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Abstract

One of the hallmarks of an intelligent agent is the ability to ask good questions.
While facility with language is clearly a prerequisite, even in simple settings, LLMs
can struggle to come up with questions that yield useful information—suggesting a
failure of grounded reasoning. We study this phenomenon in a question-asking task
based on the classic board game Battleship, where both text-only and multimodal
LLMs perform far below human baselines. We propose a Bayesian model that
combines a LLM-driven prior over questions with a probabilistic world model to
facilitate coherent reasoning. We find that with a surprisingly modest sample budget
for “mental computation,” our method is well-calibrated to human performance
across varied Battleship board scenarios. Notably, this approach allows much
smaller LLMs, such as CodeLlama-7b, to perform on par with GPT-4. These
results support the emerging trend toward test-time inference as a scaling route for
LLM reasoning, while highlighting the utility of probabilistic world models for
grounding and structuring such computations.

1 Introduction

Considerable efforts are being directed towards optimizing large language models (LLMs) to answer
human queries, with the aim of building helpful and aligned AI assistants (Ouyang et al., 2022;
Bai et al., 2022; Rafailov et al., 2024). However, a key aspect of human reasoning is our ability
to ask questions in order to reduce our uncertainty about the world and inform our future actions
(Graesser et al., 1993; Markant and Gureckis, 2012; Hawkins et al., 2015). LLMs are clearly
linguistically capable of expressing an unbounded space of questions. However, even in simple
grounded environments, coming up with informative questions typically requires evaluating possible
world states and their relative probabilities—and it is less clear whether current LLMs are well-suited
to this kind of System 2-like reasoning.

This paper explores what it would take to build models capable of asking informative questions at
a human-like level in an environment that is minimalistic but combinatorially complex. We adopt
a cognitively-inspired approach that models people as resource rational agents (Anderson, 1990;
Chater and Oaksford, 1999; Lieder and Griffiths, 2019) subject to strict computational constraints.
Behavioral studies reveal that both children and adults are “greedy” information-seekers in active
learning and consider only a few hypotheses at a time (Klayman and Ha, 1989; Vul et al., 2014;
Markant et al., 2016; Meder et al., 2019; Ruggeri et al., 2016; Cheyette et al., 2023). AI assistants face
similar pressures in production settings, where there are practical limits to how much time a model
can take to “think” of a response. Accordingly, we focus on the computational tradeoff between
informativity and resource efficiency in a setting where the goal is to obtain the most information with
as few questions as possible.
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Figure 1: How much “mental computation” is needed to ask rational questions in grounded environ-
ments, like the board game Battleship? We introduce a Bayesian model that integrates LLMs with a
probabilistic world model to perform sample-based inference. Given a partially-revealed board, our
model (A) samples k questions from a LLM and (B) translates these into programs in a simple DSL.
(C) The utility of a question is computed by simulating the program against a hypothesis space of
boards consistent with the observation. Here, the best question achieves Expected Information Gain
(EIG) of 0.99, meaning the answer would rule out nearly half the boards in the hypothesis space.
This approach successfully avoids asking LLM-generated questions that are uninformative (e.g., “Is
the red ship longer than 2 tiles?”) and efficiently attains human performance with a modest sampling
budget.

We explore several computational approaches in an adaptation of the classic board game Battleship
where, in addition to firing at tiles, players can ask open-ended questions to seek information about
the board. In our experiments, we compare two different LLMs (CodeLlama-7b and GPT-4/GPT-4V)
as well as a classical grammar baseline. While these models by themselves yield questions that are
only weakly informative relative to human-authored questions, we find that they can be effective as
components in a Bayesian question-asking model with the ability to perform sample-based inference
in an internal world model. We introduce an overarching framework called Langugage-Informed
Program Sampling (Fig. 1) where LLMs play two distinct roles: (A) as priors over questions, and (B)
as language-conditional distributions that map questions into executable code expressions. By varying
the number of questions we sample from the prior, we can control how much “mental computation”
LIPS performs. We find that for surprisingly small values of k, LIPS yields informative questions
that are well-calibrated to human data. These results illustrate that factorizing AI agents into separate
language-generation and world-modeling modules can lead to efficient, resource-rational solutions to
general classes of reasoning problems.

2 The Battleship Game

We adopt the Battleship task developed by Rothe et al. (2017, 2018), a grid-based environment that
evaluates participants’ ability to ask goal-directed questions. In this task, participants were presented
a partially-revealed board (Fig. 1) and asked to come up with a natural language question that
would help to reveal the locations of the hidden ships, with the constraint that the question should
admit a single-word answer. The task consists of 18 unique 6x6 board contexts, each containing
three ships (red, blue, and purple) of varying length (2-4 tiles), orientation (horizontal or vertical),
and placement. While later variants extended the paradigm to study multi-turn interactions (Rothe
et al., 2019), here we focus on the original, single-turn task and discuss ongoing extensions to the
multi-turn setting in §5.

3 Models

Following prior work, we begin by considering an ideal observer model of a player that starts with
a uniform prior p(s) over possible boards consistent with the observed initial state. After asking a
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question x and receiving an answer y, the player performs a Bayesian update to their belief distribution

p(s | y;x) = p(y | s;x)p(s)∑
s′∈S p(y | s′;x)p(s′)

(1)

where the likelihood p(y | s;x) is 1 if y is consistent with s and 0 otherwise. The marginal likelihood
can be computed by enumeration or approximated by sampling over a hypothesis space of boards S.

The player’s uncertainty about the hidden state of the game board can be measured by the Shan-
non entropy H(s) (Shannon, 1948), and the value of a question x can be defined as its Expected
Information Gain (EIG):

EIG(x) = H(s)−
∑
y∈Yx

p(y | x)H(s | x, y) (2)

Intuitively, EIG provides a log-space measure of the number of candidate boards that the player can
rule out with question x. For instance, an ideal yes/no question that rules out 50% of possible boards
would achieve EIG(x) = 1. (Throughout, we use log2, so EIG is measured in bits.)

In Battleship, questions that admit a large set of possible answers, denoted Yx, can achieve EIG(x) ≫
1 (e.g., “What is the top-left corner of the red ship?”). However, some answers may be more
informative than others; this uncertainty gives rise to the expectation over possible answers in Eq. 2.

