹] +
4
𝑇

𝑇∑︁
𝑡=1

𝔼[∥𝑏𝑡 ∥𝐹]

≤ 1
𝑇

𝑇∑︁
𝑡=1

𝔼[𝐹𝑡 ]
(

1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 2𝐷2𝐵2

𝑇

𝑇∑︁
𝑡=1

𝛾𝑡

𝛿2
𝑡

+ 16𝐷𝐿

𝑇

𝑇∑︁
𝑡=1

𝛿𝑡 (C.48)

Setting 𝛾𝑡 = 𝛾 and 𝛿𝑡 = 𝛿, we obtain:

𝔼
[
GapL (X̄𝑇 )

]
≤ 𝔼[𝐹1]

𝛾𝑇
+ 2𝐷2𝐵2𝛾

𝛿2 + 16𝐷𝐿𝛿 (C.49)

and finally, noting that

𝔼[𝐹1] = 𝐷 (X∗,X1) ≤ log(𝑑1𝑑2) (C.50)

we get:

𝔼
[
GapL (X̄𝑇 )

]
≤ 𝐻

𝛾𝑇
+ 2𝐷2𝐵2𝛾

𝛿2 + 16𝐷𝐿𝛿 (C.51)

where 𝐻 = log(𝑑1𝑑2). Hence, after tuning 𝛾 and 𝛿 to optimize this last expression, our result follows

by setting 𝛾 =
(
𝐻
2𝑇

)3/4 1
2𝐷
√
𝐵𝐿

and 𝛿 =
(
𝐻
2𝑇

)1/4
√︃

𝐵
4𝐿 . ■

D Omitted proofs from Section 6

We provide first the bounds of the estimator (1PE) in a 𝑁-player quantum game. Formally, we have:
Lemma D.1. The estimator (1PE) in a 𝑁-player quantum game Q enjoys the conditional bounds

(𝑖) ∥𝔼[V̂𝑡 |F𝑡 ] − V(X𝑡 )∥𝐹 ≤
1
2
𝐷𝐿𝑁3/2𝛿𝑡 and (𝑖𝑖) 𝔼[∥V̂𝑡 ∥2𝐹 |F𝑡 ] ≤

𝐷2𝐵2𝑁

𝛿2
𝑡

. (D.1)

Proof. We prove each part separately.

(i) Let Ξ𝑖,𝑡 be defined for all players 𝑖 ∈ N :

Ξ𝑖,𝑡 = X(𝛿 )
𝑖,𝑡
− X𝑖,𝑡 = 𝛿𝑡Z𝑖,𝑡 +

𝛿𝑡

𝑟𝑖
(R𝑖 − X𝑖,𝑡 ) = 𝛿𝑡

[
Z𝑖,𝑡 +

1
𝑟𝑖
(R𝑖 − X𝑖,𝑡 )

]
(D.2)

Taking a 1st-order Taylor expansion of 𝑢𝑖 , we obtain:

𝑢𝑖 (X(𝛿 )𝑡 + 𝛿𝑡Z𝑡 ) = 𝑢𝑖 (X𝑡 ) +
∑︁
𝑗∈N

tr
[
∇X⊤

𝑗
𝑢𝑖 (X𝑡 )†Ξ 𝑗 ,𝑡

]
+ 𝑅2 (Ξ𝑡 ) (D.3)

Since 𝔼[𝑈𝑖 (𝜔𝑡 ) |F𝑡 ,Z𝑡 ] = 𝑢(X(𝛿 )𝑡 + 𝛿𝑡Z𝑡 ), combining it with (D.3), we readily get:

𝔼[V̂𝑖,𝑡 |F𝑡 ,Z𝑡 ] =
𝐷𝑖

𝛿𝑡
𝑢𝑖 (X(𝛿 )𝑡 + 𝛿𝑡Z𝑡 ) Z𝑖,𝑡

=
𝐷𝑖

𝛿𝑡
𝑢𝑖 (X𝑡 )Z𝑖,𝑡 +

𝐷𝑖

𝛿𝑡

∑︁
𝑗∈N

tr
[
∇X⊤

𝑗
𝑢𝑖 (X𝑡 )†Ξ 𝑗 ,𝑡

]
Z𝑖,𝑡 +

𝐷𝑖

𝛿𝑡
𝑅2 (Ξ𝑡 )Z𝑖,𝑡 (D.4)
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Now, because 𝔼
[
Z𝑖,𝑡

��F𝑡

]
= 0 and Z𝑖,𝑡 is sampled independent of any other process, we have:

𝔼
[
𝑢𝑖 (X𝑡 )Z𝑖,𝑡

��F𝑡

]
= 𝑢𝑖 (X𝑡 ) 𝔼

[
Z𝑖,𝑡

��F𝑡

]
= 0 (D.5)

and for 𝑗 ≠ 𝑖 ∈ N :

𝔼

[
tr
[
∇X⊤

𝑗
𝑢𝑖 (X𝑡 )†Ξ 𝑗 ,𝑡

]
Z𝑖,𝑡

���F𝑡

]
= 0 (D.6)

Therefore, we obtain:

𝔼

[∑︁
𝑗∈N

tr
[
∇X⊤

𝑗
𝑢𝑖 (X𝑡 )†Ξ 𝑗 ,𝑡

]
Z𝑖,𝑡 | F𝑡

]
= 𝔼

[
tr
[
V𝑖 (X𝑡 )†Ξ𝑖,𝑡

]
Z𝑖,𝑡 | F𝑡

]
= 𝛿𝑡 𝔼

[
tr
[
V𝑖 (X𝑡 )†Z𝑖,𝑡

]
Z𝑖,𝑡 | F𝑡

]
=

𝛿𝑡

𝐷𝑖

∑︁
𝑊∈E𝑖

tr
[
V𝑖 (X𝑡 )†𝑊

]
𝑊

=
𝛿𝑡

𝐷𝑖

projE𝑖
(V𝑖 (X𝑡 )) =

𝛿𝑡

𝐷𝑖

V𝑖 (X𝑡 ) (D.7)

where in the last step, we identify projE𝑖
(V𝑖 (X𝑡 )) with V𝑖 (X𝑡 ), as explained in the proof of

Proposition 3. Moreover, we have that

|𝑅2 (Ξ𝑡 ) | ≤
𝐿

2
∥Ξ𝑡 ∥2𝐹 ≤

1
2
𝐿𝑁𝛿2

𝑡 (D.8)

In view of the above, we have:

∥𝔼[V̂𝑖,𝑡 |F𝑡 ] − V𝑖 (X𝑡 )∥𝐹 ≤
1
2
𝐷𝑖𝐿𝑁𝛿𝑡 (D.9)

and, therefore,

∥𝔼[V̂𝑡 |F𝑡 ] − V(X𝑡 )∥𝐹 ≤
1
2
𝐷𝐿𝑁3/2𝛿𝑡 (D.10)

(ii) By the definition of V̂𝑖,𝑡 , we have:

∥V̂𝑖,𝑡 ∥𝐹 =
𝐷𝑖

𝛿𝑡

���𝑢𝑖 (X(𝛿 )𝑡 + 𝛿𝑡 Z𝑡 )
��� ∥Z𝑖,𝑡 ∥𝐹 ≤

𝐷𝑖𝐵

𝛿𝑡
(D.11)

and therefore, we readily obtain that:

𝔼
[
∥V̂𝑖,𝑡 ∥2𝐹

��F𝑡

]
≤

𝐷2
𝑖
𝐵2

𝛿2
𝑡

(D.12)

