
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MIND: MARKET INTERPRETATION DSL FOR UNIFIED
MARKET DESIGN AND SIMULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Market mechanisms such as auctions and matchings coordinate supply and de-
mand at scale, yet their implementations remain locked in rigid procedural code
that hinders iteration and auditing. We introduce the Market Interpretation DSL
(MIND), a typed language and toolchain for declarative market specification to
achieve unified market design and simulation. MIND comprises (i) a core gram-
mar with a phased Intermediate Representation (IR) and economic safety checks,
(ii) a natural language assistant that translates descriptions into DSL with auto-
mated diagnostics and safe rewrites, and (iii) rule-based simulation and convex op-
timization backends. Using synthetic specifications generated across 87 domains
with held-out validation, our fine-tuned Llama-3-8B assistant achieves 96.33%
semantic correctness, measured as IR equivalence to gold programs, surpassing
few-shot GPT-4o at 81.11%. Across second-price auctions, multi-stage auctions,
and matching markets, MIND reduces specification complexity by approximately
79% in lines of code compared to Python implementations. In a within-subjects
study with 17 participants, mechanism modifications were completed 4 to 10 times
faster using MIND. Code, dataset, and models will be released upon acceptance.

1 INTRODUCTION

Market mechanisms such as auctions and matching markets form the backbone of modern eco-
nomics, digital platforms, and decentralized systems. They coordinate supply and demand, reduce
transaction costs, and enable efficient allocation of scarce resources (Milgrom, 2004; Roth, 2018;
Milgrom, 2021). Despite this centrality, practical modeling and implementation remain cumber-
some. Most platforms and simulators still hard-code allocation rules, matching logic, and pricing
routines into procedural code, creating a lossy translation from policy to code (Calheiros et al., 2011;
Byrd et al., 2019). This limits experimentation and complicates verification of market properties.

Beyond performance, platform operators must ensure transparent rules and reproducible outcomes
for regulatory compliance, requiring a chain from human-readable policies to executable logic with
audit trails. Decentralized trading systems raise the bar further: mechanism logic executes on-chain
and requires formal checks for correctness and economic safety (d’Eon et al., 2024; Bouaicha et al.,
2025). The core limitation is the absence of a unified interface that bridges conceptual specifications
to deterministic implementations with support for governance, testing, and audit.

Recent LLM-based approaches to mechanism automation yield non-deterministic outputs and brit-
tle patches, making debugging difficult where fairness and correctness are paramount. They also
struggle to bridge underspecified natural language and verbose implementations, frequently omit-
ting crucial details such as reserve prices, tie-breaking rules, or budget constraints. Moreover, the
primary users are economists and policy analysts who possess domain expertise but typically lack
programming skills. While GUI-based tools exist, they cannot express conditional constraints or
multi-stage interactions, reducing mechanisms to rigid templates.

We advocate a domain-specific language paired with natural language translation that separates au-
thoring, validation, and execution. A compact, typed DSL makes specifications legible, enables
static checks for economic consistency, and supports deterministic compilation to multiple back-
ends for cross-validation. This creates a governance surface where specifications carry provenance,
version identifiers, and audit traces, while validators enforce safety gates before deployment. The
system serves both audiences: domain experts use natural language to generate initial specifications,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: The whole workflow of our system. First, the Completeness Agent helps users with
complete task descriptions. Then, the AI Copilot (MarketCopilot) translates the refined description
into MIND programs. Finally, the compiler executes the programs with appropriate backends to
produce the final results.

while power users can directly edit DSL programs. In MIND, semantic correctness is evaluated as
Intermediate Representation (IR) equivalence to reference programs, and specification complexity
is measured in AST nodes.

In this paper, we present MIND (Market Interpretation DSL), a comprehensive and extensible lan-
guage and toolchain for specifying, validating, and executing market mechanisms. MIND defines a
grammar of objects, actions, and types, compiled into a phased IR which is automatically validated
and compiled into executable simulations, thereby decoupling specification from execution. The sys-
tem includes a natural language assistant that translates descriptions into DSL programs, provides
diagnostics, and applies safe rewrites (Zhang et al., 2023). Two backends support rule-based sim-
ulation and convex optimization. Each specification is a versioned artifact with machine-checkable
metadata.

We evaluate MIND along three axes. First, a workflow study shows a 79% reduction in specification
complexity versus Python. Second, a within-subjects user study (N = 17) confirms that practition-
ers modify mechanisms 4–10× faster in MIND than in a Python baseline. Third, we demonstrate
generalization by encoding 8 mechanisms from recent ACM EC/SIGecom literature without chang-
ing the core grammar. Additionally, our fine-tuned Llama-3-8B Copilot achieves 96.33% semantic
correctness on NL→DSL translation.

Our contributions are threefold:

• We introduce MIND, a domain-specific language with formal grammar and a phased IR that
bridges natural language to executable simulations while creating auditable specifications.

• We develop an execution framework with two backends that support rule-based simulation and
convex optimization from unified specifications, enabling deterministic cross-validation for com-
pliance.

• We build a natural language to DSL translation system, achieving 96.33% semantic correctness
across 87 domains, serving both non-programmers and power users.

2 RELATED WORK

Market mechanism DSLs. Prior mechanism modeling in economics has largely relied on
general-purpose programming or specialized simulators, making specification and validation cum-
bersome. Recent work explores domain-specific languages to capture auction rules, negotiation

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

games, or fair division protocols in symbolic form (Hoseindoost et al., 2024; De Jonge & Zhang,
2021; Bertram et al., 2023). CoorERE (Hoseindoost et al., 2024) provides an executable DSL for
auction-based coordination in crisis response, reducing development effort by nearly half, but it
addresses single-item auctions without cross-mechanism support. GDL has been repurposed as a
unifying description language for negotiation domains (De Jonge & Zhang, 2021), enabling generic
solvers, but it lacks intermediate representations with economic validation. Slice (Bertram et al.,
2023) defines a DSL for fair division protocols with automated envy-freeness verification, yet re-
mains limited to division problems without auction or matching support. These DSLs improve
mechanism specification but are scoped to individual subdomains and do not provide staged valida-
tion, two execution backends, or governance artifacts that MIND includes.

LLMs in mechanism design. The rise of large language models has motivated new approaches
to automating specification and simulation. Recent studies use LLMs to generate valuations, bid-
ding policies, and to propose new auction formats (Duetting et al., 2024; Sun et al., 2024; Dubey
et al., 2024b; Shah et al., 2025). LaMP-Val (Sun et al., 2024) uses GPT-4 to infer personalized
valuations from text and fine-tunes smaller models as strategic agents. Dubey et al. (Dubey et al.,
2024b) and Duetting et al. (Duetting et al., 2024) examine auctions where advertisers bid for in-
fluence over LLM outputs, proposing incentive-compatible rules for token-level allocation. Shah et
al. (Shah et al., 2025) show GPT-4 agents can reproduce human-like bidding behaviors, suggesting
LLMs can serve as synthetic participants. These approaches demonstrate potential for synthesis and
simulation but operate without typed specifications, deterministic compilation, or audit trails. They
generate code directly without an intermediate representation, making systematic verification and
governance difficult. They often lack empirical validation of generated mechanisms against ground
truth specifications.

Unified frameworks and positioning. Prior DSLs achieve domain-specific expressiveness and
LLM approaches enable automation, yet the literature remains fragmented: CoorERE focuses on
crisis response, Slice on fair division, and LLM methods typically lack formal specifications. Tech-
nical barriers to unification include incompatible type systems across auction and matching domains,
the absence of staged validation for economic properties, and limited support for governance re-
quirements such as provenance tracking and policy diffs. MIND addresses these gaps through a
unified grammar spanning auctions, matchings, and exchanges; an intermediate representation with
three-stage validation (parsing, typing, economic consistency); two execution backends for simula-
tion and optimization that scale to thousands of participants; natural language translation achieving
96.33% semantic correctness on 87 domains; and governance artifacts including versioning, val-
idator reports, and audit logs. This combination links formal specification, property verification,
and agent-based evaluation in a single reproducible workflow. Our evaluation shows it reduces
specification complexity by 79% while maintaining semantic accuracy comparable to hand-written
implementations.