In the work by (Rothe et al., 2017), EIG was considered as one among several heuristic features
(complexity, answer type, etc.) in a Boltzmann energy model that was fit to maximize the likeihood
of the collected human questions. Here we take a complementary approach: instead of fitting our
model to human data collected from Battleship, we instead aim to sample directly from a distribution
of maximally-informative questions—without positing the space of features these questions might
have. We hypothesize that human-like questions will fall out naturally from a Bayesian model with a
very generic prior that is subject to cognitive resource constraints.

3.1 Language-Informed Program Sampling (LIPS)

We formulate our model as a simple Monte Carlo search with a parameter k that controls the amount
of internal computation the model performs. (We are in part inspired by the bounded space model
of Ullman et al., 2016 for creative language generation.) Given some proposal distribution over
questions, we sample k questions and choose the one that maximizes EIG:

{x1, . . . , xk} ∼ p(x | s) (3)
x∗ = argmax

xi

EIG(xi) (4)

A central challenge of this approach is choosing a suitable proposal distribution p(x | s) that admits
efficient sampling. Moreover, as the notation implies, this distribution should ideally be board-
conditional so as to generate targeted questions about the particular board at hand. To facilitate
computation of EIG, it is also critical to have a proposal distribution that is capable of expressing
questions as code expressions that can be deterministically executed against the board following
some denotational semantics; i.e., y = JxKs. We consider two kinds of question-proposal distribution
that allow us to instantiate our model.

3.2 Grammar proposal distribution

As a “classical” baseline, we consider a probabilistic context-free grammar (Johnson, 1998) as a
proposal distribution over questions. We adopt the grammar of Rothe et al. (2017)2 whose rules and
terminals correspond to key concepts in Battleship: ships vary in color, size, orientation, location,
etc. The grammar also encodes numeric and set-theoretic operations to support comparisons; e.g.,
“How many of the blue ship’s tiles are in column B?”

2See Table SI-1 in Rothe et al. (2017) for the full grammar. We omit λ-abstractions, which rarely yield
well-formed questions during sampling, and we filter out trivial expressions of depth 1.
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Answer → Bool | Num. | Color | Orient. | Loc.
Bool → ‘T’ | ‘F’ | (and B B) | (touch Ship Ship) . . .

Num. → 0 | 1 | . . . | 9 | (+ N N) | . . .
Num. → (size Ship) | (row L) | (col L) . . .
Color → Ship |
Ship → ‘Blue’ | ‘Red’ | ‘Purple’

Orient. → ‘Horizontal’ | ‘Vertical’ | (orient Ship)
Loc. → 1A | 1B | . . . | 6F | (topleft Set) . . .

Set → (tiles Color) | ( ∩ Set Set) | ‘AllColors’ . . .

Figure 2: PCFG for grammar proposal distri-
bution baseline.

A B C D E F 
1 H P W H W H 
2 H H H R B H 
3 H W H H H H 
4 W H W H H W 
5 H H W W H H 
6 H W H H H H

1-B is a purple ship tile. 
1-C is a water tile.
1-E is a water tile.
2-D is a red ship tile.
2-E is a blue ship tile.

...
6-B is a water tile.

Grid Textual Visual

Figure 3: We experiment with 3 different
board representations: an ASCII-style grid,
a textual serialization, and a visual image en-
coded in a multimodal prompt to GPT-4(V).

3.3 Language model proposal distribution

A recent line of work in probabilistic programming explores using Large Language Models (LLMs)
as instantiations of humanlike priors in Bayesian models (Lew et al., 2020, 2023; Dohan et al.,
2022; Ellis, 2023). LLMs represent an attractive question proposal distribution for several reasons.
First, since they are trained on vast corpora of natural text, LLMs directly encode a prior over
plausible questions. Moreover, LLMs are strong in-context learners (Brown et al., 2020) and are
increasingly amenable to instruction from the experimenter (Ouyang et al., 2022; Rafailov et al.,
2024). Consequently, by constructing an appropriate prompt (detailed in §4), we can transform a
generic LLM into a proposal distribution over questions in the Battleship domain. This approach
faces two main challenges, which we discuss below.

Grounding generation in the state of the world Ideally, we would like our model to be “stimulus
computable” (Yamins and DiCarlo, 2016), accepting the same images and task instructions as a
human participant. While multimodal LLMs are growing in popularity and availability (Driess et al.,
2023; OpenAI, 2023b), it remains unclear to what extent they are capable of extracting structured
visual information—such as a Battleship board—into an appropriate computational representation.
We experiment with three different types of board representation (Fig. 3) in order to evaluate the
degree to which our LLM proposal distributions are able to leverage board-conditional information.

Translating from natural language to code LIPS posits that the question-asker mentally draws
and evaluates k samples and chooses the most informative one. This is straightforward in the
case of the PCFG, which directly generates programs, but not for the case of LLMs, which output
natural language. To address this, we follow the approach of the Rational Meaning Construction
framework (Wong and Grand et al., 2023), which uses LLMs to implement a “meaning function”
that translates from natural language into code. Concretely, we decompose the LLM proposal into
separate question generation p(l | s) and language-to-program translation p(x | l) distributions,
which we approximate via sampling.

p(x | s) =
∑
l

p(x | l)p(l | s) (5)

This formalization admits many possible denotational semantics—J·Ks could be implemented by a
LISP interpreter, a Python program, or even a LLM. For convenience, we use the same Battleship
DSL from Rothe et al. (2017), which allows us to take advantage of the fast C++ implementation of
the EIG function developed for that work.3

4 Experiment

4.1 Participants, materials, and methods

Human data We use the human dataset collected by Rothe et al. 2017, which consists of 26-39
questions for each board composed by a single pool of N=40 participants, for a total of 605 question-
board pairs. Participants were not “prompted” with any example questions; they were only given

3https://github.com/anselmrothe/EIG

4

https://github.com/anselmrothe/EIG


Model EIG % Valid % Informative Program Depth Program Size Question Words
µ σM µ σM µ σM µ σM µ σM µ σM