Hence, ultimately, we get the bound

𝔼
[
∥V̂𝑡 ∥2𝐹

��F𝑡

]
≤ 𝐷2𝐵2𝑁

𝛿2
𝑡

(D.13)

and our proof is complete. ■

With all this in hand, we are finally in a position to proceed with the proof of Theorem 4, which we
restate below for convenience:
Theorem 4. Fix some tolerance level 𝜂 ∈ (0, 1) and suppose that the players of an 𝑁-player quantum
game follow (3MW) with bandit, realization-based feedback, and surrogate gradients provided by
the estimator (1PE) with step-size and sampling radius parameters such that

(𝑖) ∑∞
𝑡=1 𝛾𝑡 = ∞, (𝑖𝑖) ∑∞

𝑡=1 𝛾𝑡𝛿𝑡 < ∞, and (𝑖𝑖) ∑∞
𝑡=1 𝛾

2
𝑡 /𝛿2

𝑡 < ∞. (23)

If X∗ is variationally stable, there exists a neighborhoold U of X∗ such that

ℙ(lim𝑡→∞ X𝑡 = X∗) ≥ 1 − 𝜂 whenever X1 ∈ U . (24)

26



Proof. Since X∗ is variationally stable, there exists a neighborhood Uvs of it such that

tr[V(X) (X − X∗)] < 0 for all X ∈ Uvs\{X∗}. (D.14)

For any 𝜀′ > 0, defining
U ′𝜀 := {X ∈ X : 𝐷 (X∗,X) < 𝜀′} (D.15)

we readily obtain by the continuity of X ↦→ 𝐷 (X∗,X) at X∗ that there exists a neighborhood U 𝜀 of
X∗ such that U 𝜀 ⊆ Uvs. Note that if 𝜀1 < 𝜀2, we automatically get that U 𝜀1 ⊆ U 𝜀2 .

In view of this, we let X1 ∈ U 𝜀/4 ⊆ U 𝜀 ⊆ Uvs. We divide the rest of the proof in steps.

Step 1. Deriving the general energy inequality

By Lemma 1 we have that:

𝐷 (X∗,X𝑡+1) ≤ 𝐷 (X∗,X𝑡 ) + 𝛾𝑡 tr[V̂𝑡 (X𝑡 − X∗)] +
𝛾2
𝑡

2
∥V̂𝑡 ∥2𝐹 . (D.16)

Decomposing V̂𝑡 into
V̂𝑡 = V(X𝑡 ) + 𝑏𝑡 +𝑈𝑡 (D.17)

as per (C.20) and applying (D.16) inequality iteratively, we get that

𝐷 (X∗,X𝑡+1) ≤ 𝐷 (X∗,X1) +
𝑡∑︁

𝑠=1
𝛾𝑠 tr[V̂𝑠 (X𝑠 − X∗)] + 1

2

𝑡∑︁
𝑠=1

𝛾2
𝑠 ∥V̂𝑠 ∥2𝐹

≤ 𝐷 (X∗,X1) +
𝑡∑︁

𝑠=1
𝛾𝑠 tr[V(X𝑠) (X𝑠 − X∗)] +

𝑡∑︁
𝑠=1

𝛾𝑠 tr[𝑏𝑠 (X𝑠 − X∗)]

+
𝑡∑︁

𝑠=1
𝛾𝑠 tr[𝑈𝑠 (X𝑠 − X∗)] + 1

2

𝑡∑︁
𝑠=1

𝛾2
𝑠 ∥V̂𝑠 ∥2𝐹

≤ 𝐷 (X∗,X1) +
𝑡∑︁

𝑠=1
𝛾𝑠 tr[V(X𝑠) (X𝑠 − X∗)] +

𝑡∑︁
𝑠=1

𝛾𝑠 ∥𝑏𝑠 ∥𝐹 ∥X𝑠 − X∗∥𝐹

+
𝑡∑︁

𝑠=1
𝛾𝑠 tr[𝑈𝑠 (X𝑠 − X∗)] + 1

2

𝑡∑︁
𝑠=1

𝛾2
𝑠 ∥V̂𝑠 ∥2𝐹

≤ 𝐷 (X∗,X1) +
𝑡∑︁

𝑠=1
𝛾𝑠 tr[V(X𝑠) (X𝑠 − X∗)] + diam(X )

