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Abstract
We present a new algorithm for imitation learning
in infinite horizon linear MDPs dubbed ILARL
which greatly improves the bound on the num-
ber of trajectories that the learner needs to sam-
ple from the environment. In particular, we re-
move exploration assumptions required in previ-
ous works and we improve the dependence on the
desired accuracy ϵ from O

(
ϵ−5
)

to O
(
ϵ−4
)
. Our

result relies on a connection between imitation
learning and online learning in MDPs with ad-
versarial losses. For the latter setting, we present
the first result for infinite horizon linear MDP
which may be of independent interest. Moreover,
we are able to provide a strengthen result for the
finite horizon case where we achieve O

(
ϵ−2
)
.

Numerical experiments with linear function ap-
proximation shows that ILARL outperforms other
commonly used algorithms.

1. Introduction
Imitation Learning (IL) is of extreme importance for all
applications where designing a reward function is cumber-
some while collecting demonstrations from an expert policy
πE is easy. Examples are autonomous driving (Knox et al.,
2021), robotics (Osa et al., 2018), and economics/finance
(Charpentier et al., 2020). The goal is to learn a policy
which competes with the expert policy under the true un-
known cost function of the Markov Decision Process (MDP)
(Puterman, 1994).

Imitation learning relies on two data resources: expert
demonstrations collected acting with πE and data that can be
collected interacting in the MDP with policies chosen by the
learning algorithm. The first approach known as behavioural
cloning (BC) solves the problem applying supervised learn-
ing. That is, it requires no interaction in the MDP but it
requires knowledge of a class Π such that πE ∈ Π and
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Õ
(

log|Π|
(1−γ)4ϵ2E

)
expert demonstrations to ensure with high

probability that the output policy is at most ϵE-suboptimal.

The quartic dependence on the effective horizon term
((1−γ)−1) is problematic for long horizon problems. More-
over, the dependence on Π requires to make prior assump-
tion on the expert policy structure to provide bounds which
do not scale with the number of states in the function ap-
proximation setting. Thankfully, the dependence on the
effective horizon can be improved resorting to MDP interac-
tion. There exists an interesting line of works achieving this
goal considering an interacting setting where the learner has
the possibility to query the expert policy at any state visited
during the MDP interaction (Ross & Bagnell, 2010; Ross
et al., 2011) or that require a generative model to implement
efficiently the moment matching procedure (Swamy et al.,
2022). Another recent work requires a generative model
to sample the initial state of the trajectory from the expert
occupancy measure (Swamy et al., 2023). In this work, we
considered a different scenario which is adopted in most of
applied imitation learning (Ho et al., 2016; Ho & Ermon,
2016; Fu et al., 2018; Reddy et al., 2019; Dadashi et al.,
2021; Watson et al., 2023; Garg et al., 2021; Ni et al., 2021).
In this case, the expert policy can not be queried but only
a dataset of expert demonstrations collected beforehand is
available.

The setting has received scarse theoretical attention so far.
The only results we are aware of are: (Shani et al., 2021;
Xu et al., 2023) that focus on the tabular, finite horizon
case, (Liu et al., 2022) in the finite horizon linear mixture
MDP setting and (Viano et al., 2022) in the infinite horizon
Linear MDP setting. In all these works bound the num-
ber of required expert demonstrations scale as (1 − γ)−2

which improves considerably over the quartic depedence
attained by BC. However, (Viano et al., 2022) made the
following assumption on the features that greatly simplifies
the exploration in the MDP.

Assumption. Persistent excitation It holds that
for any policy πk in the sequence of policies gen-
erated by the algorithm adopted by the learner
λmin

(
E
s,a∼dπk [ϕ(s, a)ϕ(s, a)⊺]

)
≥ β > 0.

Despite similar assumptions being commonly used in infi-
nite horizon function approximation setting in imitation (Wu
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et al., 2023; Zeng et al., 2022b;a; 2023) and reinforcement
learning (see for example (Abbasi-Yadkori et al., 2019a;
Hao et al., 2021; Duan et al., 2020; Lazic et al., 2020;
Abbasi-Yadkori et al., 2019b; Agarwal et al., 2020a)), the
persistent excitation assumption is very restrictive as it can
be easily violated by deterministic policies with tabular fea-
tures.

Our contribution We propose a new algorithm that im-
proves the results of (Viano et al., 2022) in two important
aspects: it bypasses the persistent excitation assumption
(i.e. β = 0 does not cause the bound to blow up) and it
improves the dependence on ϵ. In particular, the new pro-
posed algorithm Algorithm 3 only requires O

(
d3

(1−γ)8ϵ4

)
MDP interactions which greatly improves upon the bound
Õ( d2

β6(1−γ)9ϵ5 ) proven by (Viano et al., 2022). Moreover, it
holds that β ≤ d−1. Therefore, the bound for PPIL scales
at least as Õ( d8

(1−γ)9ϵ5 ) and, consequently, the bound of
ILARL is better in all the relevant parameters d, (1 − γ)
and ϵ. The design is different from (Viano et al., 2022)
and it builds on a connection between imitation learning
and online learning in MDP with full information. There-
fore, we design as a submodule of our algorithm the first
algorithm for adversarial infinite horizon linear MDPs
which achieves O(K3/4) pseudo-regret. We also consider
the finite horizon version of this algorithm which obtains
a regret bound Õ

(
d3/4H3/2K3/4

)
which improves by a

factor H1/2 the first result in this setting proven in (Zhong
& Zhang, 2023). Concurrently to our work (Sherman et al.,
2023a) derived a further improvement with optimal depen-
dence on K .

Finally, we provide a stronger result for the finite hori-
zon setting. Key for this result is realizing that in the regret
decomposition of (Shani et al., 2021) one of the two play-
ers can in fact play the best response rather than a more
conservative no regret strategy. This observations leads to
Algorithm 4 which only requires O(H4d3ϵ−2) MDP inter-
actions.

Related Works Early works in behavioural cloning (BC)
(Pomerleau, 1991) popularized the framework showing its
success in driving problem and (Ross & Bagnell, 2010;
Ross et al., 2011) show that the problem can be analyzed
via a reduction to supervised learning which provides an
expert trajectories bound of order H4 log|Π|

ϵ2 . In practice, it
is difficult to choose a class Π such that simultaneously
contains the expert policy and is small enough to make the
bound meaningful. Other algorithms like Dagger (Ross
et al., 2011) and Logger (Li & Zhang, 2022) need to query
the expert interactively. In this case, the expert trajecto-
ries improve to H2 maxs,a(A

⋆(s,a))2 log|Π|
ϵ2 where A⋆ is the

optimal advantage. Recent works (Rajaraman et al., 2020)

showed that in the worst case Dagger does not improve over
BC but also that both can use only Õ

(
H2|S|

ϵ

)
in the tabular

case. Moreover, when transitions and initial distribution are
known and the expert is deterministic, the result can be im-
proved to O

(
H3/2|S|

ϵ

)
using Mimic-MD (Rajaraman et al.,

2020). Later, (Xu et al., 2023) introduced MB-TAIL that
having trajectory access to the MDP attains the same bound.
This shows that the traditional bound obtained matching
occupancy measure (Syed & Schapire, 2007) adopted in
(Shani et al., 2021) is suboptimal in the tabular setting. For
the linear function approximation, the works in (Swamy
et al., 2022; Rajaraman et al., 2021) introduced algorithms
that uses O

(
H3/2d

ϵ

)
expert trajectories with knowledge of

the transitions but those require strong assumptions such as
linear expert (Rajaraman et al., 2021, Definition 4), partic-
ular choice of features, linear reward and uniform expert
occupancy measure. (Rajaraman et al., 2021) also proves an
improved result for BC but under the linear expert assump-
tion which implies that the expert is deterministic. While
one can notice that there exists an optimal policy in a Linear
MDP which is a linear expert, in our work we do not impose
assumption on the expert policy and we require O

(
H2d
ϵ2

)
demonstrations. Under the same setting, the best known
bound for BC is H2 log|Π|

d times larger which makes our
algorithm preferrable whenever |Π| ≥ exp(dH−2). We
report a comparison with existing IL theory work in Table 1.

All the works we mentioned so far focused on the finite
horizon, however the infinite horizon setting is the most
common in practice (Ho et al., 2016; Ho & Ermon, 2016;
Fu et al., 2018; Reddy et al., 2019; Dadashi et al., 2021;
Watson et al., 2023; Garg et al., 2021). The practical advan-
tage is that in the infinite horizon setting the optimal policy
can be sought in the class of stationary policies which are
much easier to store in memory than the nonstationary ones.
Despite this fact, there are only few previous result studying
IL in infinite horizon MDP and all of them operate under
limiting exploration assumptions that we describe next.

Exploration assumptions in the literature As men-
tioned, (Viano et al., 2022) requires the persistent excitation
assumption, (Wu et al., 2023) requires a uniformly good
evaluation policy evaluation error which is possible only
if the policies generated by the algorithm visits every state
with high probability. (Zeng et al., 2022b) provided the first
guarantees for IL with non linear reward functions but it
assumes ergodic dynamics and that the the soft action value
function of every policy can be perfectly evaluated at every
state action pair. The latter assumption has been relaxed
later in (Zeng et al., 2022a) and in (Zeng et al., 2023) that
allows for a uniformly bounded policy evaluation error. In
the latter case, the policies are evaluated under the transi-
tions learned from expert data. However, their bound on
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Table 1: Comparison with related algorithms We report the number of expert trajectories and MDP interactions needed
for the various algorithms to be ϵ-suboptimal according to Definition 1. Our algorithms provide guarantees for the number
of expert trajectories independent on S and Π without assumptions on the expert policy. By Linear Expert, me mean that
the expert policy is π(s) = maxa∈A ϕ(s, a)⊺θ for some unknown vector θ.

Algorithm Setting Expert Traj. MDP Traj.

Behavioural Cloning
Function Approximation, Offline (Agarwal et al., 2019) O

(
H4 log|Π|

ϵ2

)
-

Tabular, Offline (Rajaraman et al., 2020) Õ
(

H2|S|
ϵ

)
-

Linear Expert, Offline (Rajaraman et al., 2021) Õ
(

H2d
ϵ

)
-

Mimic-MD (Rajaraman et al., 2020) Tabular, Known Transitions, Deterministic Expert O
(

H3/2|S|
ϵ

)
-

OAL (Shani et al., 2021) Tabular O
(

H2|S|
ϵ2

)
O
(

H4|S|2|A|
ϵ2

)
MB-TAIL (Xu et al., 2023) Tabular, Deterministic Expert O

(
H3/2|S|

ϵ

)
O
(

H3|S|2|A|
ϵ2

)
OGAIL (Liu et al., 2022) Linear Mixture MDP O

(
H3d2

ϵ2

)
O
(

H4d3

ϵ2

)
PPIL (Viano et al., 2022) Linear MDP, Persistent Excitation O

(
d

(1−γ)2ϵ2

)
O
(

d2

β6(1−γ)9ϵ5

)
ILARL (Algorithm 3) Linear MDP O

(
d

(1−γ)2ϵ2

)
O
(

d3

(1−γ)8ϵ4

)
BRIG (Algorithm 4) Episodic Linear MDP O

(
dH2

ϵ2

)
O
(

d3H4

ϵ2

)

the number of expert trajectories scale as (1 − γ)−4 and
with the number of states visited by the expert while our
bound leverages online access to the MDP to obtain a bet-
ter horizon and to avoid the dependence on the number of
states. Moreover, the bounds in (Zeng et al., 2023; 2022a;
Wu et al., 2023) depend on the number of states which can
be prohibitively large in the function approximation setting.

2. Background and Notation
In imitation learning (Osa et al., 2018), the environment is
abstracted as Markov Decision Process (MDP) (Puterman,
1994) which consists of a tuple (S,A, P, c,ν0) where S
is the state space, A is the action space, P : S × A →
∆S is the transition kernel, that is, P (s′|s, a) denotes the
probability of landing in state s′ after choosing action a in
state s. Moreover, ν0 is a distribution over states from which
the initial state is sampled. Finally, c : S × A → [−1, 1]
is the cost function. In the infinite horizon setting, we
endow the MDP tuple with an additional element called
the discount factor γ ∈ [0, 1). Alternatively, in the finite
horizon setting we append to the MDP tuple the horizon
H ∈ N and we consider possibly inhomogenous transitions
or costs function. That is, they depend on the stage within
the episode. The agent plays action in the environment
sampled from a policy π : S → ∆A. The learner is allowed
to adopt an algorithm to update the policy across episodes
given the previously observed history. We will see that
imitation learning has a strong connection with MDPs with
adversarial costs. The latter setting allows the cost function
to change each time the learner samples a new episode in
the MDP. For clarity, we include the pseudocode for the
interaction in Protocol 1 in Appendix B.

Value functions and occupancy measures We de-
fine the state value function at state s ∈ S for the
policy π under the cost function c as V π(s; c) ≜
E
[∑∞

h=0 γ
hc(sh, ah)|s1 = s

]
. In the finite horizon

case, the state value function also depends on the stage
index h, that is V π

h (s; c) ≜ E
[∑H

ℓ=h c(sℓ, aℓ)|sh = s
]

1.
In both cases, the expectation over both the ran-
domness of the transition dynamics and the one of
the learner’s policy. Another convenient quantity
is the occupancy measure of a policy π denoted as
dπ ∈ ∆S×A and defined as follows dπ(s, a) ≜ (1 −
γ)
∑∞

h=0 γ
hP [s, a is visited after h steps acting with π].