Human 1.27 0.04 1.00 0.00 0.97 0.01 3.22 0.07 4.51 0.14 7.12 0.08
Grammar 0.36 0.00 1.00 0.00 0.38 0.00 3.01 0.00 5.13 0.01 – –
CodeLlama-7b 0.65 0.02 0.75 0.01 0.45 0.01 2.64 0.02 3.24 0.04 6.66 0.04
GPT-4 (few-shot) 0.77 0.02 0.88 0.01 0.59 0.01 2.61 0.02 3.22 0.04 6.23 0.03
GPT-4 (zero-shot) 0.66 0.01 0.40 0.01 0.35 0.01 3.73 0.04 5.04 0.09 5.19 0.02
GPT-4 (no board) 0.60 0.02 0.68 0.01 0.43 0.01 3.08 0.03 4.12 0.07 6.28 0.03

Table 1: Summary statistics of the underlying samples (k = 1) across all board contexts. Questions
that translated to a parseable program are considered Valid, and those that achieved EIG > 0 are
considered Informative. Program Depth and Size refer to the depth and number of nodes of the
program abstract syntax tree. Question Words measures the number of words in the natural language
question. µ and σM denote sample mean and standard error, respectively.

the constraint that the question should admit a single-word answer. As the program annotations in
this dataset used an earlier version of the DSL, we manually translated a representative subset of the
questions into the latest DSL and used a LLM to annotate the remaining programs.

LLMs We queried GPT-4 (OpenAI, 2023a,b) via API, using gpt-4-0613 for the textual and grid
board formats, and gpt-4-vision-preview for the visual format. To compare against a reproducible,
open-source LLM, we used CodeLlama (Roziere et al., 2023), a member of the Llama 2 family of
models that was finetuned for code generation. We obtained the model weights from HuggingFace
(CodeLlama-7b-hf) and used the smallest variant of the model, which contains 7B parameters. We
performed local inference on a single GPU, taking advantage of the hfppl library (Lew et al., 2023)
to speed up inference via caching.

Prompting We fed both LLMs identical sets of algorithmically-constructed prompts (see the
“Prompts” section in the Appendix). For question generation p(l | s), each prompt consisted of
instructions describing the task setup (“You are playing the board game Battleship. There are three
ships on the board...”). In the zero-shot condition, the prompt concluded with a target game board
(Fig. 3) and text to elicit a question. In the few-shot condition, the prompt additionally included 3
example boards, each with 10 questions from the human data. The example boards and questions
were sampled without replacement in a leave-one-out manner so as to exclude human data collected
for the target board. For translation p(x | l), the prompt consisted of a similar task instruction,
followed by 12 (l, x) pairs randomly sampled from the human data in the same manner.

Sampling For each LLM condition, we sampled 100 questions/board × 18 boards. To explore
the effects of prompt and board formats, we repeated this process for each combination of {zero-
shot, few-shot} × {textual, grid, visual, no board} using GPT-4(V). For the PCFG, which is not
board-conditional, we sampled a single set of 100K questions and computed their EIG values for
each board. Following Ullman et al. (2016), to avoid expensive re-collection of data, samples were
grouped post-hoc into buckets of size k. Since the underlying samples are i.i.d., this provides an
unbiased estimate of the true sampler, with the caveat that the effective sample size diminishes with
k. Throughout, null hypothesis testing was conducted between conditions using Welch’s t-test.

4.2 Results and Discussion

Informativity How informative are the questions collected from humans? And to what extent
do our models capture the information-seeking quality of human questions? We computed EIG
values for all human and model-generated questions (Table 1). Across the 18 boards, the average
human question scored EIG = 1.27, while the best human question achieved considerably higher
EIG = 3.61. Despite this large range, virtually all (97%) of the human questions were informative
(EIG > 0), revealing that participants were highly sensitive to the board state.

In contrast, the underlying proposal distributions (k = 1) were substantially noisier than people:
questions from CodeLlama and GPT-4 averaged EIG = 0.65-0.66, respectively, while questions
from the grammar averaged EIG = 0.36. However, as Fig. 4 (top left) reveals, LIPS allows for a
significant boost in performance: with just k = 5 samples, both LLMs approached human mean
performance; and at k = 10, both models significantly outperformed the human mean, with p < 0.001
for CodeLlama, and p = 0.01 for GPT-4 (textual, few-shot). This trend continues for sample sizes
k = 20 and k = 50, though all models still fall short of the best human-generated questions.
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Figure 4: Comparing the informativity of model-generated questions against human data. (Top left)
LIPS with two LLMs and a hand-engineered grammar as proposal distributions over questions. As
k increases, all three models reach mean-human performance, though they fall short of the best
human-generated questions. (Top right) Evaluating GPT-4’s performance with different prompt
formats and board representations. Including few-shot examples universally boosts EIG. However,
performance varies depending on the board format. Notably, GPT-4(V) was unable to utilize the
board’s structure in text (grid) or images (visual), implying a failure of grounding. (Bottom) Q-Q
plots comparing model vs. human EIG values at varying sample sizes. At k = 5, all three models are
generally well-calibrated to humans, though they fall short of the top 10-20% of human questions.
Throughout, error bars and shaded regions indicate 95% bootstrapped confidence intervals. GPT-4
and CodeLlama-7b refer to the few-shot, textual condition unless otherwise noted.

Sample efficiency What represents a cognitively-plausible amount of mental sampling? Fig. 4
(bottom) compares the full distribution of model vs. human EIG values for varying values of k.
At k = 5, both LLMs were closely calibrated to the human distribution, performing on par with
the grammar, which was hand-engineered to capture this distribution. In other words, the N th
percentile of human question-askers wrote questions that were of comparable informativity to the
N th percentile of samples from the model. However, the top human questions (approx. 85-90th
percentile) outperformed the top model-generated questions.

Translation fidelity One restriction of our evaluation is that, in order for a question to be considered
informative, it needs to be expressable in the Battleship DSL. But how effective is the model at
translating questions into programs? As Table 1 (% Valid) shows, a high percentage of samples from
CodeLlama (75%) and GPT-4 (88%) were successfully translated. Only in the GPT-4 (zero-shot) case
did the translation model achieve low fidelity (40%). Since the model does not receive any examples
in the zero-shot case, it is not surprising that many of the questions from this distribution were not
translatable.