Verification and Guardrail Systems. Beyond synthesis, ensuring safety requires rigorous ver-
ification. Formal verification engines like Imandra (Passmore et al., 2020) and certified auction
frameworks (Caminati et al., 2015) use theorem proving to guarantee properties like incentive com-
patibility. In industry, frameworks like AWS Bedrock Guardrails enforce output safety policies.
MIND complements these systems rather than replacing them: by producing a typed, distinct In-
termediate Representation (IR) rather than opaque Python scripts, MIND provides the necessary
structured input that these advanced verification engines require to perform mathematical proofs
and policy enforcement.

3 METHOD

As illustrated in Figure 1, our system provides an end-to-end pipeline for generating, validating,
and simulating MIND, starting from a user specification. The architecture is composed of several
key parts: (1) a symbolic DSL for formal representation (Shi et al., 2024; Borum & Seidl, 2022),
(2) an Intermediate Representation (IR) with a robust validation system, (3) a two-backend frame-
work for code generation, and (4) an AI-powered toolchain including a dataset generation pipeline,
a completeness agent, and a fine-tuned AI Copilot (referred to as MarketCopilot) for NL→DSL
translation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3.1 MARKET INTERPRETATION DSL

The foundation of our system is Market Interpretation DSL (MIND), a formal language designed
for the specification of market rules. The language’s grammar is built on a clear separation of core
concepts: (i) Objects are entities that constitute a market, such as auction, participants, goods, and
matching; (ii) Actions are operations that define the market’s behavior, such as specifying the auc-
tion type, defining valuations, or setting constraints; (iii) Types are specific variants of objects and
actions, like type("second_price") or type("first_price"). Some DSL examples
are shown in Figure 2.

Scope of Expressiveness From the current grammar and IR, MIND is designed to support:
(1) single- and multi-stage sealed-bid auctions with standard allocation and payment rules; (2)
compatibility-constrained matching markets (e.g., stable matching (Gale & Shapley, 1962)) with
explicit compatibility graphs; and (3) mechanisms with convex objectives and linear constraints.
We explicitly detail the supported features versus out-of-scope capabilities in Appendix Table 4.
Note that we do not currently support fully general combinatorial bidding languages (e.g., arbitrary
XOR bids without constraints (Nisan, 2006)) or iterative open-cry auctions (e.g., ascending clock
auctions (Ausubel, 2004)); these are planned for future extensions.

3.2 INTERMEDIATE REPRESENTATION (IR) AND VALIDATION

A challenge in designing a language with multiple execution targets is preventing our language
parser from getting entangled with the specific details of every execution backend (Pandas, CVXPY,
etc.). This creates a brittle, unscalable system where adding a new backend or modifying the DSL
syntax would require cascading changes across the entire codebase.

To solve this problem, we introduce an Intermediate Representation (IR) (Lattner et al., 2021) as a
critical abstraction layer. The IR serves as the single source of truth for mechanism semantics and
governance, not just an intermediate parsing artifact. It is a typed abstract syntax tree (AST) over
market constructs (e.g., AuctionNode, ConstraintNode). The parser translates DSL source
into IR only; code generators read IR only. This separation ensures modularity and maintainability.
Crucially, IR nodes, validator report identifiers, and compile artifacts are logged with each execution,
so any result can be replayed with the exact spec and validator configuration.

To ensure that any market specified in the DSL is not just syntactically correct, but also seman-
tically and economically sound, the IR undergoes a rigorous validation process before generating
code. This process consists of three phases: parsing, typing, and economic consistency. Three main
validators run in order on the IR:

1. CoreMarketValidator: Performs fundamental checks, ensuring names are unique, references
are valid, valuations align with participants, and auction rules are recognized.

2. StageAndMatchingValidator: If the design uses stages or matching, this validator runs to per-
form checks on global settings and validate the structure of these advanced components.

3. AdvancedOptimizationValidator: If the design includes constraints or objectives, this validator
checks that their types are recognized and parameters are valid (e.g., non-negative budgets).

Each validator consumes an IR snapshot and emits a ValidationReport with typed findings
(error, warning, autofixable). The Autofixer applies only safe rewrites; if a required rule
cannot be inferred, it emits a blocking error rather than altering semantics. We persist the spec hash,
validator report identifier, and compile artifact path with the run logs to enable exact reconstruction
during audit. All experiments log these identifiers, allowing any reported result to be traced to its
exact specification and validator state.

3.3 TWO-BACKEND CODE GENERATION

While theoretically a monolithic engine could handle all designs, we treat backend selection as
an engineering trade-off between performance and solver generality. Simple single-shot auctions
and matching markets benefit from fast, vectorized table-driven simulation, whereas constrained or
combinatorial designs require solver-grade convex optimization. To handle both without exposing
backend complexity to users, we compile the same backend-independent IR—the single source of
truth—into different execution targets via MarketCompiler.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 2: Two MIND specifications. Left: second-price auction where type specifies auction
type, participants lists bidders, goods declares the item, valuations gives each bidder’s
valuation, allocation_rule() assigns to the highest bidder, and payment_rule() charges
the second-highest bid. Right: simple matching market specification.

Figure 3: Market Mechanism Dataset pipeline with three phases: data generation, augmentation,
and filtering.

Backend routing MarketCompiler selects a backend via a deterministic function of IR fea-
tures: designs without explicit objectives or global constraints are routed to the Pandas/NetworkX
(Simulation) backend; those declaring objectives or linear constraints are routed to the CVXPY
(Optimization) backend. Crucially, all backends must implement identical IR semantics; ob-
servable outcomes (allocations, payments) must agree for any given specification, enabling cross-
backend consistency checks for governance.

• Pandas Backend: A lightweight, simulation-based backend for standard auctions and matching
markets, optimized for speed and simplicity.

• CVXPY Backend: An optimization-based backend using the CVXPY library (Diamond & Boyd,
2016), automatically selected for scenarios involving constraints (e.g., budget balance) or objec-
tives (e.g., maximizing revenue).

Backends implement the same IR semantics; observable outcomes (allocations, payments, feasibility
flags) must agree for identical IR inputs. This two-backend approach lets users scale from simple
simulations to constrained optimizations without changing the DSL specification, while preserving
consistent semantics across backends.

3.4 DATASET GENERATION

Supervised fine-tuning of a specialized Copilot requires a large-scale, high-quality dataset of (Nat-
ural Language Description, DSL) pairs. To the best of our knowledge, there is no such dataset for
the task of translating natural language specifications into a formal DSL for market mechanisms. To

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

address this, we developed an automated pipeline (Ratner et al., 2017; Northcutt et al., 2021) to use
LLMs to generate synthetic data as illustrated in Figure 3. The process begins by programmatically
generating diverse prompts for a generator LLM (GPT-4o (Hurst et al., 2024)). We predefine over
900 possible market use cases within 87 domains. For each use case, we randomly sample settings
to generate prompts with the formal DSL grammar and in-context examples.

To ensure correctness, every DSL program undergoes a rigorous 4-stage validation pipeline: (1)
grammar parsing, (2) three-phase IR validation (structure, typing, economic consistency), (3) com-
pilation to both backends, and (4) execution without runtime errors.

After guaranteeing code correctness, we refine the corresponding natural language descriptions.
Each validated DSL program is passed to an LLM to generate a more detailed and complete de-
scription. As a quality control step, another verifier LLM performs a description-DSL consistency
check, confirming semantic alignment between the enhanced natural language description and the
DSL code. Finally, beyond these automated checks, we conducted a manual inspection of the can-
didate pool to filter out any remaining low-quality or redundant samples. Only pairs passing this
multi-stage verification are included in the dataset.

