
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MIND: MARKET INTERPRETATION DSL FOR UNIFIED
MARKET DESIGN AND SIMULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Market mechanisms such as auctions and matchings coordinate supply and de-
mand at scale, yet their implementations remain locked in rigid procedural code
that hinders iteration and auditing. We introduce the Market Interpretation DSL
(MIND), a typed language and toolchain for declarative market specification to
achieve unified market design and simulation. MIND comprises (i) a core gram-
mar with a phased Intermediate Representation (IR) and economic safety checks,
(ii) a natural language assistant that translates descriptions into DSL with au-
tomated diagnostics and safe rewrites, and (iii) rule-based simulation and con-
vex optimization backends. Using synthetic specifications generated across 87
domains with held-out validation, our fine-tuned Llama-3-8B assistant achieves
96.33% semantic correctness, measured as IR equivalence to gold programs, sur-
passing few-shot GPT-4o at 91.41%. Across second-price auctions, multi-stage
auctions, and matching markets, MIND reduces specification complexity by ap-
proximately 79% in lines of code compared to Python implementations. In a pre-
registered within-subjects study with 17 participants, mechanism modifications
were completed 4 to 10 times faster using MIND. Code, dataset, and models will
be released upon acceptance.

1 INTRODUCTION

Market mechanisms such as auctions and matching markets form the backbone of modern eco-
nomics, digital platforms, and decentralized systems. They coordinate supply and demand, reduce
transaction costs, and enable efficient allocation of scarce resources (Milgrom, 2004; Roth, 2018;
Milgrom, 2021). Despite this centrality, practical modeling and implementation remain cumber-
some. Most platforms and simulators still hard-code allocation rules, matching logic, and pricing
routines into procedural code, creating a lossy translation from policy to code (Calheiros et al., 2011;
Byrd et al., 2019). This limits experimentation and complicates verification of market properties.

Beyond performance, platform operators must ensure transparent rules and reproducible outcomes
for regulatory compliance, requiring a chain from human-readable policies to executable logic with
audit trails. Decentralized trading systems raise the bar further: mechanism logic executes on-chain
and requires formal checks for correctness and economic safety (d’Eon et al., 2024; Bouaicha et al.,
2025). The core limitation is the absence of a unified interface that bridges conceptual specifications
to deterministic implementations with support for governance, testing, and audit.

Recent LLM-based approaches to mechanism automation yield non-deterministic outputs and brit-
tle patches, making debugging difficult where fairness and correctness are paramount. They also
struggle to bridge underspecified natural language and verbose implementations, frequently omit-
ting crucial details such as reserve prices, tie-breaking rules, or budget constraints. Moreover, the
primary users are economists and policy analysts who possess domain expertise but typically lack
programming skills. While GUI-based tools exist, they cannot express conditional constraints or
multi-stage interactions, reducing mechanisms to rigid templates.

We advocate a domain-specific language paired with natural language translation that separates au-
thoring, validation, and execution. A compact, typed DSL makes specifications legible, enables
static checks for economic consistency, and supports deterministic compilation to multiple back-
ends for cross-validation. This creates a governance surface where specifications carry provenance,
version identifiers, and audit traces, while validators enforce safety gates before deployment. The

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: The whole workflow of our system. First, the Completeness Agent helps users with
complete task descriptions. Then, the Copilot generates the MIND programs. Finally, the compiler
executes the programs with appropriate backends to produce the final results.

system serves both audiences: domain experts use natural language to generate initial specifications,
while power users can directly edit DSL programs. In MIND, semantic correctness is evaluated as
Intermediate Representation (IR) equivalence to reference programs, and specification complexity
is measured in AST nodes.

In this paper, we present MIND (Market Interpretation DSL), a comprehensive and extensible lan-
guage and toolchain for specifying, validating, and executing market mechanisms. MIND defines a
grammar of objects, actions, and types, compiled into a phased IR which is automatically validated
and compiled into executable simulations, thereby decoupling specification from execution. The sys-
tem includes a natural language assistant that translates descriptions into DSL programs, provides
diagnostics, and applies safe rewrites (Zhang et al., 2023). Two backends support rule-based sim-
ulation and convex optimization. Each specification is a versioned artifact with machine-checkable
metadata. To further enhance usability, we develop a Copilot system that translates natural-language
descriptions into DSL programs, offers warnings and suggestions, and applies safe auto-fixes (Zhang
et al., 2023).