Groundedness To what extent did the LLM-generated questions take the board state into account?
Of the valid programs sampled from each model, 40% (CodeLlama) and 33% (GPT-4) were unin-
formative (EIG = 0). This occurs when a question is redundant with respect to information already
revealed in the board. (For instance, “Is the red ship vertical?” is uninformative for 3/18 boards in
the stimulus set.) The high proportion of uninformative programs highlights a potential failure of
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Figure 5: Proportion of top-level question types generated by each proposal distribution at k = 1.

grounding. Our evaluation of different board formats, shown in Fig. 4 (top right), provides further
evidence of this issue. Of the four board formats (Fig. 3), the “textual” representation was the only
one that significantly outperformed the “no board” condition (p < 0.05 for k = 1-20). Notably,
across k, the “visual” board format performed either significantly worse (p < 0.05 for k = 1, 5) or
was not significantly different than the “no board” condition (p > 0.05 for k = 10-50). These results
show that that GPT-4V was unable to utilize the board’s structure to formulate informative questions
relative to a board-agnostic baseline.

Question type What kinds of information do humans ask about, and do the models reflect this
distribution? As illustrated in Fig. 5, humans ask a diverse range of question types, with a preference
for boolean and numeric answers. Owing to its structure, the grammar generates an approximately
uniform distribution over types. Meanwhile, both of the few-shot prompted LLMs approximate
the human distribution, though CodeLlama mirrors it more closely than GPT-4. Without access to
examples, GPT-4 (zero-shot) defaults to boolean questions that echo traditional Battleship moves;
e.g., “Is there a ship at 2-C?” Thus, the different choices of prior encode different inductive biases—
and LLMs provide an especially flexible way of encoding both human general knowledge and
domain-specific priors into Bayesian models.

5 Ongoing Work

While the Battleship task that we consider here provides a controlled setting for studying question-
asking in humans and AI models, this initial toy problem has several key limitations. In human-AI
interactions in the wild, information-seeking takes place iteratively over multiple dialogue turns.
Furthermore, there is an explore/exploit trade-off between question asking and acting; AI assistants
must consider the opportunity costs of asking for clarifying information from a user. Finally, unlike
in a single-turn setting where certain questions are generally useful across contexts, over the course
of a user-agent interaction, the kinds of questions that are useful will necessarily evolve as more
information about the world state becomes available.

As a next step towards exploring some of these dynamics, we have developed an extension of our
task environment to a synchronous two-player, multi-turn information seeking game. In this setting,
which we call Collaborative Battleship (Fig. 6), players alternate between the roles of Captain and
Spotter, working together to reveal the hidden ships in as few moves as possible. On each turn, the
Captain must decide whether take action, by firing at a tile, or seek information, by asking a question
to the Spotter, who has full visibility of the board but can only respond with a Yes/No answer.

We are currently piloting this experiment with pairs of human players on Prolific to understand
how people navigate the trade-offs between asking questions and taking actions. In parallel, we
are developing AI models to play both the Captain and the Spotter roles leveraging the modeling
concepts detailed above: namely, the ability to perform Bayesian inference in a mental world model
via conditional sampling. We are excited about the opportunities this extended setting affords for
exploring rational LLM-powered models that can collaborate with human users to ask and answer
questions in a grounded environment.
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Figure 6: User interface for our Collaborative Battleship experiment, which evaluates information-
seeking in a two-player synchronous dialogue environment. The Captain must choose between taking
actions and asking questions given limited visibility, while the Spotter sees the whole board, but can
only respond with Yes/No. In order to play at human-level, an AI agent must incorporate grounded
language understanding (to answer questions), reasoning about uncertainty (to ask informative
questions), and strategic decision making (to balance explore/exploit trade-offs).

6 Conclusion

As more and more people interact with language models on a daily basis, asking questions to
efficiently clarify uncertainty will become an increasingly important capability for such systems.
In this work, we introduced a new approach to building this kind of question-asking behavior by
sampling questions from a noisy LLM prior and translating into code expressions. But where does
this programming language come from in the first place? Here, we used an existing DSL as initial
step, but our approach could be combined with Bayesian program induction techniques to learn
a new DSL from data (Ellis et al., 2021; Wong et al., 2021; Grand et al., 2024; Piantadosi et al.,
2024). Relaxing our assumptions even further, we might eschew a DSL in favor of a domain-general
programming language like Python (Ellis, 2023; Wang et al., 2024).

Given the general abilities of LLMs on many reasoning tasks, it is also natural to ask in what
settings intermediate symbolic representations—i.e., programs—are needed for effective information-
seeking. A growing line of concurrent work on clarifying user preferences in a human-LLM
dialogue context provides an interesting space of alternatives. Proposed approaches include structured
prompting strategies both without (Li et al., 2023) and with Bayesian priors (Handa et al., 2024);
self-improvement via finetuning on reasoning chains (Zelikman et al., 2022; Andukuri et al., 2024);
and search over future dialogue turns (Piriyakulkij et al., 2023; Zhang and Choi, 2023). This
latter view aligns most closely with our approach, which supports the emerging trend towards
adaptive inference-time computation with LLMs. In this paper, we take the idea one step further by
studying information-seeking in the context of a minimal but combinatorially-complex environment,
demonstrating the efficiency advantages of grounded reasoning in a symbolic world model. We
believe that this approach, when paired with LLMs’ ability to construct such world models on-the-fly
via code generation, offers a promising and powerful approach to scaling AI reasoning to novel
problem domains.
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8 Appendix

Table 2: Examples questions and programs for each board context. For each model, we sampled one
best ⋆ and one random question. For humans, the random sample was drawn from the full pool of
participant data for each trial; for models, the random sample was selected from the LIPS outputs
with k = 10, which provides a close match to mean human performance. In cases where the best EIG
value was attained by multiple programs, tiebreaking was random. Note that the Grammar generates
programs directly—many of which are not readily translatable to natural language—so “Question” is
omitted for this model.

Board Model Question Program EIG

Trial 1 Human ⋆ At what location is the
top left part of the red
ship?

(topleft
(coloredTiles
Red))

4.67

Is there a purple tile at
1A?

(== (color 1A)
Purple)

0.39

CodeLlama ⋆ At what location is the
top left part of the blue
ship?

(topleft
(coloredTiles
Blue))

4.67

How many tiles is the
blue ship?

(size Blue) 1.36

GPT-4 ⋆ What is the location of
one blue tile?

(topleft
(coloredTiles
Blue))

4.67

How many tiles is the
blue ship?

