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Abstract

Quantitative reasoning is a critical skill to analyze1

data, yet the assessment of such ability remains lim-2

ited. To address this gap, we introduce the Quanti-3

tative Reasoning with Data (QRDATA) benchmark,4

aiming to evaluate Large Language Models’ capa-5

bility in statistical and causal reasoning with real-6

world data. The benchmark comprises a carefully7

constructed dataset of 411 questions accompanied8

by data sheets from textbooks, online learning ma-9

terials, and academic papers. To compare models’10

quantitative reasoning abilities on data and text, we11

enrich the benchmark with an auxiliary set of 29012

text-only questions, namely QRTEXT. We eval-13

uate natural language reasoning, program-based14

reasoning, and agent reasoning methods includ-15

ing Chain-of-Thought, Program-of-Thoughts, Re-16

Act, and code interpreter assistants on diverse mod-17

els. The strongest model GPT-4 achieves an accu-18

racy of 58%, which has much room for improve-19

ment. Among open-source models, Deepseek-20

coder-instruct, a code LLM pretrained on 2T to-21

kens, gets the highest accuracy of 37%. Analysis22

reveals that models encounter difficulties in data23

analysis and causal reasoning, and struggle in us-24

ing causal knowledge and provided data simultane-25

ously.26

1 Introduction27

Data is everywhere in our daily life and work, from win-28

loss charts in sports competitions to insurance databases29

of national health. We rely on our quantitative reasoning30

skills to process the data, more specifically, to extract in-31

formation from the data, draw inferences, and make predic-32

tions [Bueno de Mesquita and Fowler, 2021].33

There is evidence that current Large Language Models34

(LLMs) can perform fundamental data analysis like visual-35

ization and summarization [Cheng et al., 2023; Bai et al.,36

2023]. However, little effort has been made to evaluate the37

more challenging aspects of quantitative reasoning. On the38

other hand, there are papers evaluating advanced quantitative39

reasoning abilities of LLMs [Chen et al., 2023a; Jin et al.,40

What is the Average Causal 
Effect (ATE) from t to y?

Statistical Reasoning

t y x1 x2

1 5.60 -0.53 -0.34 

0 6.88 -1.74 -1.80 

0 3.00 -0.81 -0.20 

… … … …

…

What is a 95% confidence interval 
for the population mean of y?

ihdp.csv

Causal Reasoning

Reasoning Steps

1. Understand the data
2. Identify the point estimate
3. Verify the conditions
4. Calculate the margin of error 
and construct the interval

1. Understand the data
2. Build the causal model
3. Apply propensity score 
weighting to estimate ATE
4. Run refutation tests

Advanced Quantitative 
Reasoning with Data

Figure 1: Examples of advanced quantitative reasoning questions
and reasoning steps.

2023a], but they have not investigated whether LLMs can ap- 41

ply these skills to real data. 42

In this paper, we focus on two main areas of advanced 43

quantitative reasoning: statistical reasoning and causal rea- 44

soning, with examples shown in Figure 1. Given a data sheet 45

from sample surveys, statistical reasoning aims to infer the 46

underlying probability distribution, addressing questions like 47

what is a 95% confidence interval for the population mean of 48

y; while causal reasoning aims to understand the causal rela- 49

tionship between variables, addressing questions like what is 50

the average treatment effect1 from t to y. 51

We propose the Quantitative Reasoning with Data 52

(QRDATA) benchmark. It requires models to answer a quan- 53

titative reasoning question given data sheets as input. Our 54

benchmark shares a similar form with table question answer- 55

ing [Pasupat and Liang, 2015] and data analysis code gener- 56

ation [Lai et al., 2023] tasks, but has its unique challenges: 57

1) Our benchmark requires advanced quantitative knowledge 58

and skills. Consider the example in Figure 2. To answer the 59

question, models need to know what are common methods 60

of estimating the average treatment effect and how to utilize 61

them. To the best of our knowledge, few existing bench- 62

marks touch upon concepts in statistical reasoning with data, 63

1Average treatment effect is a measure of causal effect, quanti-
fying the difference in average outcomes between units assigned to
the treatment and units assigned to the control.



The CSV file ihdp.csv contains data obtained from the Infant Health and Development 
Program (IHDP). The study is designed to evaluate the effect of home visit from 
specialist doctors on the cognitive test scores of premature infants . The confounders 

x (x1-x25) correspond to collected measurements of the children and their mothers …

Data Description Question

What is the Average Treatment Effect (ATE) of the 
dataset? Please round the final answer to the nearest 
hundredth.

Correct Reasoning Steps:

1. Check rows of the dataset to understand its structure

import pandas as pd
data = pd.read_csv('ihdp.csv')
print(data.head())

2. Build a causal model based on the data description

ATE can be estimated using propensity score weighting:

3. Recall related method and apply to this scenario

…
ihdp_estimate = ihdp_model.estimate_effect(
  ihdp_identified_estimand,
  method_name="backdoor.propensity_score_weighting"
)
print('Estimated effect:', ihdp_estimate.value)

from dowhy import CausalModel

common_causes = ['x1', …, 'x25']
ihdp_model = CausalModel(
  data=data, treatment='t', outcome='y', 
  common_causes=common_causes
)

ihdp_refute_random_common_cause = ihdp_model.refute_estimate(
  ihdp_identified_estimand, ihdp_estimate,
  method_name="random_common_cause"
)
print('New effect:', ihdp_refute_random_common_cause.new_effect)

The estimate should not change if we add an independent random 
variable as a common cause to the dataset.

t y x1 x2

1 5.60 -0.53 -0.34 

0 6.88 -1.74 -1.80 

0 3.00 -0.81 -0.20 

… … … …

…

Final Answer: 4.02Estimated effect: 4.02

Sandbox Execution Results:

New effect: 4.02

4. Run refutation test to validate the estimate 

Figure 2: An example question of QRDATA and correct reasoning steps.