𝑡∑︁
𝑠=1

𝛾𝑠 ∥𝑏𝑠 ∥𝐹

+
𝑡∑︁

𝑠=1
𝛾𝑠 tr[𝑈𝑠 (X𝑠 − X∗)] + 1

2

𝑡∑︁
𝑠=1

𝛾2
𝑠 ∥V̂𝑠 ∥2𝐹 (D.18)

Defining the processes Ψ𝑡 , 𝑀𝑡 and 𝑍𝑡 for 𝑡 = 1, 2, . . . as

Ψ𝑡 :=
1
2

𝑡∑︁
𝑠=1

𝛾2
𝑠 ∥V̂𝑠 ∥2𝐹 (D.19a)

𝑀𝑡 :=
𝑡∑︁

𝑠=1
𝛾𝑠 tr[𝑈𝑠 (X𝑠 − X∗)] (D.19b)

𝑍𝑡 := diam(X )
𝑡∑︁

𝑠=1
𝛾𝑠 ∥𝑏𝑠 ∥𝐹 (D.19c)

equation (D.18) can be rewritten as

𝐷 (X∗,X𝑡+1) ≤ 𝐷 (X∗,X1) +
𝑡∑︁

𝑠=1
𝛾𝑠 tr[V(X𝑠) (X𝑠 − X∗)] + 𝑍𝑡 + 𝑀𝑡 + Ψ𝑡 (D.20)

Step 2. Bounding the noise terms

Let 𝜀 > 0 as defined in the beginning of the proof.
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• Regarding the term 𝑍𝑡 , it is clear that the process {𝑍𝑡 : 𝑡 ≥ 1} is a sub-martingale. Hence,
by Doob’s maximal inequality for sub-martingales [24], we get that:

ℙ

(
sup
𝑠≤𝑡

𝑍𝑠 ≥ 𝜀/4
)
≤ 𝔼[𝑍𝑡 ]

𝜀/4

≤
diam(X )∑𝑡

𝑠=1 𝛾𝑠 𝔼[∥𝑏𝑠 ∥𝐹]
𝜀/4

≤
diam(X )∑∞

𝑡=1 𝛾𝑡 𝔼[∥𝑏𝑡 ∥𝐹]
𝜀/4

=
diam(X )∑∞

𝑡=1 𝛾𝑡 𝔼[𝔼[∥𝑏𝑡 ∥𝐹 |F𝑡 ]]
𝜀/4

≤
2 diam(X )𝐷𝐿𝑁3/2 ∑∞

𝑡=1 𝛾𝑡𝛿𝑡

𝜀
(D.21)

By ensuring that
∞∑︁
𝑡=1

𝛾𝑡𝛿𝑡 ≤
𝜀𝜂

6 diam(X )𝐷𝐿𝑁3/2 (D.22)

and taking 𝑡 go to∞, (D.21) becomes:

ℙ

(
sup
𝑡≥1

𝑍𝑡 ≥ 𝜀/4
)
≤ 𝜂/3 (D.23)

• Similarly, it is clear that the process {Ψ𝑡 : 𝑡 ≥ 1} is a sub-martingale. Following the same
procedure, by Doob’s maximal inequality for sub-martingales [24], we get that:

ℙ

(
sup
𝑠≤𝑡

Ψ𝑠 ≥ 𝜀/4
)
≤ 𝔼[Ψ𝑡 ]

𝜀/4 ≤
1
2
∑𝑡

𝑠=1 𝛾
2
𝑠 𝔼

[
∥V̂𝑠 ∥2𝐹

]
𝜀/4

≤
1
2
∑∞

𝑡=1 𝛾
2
𝑡 𝔼

[
∥V̂𝑡 ∥2𝐹

]
𝜀/4

≤
2𝐷2𝐵2𝑁

∑∞
𝑡=1 𝛾

2
𝑡 /𝛿2

𝑡

𝜀
(D.24)