(size Blue) 1.36

Grammar ⋆ — (topleft
(coloredTiles
Red))

4.67

— (color 6B) 1.40
Trial 2 Human ⋆ What is the location of

one red tile?
(topleft
(coloredTiles
Red))

4.58

How many tiles is the
purple ship?

(size Purple) 1.58

CodeLlama ⋆ What is the location of
one red tile?

(topleft
(coloredTiles
Red))

4.58

How many tiles is the
red ship?

(size Red) 1.41

GPT-4 ⋆ Where is one blue tile
located?

(topleft
(coloredTiles
Blue))

4.58

How many tiles is the
purple ship?

(size Purple) 1.58

Grammar ⋆ — (bottomright
(union
(intersection
(set AllTiles)
(coloredTiles
Red))
(intersection
(unique (set...

4.65

— (color 3F) 1.43
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Board Model Question Program EIG

Trial 3 Human ⋆ At what location is the
top left part of the pur-
ple ship?

(topleft
(coloredTiles
Purple))

4.62

How many tiles is the
red ship?

(size Red) 1.44

CodeLlama ⋆ How many tiles is the
purple ship?

(size Purple) 1.44

Is the red ship horizon-
tal?

(== (orient Red)
H)

0.99

GPT-4 ⋆ How many tiles is the
red ship?

(size Red) 1.44

Is the red ship horizon-
tal?

(== (orient Red)
H)

0.99

Grammar ⋆ — (bottomright
(unique
(intersection
(set AllTiles)
(coloredTiles
Purple))))

4.73

— (orient Purple) 0.99
Trial 4 Human ⋆ At what location is the

top left part of the pur-
ple ship?

(topleft
(coloredTiles
Purple))

4.62

At what location is the
top left part of the pur-
ple ship?

(topleft
(coloredTiles
Purple))

4.62

CodeLlama ⋆ How many tiles is the
red ship?

(size Red) 1.57

How many tiles is the
red ship?

(size Red) 1.57

GPT-4 ⋆ How many tiles is the
red ship?

(size Red) 1.57

How many tiles is the
red ship?

(size Red) 1.57

Grammar ⋆ — (bottomright
(intersection
(set AllTiles)
(intersection
(coloredTiles
Purple) (set
AllTiles))))

4.64

— (== (orient Blue)
H)

0.91

Trial 5 Human ⋆ At what location is the
top left part of the red
ship?

(topleft
(coloredTiles
Red))

4.66

How many tiles is the
purple ship?

(size Purple) 1.57

CodeLlama ⋆ At what location is the
bottom right part of the
purple ship?

(bottomright
(coloredTiles
Purple))

1.90

How many tiles is the
purple ship?

(size Purple) 1.57

GPT-4 ⋆ How many tiles is the
purple ship?

(size Purple) 1.57
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Board Model Question Program EIG

How many tiles is the
purple ship?

(size Purple) 1.57

Grammar ⋆ — (topleft (unique
(coloredTiles
Red)))

4.66

— (size Purple) 1.57
Trial 6 Human ⋆ At what location is the

top left part of the red
ship?

(topleft
(coloredTiles
Red))

4.73

Does the red ship touch
both other ships?

(and (touch Red
Blue) (touch Red
Purple))

0.60

CodeLlama ⋆ At what location is the
top left part of the red
ship?

(topleft
(coloredTiles
Red))

4.73

Is the red ship 2 tiles
long?

(== (size Red) 2) 1.00

GPT-4 ⋆ Where is a tile of the
red ship?

(topleft
(coloredTiles
Red))

4.73

How many tiles is the
red ship?

(size Red) 1.50

Grammar ⋆ — (topleft
(intersection
(set AllTiles)
(coloredTiles
Red)))

4.73

— (+ (== (color 4A)
Red) TRUE)

0.52

Trial 7 Human ⋆ How many tiles are oc-
cupied by ships?

(++ (map (lambda
x0 (size x0)) (set
AllColors)))

2.48

Is there a blue tile at
5E?

(== (color 5E)
Blue)

0.87

CodeLlama ⋆ What is the location of
one red tile?

(topleft
(coloredTiles
Red))

1.79

How many tiles is the
red ship?

(size Red) 1.58

GPT-4 ⋆ How many tiles is the
red ship?

(size Red) 1.58

How many tiles is the
red ship?

(size Red) 1.58

Grammar ⋆ — (- (setSize (union
(coloredTiles Red)
(setDifference
(union (unique
(union
(intersection...

3.28

— (== (color 6D)
Blue)

0.98

Trial 8 Human ⋆ At what location is the
bottom right part of the
red ship?

(bottomright
(coloredTiles
Red))

2.41

Is the red ship horizon-
tal?

(== (orient Red)
H)

0.85
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Board Model Question Program EIG

CodeLlama ⋆ What is the location of
one blue tile?

(topleft
(coloredTiles
Blue))

2.58

At what location is the
bottom right part of the
red ship?

(bottomright
(coloredTiles
Red))

2.41

GPT-4 ⋆ How many tiles is the
blue ship?

(size Blue) 1.58

How many tiles is the
red ship?

(size Red) 1.57

Grammar ⋆ — (- (setSize
(coloredTiles
Blue)) (setSize
(setDifference
(intersection
(coloredTiles
(color 3A))...

3.16

— (orient Red) 0.85
Trial 9 Human ⋆ How many tiles in

row 4 are occupied by
ships?

(++ (map (lambda
x0 (++ (map
(lambda y0 (==
(rowL y0) 4))
(coloredTiles
x0)))) (set
AllColors)))

1.73

Is the blue ship 3 tiles
long?

(== (size Blue) 3) 0.89

CodeLlama ⋆ Where is the bottom
right tile of the blue
ship?

(bottomright
(coloredTiles
Blue))

2.25

How many tiles is the
red ship?

(size Red) 1.54

GPT-4 ⋆ How many tiles is the
blue ship?

(size Blue) 1.58

How many tiles is the
red ship?

(size Red) 1.54

Grammar ⋆ — (- (setSize
(coloredTiles
Blue)) (setSize
(setDifference
(intersection
(coloredTiles
(color 3A))...

3.21

— (== (color 5B)
Water)

0.99

Trial 10 Human ⋆ What is the location of
one blue tile?

(topleft
(coloredTiles
Blue))

3.64

How many tiles is the
blue ship?

(size Blue) 1.12

CodeLlama ⋆ Where is the bottom
right part of the purple
ship?