We can also define the state occupancy measure as dπ(s) ≜
(1 − γ)

∑∞
h=0 γ

hP [s is visited after h steps acting with π].
In the finite horizon setting, the occupancy measure
depends on the stage h and its defined simply as
dπh(s, a) ≜ P [s, a is visited after h steps acting with π].
The state occupancy measure is defined analogously.
Imitation Learning In imitation learning, the learner is
given a dataset DE ≜

{
τ k
}τE
k=1

containing τE trajectories
collected in the MDP by an expert policy πE according to
Protocol 1. By trajectory τ k, we mean the sequence of
states and actions sampled at the kth iteration of Protocol 1,
that is τ k =

{
(skh, a

h
k)
}H
h=1

for finite horizon case. For the
infinite horizon case, the trajectories have random lenght
sampled from the distribution Geometric(1 − γ). Given,
DE the learner adopts an algorithm A to learn a policy πout

such that is ϵ-suboptimal according to the next definition.

Definition 1. An algorithm A is said ϵ-suboptimal
1In the finite horizon case we may use V π(s; c) as a shortcut

for V π
1 (s; c)
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if it outputs a policy π whose value function with
respect to the unknown true cost ctrue satisfies
EAEs1∼ν0 [V

π(s1; ctrue)− V πE(s1; ctrue)] ≤ ϵ where
the first expectation is on the randomness of the algorithm
A.

2.1. Setting

We study imitation learning in the linear MDP setting popu-
larized by (Jin et al., 2019) and studied in imitation learn-
ing in (Viano et al., 2022). When studying finite horizon
problems we consider possible inhomogeneous transition
dynamics and cost function. That is, we work under the
following assumptions.

Assumption 1. Episodic Linear MDP There exist a feature
matrix Φ ∈ R|S||A|×d known to the learner, an unknown
sequence of vectors wk

h ∈ Rd and an unknown matrix se-
quences Mh ∈ Rd×|S| such that the transition matrices
Ph factorize as Ph = ΦMh and the sequence of adver-
sarial costs ckh can be written as ckh = Φwk

h. Moreover,
it holds for all k ∈ [K], h ∈ [H] and for all state action
pairs s, a ∈ S × A that ∥Φ∥1,∞ ≤ 1, ∥Mh∥1,∞ ≤ 1,∥∥wk

h

∥∥
2
≤ 1.

Assumption 2. Linear MDP There exist a feature matrix
Φ ∈ R|S||A|×d known to the learner, an unknown sequence
of vectors wk ∈ Rd and an unknown matrix M ∈ Rd×|S|

such that the transition matrices P factorize as P = ΦM
and the sequence of adversarial costs ck can be written
as ck = Φwk. Moreover, it holds for all k ∈ [K] and
for all state action pairs s, a ∈ S × A that ∥Φ∥1,∞ ≤ 1,
∥M∥1,∞ ≤ 1,

∥∥wk
∥∥
2
≤ 1.

In the context of imitation learning, we also need to assume
that the true unknown cost is realizable.

Assumption 3. Realizable cost The learner has access to a
feature matrix Φ ∈ R|S||A|×d such that ctrue = Φwtrue.

3. Main Results and techniques
We provide our main results for the infinite horizon case in
Theorem 1 and the stronger result for the finite horizon in
Theorem 2.

Theorem 1. Under Assumptions 2,3, there exists an algo-
rithm, i.e. Algorithm 3, such that after using Õ

(
log|A|d3

(1−γ)8ϵ4

)
state action pairs from the MDP and using Õ

(
2d log(2d)
(1−γ)2ϵ2E

)
expert demonstrations is ϵ+ ϵE-suboptimal.

Theorem 2. Under Assumptions 1,3,there exists an al-
gorithm, i.e. Algorithm 4, such that after sampling
O
(
H4d3 log(dH/(ϵ))ϵ−2

)
trajectories and having access

to a dataset of τE = Õ
(

2H2d log(2d)
ϵ2E

)
expert demonstra-

tions is ϵ+ ϵE-suboptimal.

Remark 1. The results are proven via the high probability
bounds in Theorems 5 and 6 respectively and apply the high
probability to expectation conversion lemma in Lemma 7.

3.1. Technique overview

Online-to-batch conversion The core idea is to extract
the policy achieving the sample complexity guarantees
above via an online-to-batch conservation. That is the output
policy is sampled uniformly from a collection of K policies{
πk
}K
k=1

. The sample complexity result is proven, show-

ing that the policies
{
πk
}K
k=1

produced by the algorithms
under study have sublinear pseudo regret in high probabil-
ity. That is, in the infinite horizon discounted setting with
Algorithm 3 guarantees

Regret(K) ≜
1

1− γ

K∑
k=1

〈
ctrue, d

πk

− dπE

〉
≤ O(K3/4)

with high probability and Algorithm 4 ensures Regret(K)

H∑
h=1

K∑
k=1

〈
ctrue,h, d

πk

h − dπE
h

〉
≤ O(

√
K) (1)

with high probability in the finite horizon setting . The next
section presents the regret decomposition giving the crucial
insights for the design of Algorithms 3 and 4.

Regret decomposition To obtain both regret bounds, we
decompose the pseudo regret in 3 terms. We present it for
the infinite horizon case, where (1− γ)Regret(K) is equal
to

K∑
k=1

〈
ck, dπ

k

− dπE

〉
︸ ︷︷ ︸

Regretπ(K;dπE )

+

K∑
k=1

〈
wtrue − wk,Φ⊺dπ

k

−Φ⊺dπE

〉
︸ ︷︷ ︸

Regretw(K;wtrue)

(2)
This decomposition is inspired from (Shani et al., 2021) but
it applies also to the infinite horizon setting and exploits the
linear structure using Assumptions 2,3 to write ck = Φwk

and ctrue = Φwtrue.

Regretw(K;wtrue) is the pseudo regret of a player updating
a sequence of cost functions and having ctrue as comparator
while Regretπ(K; dπE) is the pseudo regret in a Linear
MDP with adversarial costs

{
ck
}K
k=1

and having the expert
occupancy measure as a comparator.

Imitation Learning via no-regret algorithms The de-
composition in Equation (2) suggests that imitation learning
algorithm can be designed chaining one algorithm that up-
dates the sequence wk to make sure that Regretw(K;wtrue)
grows sublinearly and a second one that updates the pol-
icy sequence to control Regretπ(K; dπE). Controlling
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Regretw(K;wtrue) can be easily done via projected online
gradient descent (Zinkevich, 2003).

Unfortunately, controlling Regretπ(K; dπE) is way more
challenging because we have no knowledge of the transition
dynamics. Therefore, we can not project on the feasible set
of occupancy measures. To circumvent this issue we rely on
the recent literature (Luo et al., 2021; Sherman et al., 2023b;
Dai et al., 2023) that however focuses on bandit feedback. In
our case, the π player has full information on the cost vector
ck. Thus, we design a simpler algorithm Algorithm 1 which
achieves a better regret bound in the easier full information
case. Algorithm 1 improves over the regret bound in (Zhong
& Zhang, 2023) and easily extends to the infinite horizon
setting (see Algorithm 2).

Improved algorithm for finite horizon The techniques
explained so far do not allow to get the better bound of order
O(

√
K) in the finite horizon setting (see Equation (1)). The

idea is to let the w player update first, then the π player
can update their policy knowing in advance the loss that
they will suffer. This allows to use LSVI-UCB (Jin et al.,
2019) for the π-player which has been originally designed
for a fixed cost but we show that it still guarantees O(

√
T )

regret against an arbitrary sequence of costs when the learner
knows in advance the cost function at the next episode.
On the other hand, LSVI-UCB suffers linear regret if the
adversarial loss is not known in advance so letting the w
player update first is crucial. This result is provided in
Section 7.

4. Warm up: Online Learning in Adversarial
Linear MDP

We start by presenting our result in full information episodic
linear MDP with adversarial costs that improves over
(Zhong & Zhang, 2023) by a factor H1/2. The algorithm is
quite simple. We apply a policy iteration like method with
two important twist: (i) in the policy improvement step, we
update the policy with a no regret algorithm rather than a
greedy step. Moreover, the policy is updated only every τ
episodes using as loss vector the average Q value over the
last batch of collected episodes, (ii) in the policy evaluation
step, we compute an optimistic estimate of the Q function
for the current policy using only on-policy data.

The last part is crucial because the use of off-policy data
makes the covering argument for Linear MDP problematic.
Indeed, one would need to cover the space of stochastic
policy when computing the covering number of the value
function class but this leads to the undesirable dependence
on the number of states and actions for the log covering
number (see for example (Abbasi-Yadkori et al., 2013)). An
alternative bound on the covering number shown in (Zhong
& Zhang, 2023) would instead lead to linear regret.

Instead, using data collected on-policy allows to apply the
covering argument to a much smaller function class avoiding
the dependence on the number of states and actions. The first
twist is at this point necessary to make the policy updates
more rare giving the possibility to collect more on-policy
episodes with a fixed policy. The algorithm pseudocode is
in Algorithm 1.

4.1. Analysis

Theorem 3. Under Assumption 1, run Algorithm 1 with
exploration parameter β = Õ (dH), dataset size τ =
5β
2

√
Kd

log|A| and step size η =
√

τ log|A|
KH2 . Then, it

holds with probability 1 − δ, that Regret(K;π⋆) =∑K
k=1 V

πk,k
1 (s1)− V π⋆,k

1 (s1) is upper bounded by

Õ
(
d3/4H3/2 log1/4 |A|K3/4 log

K

δ

)
(3)

where we use the compact notation V π,k
h (·) ≜ V π

h (·; ck).

Proof. Sketch Adding and subtracting the term∑K
k=1 V

k
1 (s1) in the definition of regret, we have that

defining δkh(s, a) ≜ ckh(s, a) + PhV
k
h+1(s, a)−Qk

h(s, a)

Regret(K;π⋆) ≤
K∑

k=1

H∑
h=1

Es∼dπ⋆

h

[〈
Qk

h(s, ·), πk
h(s)− π⋆

h(s)
〉]

−
K∑

k=1

H∑
h=1

Es,a∼dπ⋆

h

[
δkh(s, a)

]
+

K∑
k=1

H∑
h=1

E
s,a∼dπk

h

[
δkh(s, a)

]
where the last inequality holds by the extended performance
difference lemma (Cai et al., 2020; Shani et al., 2020). At
this point we can invoke Lemma 3 ( see Appendix E) to
obtain

−2bkh(s, a) ≤ Qk
h(s, a)− ckh(s, a)− PhV

k
h+1(s, a) ≤ 0

(4)
for all (s, a) ∈ S × A, h ∈ [H], k ∈ [K] with probability
1− δ. This implies that with probability 1− δ

Regret(K;π⋆) ≤
K∑

k=1

H∑
h=1

Es∼dπ⋆

h

[〈
Qk

h(s, ·), πk
h(s)− π⋆

h(s)
〉]

+ 2

K∑
k=1

H∑
h=1

E
s,a∼dπk

h

[
bkh(s, a)

]
5
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Algorithm 1 On-policy MDP-E with unknown transitions and adversarial costs.

1: Input: Dataset size τ , Exploration parameter β, Step size η, initialize π0 as uniform distribution over A
2: for j = 1, . . . ⌊K/τ⌋ do
3: Denote the indices interval Tj ≜ [(j − 1) ⌊K/τ⌋ , j ⌊K/τ⌋).
4: // Collect on-policy data
5: Collect τ trajectories with policy π(j) and store them in the dataset D(j)

h =
{
(sih, a

i
h, c

i
h, s

i
h+1)

}
i∈Tj

.

6: Denote global dataset D(j) = ∪H
h=1D

(j)
h .

7: for k ∈ Tj do
8: // Optimistic policy evaluation
9: Initialize V k

H+1 = 0
10: for h = H, . . . , 1 do
11: Λk

h =
∑

(s,a)∈D(j)
h

ϕ(s, a)ϕ(s, a)⊺ + I // ϕ(s, a) is the (s, a)th row of the matrix Φ.

12: vk
h = (Λk

h)
−1
∑

(s,a,s′)∈D(j)
h

ϕ(s, a)V k
h+1(s

′)

13: bkh(s, a) = β ∥ϕ(s, a)∥(Λk
h)

−1

14: Qk
h =

[
ckh +Φvk

h − bkh
]H−h+1

−H+h−1

15: V k
h (s) =

〈
πk
h(s), Q

k
h(s, ·)

〉
(with πk = π(j)).

16: end for
17: end for
18: // Policy Improvement Step
19: Compute average Q value Q̄

(j)
h (s, a) = 1

τ

∑
k∈Tj

Qk
h(s, a).

20: Update policy π
(j+1)
h (a|s) ∝ exp

(
−η
∑j

i=1 Q̄
(i)
h (s, a)

)
21: end for

Then applying the mirror descent with blocking result given
in Lemma 9 we obtain

Regret(K;π⋆) ≤ τ log |A|
η

+ τH + ηKH2

+ 2

K∑
k=1

H∑
h=1

E
s,a∼dπk

h

[
bkh(s, a)

]
. Then, by Lemma 10, it holds that with probability 1− 2δ
that

Regret(K;π⋆) ≤ τ log |A|
η

+ τH + ηKH2

+
14KH

√
dβ log(2τ/δ)√

τ
.

The proof is concluded plugging in the values specified in
the theorem statement.

4.2. Extension to the Infinite Horizon Setting.

We show our proposed extension to the infinite horizon in
Algorithm 2. The main difference in the analysis is to the
handle the fact that in the infinite horizon setting we can not
run a backward recursion to compute the optimistic value
functions as done in Steps 10-16 of Algorithm 1. Instead, we
use the optimistic estimate at the previous iterate Qk to build
an approximate optimistic estimate at the next iterate (see

Steps 10-12 in Algorithm 2). This error can be controlled
thanks to the regularization in the policy improvement step
as noticed in (Moulin & Neu, 2023).

Theorem 4. Under Assumption 2, consider K iterations
of Algorithm 2 run with τ ≤ K√

τ
and β = Õ(dH), then it

holds for any comparator policy π⋆ that with probability
1− 2δ by

(1− γ)Regret(K;π⋆) ≜
K∑

k=1

〈
dπ

k

− dπ
⋆

, ck
〉

≤ τ log |A|
η

+
τ + 1

1− γ
+

ηK

(1− γ)2

+ 12βK

√
d

τ
log

(
2Kd

τδ

)
+

√
2ηK

(1− γ)2τ
.

