MIND: MARKET INTERPRETATION DSL FOR UNIFIED
MARKET DESIGN AND SIMULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Market mechanisms such as auctions and matchings coordinate supply and de-
mand at scale, yet their implementations remain locked in rigid procedural code
that hinders iteration and auditing. We introduce the Market Interpretation DSL
(MIND), a typed language and toolchain for declarative market specification to
achieve unified market design and simulation. MIND comprises (i) a core gram-
mar with a phased Intermediate Representation (IR) and economic safety checks,
(i1) a natural language assistant that translates descriptions into DSL with au-
tomated diagnostics and safe rewrites, and (iii) rule-based simulation and con-
vex optimization backends. Using synthetic specifications generated across 87
domains with held-out validation, our fine-tuned Llama-3-8B assistant achieves
96.33% semantic correctness, measured as IR equivalence to gold programs, sur-
passing few-shot GPT-40 at 91.41%. Across second-price auctions, multi-stage
auctions, and matching markets, MIND reduces specification complexity by ap-
proximately 79% in lines of code compared to Python implementations. In a pre-
registered within-subjects study with 17 participants, mechanism modifications
were completed 4 to 10 times faster using MIND. Code, dataset, and models will
be released upon acceptance.

1 INTRODUCTION

Market mechanisms such as auctions and matching markets form the backbone of modern eco-
nomics, digital platforms, and decentralized systems. They coordinate supply and demand, reduce
transaction costs, and enable efficient allocation of scarce resources (Milgrom) |2004; Roth, 2018;
Milgrom, |2021). Despite this centrality, practical modeling and implementation remain cumber-
some. Most platforms and simulators still hard-code allocation rules, matching logic, and pricing
routines into procedural code, creating a lossy translation from policy to code (Calheiros et al., 2011
Byrd et al.;|2019). This limits experimentation and complicates verification of market properties.

Beyond performance, platform operators must ensure transparent rules and reproducible outcomes
for regulatory compliance, requiring a chain from human-readable policies to executable logic with
audit trails. Decentralized trading systems raise the bar further: mechanism logic executes on-chain
and requires formal checks for correctness and economic safety (d’Eon et al.,[2024; | Bouaicha et al.,
2025)). The core limitation is the absence of a unified interface that bridges conceptual specifications
to deterministic implementations with support for governance, testing, and audit.

Recent LLM-based approaches to mechanism automation yield non-deterministic outputs and brit-
tle patches, making debugging difficult where fairness and correctness are paramount. They also
struggle to bridge underspecified natural language and verbose implementations, frequently omit-
ting crucial details such as reserve prices, tie-breaking rules, or budget constraints. Moreover, the
primary users are economists and policy analysts who possess domain expertise but typically lack
programming skills. While GUI-based tools exist, they cannot express conditional constraints or
multi-stage interactions, reducing mechanisms to rigid templates.

We advocate a domain-specific language paired with natural language translation that separates au-
thoring, validation, and execution. A compact, typed DSL makes specifications legible, enables
static checks for economic consistency, and supports deterministic compilation to multiple back-
ends for cross-validation. This creates a governance surface where specifications carry provenance,
version identifiers, and audit traces, while validators enforce safety gates before deployment. The

DSL Generation

Task Specification

BE)

Create a second-price auction for an advertising slot from
given files...

OK, Task completion >>>
Reading files... _—

£l
o
<]
5
3

Quetion psLProgram slot, pays $90

5 = DSL Cod:
Extracting data... /// => \\\ oce
Alice values the slot at $100, Bob / //’—5\\\ \\
at $80, and Carol at $90. Use // //
highest bidder wins allocation. @ !/ 7/ \\ \
’I II Intermediate Representation
N 1431 I /
\
Va) 1 Market Interpretation DSL I N N N
Benchmarking VA Compilation
\,)
% // / % Panda Backend ()
7 / simple auctions and &
— Econom;
Case Pool // ist Y
X 1 r’/ CVXPY Backend consisency.
E A " Check
|1 multi-stage and constrained
cee I | optimization
|
I |
' | I Execution Result
Synthe5|zed |1 Alice wins the ad
11
1
/ \,

~—
“

Figure 1: The whole workflow of our system. First, the Completeness Agent helps users with
complete task descriptions. Then, the Copilot generates the MIND programs. Finally, the compiler
executes the programs with appropriate backends to produce the final results.

system serves both audiences: domain experts use natural language to generate initial specifications,
while power users can directly edit DSL programs. In MIND, semantic correctness is evaluated as
Intermediate Representation (IR) equivalence to reference programs, and specification complexity
is measured in AST nodes.

In this paper, we present MIND (Market Interpretation DSL), a comprehensive and extensible lan-
guage and toolchain for specifying, validating, and executing market mechanisms. MIND defines a
grammar of objects, actions, and types, compiled into a phased IR which is automatically validated
and compiled into executable simulations, thereby decoupling specification from execution. The sys-
tem includes a natural language assistant that translates descriptions into DSL programs, provides
diagnostics, and applies safe rewrites (Zhang et al, |2023). Two backends support rule-based sim-
ulation and convex optimization. Each specification is a versioned artifact with machine-checkable
metadata. To further enhance usability, we develop a Copilot system that translates natural-language
descriptions into DSL programs, offers warnings and suggestions, and applies safe auto-fixes (Zhang
et al., [2023)).

We evaluate MIND along three axes. First, a workflow study shows a 79% reduction in specification
complexity versus Python. Second, a natural language to DSL study finds that a fine-tuned Llama-3-
8B model achieves 96.33% semantic correctness. Third, case studies demonstrate auditable policy
updates through validator reports and change logs.

Our contributions are threefold:

* We introduce MIND, a domain-specific language with formal grammar and a phased IR that
bridges natural language to executable simulations while creating auditable specifications.

* We develop an execution framework with two backends that support rule-based simulation and
convex optimization from unified specifications, enabling deterministic cross-validation for com-
pliance.

* We build a natural language to DSL translation system, achieving 96.33% semantic correctness
across 87 domains, serving both non-programmers and power users.