(bottomright
(coloredTiles
Purple))

3.80

What is the top left tile
of the blue ship?

(topleft
(coloredTiles
Blue))

3.64
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Board Model Question Program EIG

GPT-4 ⋆ Where is the purple
ship located?

(topleft
(coloredTiles
Purple))

3.64

How many tiles is the
red ship?

(size Red) 1.12

Grammar ⋆ — (bottomright
(setDifference
(coloredTiles
Blue)
(coloredTiles
(color 6E))))

3.93

— (color 1C) 1.95
Trial 11 Human ⋆ What is the location of

one purple tile?
(topleft
(coloredTiles
Purple))

3.88

How many tiles is the
blue ship?

(size Blue) 0.97

CodeLlama ⋆ What is the location of
one purple tile?

(topleft
(coloredTiles
Purple))

3.88

Is there a ship at 2E? (color 2E) 1.07

GPT-4 ⋆ What is the position of
one tile of the red ship?

(topleft
(coloredTiles
Red))

3.88

How many tiles is the
blue ship?

(size Blue) 0.97

Grammar ⋆ — (topleft
(coloredTiles
Purple))

3.88

— (+ (size Red)
(rowL 3F))

1.02
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Board Model Question Program EIG

Trial 12 Human ⋆ At what location is the
top left part of the blue
ship?

(topleft
(coloredTiles
Blue))

4.16

Is there any part of the
blue ship in row 1?

(any (map (lambda
y0 (== (rowL y0)
1)) (coloredTiles
Blue)))

0.97

CodeLlama ⋆ At what location is the
top left part of the blue
ship?

(topleft
(coloredTiles
Blue))

4.16

How many tiles is the
blue ship?

(size Blue) 1.47

GPT-4 ⋆ How many tiles is the
blue ship?

(size Blue) 1.47

How many tiles is the
blue ship?

(size Blue) 1.47

Grammar ⋆ — (topleft (unique
(coloredTiles
Red)))

4.16

— (color 6D) 1.13
Trial 13 Human ⋆ At what location is the

top left part of the pur-
ple ship?

(topleft
(coloredTiles
Purple))

3.99

How many tiles is the
blue ship?

(size Blue) 1.57

CodeLlama ⋆ At what location is the
top left part of the pur-
ple ship?

(topleft
(coloredTiles
Purple))

3.99

How many tiles is the
blue ship?

(size Blue) 1.57

GPT-4 ⋆ How many tiles is the
blue ship?

(size Blue) 1.57

How many tiles is the
blue ship?

(size Blue) 1.57

Grammar ⋆ — (topleft
(coloredTiles
Purple))

3.99

— (setSize
(setDifference
(coloredTiles
(color 1E))
(unique
(coloredTiles
Blue))))

2.03

Trial 14 Human ⋆ What is the location of
one red tile?

(topleft
(coloredTiles
Red))

4.00

Is there any part of the
red ship in column A?

(any (map (lambda
y0 (== (colL y0)
1)) (coloredTiles
Red)))

0.95

CodeLlama ⋆ At what location is the
top left part of the blue
ship?

(topleft
(coloredTiles
Blue))

1.58

How many tiles is the
red ship?

(size Red) 1.39
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Board Model Question Program EIG

GPT-4 ⋆ How many tiles is the
red ship?

(size Red) 1.39

Is the blue ship verti-
cal?

(== (orient Blue)
V)

0.93

Grammar ⋆ — (topleft
(coloredTiles
Red))

4.00

— (topleft
(setDifference
(unique (union
(coloredTiles
Water) (set
AllTiles)))
(unique (union...

2.71

Trial 15 Human ⋆ At what location is the
top left part of the red
ship?

(topleft
(coloredTiles
Red))

4.18

Is the red ship 3 tiles
long?

(== (size Red) 3) 0.83

CodeLlama ⋆ How many tiles is the
red ship?

(size Red) 1.27

How many tiles is the
red ship?

(size Red) 1.27

GPT-4 ⋆ How many tiles is the
red ship?

(size Red) 1.27

How many tiles is the
blue ship?

(size Blue) 0.00

Grammar ⋆ — (topleft
(coloredTiles
Red))

4.18

— (- (setSize
(coloredTiles
Water)) (colL 2B))

1.27

Trial 16 Human ⋆ How many tiles in
row 2 are occupied by
ships?

(++ (map (lambda
x0 (++ (map
(lambda y0 (==
(rowL y0) 2))
(coloredTiles
x0)))) (set
AllColors)))

1.93

Is the red ship horizon-
tal?

(== (orient Red)
H)

0.86

CodeLlama ⋆ What is the location of
one red tile?

(topleft
(coloredTiles
Red))

1.99

How many tiles is the
red ship?

(size Red) 1.53

GPT-4 ⋆ How many tiles is the
red ship?

(size Red) 1.53

How many tiles is the
red ship?

(size Red) 1.53
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Board Model Question Program EIG

Grammar ⋆ — (- (setSize
(coloredTiles
Blue)) (setSize
(setDifference
(intersection
(coloredTiles
(color 3A))...

3.13

— (setSize
(coloredTiles
(color 3B)))

2.14

Trial 17 Human ⋆ How many tiles in
row 1 are occupied by
ships?

(++ (map (lambda
x0 (++ (map
(lambda y0 (==
(rowL y0) 1))
(coloredTiles
x0)))) (set
AllColors)))

2.21

How many tiles is the
purple ship?

(size Purple) 0.92

CodeLlama ⋆ Where is the top left
part of the red ship?

(topleft
(coloredTiles
Red))

1.92

How many tiles is the
red ship?

(size Red) 1.52

GPT-4 ⋆ How many tiles is the
red ship?

(size Red) 1.52

How many tiles is the
red ship?

(size Red) 1.52

Grammar ⋆ — (setSize (union
(coloredTiles
(color 6A)) (union
(intersection (set
AllTiles) (unique
(coloredTiles...

2.98

— (color 1C) 0.97
Trial 18 Human ⋆ At what location is the

bottom right part of the
purple ship?

(bottomright
(coloredTiles
Purple))

2.50

How many tiles is the
purple ship?

(size Purple) 1.56

CodeLlama ⋆ How many tiles is the
purple ship?

(size Purple) 1.56

How many tiles is the
red ship?