Proof. Sketch The proof is based on the following de-
composition that holds in virtue of Lemma 2. Denot-
ing δk(s, a) ≜ ck(s, a) + γPV k(s, a) − Qk+1(s, a) and
gk(s, a) ≜ Qk+1(s, a) − Qk(s, a), we have that (1 −

6
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Algorithm 2 Infinite Horizon Linear MDP with adversarial
losses.

1: Input: Dataset size τ , Exploration parameter β, Step
size η, Initial policy π0 (uniform over A), initialize
V 1 = 0.

2: for j = 1, . . . ⌊K/τ⌋ do
3: // Collect on-policy data
4: Denote the indices interval Tj ≜ [(j −

1) ⌊K/τ⌋ , j ⌊K/τ⌋).
5: Sample D(j) =

{
(si, ai, s′,i, ci)

}
i∈Tj

∼ dπ
(j)

using
(Agarwal et al., 2020b, Algorithm 1).

6: Compute Λ(j) =
∑

(s,a)∈D(j) ϕ(s, a)ϕ(s, a)⊺ + I .
7: Compute b(j)(s, a) = β ∥ϕ(s, a)∥(Λ(j))−1 .
8: // Optimistic Policy Evaluation
9: for k ∈ Tj do

10: vk = (Λ(j))−1
∑

(s,a,s′)∈D(j) ϕ(s, a)V k(s′)

11: Qk+1 =
[
ck + γΦvk − b(j)

](1−γ)−1

−(1−γ)−1

12: V k+1(s) =
〈
π(j)(a|s), Qk+1(s, a)

〉
13: end for
14: // Policy Improvement Step
15: Compute average Q value Q̄(j)(s, a) =

1
τ

∑
k∈Tj

Qk(s, a).
16: Update policy: π(j+1)(a|s) ∝

exp
(
−η
∑j

i=1 Q̄
(i)(s, a)

)
17: end for

γ)Regret(K;π⋆) equals

K∑
k=1

Es∼dπ⋆

[〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
(OMD)

+

K∑
k=1

∑
s,a

[
dπ

k

(s, a)− dπ
⋆

(s, a)
]
δk(s, a) (Opt)

+

K∑
k=1

∑
s,a

[
dπ

k

(s, a)− dπ
⋆

(s, a)
]
gk(s, a) (Shift)

Then, we have that Opt can be bounded similarly to the
finite horizon case using Lemma 4 while for Shift we rely
on the regularization of the policy improvement step and on
the fact that the policy is updated only every τ steps. All
in all, we have that the first term in (Shift) can be bounded
as 1

(1−γ)2

∑⌊K/τ⌋
j=2

√
2η =

√
2ηK

(1−γ)2τ . The second term just

telescopes therefore (Shift) ≤
√
2ηK

(1−γ)2τ + 1
1−γ . Finally,

(OMD) can be bounded as in the finite horizon case.

5. Imitation Learning in Infinite Horizon
MDPs

In this section, we apply Theorem 4 to imitation learning.
Indeed, we design Algorithm 3 using the insights from the

Algorithm 3 Imitation Learning via Adversarial Reinforce-
ment Learning (ILARL) for Infinite Horizon Linear MDPs.

1: Input: Access to Algorithm 2 (with inputs τ ,β, η, π0)
, Step size for Cost Update α, Expert dataset DπE =
{τ i}τEi=1.

2: Estimate for expert feature visitation Φ̂⊺dπE ≜
(1−γ)
τE

∑
τ∈DπE

∑
sh,ah∈τ γhϕ(sh, ah) .

3: for k = 1, . . . ,K do
4: // Cost Update (to control Regretw(K;wtrue))

5: Estimate Φ̂⊺dπk ≜ τ−1
∑

s,a∈D(j) ϕ(s, a) where
D(j) is defined in Step 6 in Algorithm 2.

6: wk+1 = ΠW

[
wk − α(Φ̂⊺dπE − Φ̂⊺dπk)

]
with

W = {w : ∥w∥2 ≤ 1}.
7: // Policy Update ( to control Regretπ(K;πE) )
8: The cost Φwk is revealed to the learner.
9: The learner updates their policy πk performing one

iteration of Algorithm 2.
10: end for

decomposition in Equation (2): we use a no regret algorithm
to update the cost at each round and we update the learner’s
policy using a no regret algorithm for infinite horizon full
information adversarial Linear MDP, of which Algorithm 2
is the first example in the literature. The guarantees for
Algorithm 3 are given in the following theorem.

Theorem 5. Under Assumptions 2,3, let us consider K it-
erations of Algorithm 3 with K ≥ Õ

(
log|A|dβ2 log2(1/δ)

(1−γ)6ϵ4

)
where β is chosen as in Lemma 6 (i.e. β = Õ (d(1− γ))

−1).
Moreover, let consider the following choices α = 1√

2K
,

τ = O
(

β(1−γ)
√
dK log(2dK/δ)√
log|A|

)
, expert trajectories τE =

8d log(d/δ)
(1−γ)2ϵ2E

and η =
√

τ log|A|(1−γ)2

K .Then, the above con-

ditions ensure 1
1−γ

〈
ctrue, d

πE − 1
K

∑K
k=1 d

πk
〉
≤ ϵ + ϵE

with probability 1− 4δ .

The proof included in Appendix E starts with the de-
composition in Equation (2). Then, we control the term
Regretw(K;wtrue) with the standard online gradient de-
scent analyses and the term Regretπ(K;πE) with Theo-
rem 4. Finally, we control the statistical estimation error
for the losses seen by the w-player with an application of
Lemma 8.

Remark 2. The resulting algorithm improves over (Viano
et al., 2022) in two ways: (i) We bypass all kind of explo-
ration assumptions, such as the persistent excitation assump-
tion. We remark that this a qualitative improvement. Indeed,
the persistent excitation assumption is easily violated by
deterministic policies with tabular features. (ii) Moreover,
the sample complexity improves from O(ϵ−5) to O(ϵ−4).

7
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Figure 1: Experiments on a continuous gridworld with a stochastic expert.The y-axis reports the normalized return. 1
correpsonds to the expert performance and 0 to the uniform policy one.

6. Empirical evaluation
We numerically verify the main theoretical insights derived
in the previous sections (i) We aim to verify that for a general
stochastic expert, the efficiency in terms of expert trajecto-
ries improves upon behavioural cloning. (ii) ILARL is more
efficient in terms of MDP trajectories compared to PPIL
(Viano et al., 2022) which has worst theoretical guarantees
and with popular algorithms that are widely used in practice
but do not enjoy theoretical guarantees: GAIL (Ho et al.,
2016), AIRL (Fu et al., 2018), REIRL (Boularias et al.,
2011) and IQLearn (Garg et al., 2021) The experiments are
run in a continuous state MDP explained in Appendix G.
Expert trajectory efficiency with stochastic expert For
the first claim, we use a stochastic expert obtained following
with equal probability either the action taken by a determin-
istic experts previously trained with LSVI-UCB or an action
sampled uniformly at random. We collect with such policy
τE trajectories. From Figure 1, we observe that all imita-
tion learning we tried have a final performance improving
over behavioural cloning for the case τE = 1 while only
REIRL and ILARL do so for τE = 2. In both cases, ILARL
achieves the highest return that even matches the expert
performance.
MDP trajectories efficiency For the second claim, we can
see in Figure 1 that ILARL is the most efficient algorithm
in terms of MDP trajectories for both values of τE .

7. An improvement for the finite horizon case
We notice that in Algorithm 3 we missed an opportunity. In
fact, we could use prior knowledge of the cost function ckh
to update the policy πk

h. In other words, in Step 8 of Algo-
rithm 3 we could reveal wk+1 to the algorithm that controls
Regretπ(K; dπE) . From an online learning perspective we
can play best response to control more effectively the regret
term Regretπ(K; dπE) using LSVI-UCB (Jin et al., 2019).
This idea leads to the Algorithm 4. Theorem 6 proves that
Algorithm 4 improves the required number of interaction
to K = Õ(H4d3ϵ−2 log2(1/δ)) which greatly improves
over K = Õ(H6 log |A| d3ϵ−4 log2(1/δ)) achieved by Al-

Algorithm 4 Best Response Imitation learninG (BRIG).

1: Input: Exploration parameter β, Step size η , Reward
step size α, expert dataset DπE = ∪h∈[H]DπE,h.

2: Initialize π0 as uniform distribution over A.
3: Estimate expert features expectation vectors Φ̂⊺dπE

h =
1

|DπE,h|
∑

s,a∈DπE,h
ϕ(s, a) for all h ∈ [H].

4: for k = 1, . . .K do
5: Collect one episodes with policy πk denoted as τ k ={

(skh, a
k
h, s

k
h+1)

}H−1

h=1
and for every h ∈ [H] append

data (skh, a
k
h, s

k
h+1) to Dh.

6: // Cost Update (to control Regretw(K;wtrue))
7: wk+1

h = ΠW

[
wk

h − α(Φ̂⊺dπE
h − ϕ

(
skh, a

k
h

)
)
]

with
W = {w : 0 ≤ w ≤ 1} for all h ∈ [H].

8: // Full information LSVI-UCB ( to control
Regretπ(K;πE))

9: Initialize V k
H+1 = 0

10: for h = H, . . . , 1 do
11: Λk

h =
∑

(s,a)∈Dh
ϕ(s, a)ϕ(s, a)⊺ + I

12: vk
h = (Λk

h)
−1
∑

(s,a,s′)∈Dh
ϕ(s, a)V k

h+1(s
′)

13: bkh(s, a) = β ∥ϕ(s, a)∥(Λk
h)

−1 .

14: // Q-update using the future loss wk+1
h

15: Qk
h =

[
Φwk+1

h +Φvk
h − bkh

]H−h+1

−H+h−1
.

16: // Greedy policy update, Best Response
17: πk+1

h (s) = argmin
(
Qk

h(s, ·)
)
.

18: V k
h (s) =

〈
πk+1
h (s), Qk

h(s, ·)
〉
.

19: end for
20: end for

gorithm 3 applied to finite horizon problems which does not
use the best response observation. A core step in the proof
is to show that the regret of LSVI-UCB is still O(

√
K) if

the cost function is not fixed but it is observed in advanced
by the agent.

Theorem 6. Let us consider K = O
(

H4d3 log(dH/(ϵδ))
ϵ2

)
iterations of Algorithm 4 run with α =

√
1

2K and ex-

8
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pert demonstrations τE = 2H2d log(2d/δ)
ϵ2E

. Moreover, let

k̂ be an iteration index sampled uniformly at random from
{1, 2, . . . ,K}, then it holds that with probability 1− 3δ, it

holds that Ek̂

[
V πk̂

1 (s1; ctrue)− V πE
1 (s1; ctrue)

]
≤ O(ϵE +

ϵ).

Remark 3. Unfortunately, the best response idea does not
help improving the infinite horizon result because the use of
greedy policies makes the term (Shift) impossible to control.

8. Future directions
Reducing the number of expert trajectories (Rajara-
man et al., 2021) showed that under known transitions for a
particular choice of features and when the linear expert occu-
pancy measure is uniform over the state space the necessary
expert trajectories are O

(
H3/2d2

ϵ

)
.

In the linear MDP case, under the same assumption on
the features we can show that the same amount of expert
trajectories is sufficient even for the unknown transition case.
Moreover, the algorithm we propose is computationally
efficient while it is unclear how the output policy in linear
Mimic-MD (Rajaraman et al., 2021) can be computed with
complexity independent on the number of states and actions.
We detail this in Appendix H.

However, the assumptions under which this result is ob-
tained are clearly too strong. Hence, an interesting open
question on this front is to see if the same improvement
in terms of expert trajectory can be achieved under weaker
conditions.

A first step has been already made in (Swamy et al., 2022).
They still requires a linear expert model but avoids the uni-
form expert occupancy measure assumption replacing it
with the bounded density assumption (see (Swamy et al.,
2022, Assumption 9)). A natural follow up would be to in-
vestigate if the same expert trajectory bound can be obtained
bringing the Linear MDP assumption but dropping the linear
expert and the other assumptions used in (Rajaraman et al.,
2021; Swamy et al., 2022). An intermediate step could ben-
efit from using the persistent excitation assumption which is
the natural counterpart of the bounded density assumption
(Swamy et al., 2022, Assumption 9) in Linear MDPs.

Improving dependence on ϵ, d and H For what concerns
the finite horizon case we presented BRIG which has a de-
pendence on ϵ which can not be improved further if not
bypassing the reduction to online learning in MDPs. How-
ever the dependence in d and H can be improved. To cir-
cumvent this problem, we could think that one could apply
LSVI-UCB++ (He et al., 2023). However, it turns out that
LSVI-UCB++ fails if the cost changes adversarially even if
the learner knows the cost at the next round. Therefore, a

new algorithm design is needed to improve by a factor dH
upon the MDP trajectory complexity of Algorithm 4.

Results for Linear Mixture MDPs Analogous ideas can
be used for the case of Linear Mixture MDPs. In particu-
lar, one can use the same structure as in Algorithm 3 but
replacing an algorithm that deals with adversarial losses in
Linear Mixture MDPs. For the infinite horizon case one
can use (Moulin & Neu, 2023) while for the finite horizon
case one can choose (He et al., 2022). In the latter case
one can improve the Sample Complexity of OGAIL (Liu
et al., 2022) to O

(
H3d2ϵ−2

)
. Moreover, we do not think

that that the Linear Expert assumption (Rajaraman et al.,
2021) is meaningful in Linear Mixture MDPs because this
would require the learner to know in advance the features∫
S ϕ(s, a, s′)V ⋆(s′)ds′ where V ⋆ is the optimal state value

function.