and none of them involve causal reasoning with data. 2) Our64

benchmark requires multi-turn reasoning. After execution of65

model generated code, models need to read the execution re-66

sults, and write subsequent code or interpret the results to67

produce the final answer. In the example, models should first68

check the data structure before safely indexing the variables69

in step 2. And after the refutation test in step 4, models need70

to compare the estimation before and after the refutation, to71

decide if the estimated effect is reliable, or if another estima-72

tion method should be used.73

To obtain high-quality quantitative reasoning questions and74

corresponding data, we construct QRDATA from open-source75

textbooks, online learning resources, and academic papers76

that are accompanied by data. This ensures that all the ques-77

tions are reasonable and match well with the data. Through78

careful manual construction, our dataset consists of 411 ques-79

tions along with 195 data sheets. To analyze the difficulty of80

data analysis, we also collect an auxiliary dataset of Quan-81

titative Reasoning with Text (QRTEXT). QRTEXT contains82

290 questions from textbooks and academic papers, and the83

questions can be solved based on text descriptions only.84

We evaluate a wide range of models and reasoning ap-85

proaches on QRDATA. To find what is a good solution86

to the task, we implement natural language reasoning with87

Chain-of-Thought [Wei et al., 2022], program-based reason-88

ing with Program-of-Thoughts [Chen et al., 2022], agent rea-89

soning with ReAct [Yao et al., 2022] and the code inter-90

preter assistants of GPT models. We also compare general-91

purpose LLMs with LLMs finetuned for specific abilities like92

math, code, and agent reasoning, to find out whether these93

abilities help in tackling our benchmark. Experimental re-94

sults show that the best closed-source LLM GPT-4 [OpenAI,95

2023] achieves an accuracy of 58% with the code interpreter96

assistant, and the best open-source LLM Deepseek-coder-97

instruct [Guo et al., 2024] achieves 37% with Program-of- 98

Thoughts. 99

As there is much room for improvement in model perfor- 100

mance, we further dive into what are the primary difficulties. 101

We find that data analysis is challenging for LLMs, especially 102

for smaller open-source LLMs. And all models including 103

GPT-4 and Gemini [Team et al., 2023] struggle with causal 104

reasoning. They acquire causal knowledge from the pretrain- 105

ing corpus, but can hardly integrate the knowledge with the 106

provided data in reasoning. 107

Our main contributions are as follows: 1) We propose QR- 108

DATA, the first benchmark for advanced quantitative reason- 109

ing with data, to assess models’ abilities of data-based sta- 110

tistical and causal reasoning. 2) We evaluate various models 111

and reasoning approaches on QRDATA, and provide insights 112

into the effective approaches to tackle the benchmark. 3) We 113

analyze the difficulties of current models in data analysis and 114

causal reasoning. 115

2 Benchmark Construction 116

In this section, we introduce how the QRDATA benchmark 117

is constructed. To ensure the quality of our benchmark, we 118

first gather quantitative reasoning teaching and research re- 119

sources, and then annotate questions based on the materials. 120

To compare the performance of quantitative reasoning on data 121

and text, we also introduce an auxiliary dataset QRTEXT for 122

analysis. 123

Resource Selection. We look for quantitative reasoning re- 124

sources with the following criteria: 1) The resource is related 125

to quantitative reasoning, especially statistical reasoning and 126

causal reasoning. 2) It contains multiple quantitative reason- 127

ing questions with corresponding data and answers. 3) It is 128

open-source and allows adaptation. 129



Count

Data Files 195
Avg. Rows per File 15219
Avg. Columns per File 46
Avg. Words of Data Description 73

Questions 411
Multiple Choice / Numerical 248 / 163
Statistical / Causal 142 / 269
Avg. Words of Question 32

Table 1: Statistics of QRDATA.
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Figure 3: Key concepts in QRDATA.