3.4.1 HUMAN AUDIT PROTOCOL

To ensure the quality of our automated pipeline, we perform a manual human audit. We drew a
simple random sample of 100 (description, DSL) pairs from the final, post-filter dataset after the 4-
stage validation and description-DSL consistency check, stratified by domain and mechanism type.
An expert evaluator (one of the authors) assessed each pair on: (i) syntactic correctness (DSL parses
under the grammar), (ii) semantic alignment (IR equivalence of the compiled DSL to the behavior
described), and (iii) functional executability (successful backend compilation and execution). The
evaluator was blinded to the specific pipeline metadata during assessment to minimize bias. A pair
passes only if all three criteria are satisfied. The audit confirms a very high accuracy rate under these
criteria.

3.5 COMPLETENESS AGENT

To ensure the generated DSL program fully aligns with users’ expectations, we need descriptions
with sufficient detail. Since users rarely provide complete descriptions initially, we developed a
Completeness Agent (Yao et al., 2023; Shinn et al., 2023) as a pre-processor to help users provide
enough information for the MarketCopilot.

The agent operates through a multi-node scheme defining key elements to capture. For each node, it
extracts information from users’ prompts and populates the scheme with required and optional fields.
If all required fields are fulfilled, the node completes and the agent proceeds. Otherwise, it requests
missing critical information. After passing all nodes, the agent outputs a completion schema and
a complete task specification that are passed to the MarketCopilot. The completion schema maps
directly to the MarketCopilot input fields (participants, goods, constraints, objectives), ensuring the
prompt is structurally complete before translation. This significantly increases the likelihood of
generating a valid and executable DSL program on the first attempt.

3.6 MARKETCOPILOT FINETUNING

The core of our natural language interface is the AI Copilot (MarketCopilot), an AI assistant
fine-tuned for NL-to-DSL translation. It is distinct from the Completeness Agent (which only fills
missing fields) and the DSL framework itself. We used a Llama-3-8B-Instruct model (Dubey et al.,
2024a) as our base and applied LoRA (Hu et al., 2022) with rank r = 32 for efficient training. The
model was trained on our curated dataset using a standard supervised fine-tuning (SFT) objective to
maximize the conditional probability of generating the ground-truth DSL program given the natural
language description. The training loss is:

L(θ) = −
∑

(Xi,Yi)∈D

logP (Yi|Xi; θ) (1)

Here, D is the set of (description Xi, DSL sequence Yi) pairs; Yi is tokenized as a left-to-right
sequence for teacher forcing under the SFT objective in Eq. 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

3.7 PLUGGABLE FRONTEND INTERFACES

We view natural-language and graphical user interfaces (GUIs) as complementary rather than com-
peting approaches. The MIND architecture is designed with a pluggable front-end: the core DSL
and IR remain invariant regardless of the input modality. To validate this, we developed a proto-
type web GUI where users input natural language descriptions, and the Completeness Agent runs
interactively to ask follow-up questions and populate a structured schema before passing it to the
MarketCopilot. This demonstrates that MIND supports diverse workflows—whether pure natural
language, form-based, or hybrid—all targeting the same unified, verifiable DSL and IR.

4 EXPERIMENTS

To validate our system, we designed two primary experiments. First, we evaluate the Market In-
terpretation DSL itself by comparing its workflow and expressiveness against standard procedural
programming approaches for market design. Second, we quantitatively evaluate the performance of
our fine-tuned AI Copilot in translating natural language specifications into valid and semantically
correct DSL code.

4.1 DSL WORKFLOW AND USER STUDY EVALUATION

The primary motivation for creating a Domain-Specific Language is to accelerate development, and
reduce errors. We evaluate MIND’s impact on market design workflows at two levels: (i) a code-
level comparison of hand-written implementations (Table 1) to measure specification complexity;
and (ii) a within-subjects user study with 17 participants comparing MIND against a Python baseline
to measure modification efficiency.

4.1.1 METHODOLOGY AND BENCHMARK TASKS

Code-Level Benchmarks (Table 1). To quantify specification complexity, we implemented three
representative market mechanisms: (1) A standard second-price auction; (2) A multi-stage auction
with reserves; and (3) A compatibility matching market. We implemented each using MIND, stan-
dard Python, and AnyLogic (Borshchev & Filippov, 2004). We evaluated these approaches based
on three established software engineering criteria. Specification Complexity refers to the effort
required to define the mechanism, measured by the number of distinct modeling steps and Source
Lines of Code (LoC) (Molnar & Motogna, 2020). Readability & Verifiability describes how easily
the implementation can be audited against its theoretical design, a crucial aspect of model correct-
ness (Alawad et al., 2019). Finally, Flexibility measures the effort required to modify an existing
mechanism (e.g., changing a pricing rule), which is a key indicator of software maintainability
(Ardito et al., 2020).

User Study Methodology. We recruited 17 participants with varyinh levels of expertise. The ma-
jority had >2 years of Python experience. The study followed a within-subjects design where each
participant performed modification tasks on the three benchmark mechanisms in both MIND and
Python environments. The tasks required modifying pricing rules, adding re-auction stages, and
adjusting compatibility constraints. We recorded Completion Time (self-reported minutes) and Cor-
rectness (verified offline). Detailed protocol and participant demographics are provided in Appendix
I.

4.1.2 RESULTS AND ANALYSIS

Specification Complexity (Table 1). The results of our code-level comparison demonstrate the
significant advantages of the DSL-based approach. As summarized in Table 1, MIND consistently
requires the least specification effort. Across all three tasks, MIND reduces specification complexity
by approximately 79% in lines of code compared to Python implementations. Its declarative syntax
allows designers to focus on economic rules rather than procedural control flow. In contrast, the
Python approach requires significant boilerplate code and embeds the core mechanism logic within
procedural control flow, making it difficult to verify and modify. While powerful, AnyLogic intro-
duced a high degree of complexity and a steep learning curve, making it not that suits for the rapid
prototyping of mechanism rules, which is a primary goal of our system.

User Study Results. The results of our user study indicate a significant workflow advantage for the
DSL. Participants completed the mechanism modifications consistently faster using MIND com-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 1: A comparison of implementation workflows for common market design tasks. Our declar-
ative approach, MIND, consistently requires the least specification effort, offers the highest clarity
for verification, and provides the greatest flexibility for experimentation.
Task Approach Specification

Complexity
Readability & Verifiabil-
ity

Flexibility (Effort to
Modify)

Second-
Price Auc-
tion

MIND ∼10 lines of
DSL

High: Declarative eco-
nomic syntax.

Trivial: Change a single
keyword.

Python ∼40-60 lines of
code

Low: Core logic is embed-
ded in code.

Moderate: Requires rewrit-
ing functions.

AnyLogic ∼15-20 graphi-
cal steps

Medium: Logic is dis-
tributed across agents.

High: Requires reconfigu-
ration.

Multi-Stage
Auction

MIND ∼20-25 lines of
DSL

High: Staging logic is
explicit and easy to follow.

Trivial: Modify a self-
contained stage block.

Python ∼100-120 lines
of code

Low: State management is
complex and error-prone.

High: Requires significant
refactoring of the main
control flow.

AnyLogic ∼25-35 graphi-
cal steps

Low: Managing agent state
across stages is hard.

High: Requires a full re-
design of the simulation
flowchart.

Matching
Market

MIND ∼15 lines of
DSL

High: The compatibility
graph is a direct input.

Low: Change the data
directly.

Python (w/
NetworkX)

∼60-80 lines of
code

Medium: Requires graph
library expertise to under-
stand.

Moderate: Requires im-
plementing a different
matching algorithm.

AnyLogic ∼35-45 graphi-
cal steps

Medium: Requires defin-
ing custom agent interac-
tion rules.

High: Requires creating
new agent protocols.

pared to Python (with median speed-up between 4-10x). Detailed participant demographics, task
breakdowns, and full statistical reports are provided in Appendix I.

4.2 COPILOT GENERATION EVALUATION

This experiment evaluates the ability of our AI Copilot (MarketCopilot) to automatically generate
high-quality Market Interpretation DSL code from natural language descriptions.