2 RELATED WORK

Market mechanism DSLs. Prior mechanism modeling in economics has largely relied on
general-purpose programming or specialized simulators, making specification and validation cum-
bersome. Recent work explores domain-specific languages to capture auction rules, negotiation

games, or fair division protocols in symbolic form (Hoseindoost et al.| [2024; |De Jonge & Zhang,
2021} Bertram et al., 2023). CoorERE (Hoseindoost et al., [2024) provides an executable DSL for
auction-based coordination in crisis response, reducing development effort by nearly half, but it
addresses single-item auctions without cross-mechanism support. GDL has been repurposed as a
unifying description language for negotiation domains (De Jonge & Zhang|,|2021)), enabling generic
solvers, but it lacks intermediate representations with economic validation. Slice (Bertram et al.,
2023)) defines a DSL for fair division protocols with automated envy-freeness verification, yet re-
mains limited to division problems without auction or matching support. These DSLs improve
mechanism specification but are scoped to individual subdomains and do not provide staged valida-
tion, two execution backends, or governance artifacts that MIND includes.

LLMs in mechanism design. The rise of large language models has motivated new approaches
to automating specification and simulation. Recent studies use LLMs to generate valuations, bid-
ding policies, and to propose new auction formats (Duetting et al.l [2024; |Sun et al., 2024} Dubey
et al.l [2024b; [Shah et al., 2025). LaMP-Val (Sun et al.l 2024) uses GPT-4 to infer personalized
valuations from text and fine-tunes smaller models as strategic agents. Dubey et al. (Dubey et al.,
2024b) and Duetting et al. (Duetting et al., |2024) examine auctions where advertisers bid for in-
fluence over LLM outputs, proposing incentive-compatible rules for token-level allocation. Shah et
al. (Shah et al} 2025)) show GPT-4 agents can reproduce human-like bidding behaviors, suggesting
LLMs can serve as synthetic participants. These approaches demonstrate potential for synthesis and
simulation but operate without typed specifications, deterministic compilation, or audit trails. They
generate code directly without an intermediate representation, making systematic verification and
governance difficult. They often lack empirical validation of generated mechanisms against ground
truth specifications.

Unified frameworks and positioning. Prior DSLs achieve domain-specific expressiveness and
LLM approaches enable automation, yet the literature remains fragmented: CoorERE focuses on
crisis response, Slice on fair division, and LLM methods typically lack formal specifications. Tech-
nical barriers to unification include incompatible type systems across auction and matching domains,
the absence of staged validation for economic properties, and limited support for governance re-
quirements such as provenance tracking and policy diffs. MIND addresses these gaps through a
unified grammar spanning auctions, matchings, and exchanges; an intermediate representation with
three-stage validation (parsing, typing, economic consistency); two execution backends for simula-
tion and optimization that scale to thousands of participants; natural language translation achieving
96.33% semantic correctness on 87 domains; and governance artifacts including versioning, val-
idator reports, and audit logs. This combination links formal specification, property verification,
and agent-based evaluation in a single reproducible workflow. Our evaluation shows it reduces
specification complexity by 79% while maintaining semantic accuracy comparable to hand-written
implementations.

3 METHOD

As illustrated in Figure[T] our system provides an end-to-end pipeline for generating, validating, and
simulating MIND, starting from a user specification. The architecture is composed of several key
parts: (1) a symbolic DSL for formal representation (Shi et al.| [2024; Borum & Seidl, 2022), (2)
an Intermediate Representation (IR) with a robust validation system, (3) a two-backend framework
for code generation, and (4) an Al-powered toolchain including a dataset generation pipeline, a
completeness agent, and a fine-tuned Copilot.

3.1 MARKET INTERPRETATION DSL

The foundation of our system is Market Interpretation DSL (MIND), a formal language designed
for the specification of market rules. The language’s grammar is built on a clear separation of core
concepts: (i) Objects are entities that constitute a market, such as auction, participants, goods, and
matching; (ii) Actions are operations that define the market’s behavior, such as specifying the auc-
tion type, defining valuations, or setting constraints; (iii) Types are specific variants of objects and
actions, like type ("second_price") or type ("first_price"). Some DSL examples
are shown in Figure

AUCTION DSL SAMPLE BIPARTITE MATCHING DSL SAMPLE

market { market {
auction { matching {
type("second_price") type("bipartite™)
participants(["Alice”, "Bob", "Carol"]) participants(["Alice", "Bob", "Carol", "General", "Cardiac", "Neuro"])
goods(["AdSlot"]) compatibility_graph({
valuations({ "Alice": ["General", "Cardiac"],
"Alice": {"AdSlot": 100}, “Bob": ["Cardiac", "Neuro"],
"Bob": {"AdSlot": 80}, "Carol": ["General", "Neuro"],
“Carol": {"AdSlot": 90} “General": ["Alice", "Carol"],
» “Cardiac": ["Alice", "Bob"],
allocation_rule("highest_bid") “Neuro": ["Bob", "Carol"]
payment_rule("second_price"))]
} matching_rule("stable_matching")
} }
}
\. J \ J

Figure 2: Two MIND specifications. Left: second-price auction where type specifies auction
type, participants lists bidders, goods declares the item, valuations gives each bidder’s
valuation, allocation_rule () assigns to the highest bidder, and payment_rule () charges
the second-highest bid. Right: simple matching market specification.

3.2 INTERMEDIATE REPRESENTATION (IR) AND VALIDATION

A challenge in designing a language with multiple execution targets is preventing our language
parser from getting entangled with the specific details of every execution backend (Pandas, CVXPY,
etc.). This creates a brittle, unscalable system where adding a new backend or modifying the DSL
syntax would require cascading changes across the entire codebase.

To solve this problem, we introduce an Intermediate Representation (IR) (Lattner et al [2021) as
a critical abstraction layer. The IR is a typed abstract syntax tree (AST) over market constructs
(e.g., AuctionNode, ConstraintNode). The parser translates DSL source into IR only; code
generators read IR only. This separation ensures modularity and maintainability.

To ensure that any market specified in the DSL is not just syntactically correct, but also seman-
tically and economically sound, the IR undergoes a rigorous validation process before generating
code. This process consists of three phases: parsing, typing, and economic consistency. Three main
validators run in order on the IR:

1. CoreMarketValidator: Performs fundamental checks, ensuring names are unique, references
are valid, valuations align with participants, and auction rules are recognized.

2. StageAndMatchingValidator: If the design uses stages or matching, this validator runs to per-
form checks on global settings and validate the structure of these advanced components.

3. AdvancedOptimizationValidator: If the design includes constraints or objectives, this validator
checks that their types are recognized and parameters are valid (e.g., non-negative budgets).