Eight resources are selected based on these criteria, includ-130

ing two books: OpenIntro Statistics [Diez et al., 2012] and131

Quantitative Social Science [Imai, 2018]; one online learn-132

ing resource: Causal Inference for the Brave and True2; and133

five datasets from academic papers: Flow cytometry [Sachs134

et al., 2005], IHDP [Hill, 2011], Jobs [Shalit et al., 2017],135

Neuropathic pain diagnosis [Tu et al., 2019], and Arctic sea136

ice [Huang et al., 2021].137

Question Collection. We collect multiple-choice questions138

and numerical questions from these resources, and ensure that139

the gold answer is unique. For textbooks and online learning140

resources, we extract the list of data sheets from their web-141

sites. If a data sheet is used in exercises, we use the exercise142

question and its solution as the question and answer; if it is143

used in the main content, we annotate questions and answers144

based on the content.145

For existing causal discovery datasets (Flow cytometry,146

Neuropathic pain diagnosis, and Arctic sea ice), we collect147

multiple-choice questions like Which cause-and-effect rela-148

tionship is more likely? A. headache causes groin pain B.149

groin pain causes headache C. No causal relationship exists150

following the style of Kıcıman et al. [2023]. For causal esti-151

mation datasets (IHDP and Jobs), we collect numerical ques-152

tions of estimating average treatment effect (ATE), average153

treatment effect on the treated (ATT), and average treatment154

effect on the control (ATC) like the example in Figure 2. More155

details are in Appendix A.1.156

We also collect data descriptions like the purpose and for-157

mat of the data sheets from the resources, and provide them158

along with questions to models.159

2https://matheusfacure.github.io/python-causality-
handbook/landing-page.html

Statistics. We provide the dataset statistics in Table 1, and the 160

number of questions collected from each source in Appendix 161

Table 6. The questions we collect cover a wide range of con- 162

cepts, and we illustrate some of them in Figure 3. We also 163

summarize the topics and question examples in Appendix 164

Table 8. Most questions in QRDATA are based on a single 165

data sheet, while 4% of questions are based on multiple data 166

sheets. 167

To check whether our dataset has already been memorized 168

by models in training, we apply the pretraining data detection 169

method Min-K% Prob [Shi et al., 2023] on GPT models and 170

Llama-2, and confirm that our dataset is unlikely to appear in 171

their pretraining corpora. 172

QRTEXT. To separate the challenge of quantitative rea- 173

soning from data analysis and analyze whether models mas- 174

ter the quantitative reasoning skills, we create an auxiliary 175

benchmark for comparison called Quantitative Reasoning 176

with Text. 177

Questions in QRTEXT can be answered without data, 178

with an example shown in Appendix Figure 4. We col- 179

lect questions from OpenIntro Statistics and two text-based 180

causal reasoning datasets CLADDER [Jin et al., 2023a] and 181

CORR2CAUSE [Jin et al., 2023b]. QRTEXT contains 290 182

questions, 100 for statistical reasoning and 190 for causal 183

reasoning. For ease of model comparison, the ratio of sta- 184

tistical/causal questions of QRTEXT is similar to QRDATA. 185

Details of QRTEXT question collection are in Appendix A.2. 186

Evaluation Metric. We report the accuracy by comparing the 187

final answer generated by models with the gold answer. As 188

models may encounter measurement error in numerical ques- 189

tions (e.g., different causal effect estimation methods will 190

yield minor differences in results), we consider any result 191

within ±3% of the gold answer to be correct. 192

3 Methods 193

We develop several zero-shot reasoning methods as our base- 194

lines. By comparing these methods, we aim to find a good 195

solution to the task of quantitative reasoning with data. 196

Table Question Answering (Table QA). The task of table 197

QA asks models to answer a question based on tables. To 198

evaluate if our benchmark can be solved by existing table 199

QA methods, we experiment with a competitive Table QA 200

method [Zhang et al., 2023]. It constructs a table instruction 201

tuning dataset TableInstruct, and finetunes models on 202

this dataset. 203

Chain-of-Thought (CoT). CoT prompting enables models 204

to conduct complex natural language reasoning through 205

intermediate reasoning steps. We feed the content of data 206

sheets to models and prompt models to respond to a 207

quantitative question using the provided 208

data ... Let’s think step by step. If the 209

data sheet is too large, we truncate it to fit the length limit. 210

To obtain the final answer from the model output, we 211

employ ChatGPT for answer extraction following Chen et al. 212

[2023a].3 213

3To assess the reliability of answer extraction with ChatGPT,



Program-of-Thoughts (PoT). PoT prompting asks models214

to generate a Python code program, and uses an external com-215

puter to execute the code. The output of the code is regarded216

as the answer. In contrast to TableLlama and CoT prompt-217

ing, PoT processes the data sheet with code and gets rid of218

the length limit of data. It also enables models to call data219

analysis packages for computation.220

ReAct-style Prompting. ReAct is a prevalent prompting221

paradigm for agent reasoning. It combines reasoning and act-222

ing in language models for task solving. To address our task,223

we restrict the action space to Python code execution, and224

ask models to generate thoughts and actions. Different from225

aforementioned methods that only allow one-turn generation,226

ReAct supports multi-turn reasoning. When a piece of code227

is generated, we execute it and feed the output back to mod-228

els as an observation. Based on the observation, models will229

either generate new thoughts and actions, or decide to predict230

the final answer.231

Code Interpreter Assistants. GPT models can be used as232

agents (called assistants), and a code interpreter tool is built-233

in, which could execute Python code in a sandbox to inter-234

pret the data. Similar to ReAct-style prompting, code inter-235

preter assistants allow multi-turn code generation and execu-236

tion, and end with a text-formed answer.237

Details of prompt design and prompt examples are in Ap-238

pendix A.3.239

4 Experiments240

4.1 Models241

We experiment with the CoT, PoT, and ReAct-style prompt-242

ing methods on the following models:243

General-Purpose LLMs. We select Llama-2-chat, Gemini-244

Pro, and GPT-4 as representatives of general-purpose LLMs.245

They exhibit strong abilities to follow instructions [Touvron246

et al., 2023; Team et al., 2023; OpenAI, 2023].247

Code LLMs. CodeLlama-instruct [Roziere et al., 2023] is248

initialized on Llama-2, finetuned on a code-heavy dataset,249

and instruction tuned on a code-related instruction dataset.250

Deepseek-coder-instruct [Guo et al., 2024] is pretrained on a251

project-level code corpus from scratch and instruction tuned252

to follow instructions. Both of them perform well among253

open-source code models on several code benchmarks.254

LLM for Mathematical Reasoning. WizardMath [Luo et255

al., 2023] is finetuned on Llama-2, enhancing the mathemati-256

cal reasoning abilities with reinforcement learning. It outper-257

forms many larger models on mathematical reasoning bench-258

marks.259

LLM for Agent Reasoning. AgentLM [Zeng et al., 2023] is260

instruction tuned based on Llama-2 to enhance the agent ca-261

pabilities. It uses a combination of instructions from general262

domains and instructions of interaction trajectories.263

we randomly sample 50 CoT outputs from all models, and manu-
ally verify the extracted answers. ChatGPT achieves an accuracy of
98%, demonstrating its proficiency in answer extraction.

For a fair comparison, we use the size of 7B for all the 264

open-source models.4 We use the two latest GPT models 265

GPT-3.5 Turbo and GPT-45 for code interpreter assistants. 266

More implementation details are in Appendix A.4. 267

We select TableLlama [Zhang et al., 2023] as a rep- 268

resentative table QA model. It is finetuned on Llama- 269

2-7B [Touvron et al., 2023] with TableInstruct, us- 270

ing LongLoRA [Chen et al., 2023b] to extend the context 271

length. It exhibits strong generalization ability across table 272

QA datasets. 273

As a reference for assessment, we also report the random 274

baseline and the human performance. The random baseline is 275

calculated by randomly choosing from the multiple choices, 276

and all the numerical questions are counted as incorrect. 277

The human performance is evaluated by asking three grad- 278

uate students who have taken quantitative reasoning courses 279

to answer a random sample of 50 questions from QRDATA. 280

Each question is answered by at least two students, and the 281

average accuracy is reported. The students are allowed to use 282

a Python executor, and search for concepts rather than spe- 283

cific questions on the Internet.6 284

4.2 Main Results 285

To investigate which reasoning methods and models better 286

solve our task, we summarize the performance of different 287

models paired with different reasoning methods in Table 2. 288

GPT-4 with the code interpreter assistant achieves the best 289

performance, and Deepseek-coder-instruct with PoT prompt- 290

ing is the best among open-source models. The best model is 291

18% worse than human, showing that QRDATA is challeng- 292

ing for LLMs. 293

Natural Language Reasoning. CoT works best for several 294

open-source models like Llama-2-chat and WizardMath, but 295

the results are close to or even worse than random, as data- 296

based quantitative reasoning requires heavy calculations that 297

are beyond natural language reasoning. The table QA model 298

TableLlama also underperforms in our benchmark. 299

Models can hardly answer numerical questions with CoT, 300

with a maximum accuracy of less than 10%. A limitation 301

of CoT and other natural language reasoning methods is that 302

in many cases, we cannot feed the whole data sheets into 303

the input, hindering models to perform accurate calculations. 304

We further compare CoT and PoT prompting on a subset of 305

QRDATA where the full datasheets can be fed into the base 306

model, and find that CoT does not exceed PoT on this sub- 307

set. The accuray of CoT prompting on numerical questions is 308

below 20% across all models, suggesting these models strug- 309

gle with performing precise calculations on data sheets using 310

CoT. 311

Program-based Reasoning. PoT best suits Deepseek-coder- 312

instruct, but to our surprise, another code LLM CodeLlama- 313

4The size of Deepseek-coder-instruct is 6.7B.
5The specific versions are gpt-3.5-turbo-1106 and

gpt-4-1106-preview.
6The majority of human errors are in causal discovery questions

(71%), because state-of-the-art causal discovery algorithms cannot
fully resolve this task [Vowels et al., 2022].



Model Size Overall Acc. Multiple Choice / Numerical Statistical / Causal

Random 23.0 38.1 / 0.0 15.0 / 27.2
Table Question Answering

TableLlama [Zhang et al., 2023] 7B 9.5 14.9 / 1.2 3.5 / 12.6
Chain of Thought Prompting

Llama-2-chat [Touvron et al., 2023] 7B 22.1 35.1 / 2.5 20.4 / 23.0
AgentLM [Zeng et al., 2023] 7B 24.3 40.0 / 0.0 19.0 / 27.1
WizardMath [Luo et al., 2023] 7B 25.1 40.0 / 2.5 18.3 / 28.6
CodeLlama-instruct [Roziere et al., 2023] 7B 19.2 31.0 / 1.2 14.1 / 21.9
Deepseek-coder-instruct [Guo et al., 2024] 6.7B 18.7 30.2 / 1.2 15.5 / 20.4
Gemini-Pro [Team et al., 2023] - 31.9 46.8 / 9.2 25.4 / 35.3
GPT-4 [OpenAI, 2023] - 36.5 57.3 / 4.9 24.6 / 42.8

Program of Thoughts Prompting
Llama-2-chat 7B 3.7 6.1 / 0.0 7.8 / 1.5
AgentLM 7B 3.2 4.4 / 1.2 8.5 / 0.4
WizardMath 7B 16.8 16.5 / 17.2 31.7 / 8.9
CodeLlama-instruct 7B 17.3 24.2 / 6.7 19.7 / 16.0
Deepseek-coder-instruct 6.7B 37.0 40.7 / 31.3 45.8 / 32.3
Gemini-Pro - 26.8 27.8 / 25.2 39.4 / 20.1
GPT-4 - 49.1 46.0 / 54.0 72.5 / 36.8

ReAct-style Prompting
Llama-2-chat 7B 11.4 18.5 / 0.6 4.2 / 15.2
AgentLM 7B 10.7 16.9 / 1.2 5.6 / 13.4
WizardMath 7B 18.7 21.0 / 15.3 19.7 / 18.2
CodeLlama-instruct 7B 15.8 22.2 / 6.1 16.2 / 15.6
Deepseek-coder-instruct 6.7B 27.3 29.4 / 23.9 38.7 / 21.2
Gemini-Pro - 38.9 47.6 / 25.8 41.5 / 37.5
GPT-4 - 57.4 59.2 / 54.6 69.0 / 51.3