By ensuring that
∞∑︁
𝑡=1

𝛾2
𝑡 /𝛿2

𝑡 ≤
𝜀𝜂

6𝐷2𝐵2𝑁
(D.25)

and taking 𝑡 →∞, (D.24) becomes:

ℙ

(
sup
𝑡≥1

Ψ𝑡 ≥ 𝜀/4
)
≤ 𝜂/3 (D.26)

• Finally, regarding the term 𝑀𝑡 , the process {𝑀𝑡 : 𝑡 ≥ 1} is a martingale. Following the
same procedure, by Doob’s maximal inequality for martingales [24], we get that:

ℙ

(
sup
𝑠≤𝑡

𝑀𝑠 ≥ 𝜀/4
)
≤ ℙ

(
sup
𝑠≤𝑡
|𝑀𝑠 | ≥ 𝜀/4

)
≤

𝔼[𝑀2
𝑡 ]

(𝜀/4)2
=

∑𝑡
𝑠=1 𝛾

2
𝑠 𝔼

[
tr[𝑈𝑠 (X𝑠 − X∗)]2

]
(𝜀/4)2

≤
diam(X )2 ∑𝑡

𝑠=1 𝛾
2
𝑠 𝔼

[
∥𝑈𝑠 ∥2𝐹

]
(𝜀/4)2

≤
diam(X )2 ∑∞

𝑡=1 𝛾
2
𝑡 𝔼

[
∥𝑈𝑡 ∥2𝐹

]
(𝜀/4)2

≤
4 diam(X )2 ∑∞

𝑡=1 𝛾
2
𝑡 𝔼

[
∥V̂𝑡 ∥2𝐹

]
(𝜀/4)2

≤
4 diam(X )2𝐷2𝐵2𝑁

∑∞
𝑡=1 𝛾

2
𝑡 /𝛿2

𝑡

(𝜀/4)2
(D.27)
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where we used the fact that

𝔼[𝑀2
𝑡 ] = 𝔼

[
𝑡∑︁

𝑠=1
𝛾2
𝑠 tr[𝑈𝑠 (X𝑠 − X∗)]2 +

∑︁
𝑘<ℓ

𝛾𝑘𝛾ℓ tr[𝑈𝑘 (X𝑘 − X∗)] tr[𝑈ℓ (Xℓ − X∗)]
]

= 𝔼

[
𝑡∑︁

𝑠=1
𝛾2
𝑠 tr[𝑈𝑠 (X𝑠 − X∗)]2

]
(D.28)

itself following from the total expectation

𝔼[tr[𝑈𝑘 (X𝑘 − X∗)] tr[𝑈ℓ (Xℓ − X∗)]] = 𝔼[𝔼[tr[𝑈𝑘 (X𝑘 − X∗)] tr[𝑈ℓ (Xℓ − X∗)] |Fℓ]]
= 𝔼[tr[𝑈𝑘 (X𝑘 − X∗)] 𝔼[tr[𝑈ℓ (Xℓ − X∗)] |Fℓ]]
= 0 (D.29)

Now, by ensuring that
∞∑︁
𝑡=1

𝛾2
𝑡 /𝛿2

𝑡 ≤
(𝜀/4)2𝜂

12 diam(X )2𝐷2𝐵2𝑁
(D.30)

and taking 𝑡 go to∞, (D.27) becomes:

ℙ

(
sup
𝑡≥1

𝑀𝑡 ≥ 𝜀/4
)
≤ 𝜂/3 (D.31)

Therefore, combining (D.23), (D.26) and (D.31) and applying a union bound, we get:

ℙ

({
sup
𝑡≥1

𝑍𝑡 ≥ 𝜀/4
}
∪

{
sup
𝑡≥1

Ψ𝑡 ≥ 𝜀/4
}
∪

{
sup
𝑡≥1

𝑀𝑡 ≥ 𝜀/4
})
≤ 𝜂 (D.32)