(size Red) 0.00

GPT-4 ⋆ How many tiles is the
purple ship?

(size Purple) 1.56

How many tiles is the
purple ship?

(size Purple) 1.56

Grammar ⋆ — (setSize
(coloredTiles
(color 2B)))

2.50

— (size Purple) 1.56
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8.1 Full results

EIG % Valid % Informative Program Depth Program Size Question Words
Model k µ σM µ σM µ σM µ σM µ σM µ σM

Human 1 1.27 0.04 1.00 0.00 0.97 0.01 3.22 0.07 4.51 0.14 7.12 0.08

Grammar 1 0.36 0.00 1.00 0.00 0.38 0.00 3.01 0.00 5.13 0.01 – –
5 0.98 0.00 1.00 0.00 0.89 0.00 2.74 0.00 4.07 0.01 – –
10 1.25 0.00 1.00 0.00 0.98 0.00 2.82 0.00 4.12 0.01 – –
20 1.49 0.00 1.00 0.00 1.00 0.00 3.08 0.01 4.62 0.02 – –
50 1.86 0.00 1.00 0.00 1.00 0.00 3.65 0.01 5.71 0.04 – –

CodeLlama-7b 1 0.65 0.02 0.75 0.01 0.45 0.01 2.64 0.02 3.24 0.04 6.66 0.04
5 1.24 0.04 0.99 0.01 0.90 0.02 2.49 0.04 2.89 0.08 6.77 0.09
10 1.55 0.06 0.99 0.01 0.97 0.01 2.36 0.05 2.58 0.09 7.10 0.13
20 1.83 0.10 1.00 0.00 1.00 0.00 2.34 0.06 2.46 0.11 7.61 0.21
50 2.31 0.20 1.00 0.00 1.00 0.00 2.58 0.13 2.69 0.22 8.56 0.37

GPT-4 (textual, few-shot) 1 0.77 0.02 0.88 0.01 0.59 0.01 2.61 0.02 3.22 0.04 6.23 0.03
5 1.16 0.04 0.98 0.01 0.86 0.02 2.47 0.05 2.92 0.09 6.48 0.05
10 1.43 0.05 1.00 0.00 0.97 0.01 2.33 0.06 2.62 0.12 6.71 0.07
20 1.65 0.09 1.00 0.00 1.00 0.00 2.17 0.04 2.26 0.06 6.90 0.11
50 2.04 0.19 1.00 0.00 1.00 0.00 2.19 0.07 2.19 0.07 7.22 0.14

GPT-4 (textual, zero-shot) 1 0.66 0.01 0.40 0.01 0.35 0.01 3.73 0.04 5.04 0.09 5.19 0.02
5 0.74 0.02 0.60 0.03 0.54 0.03 3.53 0.08 4.82 0.17 5.34 0.04
10 0.79 0.02 0.77 0.03 0.73 0.03 3.60 0.10 4.89 0.21 5.37 0.06
20 0.82 0.03 0.92 0.03 0.88 0.03 3.66 0.15 5.05 0.32 5.39 0.07
50 0.92 0.03 1.00 0.00 1.00 0.00 3.42 0.11 4.33 0.14 5.36 0.11

GPT-4 (grid, few-shot) 1 0.62 0.02 0.85 0.01 0.49 0.01 2.72 0.02 3.42 0.04 6.06 0.03
5 1.00 0.03 0.96 0.01 0.77 0.02 2.56 0.05 3.10 0.10 6.31 0.06
10 1.18 0.05 0.99 0.01 0.87 0.03 2.41 0.06 2.80 0.13 6.58 0.08
20 1.38 0.07 1.00 0.00 0.92 0.03 2.27 0.08 2.50 0.16 6.84 0.12
50 1.64 0.14 1.00 0.00 1.00 0.00 2.25 0.07 2.39 0.12 7.22 0.24

GPT-4 (grid, zero-shot) 1 0.56 0.01 0.55 0.01 0.39 0.01 3.30 0.03 4.49 0.06 5.85 0.04
5 0.79 0.02 0.88 0.02 0.80 0.02 3.24 0.05 4.42 0.10 5.71 0.07
10 0.89 0.02 0.96 0.01 0.93 0.02 3.20 0.06 4.33 0.12 5.82 0.09
20 0.94 0.01 1.00 0.00 1.00 0.00 3.16 0.08 4.26 0.16 5.86 0.11
50 0.99 0.02 1.00 0.00 1.00 0.00 3.19 0.15 4.36 0.30 5.83 0.21

GPT-4 (visual, few-shot) 1 0.54 0.01 0.80 0.01 0.46 0.01 3.02 0.02 4.01 0.04 5.69 0.03
5 0.89 0.03 0.91 0.01 0.75 0.02 2.97 0.06 3.92 0.12 5.92 0.07
10 1.08 0.04 0.99 0.01 0.92 0.02 2.81 0.07 3.60 0.16 6.16 0.10
20 1.29 0.06 1.00 0.00 0.98 0.02 2.56 0.09 3.07 0.19 6.56 0.15
50 1.56 0.12 1.00 0.00 1.00 0.00 2.42 0.13 2.72 0.25 7.03 0.24

GPT-4 (visual, zero-shot) 1 0.34 0.01 0.58 0.01 0.25 0.01 2.18 0.02 2.28 0.03 1.11 0.01
5 0.73 0.03 0.70 0.02 0.56 0.03 2.18 0.04 2.30 0.07 1.03 0.01
10 0.88 0.04 0.80 0.03 0.71 0.03 2.07 0.03 2.10 0.04 1.00 0.00
20 0.99 0.05 1.00 0.00 0.92 0.03 2.07 0.04 2.09 0.05 1.00 0.00
50 1.19 0.07 1.00 0.00 1.00 0.00 2.22 0.11 2.31 0.15 1.00 0.00

GPT-4 (no board, few-shot) 1 0.60 0.02 0.68 0.01 0.43 0.01 3.08 0.03 4.12 0.07 6.28 0.03
5 0.98 0.03 0.98 0.01 0.89 0.02 3.01 0.07 3.97 0.13 6.24 0.08
10 1.19 0.05 1.00 0.00 0.97 0.01 2.82 0.07 3.59 0.15 6.31 0.12
20 1.38 0.08 1.00 0.00 0.98 0.02 2.73 0.11 3.42 0.24 6.80 0.19
50 1.75 0.18 1.00 0.00 1.00 0.00 2.72 0.19 3.28 0.40 7.64 0.36