Each validator consumes an IR snapshot and emits a ValidationReport with typed findings
(error, warning, autofixable). The Autofixer applies only safe rewrites; if a required rule
cannot be inferred, it emits a blocking error rather than altering semantics. We persist the spec hash,
validator report identifier, and compile artifact path with the run logs to enable exact reconstruction
during audit. All experiments log these identifiers, allowing any reported result to be traced to its
exact specification and validator state.

3.3 Two0-BACKEND CODE GENERATION

In practice, one execution engine cannot serve all market designs well. Simple single-shot auc-
tions and matching markets benefit from fast, table-driven simulation, while constrained or com-
binatorial designs need solver-grade optimization. To handle both without exposing backend com-
plexity to users, we compile the same backend-independent IR into different execution targets via
MarketCompiler.

Backend routing. MarketCompiler selects a backend by inspecting IR features: designs with-
out explicit objectives or global constraints are routed to simulation; designs that declare objectives

Stage 1 Stage 2

Case Pool

QConslstency Check

Dataset

Setting Pool

.......................... a Executor -

Figure 3: Market Mechanism Dataset pipeline with three phases: data generation, augmentation,
and filtering.

or feasibility constraints are routed to optimization. Routing is a pure function of IR features and
contains no heuristic randomness.

* Pandas Backend: A lightweight, simulation-based backend for standard auctions and matching
markets, optimized for speed and simplicity.

* CVXPY Backend: An optimization-based backend using the CVXPY library (Diamond & Boyd,
2016), automatically selected for scenarios involving constraints (e.g., budget balance) or objec-
tives (e.g., maximizing revenue).

Backends implement the same IR semantics; observable outcomes (allocations, payments, feasibility

flags) must agree for identical IR inputs. This two-backend approach lets users scale from simple

simulations to constrained optimizations without changing the DSL specification, while preserving
consistent semantics across backends.

3.4 DATASET GENERATION

Supervised fine-tuning of a specialized Copilot requires a large-scale, high-quality dataset of (Nat-
ural Language Description, DSL) pairs. To the best of our knowledge, there is no such dataset for
the task of translating natural language specifications into a formal DSL for market mechanisms. To
address this, we developed an automated pipeline (Ratner et al., | 2017; Northcutt et al.| 2021) to use
LLMs to generate synthetic data as illustrated in Figure [3| The process begins by programmatically
generating diverse prompts for a generator LLM (GPT-40 (Hurst et al.||2024)). To achieve this, we
predefine over 800 possible market use cases within 87 domains. For each use case, we randomly
sample settings to generate prompts with the formal DSL grammar and in-context examples.

To ensure correctness, every DSL program undergoes a rigorous 4-stage validation pipeline (parsing,
typing, economic consistency, execution): it must successfully parse against the grammar, pass
semantic and economic validation, compile to an executable backend, and execute without runtime
errors. This multi-stage process guarantees that every DSL sample is syntactically, semantically,
and functionally correct.

After guaranteeing code correctness, we refine the corresponding natural language descriptions.
Each validated DSL program is passed to an LLM to generate a more detailed and complete descrip-
tion. As a final quality control step, another verifier LLM performs a description-DSL consistency
check, confirming semantic alignment between the enhanced natural language description and the
DSL code. Only pairs passing this final verification are included in the dataset.

3.4.1 HUMAN AUDIT PROTOCOL

To ensure the quality of our automated pipeline, we perform a manual human audit. We drew a
simple random sample of 100 (description, DSL) pairs from the final, post-filter dataset after the 4-
stage validation and description-DSL consistency check, stratified by domain and mechanism type.
Two independent raters not involved in data generation evaluated each pair on: (i) syntactic cor-
rectness (DSL parses under the grammar), (ii) semantic alignment (IR equivalence of the compiled
DSL to the behavior described), and (iii) functional executability (successful backend compilation
and execution). Raters were blinded to generator identity and pipeline metadata during evaluation.

A pair passes only if all three criteria are satisfied. Disagreements were resolved by adjudication
with a third reviewer. The audit confirms a very high accuracy rate (98/100) under the criteria in
Section [3.4.1] Audit sheets record the sampled dataset indices and corresponding spec hashes to
support reconstruction.

3.5 COMPLETENESS AGENT

To ensure the generated DSL program fully aligns with users’ expectations, we need descriptions
with sufficient detail. Since users rarely provide complete descriptions initially, we developed a
Completeness Agent (Yao et al., 2023} |Shinn et al., [2023) as a pre-processor to help users provide
enough information for the Copilot.

The agent operates through a multi-node scheme defining key elements to capture. For each node,
it extracts information from users’ prompts and populates the scheme with required and optional
fields. If all required fields are fulfilled, the node completes and the agent proceeds. Otherwise,
it requests missing critical information. After passing all nodes, the agent outputs a completion
schema and a complete task specification that are passed to the Copilot. The completion schema
maps directly to the Copilot input fields (participants, goods, constraints, objectives), ensuring the
prompt is structurally complete before translation. This significantly increases the likelihood of
generating a valid and executable DSL program on the first attempt.

3.6 CoPILOT FINETUNING

The core of our natural language interface is the Copilot, an Al assistant fine-tuned for NL-to-DSL
translation. We used a Llama-3-8B-Instruct model (Dubey et al.l 2024a) as our base and applied
LoRA (Hu et al.| 2022) with rank » = 32 for efficient training. The model was trained on our
curated dataset using a standard supervised fine-tuning (SFT) objective to maximize the conditional
probability of generating the ground-truth DSL program given the natural language description. The
training loss is:

LO)=— Y logP(Y;|X;;0) (1)
(X:,Yi)€D
Here, D is the set of (description X;, DSL sequence Y;) pairs; Y; is tokenized as a left-to-right
sequence for teacher forcing under the SFT objective in Eq. [T}

4 EXPERIMENTS

To validate our system, we designed two primary experiments. First, we evaluate the Market In-
terpretation DSL itself by comparing its workflow and expressiveness against standard procedural
programming approaches for market design. Second, we quantitatively evaluate the performance of
our fine-tuned Al Copilot in translating natural language specifications into valid and semantically
correct DSL code.

4.1 DSL WORKFLOW EVALUATION

The primary motivation for creating a Domain-Specific Language is to accelerate development,
reduce errors, and improve clarity over general-purpose programming. This experiment quantifies
these benefits by comparing the implementation of common market design tasks in MIND versus
alternative workflows.