Thus, defining the event 𝐸 :=
{
sup𝑡≥1 𝑍𝑡 + Ψ𝑡 + 𝑀𝑡 <

3
4𝜀

}
, Eq. (D.32) readily implies that:

ℙ(𝐸) ≥ 1 − 𝜂 (D.33)

Step 3. X𝑡 ∈ Uvs with high probability

Since X1 ∈ U 𝜀/4 ⊆ Uvs, by induction on 𝑡 we have that under the event 𝐸

𝐷 (X∗,X𝑡+1) ≤ 𝐷 (X∗,X1) +
𝑡∑︁

𝑠=1
𝛾𝑠 tr[V(X𝑠) (X𝑠 − X∗)] + 𝑍𝑡 + 𝑀𝑡 + Ψ𝑡 (D.34)

≤ 𝜀

4
+ 𝜀

4
+ 𝜀

4
+ 𝜀

4
= 𝜀 (D.35)

where in the last step we used the inductive hypothesis that X𝑠 ∈ Uvs for all 𝑠 = 1, . . . , 𝑡,
which implies tr[V(X𝑠) (X𝑠 − X∗)] < 0. This implies that X𝑡+1 ∈ U 𝜀 ⊆ Uvs.

Therefore, we obtain that X𝑡+1 ∈ U 𝜀 ⊆ Uvs for all 𝑡 ≥ 1. For the rest of the proof we will
work under the event 𝐸 .

Step 4. Subsequential convergence

Now we will show that there exists a subsequence {X𝑡𝑘 : 𝑘 ≥ 1} suct that lim𝑘→∞ X𝑡𝑘 = X∗.
Suppose it does not. Then, this would mean that the quantity tr[V(X𝑡 ) (X𝑡 −X∗)] is bounded
away from zero. Combining it with the fact that X𝑡 ∈ Uvs for all 𝑡 ≥ 0, we readily get that
there exists 𝑐 > 0 such that:

tr[V(X𝑠) (X𝑠 − X∗)] < −𝑐 (D.36)

Then, (D.20) would give:

𝐷 (X∗,X𝑡+1) ≤ 𝜀 − 𝑐
𝑡∑︁

𝑠=1
𝛾𝑠 (D.37)

Hence, taking 𝑡 → ∞, and using that
∑

𝑡≥1 𝛾𝑡 = ∞, we would get that 𝐷 (X∗,X𝑡 ) → −∞,
which is a contradiction, since 𝐷 (X∗,X𝑡 ) ≥ 0.

Hence, there exists a subsequence {X𝑡𝑘 : 𝑘 ≥ 1} suct that lim𝑘→∞ X𝑡𝑘 = X∗, i.e.,

lim
𝑘→∞

𝐷 (X∗,X𝑡𝑘 ) = 0. (D.38)
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Step 5. Existence of lim𝑡→∞ 𝐷 (X∗,X𝑡 )
We define the sequence of events {𝐸𝑡 : 𝑡 ≥ 1} as

𝐸𝑡 :=
{

sup
𝑠≤𝑡−1

𝑍𝑠 + Ψ𝑠 + 𝑀𝑠 <
3
4
𝜀

}
for 𝑡 ≥ 2 (D.39)

and

𝐸1 :=
{
X1 ∈ U 𝜀/4

}
(D.40)

Then we have that 𝐸𝑡 ∈ F𝑡 and 𝐸𝑡 ⊆ {X𝑠 ∈ Uvs : 𝑠 = 1, . . . , 𝑡}.
Defining the random process

{
�̃�𝑡 : 𝑡 ≥ 1

}
as

�̃�𝑡 = 𝐷 (X∗,X𝑡 ) 1𝐸𝑡
(D.41)

