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ABSTRACT

End-to-end automated driving behavior models require extensive training data
from machine or human driver experts or interacting with the environment to learn
a driving policy. Not all human driver expert data represent safe driving that the
end-to-end model is learning to imitate, and similarly, neither are some of the be-
haviors learned during exploration while learning by trial and error. However, the
models should learn from such data without being negatively affected during the
learning process. We aim to provide a learning framework to incorporate formal
verification methods to improve the robustness and safety of the learned models in
the presence of training data that contain unsafe behaviors, dubbed as STL-Drive.
We are particularly interested in utilizing this framework to enhance the safety of
end-to-end automated driving models. In this work, we incorporate Signal Tempo-
ral Logic (STL) as the formal method to impose safety constraints. In addition, we
utilize the Responsibility-Sensitive Safety (RSS) framework to define the safety
constraints. We designed a loss function that combines the task objectives and
the STL robustness score to balance the learned policy’s performance and safety.
We demonstrate that encoding safety constraints using STL and utilizing the ro-
bustness score during training improves the performance and safety of the driving
policy. We validate our framework using open-loop predictive simulator NAVSIM
and real-world data from OpenScene. The results of this study suggest a promis-
ing research direction where formal methods can enhance the safety and resilience
of deep learning models. Formal verification of safety constraints for automated
driving will further increase the public’s trust in automated vehicles.

1 INTRODUCTION

In recent years, automated driving systems have seen remarkable advancements, transforming how
we envision the future of transportation. These systems, whether semi-automated or fully automated,
are designed to enhance human mobility by making travel safer, more efficient, and more convenient.
However, their value lies in meeting these mobility needs and ensuring the highest safety standards
for all road users, including human drivers and pedestrians. Automated vehicles must prioritize
accident prevention in critical scenarios, even compensating for other drivers’ mistakes, to create a
safer, more reliable transportation ecosystem. For example, in Figure- 1, we observe different agents
reacting to the same scenario. The green dots represent the human driver’s trajectory, while the red
dots represent the learned model’s trajectory. The automated policy on the left mimics the expert
trajectory as closely as possible. At the same time, the robustness-aware RSS-Trained model on
the right adopts a more conservative approach by slowing down since there is a vehicle traveling in
the same lane that the ego-vehicle is attempting to merge with. In this case, the Transfuser model’s
prediction of future waypoints closely matches the expert trajectory. However, it is not necessarily
safe since the human driver can drive unsafely.

The modern approach to automated driving is formulating the task as a learning problem where the
agent has to learn a driving policy from data. Imitation Learning and Reinforcement Learning are
the two most popular learning methods in automated driving literature. Imitation learning (IL) (Chen
et al., 2020a; Chen & Krähenbühl, 2022; Prakash et al., 2021) is a form of supervised learning where
the agent learns a policy to mimic the behavior of an expert. Expert demonstrations from Human
drivers or an automated vehicle with access to the states of other agents in a simulator are collected.
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IL methods suffer from distribution shift, i.e., if the agent encounters an unseen situation not present
in the training data, the agent will fail to take appropriate action and continue to do so without
recovering.

On the other hand, Deep Reinforcement Learning (DRL) (Toromanoff et al., 2020; Chen et al.,
2020a; Chekroun et al., 2021) methods are more robust to distribution shift than IL by allowing the
agent to interact with the environment to learn a policy by trial-and-error. At every step, the agent
takes an action and receives a reward from the environment, which signifies how good the action is.
The agent’s goal is to maximize the sum of the accumulated rewards, thereby learning a sequence
of actions that achieve the highest reward. Since the agent learns independently by exploring the
environment using only the reward function, DRL methods require more data than IL methods to
converge to an optimal policy. When collecting data through trial and error is expensive, researchers
use offline RL methods such as (Kumar et al., 2020) to learn a policy from collected data. These
methods are akin to supervised learning, where the agent learns to map input states to action pairs.

Figure 1: In this scenario, two different agents demonstrate trajectory prediction. The green dots
represent the human driver’s trajectory, while the red dots represent the learned model’s trajectory.
The training of the Transfuser model occurs without robustness loss while training the RSS-Trained
Transfuser agent involves both robustness loss and task-related loss.