Extension to Bilinear Classes The current results can be
extended to Bilinear Classes (Du et al., 2021) at least in
the finite horizon case using the trick of updating first the
cost, i.e. the same trick that allowed us to obtain O(ϵ−2)
MDP trajectories bound in the finite horizon case using
LSVI-UCB.

9. Conclusions
In this paper, we proposes ILARL which greatly reduces the
number of MDP trajectories in imitation learning in Linear
MDP and BRIG that provides a further improvement for
the finite horizon case. Both results build on the connec-
tion between imitation learning and MDPs with adversarial
losses.

As mentioned, there is a number of exciting future directions.
In particular, the estimation of Φ̂⊺dπE could be carried out
with fewer expert trajectories using trajectory access to the
MDP. This observation has been proven successful having
access to the exact transitions of the MDP in the tabular case
(Rajaraman et al., 2020) or under linear function approxi-
mation with further assumption on the expert policy and the
feature distribution (Swamy et al., 2022; Rajaraman et al.,
2021). Whether the same is possible for general stochastic
experts in Linear MDP is an interesting open question.

Finally, a better sample complexity can be achieved de-
signing better no regret algorithm for infinite horizon adver-
sarial discounted linear MDP with full-information feedback
and apply them in Step 9 of Algorithm 3 building for ex-
ample on the recent result for the finite horizon case in
(Sherman et al., 2023a).
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A. On the β of the persistent excitation assumption
Lemma 1. Let the persistent excitation assumption holds, then it holds that β ≤ d−1.

Proof.

β ≤ λmin(Es,a∼dπkϕ(s, a)ϕ(s, a)T ) ≤ 1

d
Trace(E

s,a∼dπkϕ(s, a)ϕ(s, a)T )

=
1

d
Es,a∼dπkTrace(ϕ(s, a)ϕ(s, a)T )

=
1

d
E
s,a∼dπkTrace(ϕ(s, a)Tϕ(s, a))

=
1

d
E
s,a∼dπk ∥ϕ(s, a)∥22

≤ 1

d
E
s,a∼dπk ∥ϕ(s, a)∥21

≤ 1

d
max
s,a

∥ϕ(s, a)∥21

=
1

d
∥Φ∥21,∞ ≤ 1

d
.

where the last step follows from ∥Φ∥1,∞ ≤ 1 as assumed in Assumptions 1 and 2.

Using this result, we obtain that the dimension dependence in the bound in Viano et al. 2022 is in the best case d8. Therefore,
our new algorithm improves the dimension dependence as well.

B. Interaction Protocol

Protocol 1 Interaction in Adversarial MDPs
1: for Episode index k ∈ [1,K] do
2: Sample initial state sk1 ∼ ν0

3: if Finite Horizon then
4: for stage h ∈ [1, H] do
5: The learner plays an action sampled from the policy akh ∼ πk

h(·|skh).
6: The environment sample next state skh ∼ Ph(·|skh, akh).
7: The agent observes the vector ckh.
8: end for
9: end if

10: if Infinite Horizon then
11: Initialize Z = 0, i = 1, s1 ∼ ν0.
12: while Z == 0 do
13: The learner plays an action sampled from the policy ai ∼ πk(·|si).
14: The environment sample next state s′,i ∼ P (·|si, ai), si+1 = s′,i.
15: // Restart with probability 1− γ.
16: Sample Z ∼ Bernoulli(1− γ).
17: end while
18: The agent observes the vector ck.
19: end if
20: The learner chooses her next policy, i.e. πk+1.
21: end for
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C. Additional Future directions: Extension to Bilinear Classes
The current results can be extended to Bilinear Classes (Du et al., 2021) at least in the finite horizon case. To this end we
would need the observation that we can update the cost first and then using an algorithm which is allowed to see the next
cost vector one round in advance. This is the same fact that allowed us to obtain O(ϵ−2) sample complexity bound in the
finite horizon case using LSVI-UCB.

In the following we present an informal discussion of the proof technique that would prove polynomial sample complexity
for Imitation Learning in bilinear classes.

If the cost at round k is known before the learner needs to take an action the agent can form the discrepancy function

ℓk(sh, ah, sh+1, g) = Qh,g(sh, ah) + ckh − Vh+1,g(sh+1)

where the upper script k highlights the fact that the discrepancy function depends on the adversarial cost ck. At each round,
we can then compute

argmaxg∈HV0,g(s1) s.t.
1

m

k∑
τ=1

m∑
i=1

ℓk(sih, a
i
h, s

i
h+1, g) ≤ kϵ2gen,k(m, δ) ∀h ∈ [H]

Where the generalization error at round k denoted ϵgen,k satisfies that

sup
g∈H

∣∣∣∣∣ 1m
m∑
i=1

ℓk(sih, a
i
h, s

i
h+1, g)− E

s,a∼dπk ,s′∼P (·|s,a)
[
ℓk(sh, ah, sh+1, g)

]∣∣∣∣∣ ≤ ϵgen,k(m, δ)

with probability at least 1− δ.

At this point, we modify the Bilinear Classes assumption to keep into account the adversarial costs setting as follows. We
assume that all the adversarial costs belongs to a convex set C. Then we consider an MDP for which there exists a function
f⋆ ∈ H such that for all c ∈ C, it holds that∣∣∣Es,a∼d

πf
h

[Qh,f (sh, ah) + ch(sh, ah)− Vh+1,f ]
∣∣∣ ≤ |⟨W c

h(f)−W c
h(f

⋆), Xc
h(f)⟩|

and ∣∣∣Es,a∼d
πf
h

[Qh,g(sh, ah) + ch(sh, ah)− Vh+1,g]
∣∣∣ ≤ |⟨W c

h(g)−W c
h(f

⋆), Xc
h(f)⟩|

This modified assumption for Bilinear classes with time changing rewards implies that the comparator hypothesis f⋆ is
realizable for all k, that is, for all k it holds that

1

m

k∑
τ=1

m∑
i=1

ℓk(sih, a
i
h, s

i
h+1, f

⋆) ≤ kϵ2gen,k(m, δ)

so optimism holds and with the same steps in (Du et al., 2021) it can be proven that:

Regret(K,π⋆) ≤
K∑

k=1

∣∣∣∣Es,a∼d
π
fk

h

[
Qh,fk(sh, ah) + ch(sh, ah)− Vh+1,fk

]∣∣∣∣
≤

K∑
k=1

∣∣∣〈W rk

h (fk)−W rk

h (f⋆), Xrk

h (fk)
〉∣∣∣

Then, using (Du et al., 2021, Equation 8) and the elliptical potential lemma we obtain
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1

K
Regret(K,π⋆) = O

(√
K max

k∈[K]
ϵ2gen,k(m, δ)

(
exp

logK

K
− 1

))

Then, denoting ϵgen(m, δ) = maxk∈[K] ϵgen,k(m, δ) and choosing K = O(log ϵ−2
gen(m, δ)) gives 1

KRegret(K,π⋆) ≤
O (ϵgen(m, δ)).

This concludes the regret proof for the π-player. The player updating the sequences of cost can still use OGD projecting on
the set C.

Our algorithm for the finite horizon setting, BRIG, uses greedy policies. In this case, (Du et al., 2021) showed that the
generalization error can be controlled effectively in many instances such as Linear Q⋆/V ⋆, Low Occupancy measure models
(Du et al., 2021), Bellman complete models (Munos, 2003) and finite Bellman Rank (Jiang et al., 2017).

However in the infinite horizon case we need to use regularization for which it is currently not known if gen(m, δ) can be
controlled effectively. This is again related to the issue with the covering number of softmax policies in linear MDPs ( see
(Sherman et al., 2023a; Zhong & Zhang, 2023) ). This is an interesting open question.

A final comment is that the algorithm proposed in (Du et al., 2021) for bilinear classes is not computationally efficient is
general. Therefore also its adversarial extension presented above will have this drawback. In this paper we focused on the
smaller class of Linear MDP for which we provide a computationally efficient algorithm.

D. Omitted Proofs
D.1. Proof of Lemma 2

Lemma 2. Consider the MDP M = (S,A, γ, P, c) and two policies π, π′ : S → ∆A. Then consider for any Q̂ ∈ R|S||A|

and V̂ π(s) =
〈
π(·|s), Q̂(s, ·)

〉
and Qπ′

, V π′
be respectively the state action and state value function of the policy π in

MDP M and let E ∈ R|S||A|×|S| be the matrix such that for an arbitrary vector f ∈ R|S| it holds (Ef)(s, a) = f(s). Then,
it holds that

〈
ν0, V̂

π − V π′
〉
=

1

1− γ

(〈
dπ

′
, Q̂− c− γP V̂ π

〉
+
〈
dπ

′
, EV̂ π − Q̂

〉)

Proof. Consider the Bellman equation in vector form, i.e. Qπ′
= c + γPV π′

. Then, let us add and subtract the term
c+ γP V̂ π and let us consider on both sides the inner product with the occupancy measure dπ

′
.

〈
dπ

′
, Q̂
〉
=
〈
dπ

′
, Q̂− c− γP V̂ π

〉
+
〈
dπ

′
, c+ γP V̂ π

〉
=
〈
dπ

′
, Q̂− c− γP V̂ π

〉
+ (1− γ)

〈
ν0, V

π′
〉
+
〈
γP ⊺dπ

′
, V̂ π

〉
=
〈
dπ

′
, Q̂− c− γP V̂ π

〉
+ (1− γ)

〈
ν0, V

π′
− V̂ π

〉
+
〈
E⊺dπ

′
, V̂ π

〉

Rearranging the terms leads to the conclusion.
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D.2. Proof of Theorem 4

Proof. Let V πk,k ∈ [−(1− γ)−1, (1− γ)−1]|S| be a compact notation for V πk

(·; ck), then

Regret(K;π⋆) ≜
K∑

k=1

〈
dπ

k

− dπ
⋆

, ck
〉

= (1− γ)

K∑
k=1

〈
ν0, V

πk,k − V π⋆,k
〉

=

K∑
k=1

Es∼dπ⋆

[〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
(OMD)

+

K∑
k=1

Es,a∼dπ⋆

[
Qk+1(s, a)− ck(s, a)− γPV k(s, a)

]
(Optimism 1)

+

K∑
k=1

E
s,a∼dπk

[
ck(s, a) + γPV k(s, a)−Qk+1(s, a)

]
(Optimism 2)

+

K∑
k=1

Es,a∼dπk

[
Qk+1(s, a)−Qk(s, a)

]
(Shift 1)

+

K∑
k=1

Es,a∼dπ⋆

[
Qk(s, a)−Qk+1(s, a)

]
(Shift 2)

Then, we have that Optimism 1,Optimism 2 can be bounded using Lemma 4 while for Shift 1 we crucially rely on the
regularization of the policy improvement step and on the fact that the policy is updated only every τ steps. Both these
observations allow to derive

K∑
k=1

E
s,a∼dπk

[
Qk(s, a)−Qk+1(s, a)

]
≤

K∑
k=2

∑
s,a

Qk(s, a)
(
dπ

k

(s, a)− dπ
k−1

(s, a)
)
+
∑
s,a

Q1(s, a)dπ
1

(s, a)

≤
K∑

k=2

∥∥Qk(s, a)
∥∥
∞

∥∥∥dπk

− dπ
k−1
∥∥∥
1

≤ 1

1− γ

K∑
k=2

∥∥∥dπk

− dπ
k−1
∥∥∥
1

=
1

1− γ

⌊K/τ⌋∑
j=2

∥∥∥dπ(j)

− dπ
(j−1)

∥∥∥
1

At this point applying Pinkser’s inequality and (Moulin & Neu, 2023, Lemma A.1) we obtain∥∥∥dπ(j)

− dπ
(j−1)

∥∥∥
1
≤
√
2DKL(dπ

(j) , dπ(j−1)) ≤
√

2

1− γ
E
s∼dπ(j)DKL(π(j)(·|s), π(j−1)(·|s))

≤
√

2η

1− γ
E
s,a∼dπ(j) Q̄(j−1)

≤
√
2η

1− γ

All in all, we have that

(Shift 1) ≤ 1

(1− γ)2

⌊K/τ⌋∑
j=2

√
2η =

√
2ηK

(1− γ)2τ

For the second shift term, we can use a trivial telescoping argument to obtain that (Shift 2) ≤ (1− γ)−1.
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The terms (Optimism 1) and (Optimism 2) can be bounded exactly as in the finite horizon case thanks to Lemma 4 we have
that with probability 1− δ

(Optimism 1) + (Optimism 2) ≤ 2

K∑
k=1

Es,a∼dπk

[
bk(s, a)

]
. (5)

Therefore, we just need to adapt the argument for bounding the exploration term 2
∑K

k=1 Es,a∼dπk

[
bk(s, a)

]
in the infinite

horizon case. We start by exploiting the fact that both bk and πk change in fact only every τ updates. So we have

K∑
k=1

Es,a∼dπk

[
bk(s, a)

]
= τ

K/τ∑
j=1

E
s,a∼dπ(j)

[
b(j)(s, a)

]

=

K/τ∑
j=1

ED(j)∼dπ(j)

 ∑
s,a∈D(j)

b(j)(s, a)


=

K/τ∑
j=1

ED(j)∼dπ(j)

 ∑
s,a∈D(j)

β ∥ϕ(s, a)∥(Λ(j))−1


At this point, fixing an arbitrary order for the state action pairs in D(j) we can define for any i ∈ [1, τ ] the matrix

Λ
(j)
i =

i∑
ℓ=1

ϕ(sℓ, aℓ)ϕ(sℓ, aℓ)T + λI

Then, it holds that

K/τ∑
j=1

ED(j)∼dπ(j)

 ∑
s,a∈D(j)

β ∥ϕ(s, a)∥(Λ(j))−1

 =

K/τ∑
j=1

ED(j)∼dπ(j)