Code Interpreter Assistants
GPT-3.5 Turbo - 41.4 42.3 / 39.9 60.6 / 31.2
GPT-4 - 57.9 56.9 / 59.5 78.9 / 46.8

Human (subset) 76.0 71.9 / 83.4 88.8 / 68.8

Table 2: Performance of models on QRDATA. Numbers are accuracies in percentages (%). The best results are in bold. For models evaluated
with multiple reasoning methods, the model-level best results are underlined.

instruct does not perform well with PoT. The gap in cod-314

ing abilities can also be seen from the execution success315

rate, which is 89% for Deepseek-coder-instruct and 73% for316

CodeLlama-instruct.317

Although the overall performance of several non-code318

LLMs drops with PoT compared to CoT, the accuracy of319

numerical questions improves with the help of code execu-320

tion. This exhibits the potential for performance improve-321

ment through the hybrid of CoT and PoT rationales [Yue et322

al., 2023].323

Agent Reasoning. Closed-source LLMs like GPT-4 and324

Gemini-Pro perform best with agent reasoning. GPT-4 per-325

formance with ReAct-style prompting is close to with the326

code interpreter assistant, exhibiting that our ReAct-style327

prompts successfully activate the model abilities.328

Smaller open-source models can hardly follow the com-329

plex ReAct-style instructions, which limits their perfor-330

mance. Although AgentLM is finetuned for agent reasoning,331

it cannot generalize well to the quantitative reasoning task.332

On the other hand, open-source models except code LLMs333

perform better with ReAct-style prompting than PoT, because334

multi-turn code execution gives them chances to fix the gen-335

erated code, rising the average execution success rate from336

25.5% to 35.6%. We also manually review 50 randomly sam-337

pled ReAct outputs of these models, and find that in 10% of338

the cases, the initially generated code is non-executable, and 339

is fixed in the following steps. This suggests that the iterative, 340

multi-turn nature of agent reasoning can contribute to fixing 341

the generated code. 342

LLMs with Enhanced Abilities. We compare three mod- 343

els finetuned on Llama-2 for enhanced abilities of code, 344

math, and agent reasoning with the general-purpose LLM 345

Llama-2-chat. AgentLM and WizardMath only gain marginal 346

improvement, and CodeLlama-instruct even underperforms 347

Llama-2-chat. This may be due to the limited capability of 348

the base model. 349

On the other hand, Deepseek-coder-instruct, which masters 350

in code generation, outperforms all other models with simi- 351

lar sizes by more than 10%. We further evaluate Deepseek- 352

coder-instruct-33B to see if it could approach the perfor- 353

mance of closed-source LLMs, but it gets an overall accuracy 354

of 31.9% with PoT and 27.0% with ReAct-style prompting, 355

even lower than the 6.7B model. Although coding ability is 356

important in solving quantitative questions with data, the per- 357

formance of code LLMs is still limited compared to larger 358

general-purpose LLMs like GPT-4. 359

Statistical Reasoning vs. Causal Reasoning. Statistical rea- 360

soning focuses on identifying patterns in data, whereas causal 361

reasoning goes a step further to find causal relationships be- 362



Model Overall Acc. Statistical / Causal

Random 23.7 20.8 / 25.3
Chain of Thought Prompting

Llama-2-chat 28.6 33.0 / 26.3
AgentLM 26.6 28.0 / 25.8
WizardMath 36.6 46.0 / 31.6
CodeLlama-i 26.2 26.0 / 26.3
Deepseek-coder-i 23.1 18.0 / 25.8
Gemini-Pro 37.9 51.0 / 31.1
GPT-4 52.1 76.0 / 39.5

Program of Thoughts Prompting
Llama-2-chat 21.7 12.0 / 26.8
AgentLM 22.4 16.0 / 25.8
WizardMath 34.1 38.0 / 32.1
CodeLlama-i 27.2 26.0 / 27.9
Deepseek-coder-i 39.0 47.0 / 34.7
Gemini-Pro 43.1 56.0 / 36.3
GPT-4 59.0 86.0 / 44.7

ReAct-style Prompting
Llama-2-chat 3.4 9.0 / 0.5
AgentLM 11.0 5.0 / 14.2
WizardMath 19.7 28.0 / 15.3
CodeLlama-i 4.8 13.0 / 0.5
Deepseek-coder-i 29.0 42.0 / 22.1
Gemini-Pro 35.2 52.0 / 26.3
GPT-4 57.2 86.0 / 42.1

Code Interpreter Assistants
GPT-3.5 Turbo 47.2 65.0 / 37.9
GPT-4 59.7 89.0 / 44.2

Table 3: Performance of models on QRTEXT. Numbers are accu-
racies in percentages (%). Best results are in bold, and model-level
best results are underlined. The suffix -i indicates -instruct.

yond correlation. For all models evaluated, the gap between363

model performance and the random baseline is larger for sta-364

tistical questions than causal questions, showing that models365

obtain better statistical reasoning abilities than causal reason-366

ing abilities. Even the best-performed model GPT-4 only an-367

swers 51% of causal questions correctly, demonstrating the368

large room for improvement in causal reasoning.369

5 Analysis370

We go deeper into the primary difficulties models face in ad-371

dressing the task of quantitative reasoning with data. This372

may provide insights into how to design methods to better373

solve our task. We also provide an error analysis of GPT-4 in374

Appendix A.6.375

5.1 Difficulty of Data Analysis376

We evaluate models7 on our auxiliary benchmark QRTEXT,377

and compare the performance on QRTEXT and QRDATA to378

quantify the difficulty of data analysis. As shown in Table 3,379

GPT-4 achieves the best accuracy of 59.7% on QRTEXT,380

and Deepseek-coder-instruct gets the best accuracy of 39.0%381

among open-source LLMs.382

The single-turn reasoning methods, CoT and PoT prompt-383

ing, work best for all models except GPT-4 on QRTEXT. For384

7We do not experiment with TableLlama as the questions do not
involve tables.

Model Acc. w/ data Acc. w/o data

Random 35.7 35.7
GPT-3.5 Turbo 35.1 25.3
Gemini-Pro 45.4 48.8
GPT-4 50.7 60.0

Table 4: Performance of models on multiple-choice causal questions
of QRDATA with (w/) and without (w/o) access to the data. Better
results are in bold.