To validate the safety of vehicle interactions on the road, researchers have proposed driving safety
assessment metrics (Wishart et al., 2020), which provide formal definitions to measure the safety
of driving behavior. The Responsibility-Sensitive Safety (RSS) framework (Shalev-Shwartz et al.,
2017) also calculates the minimum safe distance a pair of vehicles should maintain for a safe inter-
action in both lateral and longitudinal cases. When a violation of this minimum safe distance occurs,
the RSS framework provides a proper response action for the ego-vehicle to restore the minimum
distance to a safe distance again. RSS is quickly becoming a safety standard and has been used to
improve adaptive cruise control (ACC) (Brosowsky et al., 2021), lane change behaviors (Naumann
et al., 2019) for automated driving tasks. RSS has also been used for safety testing and validation
of Automated Vehicle (AV) behaviors using falsification techniques in (Hekmatnejad et al., 2020)
to identify the scenarios where an AV might become unsafe. Despite these efforts, research has
been lacking in utilizing RSS to learn a driving policy for end-to-end automated driving. Our work
STL-Drive fills this critical gap.

Our contributions to this work are as follows:

• Using RSS framework to train a robust and safe policy rather than using it as a real-time
(reactive) safety monitor;

• Using Signal Temporal Logic Robustness score as a loss term in imitation learning;
• Finally, we formulate STL-Drive, which adopts Imitation learning to combine the robust-

ness loss to improve the safety and robustness of a learned automated driving policy.
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2 METHODOLOGY

In this work, we formulate AV decision-making as a waypoint prediction problem using Imitation
learning. Instead of predicting low-level control signals, we predict the waypoints the AV will take
in the future. To improve the robustness and safety of the automated driving policy, we use the RSS
model as safety constraints to enforce the minimum safe distance measure. Using STL, we encode
the RSS minimum safe distance rules and compute the robustness score to verify whether the vehicle
maintains the minimum safe distance. We use the robustness score as an additional loss term with
IL task loss to improve the performance and safety of the automated driving policy. We test and
validate our hypothesis on the NAVSIM benchmark.

2.1 FORMULATION

Imitation Learning: Imitation Learning (IL) is a form of supervised learning where the task is
to learn a policy π that imitates an expert policy π∗. The policy π maps the sensory inputs to
waypoints in the Bird’s Eye View (BEV) coordinates centered on the ego-vehicle. Given a list
of expert waypoints, W , where W = {wt = (xt, yt)}τt=1. The goal is to learn a policy π that
minimizes the loss function Ltpp;

argmin
π

E(X ,W)∼D [Ltpp(W, π(X ))] , (1)

where D =
{(

X i,Wi
)}N

i=1
of size N is the dataset of all expert logs.

Signal Temporal Logic: (STL) (Maler & Ničković, 2004) is a formalism used for specifying
and reasoning about temporal properties of signals in cyber-physical systems. STL extends classi-
cal temporal logic by introducing quantitative predicates over real-valued signals, allowing for the
expression of timing constraints and conditions. STL is particularly useful for specifying behav-
iors such as safety, liveness, and performance requirements in systems where time plays a critical
role. The robustness score evaluates how well a system adheres to the specified temporal properties.
Unlike traditional Boolean evaluations that provide binary outcomes (true/false), robustness scores
offer a scalar value indicating the degree of satisfaction or violation of the STL specifications. This
not only helps with the testing of the system capabilities using falsifying techniques but also for
the real-time monitoring of systems, which is valuable in applications requiring high precision and
reliability, such as automated control systems and safety-critical monitoring.

Responsibility-Sensitive Safety: The RSS (Shalev-Shwartz et al., 2017) model is a formal frame-
work designed to ensure the safety of automated driving systems. It provides a set of guidelines and
rules that define what constitutes safe driving behavior under various traffic scenarios. RSS model
ensures that vehicles maintain a safe distance by considering speed and reaction time, dictates ap-
propriate responses to other vehicles’ actions like braking or changing lanes, and outlines appropri-
ate actions for handling dangerous situations to avoid collisions. It uses mathematical and logical
formulations to provide formal safety guarantees, ensuring predictable system behavior. Safety dis-
tance formulation by the framework considers worst-case scenarios to establish safety boundaries
that account for human error and unpredictable events. In this work, we encode the Minimum Safe
Distance requirements in STL as follows:

Dlat ≡ (dlat ≥ dmin,lat)

Dlon ≡ (dlon ≥ dmin,lon)

Dlat,lon ≡ Dlat ∧Dlon

Slat ≡ □(Dlat)

Slon ≡ □(Dlon)

Slat,lon ≡ □(Dlat,lon)