[
τ∑

ℓ=1

β
∥∥ϕ(sℓ, aℓ)∥∥

(Λ(j))−1

]

≤
K/τ∑
j=1

ED(j)∼dπ(j)

[
τ∑

ℓ=1

β
∥∥ϕ(sℓ, aℓ)∥∥

(Λ
(j)
ℓ )−1

]

At this point, we can notice that for any index pair ℓ, j it holds that

∥∥ϕ(sℓ, aℓ)∥∥
(Λ

(j)
ℓ )−1 ≤

√
λmax((Λ

(j)
ℓ )−1)

∥∥ϕ(sℓ, aℓ)∥∥ ≤
√

1

λmin(Λ
(j)
ℓ )

≤ 1

where the norm ϕ(sℓ, aℓ) is upper bounded by 1 thanks to the Linear MDP assumption. Then, via (Sherman et al., 2023b,
Lemma F.1) (where the random variable Xi is in this context

∑τ
ℓ=1 β

∥∥ϕ(sℓ, aℓ)∥∥
(Λ

(j)
ℓ )−1 which is supported in [0, βτ ]) we

can continue upper bounding with probability 1− δ the bonus sum as

K∑
k=1

E
s,a∼dπk

[
bk(s, a)

]
≤ 2

K/τ∑
j=1

τ∑
ℓ=1

β
∥∥ϕ(sℓ, aℓ)∥∥

(Λ
(j)
ℓ )−1 + 4βτ log(2K/(τδ))

= 2

K/τ∑
j=1

τ∑
ℓ=1

β

√
ϕ(sℓ, aℓ)T (Λ

(j)
ℓ )−1ϕ(sℓ, aℓ) + 4βτ log(2K/(τδ))

≤ 2

K/τ∑
j=1

β

√√√√τ

τ∑
ℓ=1

ϕ(sℓ, aℓ)T (Λ
(j)
ℓ )−1ϕ(sℓ, aℓ) + 4βτ log(2K/(τδ))

≤ 2

K/τ∑
j=1

β

√√√√τ

d∑
i=1

log (1 + λi) + 4βτ log(2K/(τδ))
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where the last inequality uses (Cesa-Bianchi & Lugosi, 2006, Lemma 11.11) and the notation {λi}di=1 stands for the
eigenvalues of the matrix Λ(j) − I . At this point we can recognize the determinant inside the log and use the determinant
trace inequality.

K/τ∑
j=1

β

√√√√τ

d∑
i=1

log (1 + λi) =

K/τ∑
j=1

β

√√√√τ log

(
d∏

i=1

1 + λi

)

=

K/τ∑
j=1

β
√
τ log

(
det(Λ(j))

)
≤

K/τ∑
j=1

β

√
τd log

(
Trace(Λ(j))

d

)

≤
K/τ∑
j=1

β

√
τd log

(
d+Trace(

∑τ
ℓ=1 ϕ(s

ℓ, aℓ)ϕ(sℓ, aℓ)T )

d

)

≤
K/τ∑
j=1

β

√
τd log

(
d+ τ maxℓ Trace(ϕ(sℓ, aℓ)ϕ(sℓ, aℓ)T )

d

)

=

K/τ∑
j=1

β

√
τd log

(
d+ τ maxℓ ϕ(sℓ, aℓ)Tϕ(sℓ, aℓ)

d

)

≤
K/τ∑
j=1

β

√
τd log

(
d+ τ

d

)

≤ βK

√
d log 2τd

τ
.

Hence, with probability 1− 2δ (union bound between the event under which Equation (5) holds and the the application of
the concentration result (Sherman et al., 2023b, Lemma F.1) in bounding the exploration bonuses sum), it holds that

Regret(K;π⋆) ≤
K∑

k=1

Es∼dπ⋆

[〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
+ 4βK

√
d log(2τd)

τ
+ 8βτ log(2K/(τδ))

+

√
2ηK

(1− γ)2τ
+

1

(1− γ)

The last step is to bound (OMD) invoking Lemma 9 and noticing that the gradient norm is upper bounded by 1
1−γ . This

gives
K∑

k=1

Es∼dπ⋆

[〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
≤ τ log |A|

η
+

τ

1− γ
+

ηK

(1− γ)2

Putting all together , we have that for τ ≤ K√
τ

Regret(K;π⋆) ≤ τ log |A|
η

+
τ + 1

1− γ
+

ηK

(1− γ)2
+ 12βK

√
d

τ
log

(
2Kd

τδ

)
+

√
2ηK

(1− γ)2τ

D.3. Proof of Theorem 5

To improve the readability of the proof we restate Algorithm 3 hereafter.

18



Imitation Learning in Discounted Linear MDPs without exploration assumptions

Algorithm 5 ILARL (detailed version).

1: Input: Dataset size τ , Exploration parameter β, Step size η, Expert dataset DπE = {τ i}τEi=1.
2: Estimate for expert feature visitation Φ̂⊺dπE ≜ (1−γ)

τE

∑
τ∈DπE

∑
sh,ah∈τ γhϕ(sh, ah) .

3: Initialize π0 as uniform distribution over A
4: Initialize V 1 = 0
5: for j = 1, . . . ⌊K/τ⌋ do
6: // Collect on-policy data
7: Denote the indices interval Tj ≜ [(j − 1) ⌊K/τ⌋ , j ⌊K/τ⌋).
8: Sample D(j) =

{
si, ai, s′,i

}
i∈Tj

∼ dπ
(j)

9: Compute Λ(j) =
∑

(s,a)∈D(j) ϕ(s, a)ϕ(s, a)⊺ + I .
10: Compute b(j)(s, a) = β ∥ϕ(s, a)∥(Λ(j))−1 .
11: for k ∈ Tj do
12: // Cost update

13: Estimate features expectation vector Φ̂⊺dπk as τ−1
∑

s,a∈D(j) ϕ(s, a).

14: wk+1 = ΠW

[
wk − α(Φ̂⊺dπE − Φ̂⊺dπk)

]
with W = {w : ∥w∥2 ≤ 1}.

15: // Optimistic Policy Evaluation
16: vk = (Λ(j))−1

∑
(s,a,s′)∈D(j) ϕ(s, a)V k(s′)

17: Qk+1 =
[
Φwk + γΦvk − b(j)

](1−γ)−1

−(1−γ)−1

18: V k+1(s) =
〈
π(j)(a|s), Qk+1(s, a)

〉
(notice that π(j) = πk+1).

19: end for
20: // Policy Improvement Step
21: Compute average Q value Q̄(j)(s, a) = 1

τ

∑
k∈Tj

Qk(s, a).
22: Update policy

π(j+1)(a|s) ∝ exp

(
−η

j∑
i=1

Q̄(i)(s, a)

)
23: end for

Proof. Consider the following decomposition

K∑
k=1

〈
ctrue, d

πE − dπ
k
〉
=

K∑
k=1

〈
wtrue − wk, Φ̂⊺dπE −Φ⊺dπ

k
〉
+

K∑
k=1

〈
ck, dπE − dπ

k
〉

(6)

+

K∑
k=1

〈
wtrue − wk, Φ̂⊺dπE −Φ⊺dπE

〉
(7)

For the first term we can use the following steps.

K∑
k=1

〈
wtrue − wk, Φ̂⊺dπE −Φ⊺dπ

k
〉
≤

K∑
k=1

〈
wtrue − wk, Φ̂⊺dπE − Φ̂⊺dπk

〉
+

K∑
k=1

〈
wtrue − wk, Φ̂⊺dπk −Φ⊺dπ

k
〉

Now, using the regret bound for OMD (Orabona, 2023, Theorem 6.10) we can bound the first term in the decomposition
above as

K∑
k=1

〈
wtrue − wk, Φ̂⊺dπE − Φ̂⊺dπk

〉
≤

maxw∈W
∥∥w − w1

∥∥2
2

2α
+

α

2

K∑
k=1

∥∥∥Φ̂⊺dπE − Φ̂⊺dπk

∥∥∥2
2

≤
maxc∈C

∥∥c− c1
∥∥2
2

2α
+

α

2

K∑
k=1

∥∥∥Φ̂⊺dπE − Φ̂⊺dπk

∥∥∥2
1

≤ 1

2α
+ 2αK
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Then, for α = 1
2
√
K

, then
∑K

k=1

〈
wtrue − wk, Φ̂⊺dπE − Φ̂⊺dπk

〉
≤ 2

√
K. For the estimation term,

K∑
k=1

〈
wtrue − wk,Φ⊺dπ

k

− Φ̂⊺dπk
〉
≤

K∑
k=1

∥∥w − wk
∥∥
1

∥∥∥Φ⊺dπ
k

− Φ̂⊺dπk

∥∥∥
∞

≤
√
d

K∑
k=1

∥∥w − wk
∥∥
2

∥∥∥Φ⊺dπ
k

− Φ̂⊺dπk

∥∥∥
∞

≤ 2
√
d

K∑
k=1

∥∥∥Φ⊺dπ
k

− Φ̂⊺dπk

∥∥∥
∞

≤ 2
√
d

K∑
k=1

√
2 log(2dK/δ)

τ
= 2K

√
2d log(2dK/δ)

τ
,

where the last inequality holds with probability 1− δ thanks to Azuma-Hoeffding inequality. Therefore, using Theorem 4 to
control the second term in Equation (7) and a union bound we obtain that with probability 1− 3δ.

K∑
k=1

〈
ctrue, d

πE − dπ
k
〉
≤ 2

√
K + 2K

√
2d log(2dK/δ)

τ
+

τ log |A|
η

+
τ + 1

1− γ
+

ηK

(1− γ)2

+ 12βK

√
d

τ
log

(
2Kd

τδ

)
+

√
2ηK

(1− γ)2τ
++

K∑
k=1

〈
wtrue − wk, Φ̂⊺dπE −Φ⊺dπE

〉
and using that for the empirical expert an application of Lemma 8 gives that with probability 1− δ.

K∑
k=1

〈
wtrue − wk, Φ̂⊺dπE −Φ⊺dπE

〉
≤ 2K

√
d
∥∥∥Φ⊺dπE − Φ̂⊺dπE

∥∥∥
∞

≤ 2K

√
2d log(d/δ)

τE

Therefore, selecting τE ≥ 8d log(d/δ)
ϵ2E

and using a last union bound gives that with probability 1− 4δ

〈
ctrue, d

πE − 1

K

K∑
k=1

dπ
k

〉
≤ ϵE +

2√
K

+

√
8d log(2dK/δ)

τ
+

τ log |A|
ηK

+
τ + 1

(1− γ)K
+

η

(1− γ)2

+ 12β

√
d

τ
log

(
2K

τδ

)
+

√
2η

(1− γ)2τ

Using η =
√

τ log|A|(1−γ)2

K ,〈
ctrue, d

πE − 1

K

K∑
k=1

dπ
k

〉
≤ ϵE +

2√
K

+

√
8d log(2dK/δ)

τ
+

2

(1− γ)

√
τ log |A|

K
+

τ + 1

(1− γ)K

+ 12β

√
d

τ
log

(
2K

τδ

)
+

√
2

(1− γ)2τ

4

√
τ log |A| (1− γ)2

K

Neglecting lower order terms we obtain〈
ctrue, d

πE − 1

K

K∑
k=1

dπ
k

〉
≤ ϵE +O

(√
8d log(2dK/δ)

τ
+

2

(1− γ)

√
τ log |A|

K
+ 12β

√
d

τ
log

(
2K

τδ

))

≤ ϵE +O

(
2

(1− γ)

√
τ log |A|

K
+ 15β

√
d

τ
log

(
2dK

τδ

))
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Therefore, choosing τ = O
(

β(1−γ)
√
dK log(2dK/δ)√
log|A|

)
, gives

〈
ctrue, d

πE − 1

K

K∑
k=1

dπ
k

〉
≤ ϵE + Õ

(
log1/4 |A| d1/4

√
β√

1− γK1/4

)

Therefore, choosing K ≥ Õ
(

log|A|dβ2 log2(2dK/δ)
(1−γ)2ϵ4

)
which is attained by K = O

(
log|A|dβ2

(1−γ)2ϵ4 log2(dβ log|A|
δ(1−γ)ϵ )

)
ensures〈

ctrue, d
πE − 1

K

∑K
k=1 d

πk
〉
≤ ϵ+ ϵE with probability 1− 4δ.