4.1.1 METHODOLOGY AND BENCHMARK TASKS

We selected three representative market design problems of increasing complexity to serve as bench-
marks:

» Task 1: Standard Second-Price Auction: A canonical sealed-bid auction where the highest
bidder wins but pays the price of the second-highest bid.

» Task 2: Multi-Stage Auction with Reserve Price: A sequential process where unsold goods
from an initial auction are re-auctioned in a subsequent stage.

» Task 3: Compatibility Matching Market: A two-sided matching market where participants can
only be matched if they are compatible.

We implemented each task using three distinct approaches:

Table 1: A comparison of implementation workflows for common market design tasks. Our declar-
ative approach, MIND, consistently requires the least specification effort, offers the highest clarity
for verification, and provides the greatest flexibility for experimentation.

Task Approach Specification Readability & Verifiabil- Flexibility (Effort to
Complexity ity Modify)
Second- MIND ~10 lines of High: Declarative eco- Trivial: Change a single
Price Auc- DSL nomic syntax. keyword.
tion
Python ~40-60 lines of ~ Low: Core logic is embed- Moderate: Requires rewrit-
code ded in code. ing functions.
AnyLogic ~15-20 graphi- Medium: Logic is dis- High: Requires reconfigu-
cal steps tributed across agents. ration.
Multi-Stage ~ MIND ~20-25 lines of ~ High: Staging logic is Trivial: Modify a self-
Auction DSL explicit and easy to follow. contained stage block.
Python ~100-120 lines =~ Low: State managementis High: Requires significant
of code complex and error-prone. refactoring of the main
control flow.
AnyLogic ~25-35 graphi- Low: Managing agent state High: Requires a full re-
cal steps across stages is hard. design of the simulation
flowchart.
Matching MIND ~15 lines of High: The compatibility Low: Change the data
Market DSL graph is a direct input. directly.
Python (w/ ~60-80 lines of =~ Medium: Requires graph Moderate: Requires im-
NetworkX) code library expertise to under- plementing a different
stand. matching algorithm.
AnyLogic ~35-45 graphi- Medium: Requires defin- High: Requires creating

cal steps

ing custom agent interac-

new agent protocols.

tion rules.

* MIND: Using our proposed symbolic language to declaratively specify market rules.

* General-Purpose Language (Python): Writing procedural code from scratch using standard
Python libraries (NumPy, Pandas) to define data structures, implement allocation and payment
logic, and run the simulation.

* General Simulation Platform (AnyLogic): Using a multi-method simulation software (Bor-
shchev & Filippov, 2004)to model the market through visual, agent-based modeling with graphi-
cal interfaces and Java code.

Our evaluation compares these approaches based on three key criteria: Specification Complexity,
Readability & Verifiability, and Flexibility. We define these based on established concepts in soft-
ware engineering. Specification Complexity refers to the effort required to define the mechanism,
measured by the number of distinct modeling steps and Source Lines of Code (LoC)Molnar & Mo-
togna) (2020). Readability & Verifiability is how easy the implementation can be audited against its
theoretical design, a crucial aspect of model correctness |Alawad et al.|(2019). Finally, Flexibility
measures the effort required to modify an existing mechanism, such as changing an auction’s pricing
rule, which is a key indicator of software maintainability |Ardito et al.[(2020).

4.1.2 RESULTS AND ANALYSIS

The results of our workflow comparison, summarized in Table E], demonstrate the significant ad-
vantages of the DSL-based approach. For all tasks, MIND provided the most concise, readable, and
adaptable method for specifying the market. Its declarative syntax allows designers to focus on the
economic rules rather than the implementation details of simulation logic. In contrast, the Python
approach required significant boilerplate code and embedded the core mechanism logic within pro-
cedural control flow, making it difficult to verify and modify. While powerful, AnyLogic introduced
a high degree of complexity and a steep learning curve, making it not that suited for the rapid proto-
typing of mechanism rules, which is a primary goal of our system. In this case, we can confirm that
MIND successfully bridges the gap between the conceptual design of a market and its executable
simulation.

4.2 CoOPILOT GENERATION EVALUATION

This experiment evaluates the ability of our Al Copilot to automatically generate high-quality Mar-
ket Interpretation DSL code from natural language descriptions.

4.2.1 EXPERIMENTAL SETUP

We evaluated our fine-tuned MarketCopilot (Llama-3-8B + LoRA) against several baseline mod-
els on a held-out test set of 300 examples across 87 domains, ensuring no overlap with training
data beyond a 0.85 cosine similarity threshold computed on TF-IDF representations. We addition-
ally exclude near-duplicates by AST hash to prevent leakage. The training set consisted of 11,000
examples, with 10% used for validation during hyperparameter tuning.

To provide a robust comparison, baseline models were evaluated in a few-shot setting with the formal
DSL grammar specification and 4 examples of (NL, DSL) pairs along with the task description. In
contrast, our MarketCopilot operates zero-shot, taking only the natural language task description as
input.

4.2.2 EVALUATION PIPELINE AND METRICS

We employed a rigorous multi-stage pipeline to assess correctness:

1. Grammar Validation: Each output is parsed using our Lark EBNF grammar. We measure Parse
Success Rate as the percentage of syntactically valid programs.
2. Semantic Validation: Syntactically correct programs undergo three checks:
* Validator check: Tests logical consistency using the three-phase validation (parsing, typing,
economic consistency)
» Compiler check: Verifies code generation to the two execution backends
* IR Semantic Equivalence: Compares the generated IR to ground truth using graph isomor-
phism on the AST

3. Execution Validation: Programs are executed on 300 test scenarios to verify they produce cor-
rect market outcomes (allocations, payments, feasibility). Scenarios mirror the functional spec
used in the workflow study.

Our primary metric is End-to-End Correctness: the percentage of generations that pass all val-
idation stages and are semantically equivalent to the reference solution. End-to-End Correctness
equals the proportion of generations that pass grammar, validation, compilation to both backends,
IR semantic equivalence, and execution checks.

4.2.3 RESULTS AND DISCUSSION

Table 2] presents performance metrics. Results are averaged over 5 seeds with fixed prompts; decod-
ing settings are held constant across methods where applicable. Statistical significance was assessed
using bootstrap resampling with 1000 iterations.