4.2.1 EXPERIMENTAL SETUP

We evaluated our fine-tuned MarketCopilot (Llama-3-8B + LoRA) against several baseline mod-
els on a held-out test set of 323 examples across 87 domains, ensuring no overlap with training
data beyond a 0.85 cosine similarity threshold computed on TF-IDF representations. We addition-
ally exclude near-duplicates by AST hash to prevent leakage. The training set consisted of 11,000
examples, with 10% used for validation during hyperparameter tuning.

To provide a robust comparison, baseline models were evaluated in a few-shot setting with the formal
DSL grammar specification and 4 examples of (NL, DSL) pairs along with the task description. In
contrast, our MarketCopilot operates zero-shot, taking only the natural language task description as
input.

4.2.2 EVALUATION PIPELINE AND METRICS

We employed a rigorous multi-stage pipeline to assess correctness:

1. Grammar Validation: Each output is parsed using our Lark EBNF grammar. We measure Parse
Success Rate as the percentage of syntactically valid programs.

2. Semantic Validation: Syntactically correct programs undergo three checks:
• Validator check: Tests logical consistency using the three-phase validation (parsing, typing,

economic consistency)
• Compiler check: Verifies code generation to the two execution backends

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 2: Performance of the AI Copilot against baseline LLMs on the NL-to-DSL generation task
(323 test cases). Our fine-tuned model outperforms significantly larger proprietary models,
demonstrating that strict grammar compliance requires domain adaptation rather than just reasoning
power.

Model Parse Success (%) Val + Comp Success (%) IR Equivalence (%)
Proprietary SOTA Models (Few-shot)
GPT-4o-mini 97.52 89.47 76.78
GPT-4o (Hurst et al., 2024) 98.45 95.98 81.11
Gemini 2.5 Pro (Reasoning) 99.69 99.07 77.71
GPT-5 (Reasoning) 96.90 92.57 72.12

Open-Source Models
Llama-3-8B 80.76 73.71 60.89
Qwen3-Coder-30B(Yang et al., 2025) 95.51 94.55 81.73
Our Method (Llama-3 + LoRA) 100.00 100.00 96.33

• IR Semantic Equivalence: We define this as graph isomorphism between the generated and
reference IR ASTs, modulo variable renaming, commutative ordering, and alias normaliza-
tion

3. Execution Validation: Programs are executed on 323 test scenarios to verify they produce cor-
rect market outcomes (allocations, payments, feasibility). Scenarios mirror the functional spec
used in the workflow study.

Our primary metric is End-to-End Correctness: the percentage of generations that pass all vali-
dation stages and are semantically equivalent to the reference solution. We define this strictly: a
generation is correct if and only if it: (1) parses successfully, (2) passes all three validation stages,
(3) compiles successfully to both backends, (4) achieves IR semantic equivalence to the ground
truth, and (5) passes execution checks.

4.2.3 RESULTS AND DISCUSSION

Table 2 presents the performance metrics. Our fine-tuned model achieves the highest scores across
all metrics, with 96.33% end-to-end correctness, significantly outperforming the best general-
purpose baseline (GPT-4o at 81.11%).

Crucially, our experiments reveal that stronger reasoning models do not necessarily yield better DSL
specifications. The reasoning-focused GPT-5 model achieves only 72.12% correctness, performing
worse than GPT-4o. Error analysis indicates that powerful reasoning models tend to “over-think” the
task: they frequently hallucinate plausible but unsupported keywords or attempt to restructure the
mechanism logic in ways that violate the DSL schema. This highlights a key trade-off: while large
models excel at unstructured reasoning, domain-specific fine-tuning is essential for strict adherence
to formal grammars.

It is also worth noting that MIND is frontend-agnostic. While our current implementation uses a
fine-tuned 8B model for efficiency and controllability, the underlying IR, validator, and compiler
pipeline can serve as a robust guardrail for any future foundation model.

4.3 GENERALIZATION TO ACADEMIC MECHANISMS

To assess MIND’s capability to generalize beyond standard textbook examples, we implemented
8 mechanisms from recent ACM EC and SIGecom papers (2020–2024). These include complex
designs such as dynamic auction throttling, randomized clock auctions, and stochastic ridesharing
matching.

Results. All 8 mechanisms were successfully encoded in MIND, passed the 4-stage validation
pipeline, and executed on the appropriate backend (simulation or optimization). Crucially, none
required changes to the core MIND grammar; specific logic was handled by adding rule names (e.g.,
"dynamic_price_floor") as library entries or composing existing blocks (e.g., dynamic
+ cost_function). We provide the detailed mapping of these papers to MIND constructs in
Appendix H.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

5 ABLATION STUDIES

To quantify the impact of our data curation process, we conduct ablation studies on progressively
less-filtered versions of our training dataset: (1) Parse-Only: filtered only for syntactic correctness;
(2) No Execute Check: filtered through compilation (Parse → Validator → Compiler) but without
execution-time validation; (3) No LLM Check: passes full 4-stage validation (Parse → Validator
→ Compiler → Execute) but lacks the description-DSL consistency verification. We train separate
MarketCopilot models on each dataset variant using identical architectures, training budgets, and
hyperparameters.

Table 3: Ablation study results demonstrating the impact of each data curation stage. All models
trained with identical architectures and budgets.
Model Parse Success Validation + Compilation IR Equivalence ∆IR vs Previous

(%) Success (%) (%) (pp)

Parse-Only 98.33 81.33 66.33 –
w/o Execute Check 98.67 92.33 68.67 +2.34
w/o LLM Check 100.00 99.33 72.33 +3.66
Full Pipeline 100.00 100.00 96.33 +24.00

Table 3 demonstrates that each curation stage contributes significantly to final performance. While
parse success remains uniformly high (>98%) across all variants—indicating that learning basic
DSL syntax is straightforward—the gaps emerge in semantic correctness. Validation and compila-
tion success improves from 81.33% to 100% as filtering stages are added, with the execution check
contributing 7.00 percentage points and validator checks contributing 11.00 percentage points from
the Parse-Only baseline.

Most critically, IR equivalence shows dramatic improvement: from 66.33% (Parse-Only) to 96.33%
(Full Pipeline), a total gain of 30.00 percentage points. This 30-point gain is driven by the IR-level
validation and description–DSL alignment, not by a larger LLM. The description-DSL consistency
check alone contributes 24.00 percentage points (72.33% to 96.33%), highlighting that alignment
between natural language and formal specifications is crucial for semantic correctness. Without
this final verification, models generate syntactically valid but semantically incorrect programs—
they learn surface patterns rather than the underlying mapping between economic concepts and their
formal representations.

These results validate our design choice to prioritize data quality over quantity. Training on carefully
curated examples produces models that understand the semantic correspondence between natural
language descriptions and market mechanisms, rather than merely mimicking syntactic patterns.

6 CONCLUSION AND FUTURE WORK

We present MIND, a symbolic language and toolchain that bridges economic design and executable
implementation. Through a typed IR, phased validation, and dual-backend execution, MIND re-
duces specification complexity by 79% and enables an AI Copilot to achieve 96.33% semantic
correctness. A within-subjects user study confirms that practitioners modify mechanisms 4–10×
faster in MIND than in Python. We further demonstrate generalization by encoding 8 mechanisms
from recent ACM EC/SIGecom literature. Designed to be front-end agnostic, MIND allows stronger
reasoning models to plug into its governance layer—comprising spec hashes, validator reports, and
audit logs—to ensure traceability and compliance.

Future work focuses on expanding scope and integration. We plan to support combinatorial bidding
languages, iterative auctions, and stochastic Bayesian games, while scaling to millions of partici-
pants. Crucially, we aim to bridge MIND with external ecosystems: this includes handling schema
drift in messy real-world data and integrating with formal verification engines (Passmore et al.,
2020) to mathematically prove economic properties. With these efforts, MIND provides a practical
foundation for exploring, auditing, and deploying market designs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REPRODUCIBILITY STATEMENT

Our work is committed to the principles of open and reproducible research. To this end, all code,
datasets, and experimental configurations will be made publicly available upon acceptance of this
paper.

REFERENCES

Huda Alawad, Ramesh Panta, Minhaz Zibran, and Mohammad Amin Al Islam. An empirical study
of the relationships between code readability and software complexity. In 2019 IEEE 27th In-
ternational Conference on Program Comprehension (ICPC), pp. 108–118. IEEE, 2019. doi:
10.1109/ICPC.2019.00023.