E. Technical Lemmas
Lemma 3. Assume that in Algorithm 1, we set β = O

(
dH log(RdHδ−1)

)
with R = τ2

√
dH . Then, with probability 1− δ

it holds that

−2bkh(s, a) ≤ Qk
h(s, a)− ckh(s, a)− PV k

h+1(s, a) ≤ 0 ∀s, a ∈ S ×A, k ∈ [K], h ∈ [H]

Proof. We first see that Lemma 5 holds for every j. Then, thanks to union bound we have that with probability 1 − δ it
holds that for any state action pairs we have that∣∣ϕ(s, a)Tvk

h − PV k
h+1(s, a)

∣∣ ≤ β ∥ϕ(s, a)∥
(Λ

(j)
h )−1 = bkh(s, a)

From this fact the conclusion follows immediately if no truncation happens. That is , if Qk
h = ckh +Φvk

h − bkh. Now, we
consider the case where a lower truncation takes place, in this case, we have

Qk
h = −H + h− 1 ≤ ckh + PV k

h+1

If a truncation from above takes place, it holds that

Qk
h ≤ ckh +Φvk

h − bkh ≤ ckh + PV k
h+1 + bkh − bkh = ckh + PV k

h+1

To show the lower bound in the lemma in case of a lower truncation, we have that

Qk
h ≥ ckh +Φvk

h − bkh ≥ ckh + PV k
h+1 − bkh − bkh = ckh + PV k

h+1 − 2bkh

finally, if the truncation from above is triggered, we have that

Qk
h = H − h+ 1 ≥ ckh + PV k

h+1 ≥ ckh + PV k
h+1 − 2bkh

Lemma 4. For any k ∈ [K], let the bonus bk be defined as in Algorithm 2 with β = O
(
d(1− γ)−1 log(Rd(1− γ)−1δ−1)

)
with R = τ2

√
d(1− γ)−1. Then, with probability 1− δ it holds that

−2bk(s, a) ≤ Qk+1(s, a)− ck(s, a)− γPV k(s, a) ≤ 0 ∀s, a ∈ S ×A, k ∈ [K]

Proof. We first see that Lemma 6 holds for every j. Then, thanks to union bound we have that with probability 1 − δ it
holds that for any state action pairs we have that∣∣ϕ(s, a)Tvk − PV k(s, a)

∣∣ ≤ β ∥ϕ(s, a)∥(Λ(j))−1 = bk(s, a)

From this fact the conclusion follows immediately if no truncation happens. That is , if Qk+1 = ck +Φvk − bk. Now, we
consider the case where a upper truncation takes place, in this case, we have

Qk+1 =
1

1− γ
= 1 +

γ

1− γ
≥ ck + γPV k − 2bk
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While for the upper bound, we have that

Qk+1 ≤ ck + γΦvk − bk ≤ ck + γPV k + bk − bk = ck + γPV k

Now, we handle the case of a lower truncation in this case

Qk+1 ≥ ck + γΦvk − bk ≥ ck + γPV k − bk − bk = ck + γPV k − 2bk

for the upper bound we have that

Qk+1 = − 1

1− γ
= −1− γ

1− γ
≤ ck + γPV k

Lemma 5. Let V k
h be the sequence of value functions generated by Algorithm 1, fix a batch index j and let Tj denote the set

of indices in the jth batch. Then, it holds that for β = Õ (dH), the estimator

vk
h = (Λ(j))−1

∑
(s,a,s′)∈D(j)

h

ϕ(s, a)V k
h+1(s

′)

satisfies ∣∣ϕ(s, a)Tvk
h − PV k

h+1(s, a)
∣∣ ≤ β ∥ϕ(s, a)∥

(Λ
(j)
h )−1 = bk(s, a) ∀k ∈ Tj , h ∈ [H],∀s, a ∈ S ×A

with probability 1− δτ/K .

Proof. The proof is analogous to the proof of Lemma 6 but invoking Theorem 7 with B = H and applying a further union
bound over the set [H]. Thus, the proof is skipped for brevity.

Lemma 6. Let V k be the sequence of value functions generated by Algorithm 2, fix a batch index j and let Tj denote the set

of indices in the jth batch. Then, it holds that for β = Õ
(

d
1−γ

)
, the estimator

vk = (Λ(j))−1
∑

(s,a,s′)∈D(j)

ϕ(s, a)V k(s′)

satisfies ∣∣ϕ(s, a)Tvk − PV k(s, a)
∣∣ ≤ β ∥ϕ(s, a)∥(Λ(j))−1 = bk(s, a) ∀k ∈ Tj ,∀s, a ∈ S ×A

with probability 1− δτ/K .

Proof. With standard manipulation one can prove that

PV k = ΦMV k = Φ(Λ(j))−1MV k +Φ(Λ(j))−1
∑

s,a,s′∈D(j)

ϕ(s, a)PV k(s, a)

and by definition
Φvk = Φ(Λ(j))−1

∑
s,a,s′∈D(j)

ϕ(s, a)V k(s′)

Therefore,
PV k −Φvk = Φ(Λ(j))−1MV k +Φ(Λ(j))−1

∑
s,a,s′∈D(j)

ϕ(s, a)(PV k(s, a)− V k(s′))

Then, for any state action pair (s, a), we have∣∣PV k(s, a)−Φvk(s, a)
∣∣ = ϕ(s, a)T (Λ(j))−1MV k + ϕ(s, a)T (Λ(j))−1

∑
s,a,s′∈D(j)

ϕ(s, a)(PV k(s, a)− V k(s′))
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by applying Holder’s inequality,∣∣PV k(s, a)−Φvk(s, a)
∣∣ ≤ ∥ϕ(s, a)∥(Λ(j))−1

∥∥∥(Λ(j))−1MV k
∥∥∥
(Λ(j))

+ ∥ϕ(s, a)∥(Λ(j))−1

∥∥∥∥∥∥(Λ(j))−1
∑

s,a,s′∈D(j)

ϕ(s, a)(PV k(s, a)− V k(s′))

∥∥∥∥∥∥
(Λ(j))

= ∥ϕ(s, a)∥(Λ(j))−1

∥∥MV k
∥∥
(Λ(j))−1

+ ∥ϕ(s, a)∥(Λ(j))−1

∥∥∥∥∥∥
∑

s,a,s′∈D(j)

ϕ(s, a)(PV k(s, a)− V k(s′))

∥∥∥∥∥∥
(Λ(j))−1

where in the equality we used that for a symmetric matrix A we have that ∥Ax∥A−1 = ∥x∥A. Then, we can use that∥∥MV k
∥∥
(Λ(j))−1 ≤ 1

1−γ to obtain

∣∣PV k(s, a)−Φvk(s, a)
∣∣ ≤ ∥ϕ(s, a)∥(Λ(j))−1

 1

1− γ
+

∥∥∥∥∥∥
∑

s,a,s′∈D(j)

ϕ(s, a)(PV k(s, a)− V k(s′))

∥∥∥∥∥∥
(Λ(j))−1


To handle the second term in brackets we use that V k ∈ Vπ(j)

defined as

Vπ(j)

=
{〈

π(j)(·|s), Q(s, ·)
〉
|Q(s, a) ∈ Q(β,Λ,w,v)

}
where Q(β,Λ,w,v) is defined as in Theorem 8. Denote as N j

ϵ the ∥·∥∞-covering number of the class Vπ(j)

and notice that
Vπ(j)

and D(j) are conditionally independent given π(j).

Under this setting we can use Theorem 7 with B = (1− γ)−1 to obtain that with probability 1− δτ/K

∣∣PV k(s, a)−Φvk(s, a)
∣∣ ≤ ∥ϕ(s, a)∥(Λ(j))−1

(
1

1− γ
+

√
2d

(1− γ)2
log

(
K(τ + 1)

δτ

)
+

4

(1− γ)2
logN j

ϵ + 8τ2ϵ2

)

≤
∥ϕ(s, a)∥(Λ(j))−1

1− γ

(
1 +

√
2d log

(
K(τ + 1)

δτ

)
+ 2

√
logN j

ϵ + 2
√
2τϵ

)
.

Then, we can conclude that the covering number is upper bounded by Theorem 8 with L = τ
1−γ since

∥∥vk
∥∥ ≤ 1

(1− γ)

∥∥∥(Λ(j))(−1)
∥∥∥
∥∥∥∥∥∥

∑
s,a,s′∈D(j)

ϕ(s, a)

∥∥∥∥∥∥ ≤ τ

(1− γ)

we obtain that

logN j
ϵ ≤ d log

(
1 +

4

ϵ

√
1 +

γ2τ2

(1− γ)2

)
+ d2 log(1 + 8

√
dβ2ϵ−2)

Therefore,

∣∣PV k(s, a)−Φvk(s, a)
∣∣ ≤ ∥ϕ(s, a)∥(Λ(j))−1

1− γ

[
1 +

√
2d log

(
K(τ + 1)

δτ

)
+

√√√√2d log

(
1 +

4

ϵ

√
1 +

γ2τ2

(1− γ)2

)

+
√
2d

√
log(1 + 8

√
dβ2ϵ−2) + 2

√
2τϵ

]
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At this point, using ϵ = τ−1, we obtain

∣∣PV k(s, a)−Φvk(s, a)
∣∣ ≤ ∥ϕ(s, a)∥(Λ(j))−1

1− γ

[
1 +

√
2d log

(
K(τ + 1)

δτ

)
+

√√√√2d log

(
1 + 4τ

√
1 +

γ2τ2

(1− γ)2

)

+
√
2d

√
log(1 + 8

√
dβ2τ2) + 2

√
2

]
To simplify the above expression, we notice that there exists a constant c such that

∣∣PV k(s, a)−Φvk(s, a)
∣∣ ≤ c

∥ϕ(s, a)∥(Λ(j))−1

1− γ
d

√√√√log

(
τKβ

√
d

δ(1− γ)

)

Now, using (Sherman et al., 2023b, Lemma D.2), we have that β = O(d(1 − γ)−1 log
[
Rd(1− γ)−1

]
) with R =

τK
√
dδ−1(1− γ)−1 ensures

β ≥ c
d

(1− γ)
log

(
τ2β

√
d

δ(1− γ)

)
,

and therefore ∣∣PV k(s, a)−Φvk(s, a)
∣∣ ≤ β ∥ϕ(s, a)∥(Λ(j))−1 .

Theorem 7. For a fixed policy π consider a function class Vπ and a state action pair dataset D collected with a fixed policy
π such that D and Vπ are conditionally independent given π . Then, for any f ∈ Vπ such that ∥f∥∞ ≤ B, it holds with
probability 1− δτ/K∥∥∥∥∥∥

∑
s,a,s′∈D

ϕ(s, a)(Pf(s, a)− f(s′))

∥∥∥∥∥∥
2

(Λ(j))−1

≤ 2dB2 log

(
K(τ + 1)

δτ

)
+ 4B2 logNϵ + 8τ2ϵ2

where Nϵ is the the (ϵ, ∥·∥∞)- covering number of the class Vπ .

Proof. Consider the decomposition in (Jin et al., 2019, Lemma D.4). In particular, let Cϵ(Vπ) denote the (ϵ, ∥·∥∞)-covering

set of Vπ and pick f̃ ∈ Cϵ(Vπ) such that
∥∥∥f − f̃

∥∥∥
∞

≤ ϵ. The existence of f̃ is guaranteed by the properties of covering
sets. Then, we have∥∥∥∥∥∥

∑
s,a,s′∈D

ϕ(s, a)(Pf(s, a)− f(s′))

∥∥∥∥∥∥
2

(Λ(j))−1

≤ 2

∥∥∥∥∥∥
∑

s,a,s′∈D
ϕ(s, a)(P f̃(s, a)− f̃(s′))

∥∥∥∥∥∥
2

(Λ(j))−1

+ 2

∥∥∥∥∥∥
∑

s,a,s′∈D
ϕ(s, a)(P (f − f̃)(s, a)− (f − f̃)(s′))

∥∥∥∥∥∥
2

(Λ(j))−1

The second term can be bounded by 8τ2ϵ2 as in (Jin et al., 2019) so now we focus on the first term via a uniform bound
over the set Cϵ(Vπ). We need to index the dataset D, i.e. D =

{
(sℓ, aℓ)

}|D|
ℓ=1

and consider the filtration Fj =
{
(sℓ, aℓ)

}j
ℓ=1

.
Since the features mapping is deterministic, ϕ(sℓ, aℓ) is Fℓ-measurable. Then, notice that by assumption D and Vπ are
conditionally independent given π. Therefore, we also have that D and Cϵ(Vπ) are conditionally independent given π. So
for any function f̄ ∈ Cϵ(Vπ) we have that E[f̄(sℓ+1)|Fℓ] = P f̄(sℓ, aℓ). Finally, from the assumption

∥∥f̄∥∥∞ ≤ B we have
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that f̄ is B2-subgaussian. Therefore, all the conditions of (Jin et al., 2019, Theorem D.3) are met and via a union bound
over the covering set allows to conclude that with probability 1− δτ/K

2

∥∥∥∥∥∥
∑

s,a,s′∈D
ϕ(s, a)(P f̄(s, a)− f̄(s′))

∥∥∥∥∥∥
2

(Λ(j))−1

≤ 2dB2 log

(
K(τ + 1)

δτ

)
+ 4B2 logNϵ ∀f̄ ∈ Cϵ(V),

and since f̃ ∈ Cϵ(Vπ),

2

∥∥∥∥∥∥
∑

s,a,s′∈D
ϕ(s, a)(P f̃(s, a)− f̃(s′))

∥∥∥∥∥∥
2

(Λ(j))−1

≤ 2dB2 log

(
K(τ + 1)

δτ

)
+ 4B2 logNϵ.

Theorem 8. Let us consider the function class Q defined as follows

Q(β,Λ,w,v) = {Q(s, a;β,Λ,w,v)|β ∈ R, λmin(Λ) ≥ 1, ∥w∥ ≤ 1, ∥v∥ ≤ L}

where Q(s, a;β,Λ,w,v) = [ϕ(s, a)⊺(w + γv) + β ∥ϕ(s, a)∥Λ−1 ]
(1−γ)−1

0

and the classes
Vπ = {⟨π(·|s), Q(s, ·)⟩ |Q(s, a) ∈ Q(β,Λ,w,v)}

for any π : S → ∆A.