GPT-4, the performance gap between the code interpreter as- 385

sistant and PoT is merely 0.7%, compared to 8.8% on QR- 386

DATA. These demonstrate that single-turn reasoning is almost 387

adequate for quantitative reasoning with text, while multi- 388

turn reasoning is more necessary for quantitative reasoning 389

with data. 390

All models perform better on QRTEXT than QRDATA 391

from 1.8% to 11.5%, and the gap is larger for smaller models. 392

If we control the knowledge and skills required by restricting 393

questions to the same source (OpenIntro Statistics), models 394

perform 6% better on average. These provide evidence that 395

most models have difficulty in data analysis. 396

5.2 Difficulty of Causal Reasoning 397

We observe the performance gap between statistical reason- 398

ing and causal reasoning on QRDATA, and the gap remains 399

on QRTEXT. GPT-4 achieves 89% accuracy in statistical 400

questions on QRTEXT, but only about half the accuracy in 401

causal questions. This exhibits the unique difficulty of causal 402

reasoning regardless of data analysis. 403

Table 5 provides a case where GPT-4 with the code in- 404

terpreter assistant mis-predicts a causal question from QR- 405

DATA. When asked to predict the causal relation between 406

two variables L L1 radiculopathy and R L5 radiculopathy, 407

GPT-4 proposes a wrong plan of calculating the conditional 408

probabilities in Step 2. As correlation does not imply causa- 409

tion, although GPT-4 successfully executes the plan, it makes 410

a wrong prediction. 411

Easier Said than Done. The unsatisfactory performance on 412

causal questions appears to differ from the findings of some 413

previous papers [Willig et al., 2022; Kıcıman et al., 2023], 414

which show that LLMs are capable of causal reasoning in 415

tasks like causal discovery without data. To figure out the rea- 416

son for the inconsistency, we conduct an experiment to eval- 417

uate if the provided data interfered with the models. Specif- 418

ically, we evaluate the best three models on multiple-choice 419

causal questions of QRDATA without giving them the data8, 420

and compare their performance with the original setting. We 421

use the best reasoning method for each model: ReAct-style 422

prompting for Gemini-Pro, and code interpreter assistants for 423

GPT-3.5 Turbo and GPT-4. 424

As shown in Table 4, two out of three models perform bet- 425

ter without data access, revealing that it is easier for these 426

LLMs to speculate causal relations than to conduct causal 427

8Note that this setting is different with QRTEXT. Without data
access, questions of QRDATA are not self-contained, but rely on
models’ commonsense to predict answers.



Question Which cause-and-effect relationship is more likely? Please answer with A, B, or C.
A. R L5 radiculopathy causes L L1 radiculopathy B. L L1 radiculopathy causes R L5 radiculopathy
C. No causal relationship exists

Gold Answer C

GPT-4 Prediction with Data Access
Step 1: # Display the first few records to understand the data structure

Code Interpreter data.head()

Step 2: I will examine the data for the following patterns:
- If patients with “R L5 radiculopathy” also frequently have “L L1 radiculopathy” and not the other way around, it
may suggest that A is more likely.
- Conversely, if patients with “L L1 radiculopathy” also frequently have “R L5 radiculopathy” and not the other way
around, it may suggest that B is more likely.
- If there is no clear pattern or both conditions occur independently, it may suggest that C is more likely.

Step 3: # Probability of L L1 given R L5

Code Interpreter P L L1 given R L5 = co occurrence count / R L5 count if R L5 count else 0

# Probability of R L5 given L L1

P R L5 given L L1 = co occurrence count / L L1 count if L L1 count else 0

P L L1 given R L5, P R L5 given L L1

Step 4: Based on these conditional probabilities, it is more likely that “L L1 radiculopathy” causes ‘R L5 radiculopathy”
over the other proposed causal direction. Final answer: B.

GPT-4 Prediction without Data Access
Prediction Given both ‘R L5’ and ‘L L1’ radiculopathies are on different sides of the body and different spinal levels, it’s not

common for one to cause the other according to standard medical understanding. It is more likely that they occur
independently due to separate causes.
It’s likely that if both conditions are present in a patient, they arose independently or due to a systemic issue affecting
the spine broadly, rather than one causing the other. Final answer: C.

Table 5: An example of GPT-4 prediction on QRDATA. GPT-4 correctly predicts the answer without data access, but predicts wrongly when
the data is provided. The outputs are abridged and the full outputs are in Appendix A.5.