Then, by (D.16) we have

𝐷 (X∗,X𝑡+1) ≤ 𝐷 (X∗,X1) + 𝛾𝑡 tr[V(X𝑡 ) (X𝑡 − X∗)] + diam(X )𝛾𝑡 ∥𝑏𝑡 ∥𝐹

+ 𝛾𝑡 tr[𝑈𝑡 (X𝑡 − X∗)] + 1
2
𝛾2
𝑡 ∥V̂𝑡 ∥2𝐹 (D.42)

Multiplying the above relation with 1𝐸𝑡
, and noting that 1𝐸𝑡+1 ≤ 1𝐸𝑡

, since 𝐸𝑡+1 ⊆ 𝐸𝑡 , we
have

�̃�𝑡+1 ≤ �̃�𝑡 + 𝛾𝑡 tr[V(X𝑡 ) (X𝑡 − X∗)] 1𝐸𝑡
+ diam(X )𝛾𝑡 ∥𝑏𝑡 ∥𝐹 1𝐸𝑡

+ 𝛾𝑡 tr[𝑈𝑡 (X𝑡 − X∗)] 1𝐸𝑡
+1

2
𝛾2
𝑡 ∥V̂𝑡 ∥2𝐹 1𝐸𝑡

(D.43)

≤ �̃�𝑡 + diam(X )𝛾𝑡 ∥𝑏𝑡 ∥𝐹 1𝐸𝑡
+𝛾𝑡 tr[𝑈𝑡 (X𝑡 − X∗)] 1𝐸𝑡

+1
2
𝛾2
𝑡 ∥V̂𝑡 ∥2𝐹 1𝐸𝑡

(D.44)

where in the last step we used that tr[V(X𝑡 ) (X𝑡 − X∗)] 1𝐸𝑡
≤ 0. Therefore, we obtain that:

𝔼[�̃�𝑡+1 |F𝑡 ] ≤ �̃�𝑡 + diam(X )𝛾𝑡 1𝐸𝑡
𝔼[∥𝑏𝑡 ∥𝐹 |F𝑡 ] +

1
2
𝛾2
𝑡 1𝐸𝑡

𝔼[∥V̂𝑡 ∥2𝐹 |F𝑡 ] (D.45)

where we used that

𝔼
[
tr[V(X𝑡 ) (X𝑡 − X∗)] 1𝐸𝑡

��F𝑡

]
= 1𝐸𝑡

𝔼[tr[V(X𝑡 ) (X𝑡 − X∗)] |F𝑡 ] = 0 (D.46)

Therefore,
{
�̃�𝑡 : 𝑡 ≥ 1

}
is an almost super-martingale [52] and, thus, there exists �̃�∞ with

�̃�∞ finite (a.s.) and �̃�𝑡 → �̃�∞ (a.s.).

Since 𝐸 = ∩𝑡≥1𝐸𝑡 , we have:

ℙ

(
lim
𝑡→∞

𝐷 (X∗,X𝑡 ) exists
��� 𝐸)

=
ℙ({lim𝑡→∞ 𝐷 (X∗,X𝑡 ) exists} ∩ 𝐸)

ℙ(𝐸) (D.47)

=
ℙ
({

lim𝑡→∞ �̃�𝑡 exists
}
∩ 𝐸

)
ℙ(𝐸) = 1 (D.48)

Hence, lim𝑡→∞ �̃�𝑡 exists on 𝐸 and by Step 3 we readily get that lim𝑡→∞ �̃�𝑡 = 0 on 𝐸 . Thus,
by Lemma A.2, we get

lim
𝑡→∞

X𝑡 = X∗ on the event 𝐸 (D.49)

and setting U = U 𝜀/4, we obtain

ℙ

(
lim
𝑡→∞

X𝑡 = X∗
)
≥ 1 − 𝜂 whenever X1 ∈ U . (D.50)

This concludes our discussion and our proof. ■

E Numerical experiments

In this last appendix, we provide a series of additional numerical simulations to validate and explore
the performance of (MMW) with payoff-based feedback.
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(a) Full information (MMW).