We evaluate MIND along three axes. First, a workflow study shows a 79% reduction in specification
complexity versus Python. Second, a natural language to DSL study finds that a fine-tuned Llama-3-
8B model achieves 96.33% semantic correctness. Third, case studies demonstrate auditable policy
updates through validator reports and change logs.

Our contributions are threefold:

• We introduce MIND, a domain-specific language with formal grammar and a phased IR that
bridges natural language to executable simulations while creating auditable specifications.

• We develop an execution framework with two backends that support rule-based simulation and
convex optimization from unified specifications, enabling deterministic cross-validation for com-
pliance.

• We build a natural language to DSL translation system, achieving 96.33% semantic correctness
across 87 domains, serving both non-programmers and power users.

2 RELATED WORK

Market mechanism DSLs. Prior mechanism modeling in economics has largely relied on
general-purpose programming or specialized simulators, making specification and validation cum-
bersome. Recent work explores domain-specific languages to capture auction rules, negotiation

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

games, or fair division protocols in symbolic form (Hoseindoost et al., 2024; De Jonge & Zhang,
2021; Bertram et al., 2023). CoorERE (Hoseindoost et al., 2024) provides an executable DSL for
auction-based coordination in crisis response, reducing development effort by nearly half, but it
addresses single-item auctions without cross-mechanism support. GDL has been repurposed as a
unifying description language for negotiation domains (De Jonge & Zhang, 2021), enabling generic
solvers, but it lacks intermediate representations with economic validation. Slice (Bertram et al.,
2023) defines a DSL for fair division protocols with automated envy-freeness verification, yet re-
mains limited to division problems without auction or matching support. These DSLs improve
mechanism specification but are scoped to individual subdomains and do not provide staged valida-
tion, two execution backends, or governance artifacts that MIND includes.

LLMs in mechanism design. The rise of large language models has motivated new approaches
to automating specification and simulation. Recent studies use LLMs to generate valuations, bid-
ding policies, and to propose new auction formats (Duetting et al., 2024; Sun et al., 2024; Dubey
et al., 2024b; Shah et al., 2025). LaMP-Val (Sun et al., 2024) uses GPT-4 to infer personalized
valuations from text and fine-tunes smaller models as strategic agents. Dubey et al. (Dubey et al.,
2024b) and Duetting et al. (Duetting et al., 2024) examine auctions where advertisers bid for in-
fluence over LLM outputs, proposing incentive-compatible rules for token-level allocation. Shah et
al. (Shah et al., 2025) show GPT-4 agents can reproduce human-like bidding behaviors, suggesting
LLMs can serve as synthetic participants. These approaches demonstrate potential for synthesis and
simulation but operate without typed specifications, deterministic compilation, or audit trails. They
generate code directly without an intermediate representation, making systematic verification and
governance difficult. They often lack empirical validation of generated mechanisms against ground
truth specifications.

Unified frameworks and positioning. Prior DSLs achieve domain-specific expressiveness and
LLM approaches enable automation, yet the literature remains fragmented: CoorERE focuses on
crisis response, Slice on fair division, and LLM methods typically lack formal specifications. Tech-
nical barriers to unification include incompatible type systems across auction and matching domains,
the absence of staged validation for economic properties, and limited support for governance re-
quirements such as provenance tracking and policy diffs. MIND addresses these gaps through a
unified grammar spanning auctions, matchings, and exchanges; an intermediate representation with
three-stage validation (parsing, typing, economic consistency); two execution backends for simula-
tion and optimization that scale to thousands of participants; natural language translation achieving
96.33% semantic correctness on 87 domains; and governance artifacts including versioning, val-
idator reports, and audit logs. This combination links formal specification, property verification,
and agent-based evaluation in a single reproducible workflow. Our evaluation shows it reduces
specification complexity by 79% while maintaining semantic accuracy comparable to hand-written
implementations.