reasoning with data. The strong causal reasoning abilities ex-428

hibited by models in previous works come from their internal429

knowledge, but models can hardly use their internal knowl-430

edge to analyze the data provided.431

In the case of Table 5, in the absence of data access, GPT-4432

correctly predicts that there is no causal relationship between433

the two variables. However, when the data is provided, it is434

misled to calculate the conditional probabilities.435

6 Related Work436

6.1 Data-related Benchmarks437

Table Question Answering. Table QA [Pasupat and Liang,438

2015; Zhong et al., 2017] asks models to answer questions439

about information from given tables. It evaluates models’440

abilities to parse queries, look up information from tables,441

and integrate the retrieved information to reach an answer.442

Datasets like Spider [Yu et al., 2018] and SEDE [Hazoom et443

al., 2021] focus more on the semantic parsing part and de-444

sign complex questions that need compositional generaliza-445

tion over SQL queries. Some datasets present the challenges446

of retrieving information from hierarchical tables [Cheng et447

al., 2022; Zhao et al., 2022] or a fusion of textual and tabu-448

lar data [Chen et al., 2020; Zhu et al., 2021]. Datasets like449

FinQA [Chen et al., 2021] and TABMWP [Lu et al., 2022b]450

require numerical reasoning to figure out the answer, but they451

mainly focus on basic arithmetic, while our benchmark re-452

quires more advanced quantitative reasoning skills.453

Furthermore, although some benchmarks require multi- 454

hop reasoning, they can be solved in a single turn, whereas 455

our benchmark needs multi-turn reasoning between the model 456

and data. 457

Code Generation. Code generation tasks require models to 458

produce code to meet certain intents. Recent benchmarks like 459

DS-1000 [Lai et al., 2023] and ExeDS [Huang et al., 2022] 460

explore LLMs’ abilities to generate data science code, like 461

training models using machine learning packages and mak- 462

ing visualizations. KnowledgeMATH [Zhao et al., 2023] and 463

BizBench [Koncel-Kedziorski et al., 2023] evaluate if mod- 464

els could generate code for financial reasoning with tables. 465

To our knowledge, none of them focus on advanced quan- 466

titative reasoning. Only a concurrent dataset DAEval [Hu 467

et al., 2024] involves correlation analysis as a component of 468

question concepts, and none of them include causal reasoning 469

questions. 470

6.2 Quantitative Reasoning Abilities 471

There is a growing interest in exploring language models’ 472

abilities of quantitative reasoning. Various benchmarks focus 473

on mathematical reasoning [Hendrycks et al., 2021; Cobbe et 474

al., 2021], and recent works broaden the analysis to the field 475

of science [Lu et al., 2022a; Chen et al., 2023a]. 476

Another line of work focuses on the specific aspect of 477

causal reasoning of LLMs. Bhagavatula et al. [2019]; Qin 478

et al. [2019]; Liu et al. [2023] explore the ability of common- 479



sense causal reasoning like abductive reasoning and counter-480

factual reasoning. Willig et al. [2022]; Gao et al. [2023];481

Kıcıman et al. [2023] analyze the mastery of causal knowl-482

edge like cause-effect pairs. Jin et al. [2023a,b] evaluate the483

utilization of causal inference skills.484

In this work, we extend the research to quantitative reason-485

ing with data, which poses new challenges for LLMs.486

7 Conclusion487

We propose QRDATA, a benchmark of advanced quantita-488

tive reasoning with data, to explore LLMs’ statistical and489

causal reasoning abilities with real-world data. We care-490

fully construct the benchmark with questions from teaching491

and research materials, and compare natural language reason-492

ing, program-based reasoning, and agent reasoning among493

a wide range of models. Experimental results reveal that494

models have difficulty in data analysis and causal reasoning.495

Even though powerful LLMs like GPT-4 have acquired causal496

knowledge, they can hardly integrate them with the provided497

data. By proposing this benchmark, we hope to elicit at-498

tention to the data-based quantitative reasoning ability. We499

call for more specialized methods to enhance the ability, like500

training models in the agent reasoning style with data as in-501

put, and equipping models with more quantitative reasoning502

knowledge.503

A Appendix504

A.1 Question Collection of QRDATA505

We provide the number of questions collected from different506

sources in Table 6. Table 8 summarizes the topics covered in507

QRDATA, and examples of questions related to these topics.508

Causal Discovery. We collect both pairwise causal discov-509

ery and full graph causal discovery questions from the Neuro-510

pathic pain diagnosis dataset following Kıcıman et al. [2023].511

We sample 50 causal relations like L1 radiculopathy →512

IBS from the gold causal graph, and generate pairwise causal513

discovery questions asking models to predict the direction of514

the causal relation. The questions are in the form of Which515

cause-and-effect relationship is more likely? A. R L1 radicu-516

lopathy causes IBS B. IBS causes R L1 radiculopathy.517

In full graph causal discovery, there are three possible re-518

lations between two variables A and B: A → B, B → A,519

and no causal relation exists. We sample 25 variable pairs520

that have causal relations in the causal graph and 25 variable521

pairs that do not have causal relations, and form 50 questions522

in the form of Which cause-and-effect relationship is more523

likely? A. headache causes groin pain B. groin pain causes524

headache C. No causal relationship exists.525

For the Flow cytometry and Arctic sea ice datasets, we526

only collect the more challenging full graph causal discov-527

ery questions. As the causal graph of Arctic sea ice contains528

double-sided edges, we ask models to predict from four possi-529

ble choices like Which cause-and-effect relationship is more530

likely? A. Residual cloud cover causes Residual longwave531

B. Residual longwave causes Residual cloud cover C. The532

causal relation is double sided between Residual cloud cover533

and Residual longwave D. No causal relationship exists.534

Source Question

OpenIntro Statistics 112
Quantitative Social Science 35
Causal Inference for the Brave and True 24
Flow Cytometry 50
IHDP 30
Jobs 10
Neuropathic Pain Diagnosis 100
Arctic Sea Ice 50
Overall 411

Table 6: Count of questions from different sources of QRDATA.

Failure Reason Percentage (%)

Data Analysis 34%
Knowledge Recall 44%
Equation Formulation 16%
Calculation 6%

Table 7: Error analysis of GPT-4 with the code interpreter assistant
on QRDATA.

Causal Estimation. We collect numerical questions of es- 535

timating average treatment effect (ATE), average treatment 536

effect on the treated (ATT), and average treatment effect on 537

the control (ATC) from the IHDP dataset. As all the out- 538

comes and counterfactual outcomes are simulated using real 539

covariates, we calculate the values of these estimates as the 540

gold answers. In the Jobs dataset, all the treatments were 541

from randomized experiments, so we can calculate the true 542

ATT values. We collect questions of estimating ATT from 543

the dataset. 544

A.2 Question Collection of QRTEXT 545

QRTEXT contains 290 questions in total, 140 multiple choice 546

questions and 150 numerical questions. We collect 100 statis- 547

tical reasoning questions from OpenIntro Statistics, 94 causal 548

reasoning questions from CLADDER, and 96 causal reason- 549

ing questions from CORR2CAUSE. Figure 4 exhibits an ex- 550

ample question of QRTEXT. 551

The OpenIntro Statistics questions are collected from exer- 552

cises with solutions from the textbook. CORR2CAUSE con- 553

tains causal discovery questions of determining the causal 554

relationship between the variables given correlational state- 555

ments. We randomly sample CORR2CAUSE questions from 556

the original test set. 557

CLADDER contains causal questions where the conditions 558

are described in natural language. It classifies questions into 559

three rungs: associational (rung 1), interventional (rung 2), 560

and counterfactual (rung 3). We only consider questions of 561

rungs 2 and 3 because these are related to causal reasoning. 562

We randomly sample causal estimation questions querying 563

Average Treatment Effect (ATE), Effect of the Treatment on 564

the Treated (ETT), Natural Direct Effect (NDE), and Natu- 565

ral Indirect Effect (NIE), and transform the original yes-or-no 566

questions into numerical questions using the provided meta- 567

data. This is to balance the ratio of multiple choice questions 568

and numerical questions, controlling the random performance 569



Imagine a self-contained, hypothetical world with only the following conditions, and 
without any unmentioned factors or causal relationships: Obesity has a direct effect 
on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. 
Diabetes has a direct effect on lifespan. Smoking is unobserved.
For normal weight people, the probability of long lifespan is 66%. For obese people, 
the probability of long lifespan is 56%.

Data Description Question

What is the average treatment effect from obesity to 
lifespan? 
Please answer with a positive number if the effect is 
positive, a negative number otherwise, and round to 
the nearest hundredth.

Correct Reasoning Steps:

1. Build a causal model based on the data description

3. Derive the estimand of average causal effect

ATE = E[Y | do(T = 1)] - E[Y | do(T = 0)]
    = P(Y=1|T=1) - P(Y=1|T=0)

ATE = 0.56 – 0.66 = -0.10

Final Answer: -0.10

4. Solve the estimand 

T

D Y

S

T: Obesity
S: Smoking (unobserved)

No confounding variable for the causal relation from 
Obesity to Lifespan

2. Identify confounding variables

D: Diabetes
Y: Lifespan

Figure 4: An example question of QRTEXT and correct reasoning steps. The question is converted from CLADDER.

to be close to QRDATA.570

A.3 Prompt Design571

Table 9 shows an example prompt for Chain-of-Thought rea-572

soning. In real prompts, we feed all the content of the data573

sheets until it meets the length limit of 3500 tokens. We shuf-574

fle the data to avoid the bias towards values in the front. Af-575

ter Chain-of-Thought reasoning, we use GPT-3.5 Turbo for576

answer extraction, and the prompt template is shown in Ta-577

ble 10.578

Table 11 shows an example prompt for Program-of-579

Thoughts reasoning. We shuffle the data and provide the first580

ten lines in the prompt. An example prompt for ReAct-style581

reasoning is in Table 12, and an example prompt for code in-582

terpreter assistants is in Table 13. When the question is based583

on multiple data sheets, we demonstrate the rows of these data584

sheets respectively in the prompts.585

A.4 Implementation Details586

We conduct model inference with temperature 0 and maxi-587

mum new tokens 512. We limit the maximum reasoning steps588

to 10 in ReAct-style prompting. Experiments are conducted589

on NVIDIA A800 GPUs. It takes five minutes to evaluate a590

7B model on QRDATA with CoT/PoT prompting on a single591

GPU, and one hour to evaluate a 7B model with ReAct-style592

prompting.593

A.5 Case Study594

Table 14 demonstrates the full output of GPT-4 on the exam-595

ple case from QRDATA, and Table 15 demonstrates the full596

output of GPT-4 without access to the data.597

A.6 Error Analysis598

To have a quantitative view of model failures, we conduct an599

error analysis for the best-performed model GPT-4 with the600

code interpreter assistant on QRDATA. We randomly sam-601

ple 50 incorrect predicted instances, and annotate their main602

reason for mis-prediction. As shown in Table 7, 34% of the603

mis-predictions originate from data analysis. The model may604

fail to retrieve the correct columns according to the instruc- 605

tion of questions, or misinterpret the data values. 44% of the 606

errors occur in knowledge recall, like choosing a wrong hy- 607

pothesis test, or using statistical methods to address a causal 608

question. Even if the model recalls the correct knowledge to 609

solve the question, it formulates wrong equations in 16% of 610

the cases. And 6% of errors occur in calculation. This is also 611

the main reason for errors when humans conduct the task, be- 612

cause state-of-the-art causal methods cannot perfectly reach 613

the correct answer. 614

Ethics Statement 615

Intellectual Property. We follow the permission of li- 616

censes during the data collection process. And the collected 617

data should not be used commercially. 618

Potential Risks. Our evaluation reveals that current LLMs 619

are imperfect in conducting quantitative reasoning with data. 620

We suggest readers not trust solutions provided by LLMs. 621
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Topic Description Example

Probability Calculating the likelihood of events happening. What is the probability a randomly selected person
who was not inoculated died from smallpox?