For RSS model parameters, we consider the RSS CITS parameter set from (Wishart et al., 2020)
as shown in Table-1 but with a slower response time (ρ̃) of 0.5 seconds to compute the Minimum
Safety Envelope for longitudinal and lateral scenarios.
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Parameter Value Parameter Value
alonmaxAcc 1.8 m/s2 alonmaxBr 6.1 m/s2

alonminBr 3.6 m/s2 ρ̃ 0.5 s
alatminAcc 5.88 m/s2 alatmaxAcc 8.83 m/s2

Table 1: Longitudinal and Lateral Acceleration and Braking Parameters

where, dlat is the lateral distance between two vehicles and dmin,lat is the minimum safety enve-
lope in the lateral direction computed using RSS formulation. dlon is the longitudinal bumper-to-
bumper distance between two vehicles and dmin,lon is the minimum safety envelope in the lon-
gitudinal direction. The above rules, specifically Dlat, Dlon and Dlat,lon, are boolean predicates
that check if the minimum safety envelope is maintained or not. The rules Slat, Slon and Slat,lon

have an always (□) operator which checks for satisfaction for the entire interaction the vehicles
are involved in. Combining these approaches, the above-specified requirements are encoded using
RTAMT (Ničković & Yamaguchi, 2020) monitoring tool to compute the robustness score.

2.2 ROBUSTNESS SCORE

In the context of RSS, safety envelope distances are calculated for pairs of vehicles. So, at every time
step, robustness is calculated for only one other vehicle and the ego-vehicle. So, we consider two
variants of robustness scoring: (1) where the minimum robustness score is chosen at each time step
(Type-0) from all the pairs of vehicles that are less than 50.0meters apart from the ego-vehicle and
(2) where the robustness score of only the closest vehicle is considered (Type-1). However, in reality,
the ego-vehicle interacts with multiple vehicles simultaneously. Therefore, the robustness score at
each time step should also consider the influence of other vehicles or pedestrians. To consider this
effect, we use the inverse weighted distance average to combine the robustness scores to account
for the proximity of other agents to the ego-vehicle. This is the third variant (Type-2) we consider
for calculating robustness. The combined robustness score at time step t for each type is defined as
follows:

Type-0:
ρ(t) = min

i∈N (t)
ρ(i), (2)

where N (t) represents the set of all vehicles that are less than 50.0 meters from the ego-vehicle at
time step t, and ρ(i) is the robustness score of the vehicle i.

Type-1:
ρ(t) = ρ(i∗), (3)

where i∗ is the closest vehicle to the ego-vehicle at time step t, and ρ(i∗) is the robustness score of
this closest vehicle.

Type-2:

ρ(t) =

∑
i wi · ρ(i)∑

i wi
, (4)

where wi is equal to 1/di and di is the distance of the vehicle i from the ego-vehicle and ρ(i) is the
robustness score of the vehicle i. After obtaining the combined robustness score for each time step,
we compute the robustness score for the entire trace (τ ), ρτ , equal to the minimum robustness score
across the entire time duration.

ρτ = min
t∈[0,τ ]

ρ(t), (5)

For training the Imitation Learning agent, which is robustly guided by safety constraints that are
encoded in Signal Temporal Logic, we modify the original loss function of the Transfuser (Chitta
et al., 2023) model by adding an additional loss term that controls the robustness weight denoted
by α (α ∈ [0, 1]). Let Ltpp be the loss function of the Transfuser model, which is a combination
of trajectory loss, semantic segmentation, bounding box, and additional semantic loss in the BEV

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

frame. We combine this task loss function with robustness loss in a weighted fashion as follows:

Lα = (1− α) · Ltpp + α · 1

∥D∥

∥D∥∑
i=1

ρ(i)τ . (6)

This final loss function Lα trains the agents to mimic the expert driving behavior while being robust
and safe.

3 EXPERIMENTAL RESULTS

3.1 DATASET & TRAINING

To train and evaluate our models on real-world data, we use the OpenScene (Contributors, 2023)
dataset, an extension of the nuPlan (Caesar et al., 2021) dataset developed for autonomous vehicle
research. OpenScene focuses on understanding 3D dynamic scenes for autonomous driving and
perception tasks like object detection, 3D scene understanding, and semantic segmentation. The
nuPlan dataset contains approximately 1200h of driving data from 4 cities: Boston, Pittsburgh, Las
Vegas, and Singapore. About 838h are from Las Vegas, with the remaining data split equally across
the other cities. To train, validate, and test our learned models, we use the NAVSIM benchmark
(Dauner et al., 2024). NAVSIM is a simulation-based benchmark developed for large-scale, data-
driven evaluation of autonomous driving systems. It enables testing autonomous vehicles in realistic
environments using a non-reactive open-loop simulation approach. In diverse driving scenarios,
NAVSIM evaluates driving policies on critical aspects like safety, comfort, and navigation progress
as reported in Table-2. It also gives the flexibility to use other real-world datasets.