(b) (3MW) with the (2PE) estimator

(c) (3MW) with the (1PE) estimator

Figure 2: Trajectories of the three methods for different initial conditions. The red points correspond to player
1, and the blue points to player 2. The initial points of the red trajectories are marked with •, while the initial
points of the blue ones are marked with ■.

Trajectory analysis. First, we proceed to a trajectory analysis of the game setup presented in
Section 7. Specifically, in Fig. 2, we provide a visualization of the actual trajectories of play generated
by the three methods with the same parameters as before, for different initial conditions. The
trajectories are presented in Bloch spheres [48], where the points |0⟩ and |1⟩ in the figure correspond
to the density matrices

|0⟩ =
(
1 0
0 0

)
and |1⟩ =

(
0 0
0 1

)
(E.1)

respectively. In all figures, the points in red indicate the trajectory of Player 1, while the points in
blue are for Player 2. The initial points of the red trajectories are marked with •, while the initial
points of the blue ones are marked with ■. [Each column of Bloch spheres in Fig. 2 has the same
initial conditions.]

An important remark here is that, as suggested by Theorem 4, the trajectories of all methods converge
– and quite rapidly at that – to the game’s (strict) Nash equilibrium. In fact, given that the trajectories
converge to a pure state, this goes to explain the faster convergence rates observed in Fig. 1: instead
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(a) Performance evaluation and comparison on Q2.
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(b) Performance evaluation and comparison on Q3.
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(c) Performance evaluation and comparison on Q4.

Figure 3: Performance evaluation of (3MW) with estimators provided by (2PE) and (1PE), and comparison
with the full information algorithm (MMW).

of oscillating around a solution, the MMW orbits actually converge to equilibrium in this case,
so the trailing average converges at a much faster rate. This holds in all zero-sum games with a
pure equilibrium, thus indicating a very important class of zero-sum games where the worst-case
guarantees of MMW algorithms can be significantly improved.

Convergence speed analysis. In addition to the game setup described in Section 7, we consider
the following quantum games:

• Q2: quantum analogue of the 2 × 2 min-max game with payoff matrix

𝑃2 =

(
(10,−10) (10,−10)
(−10, 10) (−10, 10)

)
(Q2)

• Q3: quantum analogue of the 3 × 3 min-max game with payoff

𝑃3 =

((4,−4) (2,−2) (4,−4)
(−4, 4) (−2, 2) (−4,−4)
(−4, 4) (−2, 2) (−4,−4)

)
(Q3)

• Q4: quantum analogue of the 3 × 3 min-max game with payoff

𝑃4 =

((10,−10) (10,−10) (10,−10)
(−10, 10) (−10, 10) (−10, 10)
(−10, 10) (−10, 10) (−10, 10)

)
(Q4)
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In Fig. 3, we evaluate the convergence properties of (3MW) using the estimators (2PE) and (1PE),
and compare it with the full information variant (MMW), following the same setup as described in
Section 7. Specifically, for each method, we perform 10 different runs, with 𝑇 = 105 steps each,
and compute the mean value of the duality gap as a function of the iteration 𝑡 = 1, 2, . . . , 𝑇 . The
solid lines correspond to the mean values of the duality gap of each method, and the shaded regions
enclose the area of ±1 (sample) standard deviation among the 10 different runs. Note that the red line,
which corresponds to the full information (MMW), does not have a shaded region, since there is no
randomness in the algorithm. All the runs for the three different methods were initialized for Y = 0
and we used 𝛾 = 10−2 for all methods. In particular, for (3MW) with gradient estimates given by
(2PE) estimator, we used a sampling radius 𝛿 = 10−2, and for (3MW) with (1PE) estimator, we used
𝛿 = 10−1 (in tune with our theoretical results which suggest the use of a tighter sampling radius when
mixed payoff information is available to the players). As highlighted in the main text, we observe
that the decrease in performance is mild, and the different algorithms achieved better rates than their
theoretical guarantees.
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