Distribution Understanding how data points are spread out. Is it reasonable to model the proportion of US adults
who support expanding wind turbines using a nor-
mal distribution?

Estimation Approximating parameters based on samples drawn
from the population, and quantifying the uncer-
tainty of estimates.

Use a Poisson distribution to approximate the data.
What is the event rate of the Poisson distribution?

Hypothesis Testing Using statistical tests to assess the validity of hy-
potheses.

Given the hypothesis that the proportion of college
graduates who support off-shore drilling in Califor-
nia is equal to that of non-college graduates, will
you accept or reject the hypothesis with a signifi-
cance level of 5%?

Prediction Using statistical models to predict future values
based on existing data trends.

Fit a linear regression model using the Democratic
margin in the two-party vote share as the response
variable and the perceived competence for Demo-
cratic candidates as the predictor. What is the esti-
mated slope of the model?

(a) Topics of statistical reasoning.

Topic Description Example

Confounding Recognizing confounders that might influence the
observed relationship between two variables. For
example, a variable that causes both the treatment
and the outcome is a confounder.

We are estimating the causal effect of the new drug
on the number of days the patient stays in the hos-
pital, and we already controlled for the severity.
Should we also control for the ’hospital’ variable?

Causal Discovery Inferring the causal relations from the data. For ex-
ample, distinguishing between correlation and cau-
sation and determining the causal direction between
two variables.

Which cause-and-effect relationship is more likely?
A. R L5 radiculopathy causes L L1 radiculopathy
B. L L1 radiculopathy causes R L5 radiculopathy
C. No causal relationship exists

Causal Effect Esti-
mation

Estimating the causal effect between two variables
using methods like propensity score matching and
doubly robust estimation.

What is the average treatment effect of the growth
mindset on the achievement score? Please conduct a
doubly robust estimation and use logistic regression
to estimate the propensity score.

Instrumental Vari-
ables

Addressing confounding bias with instrumental
variables. An instrumental variable causes the
treatment and is only correlated with the outcome
through the treatment.

What is the average additional percentage wage in-
crease associated with each additional year of edu-
cation based on the instrumental variable of whether
the individual is born in the last quarter (q4)?

Panel Data Applying methods like difference-in-differences
and synthetic control to estimate the causal effect
in panel data. These methods differ from those used
to estimate causal effects in a single period.

What is the average increase in bank deposits
per customer in Porto Alegre after the billboard
intervention, as estimated by the difference-in-
differences approach?

(b) Topics of causal reasoning.

Table 8: Topics covered in QRDATA and examples of questions related to these topics.



Data Description:
Public health has improved and evolved, but has the public’s knowledge changed with it? This data set rosling responses.csv contains
sample responses for two survey questions posed by Hans Rosling during lectures to a wide array of college-educated audiences.
rosling responses:
— — question — response — prob random correct —
— 0 — children in 2100 — correct — 0.333333 —
— 1 — children in 2100 — incorrect — 0.333333 —
— 2 — children in 2100 — correct — 0.333333 —
— 3 — children with 1 or more vaccination — incorrect — 0.333333 —
— 4 — children in 2100 — incorrect — 0.333333 —
...
Task:
You are a data analyst and good at quantitative reasoning. You are required to respond to a quantitative question using the provided data.
The description and the table are listed above. Please analyze the table to answer the question. Do not write any code in your answer.
Ensure that your final answer is positioned at the very end of your output, adhering to the format ‘Final answer: [answer]’. The final
answer should be a number or a short phrase and should be written in a new line.
Question:
Can we reject the notion that the performance of college-educated adults was different than random guessing in the chil-
dren with 1 or more vaccination question with 95% confidence? Please answer with “yes” or “no”.
Response:
Let’s think step by step.

Table 9: Example prompt for Chain-of-Thought reasoning. In real prompts, we feed all the content of the data sheets until it meets the length
limit.

Extract the final answer from the given solution as a numeric value or a short phrase for the question. If you cannot extract an answer,
return ”None”.
You should either return ”None” or the final answer without any additional words.
Question: {question}
Solution: {answer}
Final Answer:

Table 10: Prompt template for answer extraction after Chain-of-Thought reasoning. {question} is the question from the benchmark, and
{answer} is the answer generated by models.



You are a data analyst and good at quantitative reasoning. You are required to respond to a quantitative question using the provided data.
The description and the question can be found below. Please analyze the first 10 rows of the table and write python code to analyze the
whole table. You can use any python library. The returned value of the program is supposed to be the answer. The format of the code
should be
```python
def solution():

# import libraries if needed
# load data
# write code to get the answer
# return answer