Figure 2: Overview of the transfuser architecture and STL-Drive

Training Details: For the baseline, we chose Transfuser (Chitta et al., 2023), one of the top-
performing Imitation Learning algorithms on CARLA Leaderboard-v1.0. Transfuser combines con-
textual and spatial information from sensors like camera and LIDAR using a Transformer and learns
an automated driving policy that handles the driving task and safety well. We use an implementa-
tion of the Transfuser provided by the NAVSIM benchmark. To test our hypothesis, we trained each
model on the train split (train test split=navtrain), which contains 103288 scenarios interpolated at
10Hz with a duration of 4.0 seconds each. Similarly, we evaluate all the trained models using the
test split (train test split=navtest).

To understand the significance of α, we trained the models with the following values:
[0.2, 0.5, 0.8, 1.0]. To test how the robustness type formulation affects the trained models, for Type-1
and Type-2 robustness types, we train the models with α = 0.5. We also demonstrate the signif-
icance of using the RSS framework’s minimum safety spatial envelope as a safety constraint. We
use a static safety lateral and longitudinal distance envelope of 0.5 meters for the minimum safety
spatial envelope comparison.
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3.2 RESULTS ANALYSIS

(a) Scenario 1: STL-Drive model following the expert trajectory.

(b) Scenario 2: STL-Drive model following the expert trajectory and traffic rules inher-
ently.

(c) Scenario 3: STL-Drive model following the expert trajectory on a curved road.

Figure 3: Various scenarios showcasing how the Robustness Aware learner exhibits safe behaviors.
The green dots represent the human driver’s trajectory, while the red dots represent the learned
model’s trajectory.

From Table-2, we observe the evaluation results of different policies. The model with α = 0 is
the baseline Transfuser model with the lowest performing score of 0.7409. All STL monitoring-
based agents have higher scores than the baseline agent suggesting that encoding safety constraints
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in Signal Temporal Logic and using the robustness score can make the learned policies more robust
and safe. For the variation of robustness type, we observe that Type-1 has the best performance
amongst other formulations of Type-0 and Type-2 suggesting that the closest vehicle to the ego
vehicle will influence the vehicle’s safety more than the other vehicles in the scenario.

Monitor
Type

Robustness
Type α

No At-Fault
Collisions ↑

Drivable Area
Compliance ↑

Driving Direction
Compliance ↑ Ego Progress ↑ Time to Collision

Within Bound ↑ Comfort ↑ Score ↑

- - 0 0.9584 0.8389 0.6921 0.9027 0.9999 0.9608 0.7409

RSS Monitor

0 0.2 0.9646 0.8618 0.9687 0.7166 0.9060 0.9999 0.7648

0.5 0.9609 0.8671 0.9606 0.7255 0.8997 0.9999 0.7674

0.8 0.9632 0.8547 0.9600 0.7173 0.9008 0.9999 0.7575

1.0 0.7388 0.5696 0.8886 0.1178 0.7061 0.3560 0.2685

1 0.5 0.9702 0.8785 0.7372 0.9132 0.9999 0.9640 0.7837

2 0.5 0.9620 0.8545 0.7194 0.8886 0.9999 0.9576 0.7547

Constant Distance Envelope
0 0.2 0.9609 0.8587 0.9626 0.7174 0.8930 0.9999 0.7575

0.5 0.9552 0.8380 0.9567 0.6942 0.8899 0.9999 0.7356

Table 2: Table of Performance Metrics for Different Monitor Types and α Values

Table 2 shows the importance of RSS minimum safety spatial envelope compared to a constant
distance minimum safety spatial envelope. As the value of α increases, the performance drops
significantly for the constant distance envelope monitor. When comparing the results for the same
value of α across both envelopes, the RSS minimum safety spatial envelope performs better than the
constant distance safety spatial envelope, suggesting that the RSS framework is the better choice for
minimum safety spatial envelope.