Jalyawat Anunrojwong, Santiago Balseiro, and Omar Besbes. On the robustness of second-price
auctions in prior-independent mechanism design. In Proceedings of the 23rd ACM Conference on
Economics and Computation, pp. 87–88, 2022.

Ali Aouad and Will Ma. A nonparametric framework for online stochastic matching with correlated
arrivals. Management Science, 69(10):6024–6046, 2023.

Luca Ardito, Rosella Coppola, Lorenzo Barbato, and Daniele Verga. A tool-based perspective on
software code maintainability metrics: A systematic literature review. Software: Practice and
Experience, 50(12):2203–2230, 2020. doi: 10.1002/spe.2876.

Lawrence M Ausubel. An efficient ascending-bid auction for multiple objects. American Economic
Review, 94(5):1452–1475, 2004.

Martino Banchio and Andrzej Skrzypacz. Artificial intelligence and auction design. Management
Science, 68(12):8749–8768, 2022.

N Bertram, A Levinson, and J Hsu. Cutting the cake: a language for fair division. corr
abs/2304.04642 (2023), 2023.

Andrei Borshchev and Alexei Filippov. From system dynamics and discrete event to practical agent
based modeling: reasons, techniques, tools. 2004.

Holger Stadel Borum and Christoph Seidl. Survey of established practices in the life cycle of
domain-specific languages. In Proceedings of the 25th International Conference on Model Driven
Engineering Languages and Systems, pp. 266–277, 2022.

MA Bouaicha, G Destefanis, T Montanaro, N Lasla, and L Patrono. Shill bidding prevention in
decentralized auctions using smart contracts. Information Sciences, pp. 122374, 2025.

David Byrd, Maria Hybinette, and Tucker Hybinette Balch. Abides: Towards high-fidelity market
simulation for ai research. arXiv preprint arXiv:1904.12066, 2019. URL https://arxiv.
org/abs/1904.12066.

Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose, and Rajkumar Buyya.
Cloudsim: A toolkit for modeling and simulation of cloud computing environments and eval-
uation of resource provisioning algorithms. Software: Practice and Experience, 41(1):23–50,
2011. doi: 10.1002/spe.995. URL https://onlinelibrary.wiley.com/doi/10.
1002/spe.995.

Marco B Caminati, Manfred Kerber, Christoph Lange, and Colin Rowat. Certified vickrey auctions.
In CADE, 2015.

Christopher Cashore, Peter Frazier, and Eva Tardos. Dynamic pricing provides robust equilibria in
stochastic ridesharing networks. In Proceedings of the 23rd ACM Conference on Economics and
Computation, pp. 257–258, 2022.

Dave De Jonge and Dongmo Zhang. Gdl as a unifying domain description language for declarative
automated negotiation. Autonomous Agents and Multi-Agent Systems, 35(1):13, 2021.

11

https://arxiv.org/abs/1904.12066
https://arxiv.org/abs/1904.12066
https://onlinelibrary.wiley.com/doi/10.1002/spe.995
https://onlinelibrary.wiley.com/doi/10.1002/spe.995

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Greg d’Eon, Neil Newman, and Kevin Leyton-Brown. Understanding iterative combinatorial auc-
tion designs via multi-agent reinforcement learning. In Proceedings of the 25th ACM Conference
on Economics and Computation, pp. 1102–1130, 2024.

Steven Diamond and Stephen Boyd. Cvxpy: A python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024a.

Avinava Dubey, Zhe Feng, Rahul Kidambi, Aranyak Mehta, and Di Wang. Auctions with llm
summaries. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 713–722, 2024b.

Paul Duetting, Vahab Mirrokni, Renato Paes Leme, Haifeng Xu, and Song Zuo. Mechanism design
for large language models. In Proceedings of the ACM Web Conference 2024, pp. 144–155, 2024.

Michal Feldman, Simon Goke, Brendan Lucier, and Renato Paes Leme. Bayesian and randomized
clock auctions. In Proceedings of the 23rd ACM Conference on Economics and Computation, pp.
625–626, 2022.

David Gale and Lloyd S Shapley. College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):9–15, 1962.

Simon Goke, Brendan Lucier, Renato Paes Leme, and Q Wang. Bidders’ responses to auction format
change: Evidence from a field experiment in display ad auctions. In Proceedings of the 23rd ACM
Conference on Economics and Computation, 2022.

Kachina Gui, Peijin Nair, Jian Niu, et al. Auction throttling and causal inference in unified optimiza-
tions of bidder pacing and publisher yield. In Proceedings of the ACM Web Conference 2022, pp.
123–133, 2022.

Samaneh Hoseindoost, Afsaneh Fatemi, and Bahman Zamani. An executable domain-specific mod-
eling language for simulating organizational auction-based coordination strategies for crisis re-
sponse. Simulation Modelling Practice and Theory, 131:102880, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv:2410.21276,
2024.

Hyejin Ko and Kamesh Munagala. Optimal price discrimination with a public budget. In Proceed-
ings of the 23rd ACM Conference on Economics and Computation, pp. 943–944, 2022.

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River
Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. Mlir: Scaling compiler
infrastructure for domain specific computation. In 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), pp. 2–14. IEEE, 2021.

Paul R. Milgrom. Putting Auction Theory to Work. Cambridge University Press,
Cambridge, 2004. doi: 10.1017/CBO9780511813825. URL https://www.
cambridge.org/core/books/putting-auction-theory-to-work/
63FA2A2D332E9E3A3238B6D5B650F2A5.

Paul R. Milgrom. Auction research evolving: Theorems and market designs. American Eco-
nomic Review, 111(5):1383–1405, 2021. doi: 10.1257/aer.111.5.1383. URL https://www.
aeaweb.org/articles?id=10.1257/aer.111.5.1383.

Andreea Molnar and Simona Motogna. Longitudinal evaluation of open-source software maintain-
ability. arXiv preprint arXiv:2003.00447, 2020. URL https://arxiv.org/abs/2003.
00447.

12

https://www.cambridge.org/core/books/putting-auction-theory-to-work/63FA2A2D332E9E3A3238B6D5B650F2A5
https://www.cambridge.org/core/books/putting-auction-theory-to-work/63FA2A2D332E9E3A3238B6D5B650F2A5
https://www.cambridge.org/core/books/putting-auction-theory-to-work/63FA2A2D332E9E3A3238B6D5B650F2A5
https://www.aeaweb.org/articles?id=10.1257/aer.111.5.1383
https://www.aeaweb.org/articles?id=10.1257/aer.111.5.1383
https://arxiv.org/abs/2003.00447
https://arxiv.org/abs/2003.00447

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Noam Nisan. Bidding languages for combinatorial auctions. In Combinatorial Auctions, pp. 215–
231. MIT Press, 2006.

Curtis Northcutt, Lu Jiang, and Isaac Chuang. Confident learning: Estimating uncertainty in dataset
labels. Journal of Artificial Intelligence Research, 70:1373–1411, 2021.

Grant Olney Passmore, Denis Ignatovich, Kae Aitken, Konstantin Anisimov, M Bray, et al. The
imandra automated reasoning engine. arXiv preprint arXiv:2010.03215, 2020.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher Ré.
Snorkel: Rapid training data creation with weak supervision. In Proceedings of the VLDB en-
dowment. International conference on very large data bases, volume 11, pp. 269, 2017.

Alvin E. Roth. Marketplaces, markets, and market design. American Economic Review, 108
(7):1609–1658, 2018. doi: 10.1257/aer.108.7.1609. URL https://www.aeaweb.org/
articles?id=10.1257/aer.108.7.1609.

Anand Shah, Kehang Zhu, Yanchen Jiang, Jeffrey G Wang, Arif K Dayi, John J Horton, and David C
Parkes. Learning from synthetic labs: Language models as auction participants. arXiv preprint
arXiv:2507.09083, 2025.