GPT-4 (no board, zero-shot) 1 0.65 0.01 0.69 0.01 0.50 0.01 3.37 0.03 4.67 0.05 6.55 0.02
5 0.81 0.02 0.94 0.01 0.81 0.02 3.32 0.05 4.59 0.10 6.27 0.04
10 0.88 0.02 1.00 0.00 0.92 0.02 3.33 0.07 4.61 0.14 6.26 0.06
20 0.93 0.03 1.00 0.00 0.94 0.02 3.47 0.12 4.89 0.24 6.39 0.10
50 1.01 0.02 1.00 0.00 1.00 0.00 3.89 0.24 5.72 0.49 6.83 0.19

Table 3: Full statistics for all models and values of k. µ and σM denote sample mean and standard
error, respectively, and are computed across all board contexts. Questions that translated to a parseable
program are considered Valid, and those that achieved EIG > 0 are considered Informative. Program
Depth and Size refer to the depth and number of nodes of the program abstract syntax tree. Question
Words measures the number of words in the natural language question.
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9 Prompts
Our model procedurally constructs few-shot LLM prompts to elicit task-relevant questions and
translations. There are two prompt formats: one for question-generation and one for translation.
Each prompt is structured as a series of messages conveying instructions, few-shot examples, or
information about the target task. In some cases, the format of the message varies depending on the
modality of the board representation (textual, grid, or visual).

Following emerging conventions around APIs for conversational AI models, each component is
labeled with a role. System provides general high-level instructions; User indicates inputs from a
user; and Assistant indicates responses generated from the model. These role labels are either
passed as metadata (for GPT-4) or prepended to the text of each message (CodeLlama). Note that the
purpose of these role labels is to mock illustrate a desired interaction pattern; the LLM only generates
text at the end of the conversation.

9.1 Question generation prompt
Instructions The prompt begins with a system message explaining the role of the LLM (“You are a
game-playing agent...”). This is followed by a set of general instructions describing the Battleship
task. Finally, one of three modality-specific messages is given to describe the format of the board.

Few-shot examples Next, to illustrate the desired behavior, we provide several few-shot examples of
boards and questions. Concretely, we randomly choose 3 boards that are not the target board, and
randomly choose 10 questions for each board from the human data. (All sampling is done without
replacement.) In the “no board” condition, the board representation is omitted, but the example
questions are still present. In the zero-shot condition, the entire block beginning with “Here are some
examples...” is omitted.

Target board Finally, the prompt concludes with the target board in order to elicit a new question
from the LLM. In the “no board” condition, the transition message (“Now, it’s your turn...”) and the
target board are both omitted, so that the prompt effectively reduces to a list of example questions
that the LLM extends without any knowledge of the board.

System You are a game-playing agent. Read the game instructions and examples
carefully. Respond with a single question that can be answered with one word.
Do not include any other explanation or prose.

User You are playing the board game Battleship. There are three ships on
the board: Red, Blue, and Purple. Ships are oriented either horizontally or
vertically and can be 2, 3, or 4 tiles in length. The board is a 6x6 grid,
with numbered rows 1, 2, 3, 4, 5, 6 and lettered columns A, B, C, D, E, F.
Coordinates are specified as a row, column pair. For example, 2-C is the
tile in row 2, column C.

You will be given a partially-revealed game board. Your task is to ask a
single question that will help you gain information about the position of the
remaining hidden ships on the board. You can ask any question, but it must
be answerable with a single word answer.

User (textual) The
board is represented
as a textual
description.

User (grid) The
board is represented
as a grid with the
following symbols:

H: Hidden
W: Water
R: Red ship
B: Blue ship
P: Purple ship

User (visual) The
board is represented
as an image, with
light gray indicating
hidden tiles, dark
gray indicating water
tiles, and red, blue
and purple indicating
ship tiles.
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User Here are some examples of questions from other agents about different
boards.

3x

User (textual)

2-C is a water tile.
2-E is a water tile.
3-C is a purple ship
tile.
4-D is a water tile.
5-B is a water tile.
6-E is a water tile.

User (grid)

A B C D E F
1 H H H H H H
2 H H W H W H
3 H H P H H H
4 H H H W H H
5 H W H H H H
6 H H H H W H

User (visual)

N=10

Assistant At what location is the top left part of the red
ship?

Assistant Is the red ship horizontal?

Assistant Is there any ship in column F?

User Now, it’s your turn. Here is your board:

User (textual)

1-B is a purple ship
tile.
1-C is a water tile.
1-E is a water tile.
2-D is a red ship
tile.
2-E is a blue ship
tile.
3-B is a water tile.
...

User (grid)

A B C D E F
1 H P W H W H
2 H H H R B H
3 H W H H H H
4 W H W H H W
5 H H W W H H
6 H W H H H H

User (visual)

Assistant ...
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9.2 Translation prompt
Instructions The prompt begins with a system message containing general instructions identical to
the ones given in the question-generation prompt.
Few-shot examples The body of the prompt consists of 12 pairs of (language, code) examples illus-
trating the desired translation behavior. These examples are randomly sampled without replacement
from the human data. We exclude any examples pertaining to the same board as the one targeted
during question-generation.
Target language Finally, the prompt concludes with a target question in language, which the LLM
translates into code.

System You are playing the board game Battleship. There are three ships on
the board: Red, Blue, and Purple. Ships are oriented either horizontally or
vertically and can be 2, 3, or 4 tiles in length. The board is a 6x6 grid,
with numbered rows 1, 2, 3, 4, 5, 6 and lettered columns A, B, C, D, E, F.
Coordinates are specified as a row, column pair. For example, 2-C is the
tile in row 2, column C.

Your task is to translate each of the user’s questions into a query program.

N=12

User How many tiles is the red ship?

Assistant (size Red)

User Do the red ship and the purple ship touch?

Assistant (touch Red Purple)

User Is there a ship at 1F?

Assistant (not (== (color 1F) Water))

User Is the blue ship horizontal?

Assistant (== (orient Blue) H)

User How many ships are horizontal?

Assistant (++ (map (lambda x0 (== (orient x0) H)) (set AllColors)))

User Are there more horizontal ships than vertical ships?

Assistant ...
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