Now, we look at some scenarios presented in Figure-3 to see how robustness can improve the safety
of the automated policy. Each row corresponds to the same scenario and the left image shows
the future trajectory predictions from the Transfuser agent, while the right image corresponds to
the agent trained with robustness formulation. In Scenario-1, the baseline (α = 0) model does
not mimic the expert trajectory, whereas the STL-Drive model follows a similar trajectory to the
expert log. When multiple vehicles are present, the task loss, which consists of bounding boxes
and localization of other vehicles, can cause it to neglect the safety of the policy. In Scenario 2,
even though both agents mimic the expected trajectory, the STL-Drive model follows traffic rules
and takes the leftmost possible trajectory to merge into the lane. In Scenario 3, we again observe
that the STL-Drive model outperforms the α = 0 policy on roads with complex driving behaviors.
These scenarios support our hypothesis that the robustness-aware automated driving policy is more
robust and safe than the policy with α = 0. The above results demonstrate that having a robustness
framework that considers safety constraints while training will improve the robustness and safety of
the learned policy.

4 RELATED WORK AND BACKGROUND

End-to-End Automated Driving with Imitation Learning: Since RL relies on trial and error,
it is unsafe, costly, and data-inefficient to train automated driving vehicles in the physical world.
Hence, most of the research related to automated driving is studied in simulation. For example,
CARLA (Dosovitskiy et al., 2017) is a popular choice for simulating realistic urban traffic interac-
tions that include intersections, multiple vehicles, pedestrians, traffic lights, and stop signs, along
with weather conditions affecting visibility. In CARLA, the task is to learn a goal-based navigation
policy given a list of waypoints and high-level commands. Since there is a gap between simulated
and real-world data, some methods utilize recorded expert human driver logs to learn a policy using
Imitation Learning. In (Chekroun et al., 2021), the authors propose combining Imitation Learning
and Reinforcement Learning to utilize expert demonstrations and exploration to solve the distribu-
tion shift of general IL methods and sample inefficiency of RL methods. (Chitta et al., 2023) predict
waypoints using Imitation Learning by using sensor fusion and a transformer to gather spatial and
temporal context. (Chen & Krähenbühl, 2022) similarly predicts waypoints by learning to predict
the trajectories of other agents in the scene.
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Safe Imitation Learning: Constrained Imitation Learning, focuses on replicating expert driving
behavior while adhering to safety constraints. In Constrained Behavioral Cloning, the vehicle learns
to imitate expert trajectories but avoids unsafe actions like speeding or tailgating, ensuring a balance
between imitation and safety (Bojarski et al., 2016). Enhancements like Safe DAgger improve upon
this by incorporating safety checks during the training process, preventing the model from learning
unsafe behaviors even as it adapts and refines its policy (Ross et al., 2011). Additionally, real-
time mechanisms such as Model Predictive Control (MPC) Shields monitor the vehicle’s predicted
trajectory, overriding any potentially dangerous actions to prevent accidents or collisions (Chen
et al., 2020b). In contrast, we use the safety constraints offline to learn a robust policy without the
need to constrain the policy in real time.

Safe Inverse Reinforcement Learning (IRL) methods solve this issue by inferring the reward func-
tions that drive human behavior, integrating safety into the learning process. Safe IRL helps vehi-
cles infer typical driving objectives, such as efficiency and safety while penalizing unsafe actions
like running red lights or following too closely (Ziebart et al., 2008). Risk-sensitive IRL introduces
additional caution in more high-risk environments, allowing autonomous systems to make conser-
vative decisions in complex scenarios like dense urban traffic or interactions with vulnerable road
users, such as pedestrians (Levine et al., 2011). However, inferring the reward function preferred
by a human driver is a complex task and would need a lot of feature engineering to search for the
optimal reward function that can improve the policy. Our method does not require such a task of
finding an appropriate reward function.

End-to-end learning with Safety Enhancements focuses on directly mapping sensor inputs, such as
camera or LiDAR data, to driving control actions. These systems require careful regularization to
avoid unsafe behavior. For example, barrier function-based safety regularization penalizes unsafe
trajectories, keeping the vehicle within safe zones (Gurriet et al., 2018). Learning from safe demon-
strations ensures that models only learn from optimal, expert-level behavior by filtering out unsafe
or sub-optimal human driving data (Zhang & Cho, 2016). Additionally, interactive imitation learn-
ing allows real-time expert intervention to correct unsafe actions during training (Ross et al., 2011).
Hybrid approaches like Safe RL, on top of Imitation, combine imitation learning with reinforcement
learning, allowing the vehicle to learn from demonstrations and then refine its behavior through RL,
ensuring both performance and safety in complex scenarios like merging onto highways or navi-
gating intersections (Kahn et al., 2017). Our work follows a similar approach by using the RSS
framework to guide and train the automated policy.