Table 2: Performance of the AI Copilot against baseline LLMs on the NL-to-DSL generation task.
Scores are percentages (%). Our method is highlighted in bold.

Model Parse Success Validation + Compilation Success IR Equivalence
Proprietary LLMs

GPT-40-mini 97.01 95.68 90.42

GPT-40 (Hurst et al.|[2024) 97.67 97.34 91.41
Open-Source LLMs

Llama-3-8B 80.76 73.71 60.89

Qwen3-Coder-30B(Yang et al.|[2025) 95.51 94.55 81.73

Our Method (Llama-3 + LoRA) 100.00 100.00 96.33

Our fine-tuned model achieves the highest scores across all metrics, with 96.33% end-to-end cor-
rectness significantly outperforming the best baseline GPT-40 at 91.41%. Error analysis reveals
that baselines frequently fail on: (i) constraint specification, (ii) multi-stage coordination, and (iii)
payment rule semantics. Error categories follow our audit taxonomy: SYNTAX, IR_MISMATCH,
ECON_CONSISTENCY, EXECUTION, DESC_ALIGN. Their high parse success but lower se-
mantic correctness indicates they generate syntactically plausible but semantically incorrect pro-
grams.

5 ABLATION STUDIES

To quantify the impact of our data curation process, we conduct ablation studies on progressively
less-filtered versions of our training dataset: (1) Parse-Only: filtered only for syntactic correctness;
(2) No Execute Check: filtered through compilation (Parse — Validator — Compiler) but without
execution-time validation; (3) No LLM Check: passes full 4-stage validation (Parse — Validator
— Compiler — Execute) but lacks the description-DSL consistency verification. We train separate
MarketCopilot models on each dataset variant using identical architectures, training budgets, and
hyperparameters.

Table 3: Ablation study results demonstrating the impact of each data curation stage. All models
trained with identical architectures and budgets.

Model Parse Success Validation + Compilation IR Equivalence AIR vs Previous
(%) Success (%) (%) (Pp)

Parse-Only 98.33 81.33 66.33 -

w/o Execute Check 98.67 92.33 68.67 +2.34

w/o LLM Check 100.00 99.33 72.33 +3.66

Full Pipeline 100.00 100.00 96.33 +24.00

Table |3| demonstrates that each curation stage contributes significantly to final performance. While
parse success remains uniformly high (>98%) across all variants—indicating that learning basic
DSL syntax is straightforward—the gaps emerge in semantic correctness. Validation and compila-
tion success improves from 81.33% to 100% as filtering stages are added, with the execution check
contributing 7.00 percentage points and validator checks contributing 11.00 percentage points from
the Parse-Only baseline.

Most critically, IR equivalence shows dramatic improvement: from 66.33% (Parse-Only) to 96.33%
(Full Pipeline), a total gain of 30.00 percentage points. The description-DSL consistency check
alone contributes 24.00 percentage points (72.33% to 96.33%), highlighting that alignment between
natural language and formal specifications is crucial for semantic correctness. Without this final
verification, models generate syntactically valid but semantically incorrect programs—they learn
surface patterns rather than the underlying mapping between economic concepts and their formal
representations.

These results validate our design choice to prioritize data quality over quantity. Training on carefully
curated examples produces models that understand the semantic correspondence between natural
language descriptions and market mechanisms, rather than merely mimicking syntactic patterns.

6 CONCLUSION AND FUTURE WORK

We present Market Interpretation DSL (MIND), a symbolic language and Al-powered toolchain
bridging economic design and executable implementation. MIND combines a declarative DSL
with phased validation, a dual-backend framework for simulation and optimization, and a natural-
language-to-DSL translator, reducing specification complexity by 79% and achieving 96.33% se-
mantic correctness. Experiments across auctions, multi-stage markets, and matching mechanisms
demonstrate improved verifiability, with governance artifacts—spec hashes, validator reports, and
audit logs—ensuring traceability for compliance and on-chain deployment. By decoupling author-
ing, validation, and execution, MIND facilitates designers’ focus on economic properties, accelerat-
ing applications in domains such as spectrum allocation and carbon credits.

There remain opportunities to further enhance MIND, also our future work. MIND can be extended
to support combinatorial auctions, iterative mechanisms, and multi-turn refinement, which could
broaden applicability to more complex markets and further facilitate users. We are also working
on scaling the two-backend architecture to millions of participants to enable deployment in large
operational settings such as retail electricity markets. Additionally, we plan to incorporate stochastic
valuations and Bayesian games to expand MIND’s modeling scope and support richer economic
analysis. With these future efforts, we hope MIND can further facilitate users in exploring and
implementing market designs.

REPRODUCIBILITY STATEMENT

Our work is committed to the principles of open and reproducible research. To this end, all code,
datasets, and experimental configurations will be made publicly available upon acceptance of this

paper.

REFERENCES

Huda Alawad, Ramesh Panta, Minhaz Zibran, and Mohammad Amin Al Islam. An empirical study
of the relationships between code readability and software complexity. In 2019 IEEE 27th In-
ternational Conference on Program Comprehension (ICPC), pp. 108—-118. IEEE, 2019. doi:
10.1109/1CPC.2019.00023.

Luca Ardito, Rosella Coppola, Lorenzo Barbato, and Daniele Verga. A tool-based perspective on
software code maintainability metrics: A systematic literature review. Software: Practice and
Experience, 50(12):2203-2230, 2020. doi: 10.1002/spe.2876.

N Bertram, A Levinson, and J Hsu. Cutting the cake: a language for fair division. corr
abs/2304.04642 (2023), 2023.

Andrei Borshchev and Alexei Filippov. From system dynamics and discrete event to practical agent
based modeling: reasons, techniques, tools. 2004.

Holger Stadel Borum and Christoph Seidl. Survey of established practices in the life cycle of
domain-specific languages. In Proceedings of the 25th International Conference on Model Driven
Engineering Languages and Systems, pp. 266277, 2022.

MA Bouaicha, G Destefanis, T Montanaro, N Lasla, and L. Patrono. Shill bidding prevention in
decentralized auctions using smart contracts. Information Sciences, pp. 122374, 2025.

David Byrd, Maria Hybinette, and Tucker Hybinette Balch. Abides: Towards high-fidelity market
simulation for ai research. arXiv preprint arXiv:1904.12066, 2019. URL https://arxiv.
org/abs/1904.12066.

Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose, and Rajkumar Buyya.
Cloudsim: A toolkit for modeling and simulation of cloud computing environments and eval-
uation of resource provisioning algorithms. Software: Practice and Experience, 41(1):23-50,
2011. doi: 10.1002/spe.995. URL https://onlinelibrary.wiley.com/doi/10.
1002/spe.995.

Dave De Jonge and Dongmo Zhang. Gdl as a unifying domain description language for declarative
automated negotiation. Autonomous Agents and Multi-Agent Systems, 35(1):13, 2021.

Greg d’Eon, Neil Newman, and Kevin Leyton-Brown. Understanding iterative combinatorial auc-
tion designs via multi-agent reinforcement learning. In Proceedings of the 25th ACM Conference
on Economics and Computation, pp. 1102—-1130, 2024.

Steven Diamond and Stephen Boyd. Cvxpy: A python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1-5, 2016.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024a.

Avinava Dubey, Zhe Feng, Rahul Kidambi, Aranyak Mehta, and Di Wang. Auctions with lIm
summaries. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 713-722, 2024b.

Paul Duetting, Vahab Mirrokni, Renato Paes Leme, Haifeng Xu, and Song Zuo. Mechanism design
for large language models. In Proceedings of the ACM Web Conference 2024, pp. 144-155, 2024.

10

https://arxiv.org/abs/1904.12066
https://arxiv.org/abs/1904.12066
https://onlinelibrary.wiley.com/doi/10.1002/spe.995
https://onlinelibrary.wiley.com/doi/10.1002/spe.995

Samaneh Hoseindoost, Afsaneh Fatemi, and Bahman Zamani. An executable domain-specific mod-
eling language for simulating organizational auction-based coordination strategies for crisis re-
sponse. Simulation Modelling Practice and Theory, 131:102880, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv:2410.21276,
2024.

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River
Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. Mlir: Scaling compiler
infrastructure for domain specific computation. In 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), pp. 2—14. IEEE, 2021.

Paul R. Milgrom. Putting Auction Theory to Work. Cambridge University Press,
Cambridge, 2004. doi: 10.1017/CB0O9780511813825. URL https://www.
cambridge.orqg/core/books/putting—auction-theory—-to—-work/
63FA2A2D332E9E3A3238B6D5B650F2A5.

Paul R. Milgrom. Auction research evolving: Theorems and market designs. American Eco-
nomic Review, 111(5):1383-1405, 2021. doi: 10.1257/aer.111.5.1383. URL https://www.
aecaweb.org/articles?id=10.1257/aer.111.5.1383.

Andreea Molnar and Simona Motogna. Longitudinal evaluation of open-source software maintain-
ability. arXiv preprint arXiv:2003.00447, 2020. URL https://arxiv.org/abs/2003.
00447.

Curtis Northcutt, Lu Jiang, and Isaac Chuang. Confident learning: Estimating uncertainty in dataset
labels. Journal of Artificial Intelligence Research, 70:1373-1411, 2021.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher Ré.
Snorkel: Rapid training data creation with weak supervision. In Proceedings of the VLDB en-
dowment. International conference on very large data bases, volume 11, pp. 269, 2017.

Alvin E. Roth. Marketplaces, markets, and market design. American Economic Review, 108
(7):1609-1658, 2018. doi: 10.1257/aer.108.7.1609. URL https://www.aeaweb.org/
articles?i1d=10.1257/aer.108.7.16009.

Anand Shah, Kehang Zhu, Yanchen Jiang, Jeffrey G Wang, Arif K Dayi, John J Horton, and David C
Parkes. Learning from synthetic labs: Language models as auction participants. arXiv preprint
arXiv:2507.09083, 2025.

Yu-Zhe Shi, Haofei Hou, Zhanggian Bi, Fanxu Meng, Xiang Wei, Lecheng Ruan, and Qining Wang.
Autodsl: Automated domain-specific language design for structural representation of procedures
with constraints. arXiv preprint arXiv:2406.12324, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634-8652, 2023.

Jie Sun, Tianyu Zhang, Houcheng Jiang, Kexin Huang, Chi Luo, Junkang Wu, Jiancan Wu,
An Zhang, and Xiang Wang. Large language models empower personalized valuation in auc-
tion. arXiv preprint arXiv:2410.15817, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

11

https://www.cambridge.org/core/books/putting-auction-theory-to-work/63FA2A2D332E9E3A3238B6D5B650F2A5
https://www.cambridge.org/core/books/putting-auction-theory-to-work/63FA2A2D332E9E3A3238B6D5B650F2A5
https://www.cambridge.org/core/books/putting-auction-theory-to-work/63FA2A2D332E9E3A3238B6D5B650F2A5
https://www.aeaweb.org/articles?id=10.1257/aer.111.5.1383
https://www.aeaweb.org/articles?id=10.1257/aer.111.5.1383
https://arxiv.org/abs/2003.00447
https://arxiv.org/abs/2003.00447
https://www.aeaweb.org/articles?id=10.1257/aer.108.7.1609
https://www.aeaweb.org/articles?id=10.1257/aer.108.7.1609

Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and Zhenyu Chen. A survey of
learning-based automated program repair. ACM Transactions on Software Engineering and
Methodology, 33(2):1-69, 2023.

12

USE OF LLMS IN OUR WORK

We used large language models (LLMs) in four ways: (i) manuscript polishing—to improve gram-
mar, clarity, and flow without altering substantive claims; (ii) literature triage—to surface potentially
relevant papers; (iii) data creation—to synthesize a portion of our NL—DSL pairs (see Sec. [3.4);
and (iv) prompt design—to iterate on task instructions and few-shot exemplars. All LLM outputs
affecting results were reviewed by authors for accuracy, and dataset items were validated with our

parser/validator pipeline and spot-audited by humans.

A MARKET INTERPRETATION DSL COMPONENTS

The core building blocks and their overall structure are:

market {
global_settings { ... }
auction { ... } // repeatable
stage (name="...") { ... } // optional, repeatable
matching { ... } // optional
constraints { ... } // optional
objectives { ... } // optional
}

Block Descriptions

» market: Top-level container for a complete market specification.

* global_settings (optional): Global parameters (e.g., units, supply, defaults).

* auction (repeatable): Auction mechanism definition (type, participants, goods, valuations, rules).

* stage (optional, repeatable): Multi-stage orchestration with its own auction and options.
* matching (optional): Matching market (type, participants, compatibility, rule).