Then, it holds that for any π : S → ∆A

Nϵ(Vπ) ≤ Nϵ(Q) = (1 + 4
√

1 + γ2L2/ϵ)d(1 + 8
√
dβ2ϵ−2)d

2

Proof. Let us remove clipping that can only decreasing the covering number of the function class and let us consider the
matrix A = β2Λ−1, then we can rewrite the function class of interest as parameterized only by A rather then β and Λ
separately. In addition, let us consider a vector z = w + γv

Q(A, z) =
{
Q(s, a;A,w,v)|λmin(Λ) ≥ β2, ∥z∥2 ≤ 2 + 2γ2L2

}
with

Q(s, a;A, z) = ϕ(s, a)⊺z+ ∥ϕ(s, a)∥A
Then, we have that

|Q(s, a;A1, z1)−Q(s, a;A2, z2)| ≤ ∥ϕ(s, a)∥ ∥z1 − z2∥+
∣∣∣√ϕ(s, a)⊺A1ϕ(s, a)−

√
ϕ(s, a)⊺A2ϕ(s, a)

∣∣∣
≤ ∥ϕ(s, a)∥ ∥z1 − z2∥+

√
|ϕ(s, a)⊺(A1 −A2)ϕ(s, a)|

≤ ∥z1 − z2∥+
√

sup
ϕ:∥ϕ∥≤1

|ϕ(s, a)⊺(A1 −A2)ϕ(s, a)|

≤ ∥z1 − z2∥+
√
∥A1 −A2∥

≤ ∥z1 − z2∥+
√
∥A1 −A2∥F

where ∥A1 −A2∥ is the spectral norm of the matrix A1 − A2 and ∥A1 −A2∥F is the Frobenius norm. We also used
the inequality

∣∣√x−√
y
∣∣ ≤ √

|x− y| that holds for any x, y ≥ 0. At this point we can constructing an ϵ-covering set

for Q(A, z) as product of the ϵ2/4 covering set for the set Y =
{
A ∈ Rd×d| ∥A∥F ≤

√
dβ−2

}
which has cardinality
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Nϵ(Y) = (1 + 8
√
dβ2ϵ−2)d

2

while the covering for the set Z =
{
z ∈ Rd : ∥z∥2 ≤ 1 + γ2L2

}
satisfies Nϵ(Z) =

(1 + 4
√

1 + γ2L2/ϵ)d. Hence, taking the product, we have that

Nϵ(Q) = (1 + 4
√

1 + γ2L2/ϵ)d(1 + 8
√
dβ2ϵ−2)d

2

.

At this point, let us consider the set

Vπ = {⟨π(·|s), Q(s, ·)⟩ |Q(s, a) ∈ Q(A, z)}

Since the policy π is fixed and averaging is a non expansive operation, we have that Nϵ(Vπ) ≤ Nϵ(Q).

However, for the set
V = {⟨π(·|s), Q(s, ·)⟩ |π ∈ Π, Q(s, a) ∈ Q(β,Λ,w,v)}

the averaging is not wrt to a fixed distribution therefore we would need to proceed as follow

|⟨π1(·|s), Q1(s, ·)⟩ − ⟨π2(·|s), Q2(s, ·)⟩| ≤
1

(1− γ)
∥π1(·|s)− π2(·|s)∥1 + 2 ∥Q1(s, ·)−Q2(s, ·)∥∞

≤ 1

(1− γ)
∥π1(·|s)− π2(·|s)∥1 + 2 ∥Q1(s, ·)−Q2(s, ·)∥∞

≤ 1

(1− γ)
max
s∈S

∥π1(·|s)− π2(·|s)∥1 + 2 ∥z1 − z2∥+
√
∥A1 −A2∥F

≤ 1

(1− γ)
∥π1(·|s)− π2(·|s)∥∞,1 + 2 ∥z1 − z2∥+

√
∥A1 −A2∥F

Therefore, we can conclude that Nϵ(V) = Nϵ(Π, ∥·∥∞,1)Nϵ(Q).

Next, we prove the Lemma that we use to state Theorems 1 and 2 using δ = ϵ.

Lemma 7. High probability to expectation conversion for a bounded random variable Let us consider a random variable
X such that −Xmax ≤ X ≤ Xmax almost surely and that P [X ≥ µ] ≤ δ, then it holds that

E [X] ≤ µ+ δ(Xmax − µ)

Proof.

E [X] = (1− δ)E [X|X ≤ µ] + δE [X|X ≥ µ] ≤ (1− δ)µ+ δXmax

Lemma 8. Expert concentration (Syed & Schapire, 2007, Theorem 1) Let DπE ≜ {(sℓ0, aℓ0, sℓ1, aℓ1, . . . , sℓH , aℓH)}nE
ℓ=1 be a

finite set of i.i.d. truncated sample trajectories collected with an expert policy πE. We consider the empirical expert feature
expectation vector Φ⊺dπE by taking sample averages, i.e.,

Φ̂⊺dπE ≜ (1− γ)
1

nE

H∑
t=0

N∑
ℓ=1

γtϕi(s
ℓ
t, a

ℓ
t), ∀ i ∈ [d].

Suppose the trajectory length is H ≥ 1
1−γ log( 1ε ), and the number of of expert trajectories is nE ≥ 2 log( 2d

δ )

ε2 . Then, with

probability at least 1− δ, it holds that
∥∥∥Φ⊺dπE − Φ̂⊺dπE

∥∥∥
∞

≤ ε.

Lemma 9. Bound on OMD Let us consider a maximum number of allowed iterations of OMD K, and update frequency
every τ round in an online learning problem with |A| actions. The total number of updates is hence equal to J = ⌊T/τ⌋ and

26



Imitation Learning in Discounted Linear MDPs without exploration assumptions

for each j ∈ 0, 1, . . . , J − 1 we denote the set of indices where the learner decision is kept fixed as Tj = [τj, . . . , τ(j + 1)).
Then, consider a sequence of losses in [−B,B]|A| denoted

{
ℓk
}K
k=1

and the updates

ℓ̄(j) = τ−1
∑
k∈Tj

ℓk

x(j) ∝ exp

(
η

j−1∑
i=0

ℓ̄(j)

)

Let us consider xk = x(j) for all k ∈ Tj , then it holds that the regret is bounded as

K∑
k=1

〈
ℓk, xk − x⋆

〉
≤ τ log |A|

η
+ τB + ηKB2

for any x⋆ ∈ ∆A.

Proof. The proof is basically equivalent to (Sherman et al., 2023b, Lemma F.5). Let us first consider the case K = Jτ .
Then, we have that, by the standard bound on the regret of OMD (see for example (Orabona, 2023))

J∑
j=1

〈
ℓ̄j , x(j) − x⋆

〉
≤ log |A|

η
+ η

J∑
j=1

∑
a∈A

x(j)(a)(ℓ̄(j)(a))2 (8)

Then, we can notice that by Jensen’s inequality (ℓ̄(j)(a))2 ≤ τ−1
∑

k∈Tj
(ℓk(a))2. Moreover,

J∑
j=1

〈
ℓ̄j , x(j) − x⋆

〉
=

J∑
j=1

〈
τ−1

∑
k∈Tj

ℓk, x(j) − x⋆

〉
= τ−1

K∑
k=1

〈
ℓk, xk − x⋆

〉
.

Therefore, plugging in Equation (8) we obtain

K∑
k=1

〈
ℓk, xk − x⋆

〉
≤ τ log |A|

η
+ η

K∑
k=1

∑
a∈A

xk(a)(ℓk(a))2

and using that the losses are bounded we have (ℓk(a))2 ≤ B2. We get,

K∑
k=1

〈
ℓk, xk − x⋆

〉
≤ τ log |A|

η
+ ηKB2.

Finally, if K ≥ τJ we can upper bound the regret of the first ⌊K/τ⌋ rounds as before. Then, we have at most τ additional
rounds between K ′ = ⌊K/τ⌋ τ and K where the regret increases at most by B at each round. Hence, we have

K∑
k=1

〈
ℓk, xk − x⋆

〉
=

K′∑
k=1

〈
ℓk, xk − x⋆

〉
+ τB ≤ τ log |A|

η
+ ηKB2 + τB.

Lemma 10. For any k ∈ [K], h ∈ [H], let us denote as bkh the bonus function as constructed in Step 13 of Algorithm 1, i.e.
bkh(s, a) = β ∥ϕ(s, a)∥(Λk

h)
−1 where the matrix Λk

h is as in Step 11 of Algorithm 1. Then, it holds that with probability 1− δ,

E
s,a∼dπk

h

[bkh(s, a)] ≤
7
√
dβ log(2τ/δ)√

τ

.
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Proof. We start by rewriting the expectation as

E
s,a∼dπk

h

[bkh(s, a)] =
1

τ
EDk

h∼dπk

h

 ∑
s,a∈Dk

h

bkh(s, a)


Then, by (Cohen et al., 2020, Lemma D.4), we have that with probability 1− δ, the following chain of inequality holds.

1

τ
EDk

h∼dπk

h

 ∑
s,a∈Dk

h

bkh(s, a)

 ≤ 2

τ

∑
s,a∈Dk

h

bkh(s, a) + 4β log(2τ/δ)

=
2β

τ

∑
s,a∈Dk

h

∥ϕ(s, a)∥(Λk
h)

−1 + 4β log(2τ/δ)

≤ 2β

τ

√
τ
∑

s,a∈Dk
h

ϕ(s, a)T (Λk
h)

−1ϕ(s, a) + 4β log(2τ/δ)

≤ 2β

τ

√
2dτ log(1 + τ/d) + 4β log(2τ/δ)

where the last inequality follows from the Elliptical Potential Lemma (Abbasi-Yadkori et al., 2011). Overall, further upper
bounding the last display, we get

E
s,a∼dπk

h

[bkh(s, a)] ≤
7β

√
d log(2τ/δ)√

τ

F. Omitted proofs for Best Response Imitation Learning
F.1. Proof of Theorem 6

Proof.

Regret(K,π⋆) =

K∑
k=1

V πk,k
1 (s1)− V π⋆,k

1

=

K∑
k=1

V πk,k
1 (s1)− V k−1

1 (s1) + V k−1
1 (s1)− V π⋆,k

1

=

K∑
k=1

H∑
h=1

E
s,a∼dπk

h

[
ckh(s, a) + PhV

k−1
h+1 (s, a)−Qk−1

h (s, a)
]

+

K∑
k=1

H∑
h=1

Es,a∼dπ⋆

h

[
Qk−1

h (s, a)− ckh(s, a)− PhV
k−1
h+1 (s, a)

]
+

H∑
h=1

Es∼dπ⋆

h

[
K∑

k=1

〈
πk
h(·|s)− π⋆

h(·|s), Qk−1
h (s, a)

〉]

≤
K∑

k=1

H∑
h=1

E
s,a∼dπk

h

[
ckh(s, a) + PhV

k−1
h+1 (s, a)−Qk−1

h (s, a)
]

+

K∑
k=1

H∑
h=1

Es,a∼dπ⋆

h

[
Qk−1

h (s, a)− ckh(s, a)− PhV
k−1
h+1 (s, a)

]
where the last inequality is due to the use of the best response (greedy policy) in Step 17 of Algorithm 4. At this point we
can prove the optimistic properties of the estimator (that follows combining Lemmas 4 and 11),i.e. for any h = H, . . . , 1, it
holds that

ckh(s, a) + PhV
k−1
h+1 (s, a)− 2bk−1

h (s, a) ≤ Qk−1
h (s, a) ≤ ckh(s, a) + PhV

k−1
h+1 (s, a) ∀s, a ∈ S ×A w.p. 1− δ.
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Thus, it holds with probability 1− δ that

Regret(K,π⋆) ≤ 2

K∑
k=1

H∑
h=1

E
s,a∼dπk

h

[
bk−1
h (s, a)

]
and then, using Cauchy-Schwartz and the elliptical potential lemma ( see Lemma 12), we obtain that with probability 1− 2δ,

Regret(K,π⋆) ≤ O
(
H2d3/2

√
K log(Kδ−1)

)
Then, we apply this result in the imitation learning setting. We start with our usual decomposition

K∑
k=1

H∑
h=1

〈
ctrue,h, d

πk

h − dπ̂E
h

〉
=

K∑
k=1

H∑
h=1

〈
ckh, d

πk

h − dπ̂E
h

〉
+

K∑
k=1

H∑
h=1

〈
ctrue,h − ckh, d

πk

h − dπ̂E
h

〉
=

K∑
k=1

H∑
h=1

〈
ckh, d

πk

h − dπ̂E
h

〉
+

K∑
k=1

H∑
h=1

〈
ctrue,h − ckh,1

[
shk , a

h
k

]
− dπ̂E

h

〉
−

H∑
h=1

K∑
k=1

〈
ctrue,h − ckh,1

[
shk , a

h
k

]
− dπ

k

h

〉
Then, notice that zkh = −

〈
ctrue,h − ckh,1

[
shk , a

h
k

]
− dπ

k

h

〉
is a martingale difference sequence adapted to the filtration

Fk
h =

{(
τk, ckh

)}
almost surely bounded by 4. Therefore, by Azuma Hoeffding inequality, we obtain

∑H
h=1

∑K
k=1 z

k
h ≤

H
√

8K log δ−1. Therefore, via a union bound, we have that with probability 1− 3δ, it holds

K∑
k=1

H∑
h=1

〈
ctrue,h, d

πk

h − dπ̂E
h

〉
≤ Õ

(
H2d3/2

√
K log(Kδ−1)

)
+

H

α
+ 2αKH +H

√
8K log δ−1

= Õ
(
H2d3/2

√
K log(Kδ−1)

)
+ 4H

√
K +H

√
8K log δ−1

where last step follows from choosing α = 1√
2K

. At this point, the conclusion holds plugging in the value for K in the

statement of the main theorem which is K = O
(

H4d3 log(dH/(ϵδ))
ϵ2

)
. Finally, we need to control the error in the estimation

of the expert occupancy measure that can be done as in the proof for Algorithm 1.

V πE
1 (s1; ctrue)− V π̂E

1 (s1; ctrue) =

H∑
h=1

〈
Φ⊺dπE

h −Φ⊺dπ̂E
h , wtrue,h

〉
≤ H

√
d max
h∈[H]

∥∥∥Φ⊺dπE
h −Φ⊺dπ̂E

h

∥∥∥
∞

≤ H

√
2d log(2d/δ)

τE

where the last inequality holds with probability 1− δ. Therefore, the choice of τE in the theorem statement ensures that
V πE
1 (s1; ctrue)− V π̂E

1 (s1; ctrue) ≤ ϵE .