Yu-Zhe Shi, Haofei Hou, Zhangqian Bi, Fanxu Meng, Xiang Wei, Lecheng Ruan, and Qining Wang.
Autodsl: Automated domain-specific language design for structural representation of procedures
with constraints. arXiv preprint arXiv:2406.12324, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Jie Sun, Tianyu Zhang, Houcheng Jiang, Kexin Huang, Chi Luo, Junkang Wu, Jiancan Wu,
An Zhang, and Xiang Wang. Large language models empower personalized valuation in auc-
tion. arXiv preprint arXiv:2410.15817, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and Zhenyu Chen. A survey of
learning-based automated program repair. ACM Transactions on Software Engineering and
Methodology, 33(2):1–69, 2023.

13

https://www.aeaweb.org/articles?id=10.1257/aer.108.7.1609
https://www.aeaweb.org/articles?id=10.1257/aer.108.7.1609

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

USE OF LLMS IN OUR WORK

We used large language models (LLMs) in four ways: (i) manuscript polishing—to improve gram-
mar, clarity, and flow without altering substantive claims; (ii) literature triage—to surface potentially
relevant papers; (iii) data creation—to synthesize a portion of our NL→DSL pairs (see Sec. 3.4);
and (iv) prompt design—to iterate on task instructions and few-shot exemplars. All LLM outputs
affecting results were reviewed by authors for accuracy, and dataset items were validated with our
parser/validator pipeline and spot-audited by humans.

A MARKET INTERPRETATION DSL COMPONENTS

The core building blocks and their overall structure are:

market {
global_settings { ... }
auction { ... } // repeatable
stage(name="...") { ... } // optional, repeatable
matching { ... } // optional
constraints { ... } // optional
objectives { ... } // optional
dynamic { ... } // optional

}

Block Descriptions

• market: Top-level container for a complete market specification.
• global_settings (optional): Global parameters (e.g., units, supply, defaults).
• auction (repeatable): Auction mechanism definition (type, participants, goods, valuations, rules,

distributions).
• stage (optional, repeatable): Multi-stage orchestration with re-auctioning and discounting logic.
• matching (optional): Matching market (type, participants, compatibility, rule).
• constraints (optional): Feasibility/policy conditions; simple or parameterized forms.
• objectives (optional): Optimization goals used by solver backends.
• dynamic (optional): Settings for time-varying parameters, multi-period loops, and discounting.

A.1 SUPPORTED MECHANISM SCOPE

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Table 4: MIND Scope of Expressiveness. We categorize features into currently supported (In-Scope)
and those reserved for future work (Out-of-Scope).

Feature Category Supported (In-Scope) Out-of-Scope

Auction Formats • Standard: First-Price, Second-
Price, Uniform-Price, Pay-as-Bid.
• Combinatorial: Additive val-
uations with logical constraints
(AND/OR, XOR via constraints).

• Complex Combinatorial: Gen-
eral XOR bidding languages without
constraints.
• Iterative: Ascending clock auc-
tions (except via custom dynamic
loops).

Matching Logic • Bipartite: One-to-one, one-to-
many.
• Stable Matching: Deferred Ac-
ceptance logic.
• Compatibility: Explicit allow/-
deny graphs.

• General Graph: Non-bipartite
matching with long exchange cycles
(e.g., kidney chains > 2).

Dynamics & Stochasticity • Distributions: Poisson, Uniform,
Custom discrete.
• Randomness: Drawing random
values for valuations/supply.
• Time Loops: Multi-period execu-
tion with discounting.
• Policy Functions: Dynamic re-
serves/costs based on expressions.

• Stochastic Optimization: Solv-
ing for optimal policies under uncer-
tainty (MIND simulates policies, it
doesn’t solve them).
• Equilibrium Finding: Computing
Nash equilibria.

Constraints • Linear: Budget, supply, capacity,
fairness quotas.
• Logical: Mutual exclusivity, pack-
age constraints.
• Incentive: IR, IC (as linear con-
straints).

• Non-Convex: Integer constraints
not mappable to MIP.
• Black-box: Constraints defined by
external code.

Objectives • Convex: Maximize Revenue, Wel-
fare, Matches, or custom convex
functions.

• Non-Convex: Deep neural net-
work objectives.
• Game-Theoretic: “Maximize sta-
bility” (unless expressed as a match-
ing rule).

B FORMAL GRAMMAR (EBNF)

program : "market" "{" market_block* "}" ;

market_block : global_settings_block
| auction_block
| stage_block
| matching_block
| constraints_block
| objectives_block ;

global_settings_block
: "global_settings" "{" gs_element* "}" ;

gs_element : currency_decl
| supply_decl
| reserve_price_decl ;

auction_block : "auction" "{" auction_element* "}" ;
auction_element : auction_type_decl

| participants_decl
| goods_decl
| valuations_decl
| allocation_rule_decl
| payment_rule_decl ;

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

stage_block : "stage" "(" "name" "=" string_literal ")"
"{" stage_element* "}" ;

stage_element : auction_block
| reauction_decl ;

reauction_decl : "reauction" "(" "unsold_goods" "=" string_literal ","
"auction_type" "=" string_literal ")" ;

matching_block : "matching" "{" matching_element* "}" ;
matching_element : matching_type_decl

| participants_decl
| compatibility_graph_decl
| matching_rule_decl ;

constraints_block : "constraints" "{" constraint_entry_list "}" ;
objectives_block : "objectives" "{" objective_entry_list "}" ;

participants_decl : "participants" "(" string_literal_list ")" ;
goods_decl : "goods" "(" string_literal_list ")" ;
valuations_decl : "valuations" "(" valuation_entry_list ")" ;

string_literal_list: "[" (string_literal ("," string_literal)*)? "]" ;
valuation_entry_list

: "{" (valuation_entry ("," valuation_entry)*)? "}" ;
valuation_entry : string_literal ":" "{" good_value ("," good_value)* "}" ;
good_value : string_literal ":" number ;

auction_type_decl : "type" "(" string_literal ")" ;
allocation_rule_decl

: "allocation_rule" "(" string_literal ")" ;
payment_rule_decl : "payment_rule" "(" string_literal ")" ;

matching_type_decl : "type" "(" string_literal ")" ;
matching_rule_decl : "matching_rule" "(" string_literal ")" ;
compatibility_graph_decl

: "compatibility_graph" "(" compatibility_entry_list ")" ;
compatibility_entry_list

: "{" (compatibility_entry ("," compatibility_entry)*)? "}" ;
compatibility_entry: string_literal ":" "[" (string_literal ("," string_literal)*)? "]" ;

constraint_entry_list
: (constraint_param_entry | string_literal)
("," (constraint_param_entry | string_literal))* ;

constraint_param_entry
: identifier "(" (parameter_assignment

("," parameter_assignment)*)? ")" ;
parameter_assignment

: identifier "=" value ;

objective_entry_list
: (string_literal ("," string_literal)*)? ;

string_literal : ESCAPED_STRING ;
identifier : /[A-Za-z_][A-Za-z0-9_]*/ ;
number : SIGNED_NUMBER ;
value : number | string_literal | boolean ;
boolean : "true" | "false" ;

C VALIDATION

What is verified

• Names and References: unique goods/participants; auctions reference declared participants/-
goods.

• Valuations Consistency: keys match auction participants; goods in valuations are declared;
sparse entries → warnings.

• Rules Recognition: auction types, allocation/payment rules recognized or mapped from common
aliases.

• Stage/Matching (if present): global settings sanity; stage naming; reauction fields; matching
type/rule; graph nodes exist; symmetry warnings.