5 CONCLUSION

In this work, we propose a framework to combine task-based loss function with robustness loss
function to learn a safe and robust automated driving policy. RSS rules are encoded using Signal
Temporal Logic, and given a trace of the vehicle behavior, we compute the robustness score and
utilize this robustness score in a loss function. We trained an imitation learning agent using the new
loss function that was shown to outperform a similar driving policy without the robustness loss.

The rapid evolution of artificial intelligence, especially in the realm of generative models, mirrors
the multifaceted nature of human intelligence. While verbal intelligence has driven early advances
through large language models (LLMs) and text-prompted generative AI, the future of AI lies in
developing spatial intelligence. This shift is critical in fields such as automated driving, where
understanding and interacting with the physical world is paramount. In the context of automated
driving, as discussed in this work, spatial intelligence manifests in the ability of AI models to reason
about and respond to complex, real-world scenarios involving dynamic environments and safety
constraints. The integration of Signal Temporal Logic (STL) and the Responsibility-Sensitive Safety
(RSS) framework enhances the spatial reasoning capabilities of AI, enabling safer and more reliable
decision-making. As we move forward, developing AI systems with deeper spatial understanding
will be the key to unlocking the next phase of human-machine collaboration, allowing us to build
smarter vehicles and better, safer environments.
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6 LIMITATIONS

While our framework STL-Drive demonstrates advancements in integrating formal verification
methods, such as STL and the RSS framework, to enhance the safety of end-to-end automated
driving systems, it is not without limitations. The first limitation lies in the dependency on the
quality and quantity of the training data. The scope of the training scenarios directly influences the
performance of our model, and although we incorporated diverse datasets like OpenScene, there
may still be unaccounted edge cases in real-world environments. Additionally, while incorporating
STL-based safety constraints offers a rigorous approach to improving robustness, the reliance on
predefined logical safety rules may limit flexibility in novel, unpredictable driving scenarios. Our
model has been designed to handle various situations, yet unforeseen conditions not covered by
the defined temporal logic could challenge the framework’s adaptability. Another limitation is the
computational cost associated with calculating robustness scores during training. While using the
RSS model for enforcing safety has improved results, these computations can be resource-intensive,
making it challenging to scale for real-time applications in highly dynamic environments. It is
worth highlighting that this is a trade-off between the depth of safety verification and the speed of
decision-making, which could impact the model’s deployment in real-world systems.

Despite these constraints, we believe STL-Drive’s contributions to the field are substantial. By in-
corporating formal verification into the training process, we have introduced a new pathway for en-
hancing the safety and reliability of automated driving policies (and other safety-critical real-world
applications, such as manufacturing procedures and tactical logistics), laying the groundwork for
further exploration in combining machine learning algorithms (system 1 thnking) with formal safety
guarantees (system 2 thinking). STL-Drive represents a promising step toward safer, more robust
automated driving systems that can inspire continued research and development in this domain.
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CARLA: an open urban driving simulator. CoRR, abs/1711.03938, 2017. URL http://
arxiv.org/abs/1711.03938.

Florent Gurriet, Gianluca Polenta, Christoffer Sloth, and Aaron D. Ames. Towards a framework
for realizable safety critical control through active set invariance. IFAC-PapersOnLine, 51(34):
15–20, 2018.

Mohammad Hekmatnejad, Bardh Hoxha, and Georgios Fainekos. Search-based Test-CASe Gen-
eration by Monitoring Responsibility Safety Rules. In 2020 IEEE 23rd International Confer-
ence on Intelligent Transportation Systems, ITSC 2020, 2020. ISBN 9781728141497. doi:
10.1109/ITSC45102.2020.9294489.

Gregory Kahn, Ariel Villaflor, Vitchyr Pong, Pieter Abbeel, and Sergey Levine. Uncertainty-aware
reinforcement learning for collision avoidance. arXiv preprint arXiv:1702.01182, 2017.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse reinforcement learning with
gaussian processes. In Advances in Neural Information Processing Systems (NIPS), volume 24,
pp. 19–27, 2011.
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