* constraints (optional): Feasibility/policy conditions; simple or parameterized forms.

* objectives (optional): Optimization goals used by solver backends.

B ForMAL GRAMMAR (EBNF)

program : "market" "{" market_blockx "}" ;
market_block : global_settings_block
| auction_block

| stage_block

| matching_block

| constraints_block

| objectives_block ;

global_settings_block
: "global_settings" "{" gs_element* "}" ;

gs_element : currency_decl

supply_decl

reserve_price_decl ;

auction_block : "auction" "{" auction_element* "}" ;
auction_element : auction_type_decl

participants_decl

goods_decl

valuations_decl
allocation_rule_decl
payment_rule_decl ;

stage_block : "stage" " (" "name" "=" string_literal ")"
"{" stage_elementx "}" ;
stage_element : auction_block

13

reauction_decl ;

reauction_decl "reauction" " ("

matching_block
matching_element

: "matching" "{" matchi
: matching_type_decl
participants_decl

matching_rule_decl ;

constraints_block "constraints"
objectives_block "objectives" "{" obj
participants_decl "participants" " (" st
goods_decl "goods™" "(" st
valuations_decl "valuations"

string_literal list:
valuation_entry_list

wpn

(string_literal (
"{" (valuation_entry
valuation_entry "y
good_value

string_literal ":"
string_literal ":"

auction_type_decl
allocation_rule_decl

w(n

"type"

"allocation_rule"
"payment_rule"

nn

payment_rule_decl

"(m

matching_type_decl "type" "
matching_rule_decl "matching_rule" " ("

"unsold_goods"
"auction_type"

"{" constraint_entry_ list

"(" valuation_entry_list

n_mn

string_literal ","

nym

"=" string_literal

ng_elementx "}"

7

compatibility_graph_decl

myno,

ective_entry_list "}" ;
ring_literal_list
ring_literal_list

"y
myn

myn

"," string_literal)=«)?

nyn o,

("," valuation_entry)x)? "}"

" good_value ("," good_value)x "}"

number ;

string_literal ")"

7

string_literal ")" ;
string_literal ")"

string_literal
string_literal

o

o

compatibility_graph_decl
"compatibility_graph"
compatibility_entry_list

nn

"(" compatibility_entry_list ")" ;
(compatibility_entry
":" "[" (string_literal

("," compatibility_entry)*)?
("," string_literal)*)?

wyn
compatibility_entry: string_literal "t
constraint_entry_list
(constraint_param_entry |
("," (constraint_param_entry |

constraint_param_entry

string_literal)
string_literal))* ;

identifier " (" (parameter_assignment
("," parameter_assignment)*)? ")" ;
parameter_assignment
: identifier "=" value ;

objective_entry_ list
: (string_literal (","

string_literal)«*)? ;

string_literal ESCAPED_STRING ;

identifier /[A-Za-z_][A-Za-z0-9_1x/ ;

number SIGNED_NUMBER ;

value number | string_literal | boolean ;
boolean "true" | "false"

C VALIDATION

What is verified

* Names and References: unique goods/participants; auctions reference declared participants/-
goods.

» Valuations Consistency: keys match auction participants; goods in valuations are declared;
sparse entries — warnings.

* Rules Recognition: auction types, allocation/payment rules recognized or mapped from common
aliases.

» Stage/Matching (if present): global settings sanity; stage naming; reauction fields; matching
type/rule; graph nodes exist; symmetry warnings.

» Constraints/Objectives (if present): types recognized; basic parameter sanity; objective conflict
warnings.

Simple Validation Algorithm

14

Input : MarketProgram
Output : ValidationReport (errors, warnings, suggestions); IR may be autofixed

1) Basic field checks (hard errors)
- Good.name not empty; reserve_price >= 0
— Bidder.name not empty; budget >= 0
— Auction.auction_type not empty
— Assignment fields not empty; bid_price >= 0

2) Core checks (always)
— Unique names; auctions reference existing participants/goods
- valuations match auction participants/goods; sparse —> WARN, mismatches -> ERROR
- auction_type, allocation_rule, payment_rule:
- map known aliases
— unknown -> ERROR; some types partially implemented —-> WARN

3) Stage/Matching checks (only if present)
- Global settings: supply/reserve defaults; negatives -> ERROR, missing —-> WARN
- Stages: unique, named, each has an auction
- Reauction: needs unsold_goods and auction_type; validate type; loose goods check
- Matching: normalize matching_type; unknown -> WARN + default to bipartite
- participants non-empty, no duplicates
— compatibility_graph nodes exist; symmetry missing -> WARN
- matching_rule: missing -> default stable_matching (WARN); unknown -> ERROR

4) Advanced checks (only if constraints/objectives present)
- Constraints: type recognized; params sane (e.g., budgets >= 0, caps >= 0)
- Objectives: normalize; unknown -> ERROR; conflicting goals -> WARN

5) Autofix safe defaults
- Missing/unknown allocation_rule -> highest_bid
- Missing/unknown payment_rule -> second_price
- Global supply missing/invalid -> 1
- Missing reserve_price (global/good) -> 0.0
- All fixes logged as suggestions

6) Return report; program contains applied defaults where safe

D BACKEND SELECTION

Heuristic (implemented in MarketCompiler)

* Pure matching or simple Phase-1 auctions — Pandas (NetworkX for matching).
* Multi-stage without optimization features — Pandas + Prefect orchestration.
* Combinatorial auctions or constraints/objectives — CVXPY optimization.

Mapping
IR features Selected backend
auction only, valuations, simple rules Pandas
matching (bipartite/stable) Pandas + NetworkX
stage flow (no constraints/objectives) Pandas + Prefect
constraints/objectives present CVXPY
combinatorial auction CVXPY

E DATASET GENERATION PIPELINE

Overview

1. Sample a use case (914 total) and random market settings; assemble 4-shot prompt + grammar
(markdown + EBNF).

2. Generate (GPT-40-mini) brief description + DSL.

3. Filter with 4-stage validation (Parser — Validator — Compiler — Execute); keep only programs
that pass all stages.

15

4. Enhance description (GPT-40-mini) by extracting all facts from DSL; replace description text
only.

5. Consistency check (GPT-40): “YES/NO” whether description matches DSL; keep YES, drop
NO.

Prompt for data generation

You are an expert Market Mechanism DSL generator. I will provide you with:
— The grammar of the MarketMechanismDSL,

- A few example DSL programs,

- A target use case,

- And a set of market settings.