Lemma 11. For β = O
(
dH log(dTδ )

)
, the estimator used in Algorithm 4

vk
h =

(
Λk
h

)−1
k∑

l=1

ϕ(slh, a
l
h)V

k
h (slh+1)

satisfies for any h, k ∈ [H]× [K] and for any state action pair (s, a) ∈ S ×A.∣∣ϕ(s, a)⊺vk
h − PhV

k
h+1(s, a)

∣∣ ≤ β ∥ϕ(s, a)∥(Λk
h)

−1 (9)

with probability 1− δ.
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Proof. With analogous steps to the proof of Lemma 6 that∣∣ϕ(s, a)⊺vk
h − PhV

k
h+1(s, a)

∣∣ ≤ ∥∥MV k
h+1

∥∥
(Λk

h)
−1 ∥ϕ(s, a)∥(Λk

h)
−1

+

∥∥∥∥∥
k∑

l=1

ϕ(slh, a
l
h)
(
V k
h+1(s

l
h+1)− PhV

k
h+1(s

l
h, a

l
h)
)∥∥∥∥∥

(Λk
h)

−1

∥ϕ(s, a)∥(Λk
h)

−1

Then, using the fact that by assumption on M and by the clipping of the value function, we have that
∥∥MV k

h+1

∥∥
(Λk

h)
−1 ≤ H .

Then, using (Jin et al., 2019, Lemma B.3) it holds that with probability 1− δ∥∥∥∥∥
k∑

l=1

ϕ(slh, a
l
h)
(
V k
h+1(s

l
h+1)− PhV

k
h+1(s

l
h, a

l
h)
)∥∥∥∥∥

(Λk
h)

−1

≤ O
(
dH log

(
dK

δ

))

Then, noticing that this is the main term we conclude that∣∣ϕ(s, a)⊺vk
h − PhV

k
h+1(s, a)

∣∣ ≤ O
(
dH log

(
dK

δ

))
∥ϕ(s, a)∥(Λk

h)
−1 .

Lemma 12. It holds that with probability 1− δ

K∑
k=1

H∑
h=1

E
s,a∼dπk

h

[
bk−1
h (s, a)

]
≤ O

(
d3/2H2

√
K log

(
2K

δ

))

Proof. We have that

2

K∑
k=1

H∑
h=1

E
s,a∼dπk

h

[
bk−1
h (s, a)

]
≤ 2

K∑
k=1

H∑
h=1

bk−1
h (skh, a

k
h) + βH

√
K log δ−1 (Azuma-Hoeffding)

≤ 2

H∑
h=1

√√√√K

K∑
k=1

(bk−1
h (skh, a

k
h))

2 + βH
√
K log δ−1 (Cauchy-Schwartz)

= 2β

H∑
h=1

√√√√K

K∑
k=1

ϕ(skh, a
k
h)

⊺(Λk−1
h )ϕ(skh, a

k
h) + βH

√
K log δ−1

≤ 2β

H∑
h=1

√
dK log(2K) + βH

√
K log δ−1

= O

(
d3/2H2

√
K log

(
2K

δ

))

G. Experiments
G.1. Experiments with deterministic expert

We also run an experiment where the expert is deterministic and see if ILARL can compete with BC in this setting. The
results are provided in Figure 2. The parameter σ is the probability at which the system does not evolve according to the
agent’s action but in an adversarial way. We experiment with σ = {0, 0.05, 0.1}. The details about the transition dynamics
are given in Appendix G.2. Form Figure 2, we can see that ILARL and REIRL are again the most efficient algorithms in
terms of MDP trajectories and they are able to match the performance of behavioural cloning despite the fact it has better
guarantees for the case of deterministic experts. For Figure 1, we used σ = 0.1.
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MDP trajectories

0
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(a) σ = 0

0 10 20 30 40
MDP trajectories

0

1

(b) σ = 0.05

0 10 20 30 40
MDP trajectories

0

1

(c) σ = 0.1

ILARL (Ours) PPIL IQLearn GAIL AIRL REIRL BC

Figure 2: Experiments on the continuous gridworld with one trajectory from a deterministic expert.

G.2. Environment description

We run the experiment in the following MDP with continuous states space. We consider a 2D environment, where
we denote the horizontal coordinate as x ∈ [−1, 1] and vertical one as y ∈ [−1, 1]. The agent starts in the upper left
corner, i.e., the coordinate [−1, 1]⊺ and should learn to reach the opposite corner (i.e. [1,−1]⊺) while avoiding the
central high cost area depicted in Figure 3. The reward function is given by: ctrue(s, a) = ctrue([x, y]

⊺, a) = (x −
1)2 + (y + 1)2 + 80 · e−8(x2+y2) − 100 · 1{x ∈ [0.95, 1], y ∈ [−1,−0.95]}. The action space for the agent is given by

A =

[0.01, 0]⊺︸ ︷︷ ︸
≜A1

, [0, 0.01]⊺︸ ︷︷ ︸
≜A2

, [−0.01, 0]⊺︸ ︷︷ ︸
≜A3

, [0,−0.01]⊺︸ ︷︷ ︸
≜A4

, and the transition dynamics are given by:

st+1 =

{
Π[−1,1]2

[
st +

at

10

]
w.p. 1− σ

Π[−1,1]2

[
st − st

10∥st∥2

]
w.p. σ

Thus, with probability σ, the environment does not respond to the action taken by the agent, but it takes a step towards the

Figure 3: Graphical representation of −ctrue of the linear MDP used in Figures 1 and 2.
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low reward area centered at the origin, i.e., − st
10∥st∥2

. The agent should therefore pass far enough from the origin. Consider

ϕ(s, a) = ϕ([x, y], a) =
[
x2, y2, x, y, e−8(x2+y2),1 {x ∈ [0.95, 1], y ∈ [−1,−0.95]} , e⊺a

]
with

ea = [1 {a = A1} ,1 {a = A2} ,1 {a = A3} ,1 {a = A4}]⊺ .

Notice that Assumption 2 holds only for the cost ctrue = Φ[1, 1,−2,−2, 80,−100, 2, 2, 2, 2]⊺ while for the dynamics the
linearity assumption does not hold.

G.3. Numerical verification of the finite horizon improvement.

We test BRIG (Algorithm 4) in a toy finite horizon problem. In particular, we consider a linear bandits problem (H = 1)
with true cost function ctrue = Φwtrue where Φ entries are sampled from a normal distribution. For wtrue we choose
wtrue(i) = 0 if i is odd and wtrue(i) = 1 otherwise. We generate the expert dataset sampling 10 actions from a softmax
expert. The results are shown in Figure 4. They confirm the theoretical findings that BRIG outperforms ILARL for finite
horizon problems in terms of MDP trajectories.

0 25 50 75 100
MDP trajectories

0

1

BRIG
ILARL

Figure 4: Experiment in finite horizon setting to assess the better efficiency of BRIG.

G.4. Hyperparameters

For the experiments in Figures 1 and 2 we used η = 1, τ = 5 and β = 8. For IQlearn, we also collect 5 trajectory to perform
each update on the Q-function, and we use again η = 1 and 0.005 as stepsize for the Q-function weights. For PPIL, we
use batches of 5 trajectories, 20 gradient updates between each batch collection, η = 1 and and 0.005 as stepsize for the
Q-function weights. For GAIL and AIRL, we use the default hyperparameters in https://github.com/Khrylx/
PyTorch-RL but we obtained a better prerformance with a larger batch size of 6144 states and we use linear models rather
than neural networks. For REIRL, we used the implementation in (Viano et al., 2021) but again we increased the batch size
equal to 6144 states for achieving a better performance.

H. Reducing the number of expert trajectories.
In this section, we show that the number of required expert trajectories can be further reduced at the price of additional
assumption on the expert policy, features and expert occupancy measure. The estimator we use is build on the ideas underling
Mimic-MD in the linear case (Rajaraman et al., 2021).

Remark 4. Using such an estimator in ILARL or BRIG allows to improve upon Mimic-MD in two ways. Indeed ILARL and
BRIG are provably computationally efficient algorithms and do not require knowledge of the dynamics. On the other hand,
Mimic-MD requires perfect knowledge of the transition dynamics and it is unclear if the output policy can be computed
efficiently in Linear MDPs.
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To this goal, we need to consider the following estimator for Φ⊺dπE , where we denote via (sτh, a
τ
h) the state action pair

encountered at step h in the trajectory τ

Φ̃⊺dπE = (1− γ)Eτ∼πE

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [st ∈ K ∀st ∈ τ ]

]

+ (1− γ)Eτ∼Unif(D1)

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [∃sh ∈ τ s.t. sh /∈ K]

]
(10)

where we split the expert dataset DπE in two disjoint halves D0, D1. The first D0 is used to compute the set K which is
according to (Rajaraman et al., 2021, Definition 7) the set where the policy πBC learned via Behavioural Cloning on the
input dataset D0 equals the expert policy. That is, K = {s ∈ S s.t. πBC(s) = πE(s)}2. The other half denoted via D1

is used for the second term in 10. In the analysis of (Rajaraman et al., 2021) the first term can be computed thanks to the
perfect knowledge of the dynamics. In our case, we have only trajectory access so we use the estimator

Φ⊺dπE = (1− γ)Eτ∼Unif(DπBC
)

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [st ∈ K ∀st ∈ τ ]

]

+ (1− γ)Eτ∼Unif(D1)

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [∃sh ∈ τ s.t. sh /∈ K]

]
(11)

where the dataset DπBC
contains trajectories sampled according to πBC .

Lemma 13. Let us consider the estimator Φ⊺dπE with the set K be the confidence set for a binary linear classifier as defined
in (Rajaraman et al., 2021, Section 4.1), let the expert policy be deterministic ans satisfy the Linear Expert Assumption
(Rajaraman et al., 2021, Definition 4 ).Moreover consider features that satisfy −ϕ(s, 1) = ϕ(s, 0) = s/2 for all s ∈ S
where the state space is chosen to be Rd. Finally, let consider that

∑
a∈A dπE(·, a) is the uniform distribution Unif(S), then

it holds that for any δ > 0

E ∥Φ⊺dπE −Φ⊺dπE∥∞ ≤ 1

1− γ

√
log(d/δ)

2 |DπBC
|
+

δ

1− γ
+O

(
d5/4 log d

(1− γ)3/2 |DπE |

)
(12)

Remark 5. The Lemma above follows the construction in (Rajaraman et al., 2021) to show that there exists one example
under which ILARL used with estimator Φ⊺dπE requires only Õ(d5/4ϵ−1(1 − γ)−3/2) expert trajectories. However, it
remains open to prove that the same holds true for general expert in Linear MDPs without further assumptions on the
features and expert occupancy measure.

Proof. The error can be controlled as follow

E ≜ Eτ∼πE

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [st ∈ K ∀st ∈ τ ]

]
− Eτ∼Unif(DπBC

)

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [st ∈ K ∀st ∈ τ ]

]

so denoting X(τ) ≜
∑∞

h=1 γ
hϕ(sτh, a

τ
h)1 [st ∈ K ∀st ∈ τ ] and noticing that by definition of K we have that

Eτ∼Unif(DπBC
)

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [st ∈ K ∀st ∈ τ ]

]
= Eτ∼Unif(DπE )

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [st ∈ K ∀st ∈ τ ]

]
,

2Notice that we consider a deterministic expert in this section as done in (Rajaraman et al., 2021). Therefore, we consider policies as
mapping from states to actions, i.e. π : S → A
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we can rewrite E as a martingale difference sequence

∥E∥∞ =

∥∥∥∥∥∥Eτ∼πE [X(τ)]− 1

|DπBC
|
∑

τ∈DπBC

X(τ)

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥ 1

|DπBC
|
∑

τ∈DπBC

(X(τ)− Eτ∼πE [X(τ)])

∥∥∥∥∥∥
∞

≤ 1

1− γ

√
log(d/δ)

2 |DπBC
|

w.p. 1− δ

Therefore choosing |DπBC
| = log(d/δ)

2ϵ2(1−γ)2 ensures E ≤ ϵ with probability at least 1− δ. Therefore by Lemma 7,

E ∥E∥∞ ≤ 1

1− γ

√
log(d/δ)

2 |DπBC
|
+

δ

1− γ

These trajectories can be simulated in the MDP therefore the latter it is not a requirement on the expert dataset size. The
number of expert trajectories is crucial to control the error due to the trajectories containing trajectories not in K, i.e.
Equation (11). Denoting this error as E2 we have

ED0,D1
∥E2∥∞

= ED0,D1

[∣∣∣∣∣∣∣∣Eτ∼πE

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [∃sh ∈ τ s.t. sh /∈ K]

]

− Eτ∼Unif(D1)

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [∃sh ∈ τ s.t. sh /∈ K]

] ∣∣∣∣∣∣∣∣
∞

]

≤ 1

(1− γ)

√
d

|D1|
Eτ∼D0 [1 [∃sh ∈ τ s.t. sh /∈ K]]

=
1

(1− γ)

√
d

|D1|
Elenght(τ)

[
Eτ∼D0|lenght(τ) [1 [∃sh ∈ τ s.t. sh /∈ K]]

]
Tower Property of Expectation

≤ 1

(1− γ)

√√√√√ d

|D1|
Elenght(τ)

lenght(τ)∑
h=1

Eτ∼D0|lenght(τ) [1 [sh /∈ K]]

 Union Bound

≤ 1

(1− γ)

√√√√√ d

|D1|
Elenght(τ)

lenght(τ)∑
h=1

O
(
d3/2 log d

|D0|

) Thanks to (Rajaraman et al., 2021, Theorem 7)

≤ O

(
1

(1− γ)

√
d5/2 log d

|D1|2
Elenght(τ) [lenght(τ)]

)
Using that |D0| = |D1| by construction

≤ O

(
1

(1− γ)

√
d5/2 log d

|D1|2
1

1− γ

)

= O
(

d5/4 log d

(1− γ)3/2 |D1|

)
Where we used (Rajaraman et al., 2021, Theorem 7) to bound

Eτ∼D0|lenght(τ) [1 [sh /∈ K]] ≤ O
(
d3/2 log d

|D0|

)
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so overall

ED0,D1 ∥E2∥∞ ≤ O
(

d5/4 log d

(1− γ)3/2 |D1|

)
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