```
Data Description:
Public health has improved and evolved, but has the public’s knowledge changed with it? This data set rosling responses.csv contains
sample responses for two survey questions posed by Hans Rosling during lectures to a wide array of college-educated audiences.
First 10 rows of the data:
rosling responses:
— — question — response — prob random correct —
— 0 — children in 2100 — correct — 0.333333 —
— 1 — children in 2100 — incorrect — 0.333333 —
— 2 — children in 2100 — correct — 0.333333 —
— 3 — children with 1 or more vaccination — incorrect — 0.333333 —
— 4 — children in 2100 — incorrect — 0.333333 —
— 5 — children in 2100 — incorrect — 0.333333 —
— 6 — children in 2100 — correct — 0.333333 —
— 7 — children in 2100 — incorrect — 0.333333 —
— 8 — children in 2100 — incorrect — 0.333333 —
— 9 — children in 2100 — incorrect — 0.333333 —
Question:
Can we reject the notion that the performance of college-educated adults was different than random guessing in the chil-
dren with 1 or more vaccination question with 95% confidence? Please answer with “yes” or “no”.
Response:
```python

Table 11: Example prompt for Program-of-Thoughts reasoning.



Data Description:
Public health has improved and evolved, but has the public’s knowledge changed with it? This data set rosling responses.csv contains
sample responses for two survey questions posed by Hans Rosling during lectures to a wide array of college-educated audiences.
You are working with a pandas dataframe in Python. The name of the dataframe is ‘df’.
You should use the tools below to answer the question posed of you:
python repl ast: A Python shell. Use this to execute python commands. Input should be a valid python command. When using this tool,
sometimes output is abbreviated - make sure it does not look abbreviated before using it in your answer.

Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be python repl ast
Action Input: the input to the action, should be the code to execute
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question, just provide the answer WITHOUT any other words

Note that you should import the libraries if needed.
DO NOT create any plotting.
For all outputs in code, THE print() function MUST be called.
If you use Action in this step, stop after generating the Action Input and await the execution outcome from python repl ast.
If you output the Final Answer in this step, do not use Action.

Here is an example of using the python repl ast:
Action: python repl ast
Action Input:
import pandas as pd
print(df.head())

This is the result:
— — question — response — prob random correct —
— 0 — children with 1 or more vaccination — correct — 0.333333 —
— 1 — children with 1 or more vaccination — correct — 0.333333 —
— 2 — children with 1 or more vaccination — incorrect — 0.333333 —
— 3 — children with 1 or more vaccination — incorrect — 0.333333 —
— 4 — children with 1 or more vaccination — incorrect — 0.333333 —

Begin!
Question:
Can we reject the notion that the performance of college-educated adults was different than random guessing in the chil-
dren with 1 or more vaccination question with 95% confidence? Please answer with “yes” or “no”.

Table 12: Example prompt for ReAct-style reasoning.



Assistant Instruction You are a data analyst and good at quantitative reasoning. You are required to respond to a quantitative question
using the provided data. The description and the question can be found below. Please just start answering and
don’t ask me any questions. Put your output in one message. Ensure that your final answer is positioned at the
very end of your output, adhering to the format ’Final answer: [answer]

User Data Description:
Public health has improved and evolved, but has the public’s knowledge changed with it? This data set
rosling responses.csv contains sample responses for two survey questions posed by Hans Rosling during lec-
tures to a wide array of college-educated audiences.
Question:
Can we reject the notion that the performance of college-educated adults was different than random guessing in
the children with 1 or more vaccination question with 95% confidence? Please answer with “yes” or “no”.

Table 13: Example prompt for the code interpreter assistants.



Data Description The neuropathic pain diagnosis mainly consists of symptom diagnosis, pattern diagnosis, and pathophysiological
diagnosis. The csv file Neuropathic 11.csv contains neuropathic pain diagnosis records in the form of tables of
which the row represents different patients and the column represents different diagnostic labels.

Question Which cause-and-effect relationship is more likely?
A. R L5 radiculopathy causes L L1 radiculopathy B. L L1 radiculopathy causes R L5 radiculopathy
C. No causal relationship exists
Please answer with A, B, or C.

Gold Answer C

GPT-4 Prediction with Data Access
Step 1: import pandas as pd

Code Interpreter # Reading the dataset

file path = ‘/mnt/data/Neuropathic 11.csv’

data = pd.read csv(file path)

# Display the first few records to understand the data structure

data.head()

Step 2: Let’s proceed with analyzing the relevant columns to identify if there are any cause-and-effect relationships between
the “R L5 radiculopathy” and “L L1 radiculopathy” conditions.
I will start by filtering these two columns from the dataset and then conducting an analysis to identify the likelihood
of either of the radiculopathies causing the other. I will examine the data for the following patterns:
- If patients with “R L5 radiculopathy” also frequently have “L L1 radiculopathy” and not the other way around, it
may suggest that A is more likely.
- Conversely, if patients with “L L1 radiculopathy” also frequently have “R L5 radiculopathy” and not the other way
around, it may suggest that B is more likely.
- If there is no clear pattern or both conditions occur independently, it may suggest that C is more likely.
To do this analysis, I will compute conditional probabilities:
- P(L L1 — R L5)
- P(R L5 — L L1)
Then I will compare these probabilities to make an inference regarding the most likely cause-and-effect relationship.

Step 3: # Extract the relevant columns

Code Interpreter R L5 col = ‘R L5 radiculopathy’

L L1 col = ‘L L1 radiculopathy’

# Filter the dataset for these two columns

radiculopathy data = data corrected[[R L5 col, L L1 col]]

# Calculate the occurrence of each condition and their co-occurrence

R L5 count = radiculopathy data[R L5 col].sum()

L L1 count = radiculopathy data[L L1 col].sum()

co occurrence count = radiculopathy data[(radiculopathy data[R L5 col] == 1) &
(radiculopathy data[L L1 col] == 1)].shape[0]

# Calculate the conditional probabilities

# Probability of L L1 given R L5

P L L1 given R L5 = co occurrence count / R L5 count if R L5 count else 0

# Probability of R L5 given L L1

P R L5 given L L1 = co occurrence count / L L1 count if L L1 count else 0

P L L1 given R L5, P R L5 given L L1

Step 4: The conditional probabilities calculated are as follows:
- P(L L1 — R L5) ≈ 0.0075
- P(R L5 — L L1) ≈ 0.4122
These probabilities suggest that the occurrence of “L L1 radiculopathy” does not significantly increase when “R L5
radiculopathy” is present, given that P(L L1 — R L5) is quite low. On the other hand, the occurrence of “R L5
radiculopathy” is notably higher when “L L1 radiculopathy” is present, as P(R L5 — L L1) is much higher.
Therefore, based on these conditional probabilities, it is more likely that “L L1 radiculopathy” causes ‘R L5 radicu-
lopathy” over the other proposed causal direction.
Final answer: B

Table 14: Full outputs of GPT-4 on the example case from QRDATA.



GPT-4 Prediction without Data Access
Prediction To address which cause-and-effect relationship is more likely between ‘R L5 radiculopathy’ and ‘L L1 radiculopathy’, we

would generally look for statistical relationships in the data that may imply causality. Specifically, we would examine
the frequency with which one condition appears before the other. If ‘R L5 radiculopathy’ generally appears before ‘L L1
radiculopathy’, it would lend support to the idea that A is more likely. Conversely, if ‘L L1 radiculopathy’ appears before
‘R L5 radiculopathy’, we might lean towards B.
However, without access to the actual data, we can only reason based on general medical knowledge and the understanding
of how radiculopathy typically presents. Radiculopathy is a condition resulting from a compressed nerve in the spine that
can cause pain, numbness, or weakness in various parts of the body. Typically, this condition is localized and not known to
cause another radiculopathy on the opposite side and a different vertebrae level of the body.
Given both ‘R L5’ and ‘L L1’ radiculopathies are on different sides of the body and different spinal levels, it’s not common
for one to cause the other according to standard medical understanding. It is more likely that they occur independently due
to separate causes.
However, unilateral radiculopathy doesn’t generally cause contralateral radiculopathy at a different spinal level. This is
because the nerve root compression that leads to radiculopathy is typically localized, and it would be unusual for such
an issue on one side of the spine to directly cause a similar issue on the opposite side at a different level. Therefore, it’s
likely that if both conditions are present in a patient, they arose independently or due to a systemic issue affecting the spine
broadly, rather than one causing the other.
Therefore, based on a qualitative argument and standard medical understanding, the answer is most likely that there is no
causal relationship between the two conditions, which corresponds to option C.
Final answer: C.

Table 15: Full outputs of GPT-4 on the example case from QRDATA when it does not have access to the data.


	Introduction
	Benchmark Construction
	Methods
	Experiments
	Models
	Main Results

	Analysis
	Difficulty of Data Analysis
	Difficulty of Causal Reasoning

	Related Work
	Data-related Benchmarks
	Quantitative Reasoning Abilities

	Conclusion
	Appendix
	Question Collection of QRData
	Question Collection of QRText
	Prompt Design
	Implementation Details
	Case Study
	Error Analysis