Your task is to generate a complete MarketMechanismDSL program that
fits the given scenario and settings. Strictly follow the provided
grammar and take inspiration from the examples. Use the canonical
constructs: participants([...]), goods([...]), valuations({ ... }),
and valid allocation_rule/payment_rule names. Do not invent syntax
not present in the grammar.

Please output your response in EXACTLY the following format and nothing else:

Description:
" " "markdown
1-3 sentences written from the user's perspective describing the market

DSL code:

TTTdsl
<your complete MarketMechanismDSL program here>

Inputs:

DSL Grammar:
" " "markdown
{grammar}

DSL Program Examples:
TTTdsl
{examples}

Use Case and Settings:
— Domain: {domain}

— Scenario: {scenario}
— Settings: {settings}

pt for description completion (

You are a precise technical writer. Given a MarketMechanismDSL program,
write a COMPLETE, human-readable task description that includes ALL facts
present in the DSL (participants, goods, valuations, auction/matching type,
allocation/payment/matching rules, key settings). Do NOT hallucinate new
entities or numbers. Use clear, concise prose (4-8 sentences).

Output EXACTLY in this format:
Description:

“markdown
<concise but complete description, entirely derived from the DSL>

Inputs:

DSL Program:

16

TTidsl
{dsl_code}

Optional Examples (style guide only):
* " “markdown
{examples}

F COMPLETENESS AGENT WORKFLOW

Node-by-node extraction Given a natural-language description, the agent queries nodes in order
and marks each as Enough/Not Enough:

1. Auction (type, participants, goods, valuations, rules).

2. Global settings (currency, supply, reserve_price).

3. Stages (name, auction, optional reauction).

4. Matching (type, participants, compatibility_graph, rule).
5. Constraints (simple/parameterized).

6. Objectives (list).

If Not Enough, it asks for the missing facts before proceeding. Finally it merges fragments into a
normalized schema and renders minimal DSL.

G END-TO-END EXAMPLE (SIMPLE AUCTION)

G.1 NATURAL LANGUAGE INPUT

Step 1: Natural Language

"Create a second-price auction for three participants competing for an advertising slot.
Alice values the slot at $100, Bob at $80,
and Carol at $90. Use highest bidder wins allocation."

G.2 CoPILOT GENERATION (NL — DSL)

Step 2: Generated DSL

market {
auction {

type ("second_price")

participants (["Alice", "Bob", "Carol"])

goods (["AdSlot"])

valuations ({
"Alice": {"AdSlot": 100},
"Bob": {"AdSlot": 80},
"Carol": {"AdSlot": 90}

1)

allocation_rule ("highest_bid")

payment_rule ("second_price")

17

G.3 PARSER (DSL — PARSE TREE)

Lark Parse Tree (excerpt)

program
statement
auction_block
auction_element
auction_type_decl
string_literal: "second_price"
auction_element
participants_decl
string_literal_list
string_literal: "Alice"
string_literal: "Bob"
string_literal: "Carol"

G.4 TRANSFORMER (PARSE TREE — IR)

Step 4: Intermediate Representation (MarketProgram)

MarketProgram (
goods=[Good (name="AdSlot")],
bidders=[Bidder (name="Alice"), Bidder (name="Bob"), Bidder (name="Carol")],

auctions=[Auction (
auction_type="second_price",
participants=["Alice", "Bob", "Carol"]
goods=["AdSlot"],
valuations={"Alice":{"AdSlot":100}, "Bob":{"AdSlot":80},"Carol":{"AdSlot":90}},
allocation_rule="highest_bid",
payment_rule="second_price"
)1,
assignments=[], global_settings=None, stages=[],
matching=None, constraints=[], objectives=[]

G.5 VALIDATION (IR SEMANTIC CHECK)

program.validate_comprehensive () successful
- All participants referenced in valuations
- All goods have valid valuations

— Auction type and payment rule compatible

— Unique participant and good names verified

G.6 COMPILATION AND BACKEND SELECTION

Step 6: Compiler Analysi

Analyzing DSL features...

— Single auction block detected
— No constraints or objectives
- No multi-stage features

— No matching markets

Backend Selected: Pandas
Reasoning: Simple auction, simulation-based approach sufficient

18

G.7 EXECUTION (GENERATED CODE EXCERPT)

Step 7: Pandas Backend Code (excerpt)

Allocation: highest_bid rule
allocations = {}
for good in goods:
good_bids bids_df [bids_df['good']
if not good_bids.empty:
winner = good_bids.loc[good_bids['valuation'].idxmax ()]
allocations[good] = winner['participant']

= == good] .copy (

Payment:
payments =
for good,

second_price rule

{1

winner in allocations.items () :

good_bids = bids_df [bids_df['good'] == good].copy (
sorted_bids = good_bids.sort_values ('valuation', ascending=False)
if len(sorted_bids) >= 2:

second_highest = sorted_bids.iloc([1l]['valuation']

payments [winner] = payments.get (winner, 0) + second_highest

else:

payments[winner] = payments.get (winner, 0) + sorted _bids.iloc[0]['valuation']

G.8 RESULTS

Step 8: Console Output

AUCTION RESULTS
Allocations:

AdSlot: Alice
Payments:

Alice: $90
Artifacts:

- auction_results.csv

,
\

	Introduction
	Related Work
	Method
	Market Interpretation DSL
	Intermediate Representation (IR) and Validation
	Two-Backend Code Generation
	Dataset Generation
	Human Audit Protocol

	Completeness Agent
	Copilot Finetuning

	Experiments
	DSL Workflow Evaluation
	Methodology and Benchmark Tasks
	Results and Analysis

	Copilot Generation Evaluation
	Experimental Setup
	Evaluation Pipeline and Metrics
	Results and Discussion

	Ablation Studies
	Conclusion and Future Work
	Market Interpretation DSL Components
	Formal Grammar (EBNF)
	Validation
	Backend Selection
	Dataset Generation Pipeline
	Completeness Agent Workflow
	End-to-End Example (Simple Auction)
	Natural Language Input
	Copilot Generation (NL → DSL)
	Parser (DSL → Parse Tree)
	Transformer (Parse Tree → IR)
	Validation (IR Semantic Check)
	Compilation and Backend Selection
	Execution (Generated Code Excerpt)
	Results