• Constraints/Objectives (if present): types recognized; basic parameter sanity; objective conflict
warnings.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Simple Validation Algorithm

Input : MarketProgram
Output : ValidationReport (errors, warnings, suggestions); IR may be autofixed

1) Basic field checks (hard errors)
- Good.name not empty; reserve_price >= 0
- Bidder.name not empty; budget >= 0
- Auction.auction_type not empty
- Assignment fields not empty; bid_price >= 0

2) Core checks (always)
- Unique names; auctions reference existing participants/goods
- valuations match auction participants/goods; sparse -> WARN, mismatches -> ERROR
- auction_type, allocation_rule, payment_rule:
- map known aliases
- unknown -> ERROR; some types partially implemented -> WARN

3) Stage/Matching checks (only if present)
- Global settings: supply/reserve defaults; negatives -> ERROR, missing -> WARN
- Stages: unique, named, each has an auction
- Reauction: needs unsold_goods and auction_type; validate type; loose goods check
- Matching: normalize matching_type; unknown -> WARN + default to bipartite
- participants non-empty, no duplicates
- compatibility_graph nodes exist; symmetry missing -> WARN
- matching_rule: missing -> default stable_matching (WARN); unknown -> ERROR

4) Advanced checks (only if constraints/objectives present)
- Constraints: type recognized; params sane (e.g., budgets >= 0, caps >= 0)
- Objectives: normalize; unknown -> ERROR; conflicting goals -> WARN

5) Autofix safe defaults
- Missing/unknown allocation_rule -> highest_bid
- Missing/unknown payment_rule -> second_price
- Global supply missing/invalid -> 1
- Missing reserve_price (global/good) -> 0.0
- All fixes logged as suggestions

6) Return report; program contains applied defaults where safe

C.1 GOVERNANCE ARTIFACTS

To support auditing and compliance, MIND treats the compilation process as a governance event. A
complete Governance Artifact is a versioned bundle containing four components that allow third
parties to verify outcomes:

1. Readable Specification: The human-legible MIND DSL source code defining the mecha-
nism rules.

2. Typed IR Snapshot: The serialized Intermediate Representation (AST) used by the com-
piler, serving as the single source of truth for semantics.

3. Validator Report: A structured log of all checks passed (parsing, typing, economic con-
sistency) and any auto-fixes applied.

4. Execution Integrity: Cryptographic hashes of the spec and IR, logged alongside backend
simulation outputs (allocations, payments) to ensure reproducibility.

Together, these components decouple the intent (DSL) from the execution (Backend), providing a
transparent chain of custody for market mechanisms.

D BACKEND SELECTION

Heuristic (implemented in MarketCompiler)

• Pure matching or simple Phase-1 auctions → Pandas (NetworkX for matching).

• Multi-stage without optimization features → Pandas + Prefect orchestration.

• Combinatorial auctions or constraints/objectives → CVXPY optimization.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Mapping

IR features Selected backend

auction only, valuations, simple rules Pandas
matching (bipartite/stable) Pandas + NetworkX
stage flow (no constraints/objectives) Pandas + Prefect
constraints/objectives present CVXPY
combinatorial auction CVXPY

E DATASET GENERATION PIPELINE

Overview

1. Sample a use case (914 total) and random market settings; assemble 4-shot prompt + grammar
(markdown + EBNF).

2. Generate (GPT-4o-mini) brief description + DSL.
3. Filter with 4-stage validation (Parser → Validator → Compiler → Execute); keep only programs

that pass all stages.
4. Enhance description (GPT-4o-mini) by extracting all facts from DSL; replace description text

only.
5. Consistency check (GPT-4o): “YES/NO” whether description matches DSL; keep YES, drop

NO.
6. Manual Inspection & De-duplication: Final manual review and strict de-duplication to form the

final dataset.

E.1 DATA FILTERING STATISTICS

To guarantee dataset quality, we tracked the number of samples retained at each stage. Table 5
details the rigorous filtering process.

Table 5: Dataset Filtering Pipeline Statistics. The high drop rate at the Consistency Check stage
ensures that only accurately described mechanisms are retained.

Pipeline Stage Input Count Dropped Remaining
Raw Generation (GPT-4o-mini) 20,108 – 20,108
Stage 1 & 2: Parse + Validator 20,108 551 19,557
Stage 3: Compiler 19,557 302 19,255
Stage 4: Execute 19,255 186 19,069
Stage 5: LLM Consistency Check 19,069 6,340 12,729

Validated Pool 12,729

Prompt for data generation

You are an expert Market Mechanism DSL generator. I will provide you with:
- The grammar of the MarketMechanismDSL,
- A few example DSL programs,
- A target use case,
- And a set of market settings.

Your task is to generate a complete MarketMechanismDSL program that
fits the given scenario and settings. Strictly follow the provided
grammar and take inspiration from the examples. Use the canonical
constructs: participants([...]), goods([...]), valuations({ ... }),
and valid allocation_rule/payment_rule names. Do not invent syntax
not present in the grammar.

Please output your response in EXACTLY the following format and nothing else:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Description:

```markdown
1-3 sentences written from the user's perspective describing the market
```

DSL code:

```dsl
<your complete MarketMechanismDSL program here>
```

Inputs:

DSL Grammar:
```markdown
{grammar}
```

DSL Program Examples:
```dsl
{examples}
```

Use Case and Settings:
- Domain: {domain}
- Scenario: {scenario}
- Settings: {settings}

Prompt for description completion (from DSL)

You are a precise technical writer. Given a MarketMechanismDSL program,
write a COMPLETE, human-readable task description that includes ALL facts
present in the DSL (participants, goods, valuations, auction/matching type,
allocation/payment/matching rules, key settings). Do NOT hallucinate new
entities or numbers. Use clear, concise prose (4-8 sentences).

Output EXACTLY in this format:

Description:

```markdown
<concise but complete description, entirely derived from the DSL>
```

Inputs:

DSL Program:
```dsl
{dsl_code}
```

Optional Examples (style guide only):
```markdown
{examples}
```

F COMPLETENESS AGENT WORKFLOW

Node-by-node extraction Given a natural-language description, the agent queries nodes in order
and marks each as Enough/Not Enough:

1. Auction (type, participants, goods, valuations, rules).

2. Global settings (currency, supply, reserve_price).

3. Stages (name, auction, optional reauction).

4. Matching (type, participants, compatibility_graph, rule).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

5. Constraints (simple/parameterized).
6. Objectives (list).

If Not Enough, it asks for the missing facts before proceeding. Finally it merges fragments into a
normalized schema and renders minimal DSL.

G END-TO-END EXAMPLE (SIMPLE AUCTION)

G.1 NATURAL LANGUAGE INPUT

Step 1: Natural Language

"Create a second-price auction for three participants competing for an advertising slot.
Alice values the slot at $100, Bob at $80,
and Carol at $90. Use highest bidder wins allocation."

G.2 COPILOT GENERATION (NL → DSL)

Step 2: Generated DSL

market {
auction {
type("second_price")
participants(["Alice", "Bob", "Carol"])
goods(["AdSlot"])
valuations({

"Alice": {"AdSlot": 100},
"Bob": {"AdSlot": 80},
"Carol": {"AdSlot": 90}

})
allocation_rule("highest_bid")
payment_rule("second_price")

}
}

G.3 PARSER (DSL → PARSE TREE)

Step 3: Lark Parse Tree (excerpt)

program
statement
auction_block

auction_element
auction_type_decl
string_literal: "second_price"

auction_element
participants_decl
string_literal_list

string_literal: "Alice"
string_literal: "Bob"
string_literal: "Carol"

...

G.4 TRANSFORMER (PARSE TREE → IR)

Step 4: Intermediate Representation (MarketProgram)

MarketProgram(
goods=[Good(name="AdSlot")],
bidders=[Bidder(name="Alice"), Bidder(name="Bob"), Bidder(name="Carol")],
auctions=[Auction(
auction_type="second_price",

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

participants=["Alice","Bob","Carol"],
goods=["AdSlot"],
valuations={"Alice":{"AdSlot":100},"Bob":{"AdSlot":80},"Carol":{"AdSlot":90}},
allocation_rule="highest_bid",
payment_rule="second_price"

)],
assignments=[], global_settings=None, stages=[],
matching=None, constraints=[], objectives=[]

)

G.5 VALIDATION (IR SEMANTIC CHECK)

Step 5: Validation

program.validate_comprehensive() successful
- All participants referenced in valuations
- All goods have valid valuations
- Auction type and payment rule compatible
- Unique participant and good names verified

G.6 COMPILATION AND BACKEND SELECTION

Step 6: Compiler Analysis

Analyzing DSL features...
- Single auction block detected
- No constraints or objectives
- No multi-stage features
- No matching markets

Backend Selected: Pandas
Reasoning: Simple auction, simulation-based approach sufficient

G.7 EXECUTION (GENERATED CODE EXCERPT)

Step 7: Pandas Backend Code (excerpt)

Allocation: highest_bid rule
allocations = {}
for good in goods:

good_bids = bids_df[bids_df['good'] == good].copy()
if not good_bids.empty:

winner = good_bids.loc[good_bids['valuation'].idxmax()]
allocations[good] = winner['participant']

Payment: second_price rule
payments = {}
for good, winner in allocations.items():

good_bids = bids_df[bids_df['good'] == good].copy()
sorted_bids = good_bids.sort_values('valuation', ascending=False)
if len(sorted_bids) >= 2:

second_highest = sorted_bids.iloc[1]['valuation']
payments[winner] = payments.get(winner, 0) + second_highest

else:
payments[winner] = payments.get(winner, 0) + sorted_bids.iloc[0]['valuation']

G.8 RESULTS

Step 8: Console Output

=== AUCTION RESULTS ===
Allocations:

AdSlot: Alice
Payments:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Alice: $90
Artifacts:

- auction_results.csv

H ACADEMIC MECHANISM CASE STUDIES

Table 6 illustrates how MIND captures diverse mechanisms from recent literature. We map the core
theoretical components of each paper to specific MIND language constructs.

Table 6: Mapping theoretical components to MIND constructs for 8 real-world mechanisms.

Paper & Mechanism Mapping to MIND Constructs DSL Implementation (Snippet)

Banchio & Skrzypacz (2022)
Repeated First-Price Auction
Analyzes equilibrium in repeated
auctions.

• Repeated Game →
stage block with discount.
• Equilibrium Condition →
threshold w/ math expression.

stage(name="RepeatedFPA") {
auction {
type("first_price")
threshold(expr="(m-2)/(2m-3)")
}
discount(0.6)
}

Gui et al. (2022)
Dynamic Second-Price Auction
Updates participation probability
dynamically.

• Time Dynamics →
dynamic block with periods.
• Throttling Policy →
cost_function with step().

dynamic { periods(288) }
auction {
type("second_price")
cost_function(
target="participation_prob",
expr="step(r_t,[0.3,0.5],[0.3,0.5])"
)
}

Feldman et al. (2022)
Uniform Price Auction
Verifies welfare bounds.

• Welfare Goal →
objectives
{"max_social_welfare"}.
• Mechanism →
Standard uniform_price type.

auction {
type("uniform_price")
allocation_rule("uniform")
}
objectives {
"maximize_social_welfare"
}

Goke et al. (2022)
First-Price with Dynamic Floors
Real-time floor adjustment.

• Price Floor →
threshold (reserve price).
• Adjustment Logic →
cost_function updating floor.

auction {
type("first_price")
threshold(expr="dynamic_floor")
cost_function(
target="floor_policy",
expr="update_rule"
)
}

Cashore et al. (2022)
Stochastic Ridesharing (SSP)
Joint pricing and matching.

• Rider-Driver Matching →
matching block (bipartite).
• Pricing Stage →
stage block with auction.

matching {
type("bipartite")
matching_rule("maximize_matches")
}
stage(name="Pricing") {
auction { type("second_price") }
}

Anunrojwong et al. (2022)
Robust Second-Price Auction
Regret minimization with
reserves.

• Regret Minimization →
Implicitly via threshold tuning.
• Reserve Price →
Parameterized threshold.

auction {
type("second_price")
threshold(expr="reserve_price")
}
constraints {
"incentive_compatibility"
}

Ko & Munagala (2022)
Optimal Randomized Auction
Revenue maximization under
budget.

• Budget Limit →
constraints
{"budget_constraint"}.
• Optimal Goal →
objectives
{"maximize_revenue"}.

constraints {
"budget_constraint"
}
objectives { "maximize_revenue" }
stage(name="Stage1") {
discount(0.6)
}

Aouad & Ma (2023)
Online Stochastic Matching
Matching with correlated arrivals.

• Stochastic Demand →
distribution (Custom/Poisson).
• Expected Reward →
cost_function expression.

matching {
type("bipartite")
distribution(name="demand",
kind="Custom", params={...})
cost_function(target="reward",
expr="1-(1-rho)ˆ2")
}

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

I USER STUDY DETAILS

I.1 METHODOLOGY

Participants. We recruited N = 17 participants with varying levels of programming and economic
expertise. The breakdown of participants is as follows:

• Education: 13 undergraduate students, 4 graduate students (Master’s/PhD).
• Python Experience: The cohort was technically proficient: 12 participants had > 2 years

of experience, 2 had 1–2 years, and 3 had 0.5–1 year.
• Domain Knowledge: 10 participants reported prior familiarity with auctions or matching

markets, while 7 reported no prior domain knowledge.

Design. The study followed a within-subjects design. Each participant performed modification
tasks on the same three mechanisms in both MIND and Python environments. External tools (e.g.,
IDEs, documentation, AI assistants) were allowed to mimic realistic workflows, provided that the
total time spent was reported.

Tasks. Participants started with working baseline code and were asked to implement specific policy
modifications:

• Task A (Pricing Rule): Change the payment rule from second-price to first-price (pay-as-
bid) while keeping allocation logic unchanged.

• Task B (Multi-Stage & Reserve): Introduce a global reserve price ($100) and a second
“clearance” stage (reauction) for unsold goods.

• Task C (Compatibility): Adjust the bipartite matching constraints (e.g., restrict specific
Buyer-Tutor pairs and add a new agent) without changing the matching algorithm.

I.2 RESULTS ANALYSIS

Table 7 summarizes the performance metrics. MIND demonstrated a clear advantage in modification
efficiency across all tasks.

Table 7: User Study Results (N = 17). Comparison of completion time (median minutes) and
correctness rate between MIND and Python workflows.

Task Median Time (min) Speed-up Correctness Rate (%)

Python MIND Python MIND

Task A (Pricing) 10.0 1.0 10.0× 88% 100%
Task B (Stages) 14.0 2.0 7.0× 76% 88%
Task C (Matching) 8.0 2.0 4.0× 82% 88%

Overall Average 10.7 1.7 6.3× 82% 92%

Analysis. The disparity was most pronounced in Task A and B. In Task A, MIND required only
a keyword change, yielding a 10× speedup. In Task B, Python implementations often required
significant refactoring of state management logic (14 min median), leading to higher time costs. In
contrast, MIND allowed adding a stage in just 2 minutes. In Task C, direct manipulation of the
compatibility_graph in MIND eliminated common index-error bugs observed in the Python
group, improving both speed and correctness.

23

	Introduction
	Related Work
	Method
	Market Interpretation DSL
	Intermediate Representation (IR) and Validation
	Two-Backend Code Generation
	Dataset Generation
	Human Audit Protocol

	Completeness Agent
	MarketCopilot Finetuning
	Pluggable Frontend Interfaces

	Experiments
	DSL Workflow and User Study Evaluation
	Methodology and Benchmark Tasks
	Results and Analysis

	Copilot Generation Evaluation
	Experimental Setup
	Evaluation Pipeline and Metrics
	Results and Discussion

	Generalization to Academic Mechanisms

	Ablation Studies
	Conclusion and Future Work
	Market Interpretation DSL Components
	Supported Mechanism Scope

	Formal Grammar (EBNF)
	Validation
	Governance Artifacts

	Backend Selection
	Dataset Generation Pipeline
	Data Filtering Statistics

	Completeness Agent Workflow
	End-to-End Example (Simple Auction)
	Natural Language Input
	Copilot Generation (NL → DSL)
	Parser (DSL → Parse Tree)
	Transformer (Parse Tree → IR)
	Validation (IR Semantic Check)
	Compilation and Backend Selection
	Execution (Generated Code Excerpt)
	Results

	Academic Mechanism Case Studies
	User Study Details
	Methodology
	Results Analysis