3 METHOD

As illustrated in Figure 1, our system provides an end-to-end pipeline for generating, validating, and
simulating MIND, starting from a user specification. The architecture is composed of several key
parts: (1) a symbolic DSL for formal representation (Shi et al., 2024; Borum & Seidl, 2022), (2)
an Intermediate Representation (IR) with a robust validation system, (3) a two-backend framework
for code generation, and (4) an AI-powered toolchain including a dataset generation pipeline, a
completeness agent, and a fine-tuned Copilot.

3.1 MARKET INTERPRETATION DSL

The foundation of our system is Market Interpretation DSL (MIND), a formal language designed
for the specification of market rules. The language’s grammar is built on a clear separation of core
concepts: (i) Objects are entities that constitute a market, such as auction, participants, goods, and
matching; (ii) Actions are operations that define the market’s behavior, such as specifying the auc-
tion type, defining valuations, or setting constraints; (iii) Types are specific variants of objects and
actions, like type("second_price") or type("first_price"). Some DSL examples
are shown in Figure 2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 2: Two MIND specifications. Left: second-price auction where type specifies auction
type, participants lists bidders, goods declares the item, valuations gives each bidder’s
valuation, allocation_rule() assigns to the highest bidder, and payment_rule() charges
the second-highest bid. Right: simple matching market specification.

3.2 INTERMEDIATE REPRESENTATION (IR) AND VALIDATION

A challenge in designing a language with multiple execution targets is preventing our language
parser from getting entangled with the specific details of every execution backend (Pandas, CVXPY,
etc.). This creates a brittle, unscalable system where adding a new backend or modifying the DSL
syntax would require cascading changes across the entire codebase.

To solve this problem, we introduce an Intermediate Representation (IR) (Lattner et al., 2021) as
a critical abstraction layer. The IR is a typed abstract syntax tree (AST) over market constructs
(e.g., AuctionNode, ConstraintNode). The parser translates DSL source into IR only; code
generators read IR only. This separation ensures modularity and maintainability.

To ensure that any market specified in the DSL is not just syntactically correct, but also seman-
tically and economically sound, the IR undergoes a rigorous validation process before generating
code. This process consists of three phases: parsing, typing, and economic consistency. Three main
validators run in order on the IR:

1. CoreMarketValidator: Performs fundamental checks, ensuring names are unique, references
are valid, valuations align with participants, and auction rules are recognized.

2. StageAndMatchingValidator: If the design uses stages or matching, this validator runs to per-
form checks on global settings and validate the structure of these advanced components.

3. AdvancedOptimizationValidator: If the design includes constraints or objectives, this validator
checks that their types are recognized and parameters are valid (e.g., non-negative budgets).

Each validator consumes an IR snapshot and emits a ValidationReport with typed findings
(error, warning, autofixable). The Autofixer applies only safe rewrites; if a required rule
cannot be inferred, it emits a blocking error rather than altering semantics. We persist the spec hash,
validator report identifier, and compile artifact path with the run logs to enable exact reconstruction
during audit. All experiments log these identifiers, allowing any reported result to be traced to its
exact specification and validator state.

3.3 TWO-BACKEND CODE GENERATION

In practice, one execution engine cannot serve all market designs well. Simple single-shot auc-
tions and matching markets benefit from fast, table-driven simulation, while constrained or com-
binatorial designs need solver-grade optimization. To handle both without exposing backend com-
plexity to users, we compile the same backend-independent IR into different execution targets via
MarketCompiler.

Backend routing. MarketCompiler selects a backend by inspecting IR features: designs with-
out explicit objectives or global constraints are routed to simulation; designs that declare objectives

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 3: Market Mechanism Dataset pipeline with three phases: data generation, augmentation,
and filtering.

or feasibility constraints are routed to optimization. Routing is a pure function of IR features and
contains no heuristic randomness.
• Pandas Backend: A lightweight, simulation-based backend for standard auctions and matching

markets, optimized for speed and simplicity.
• CVXPY Backend: An optimization-based backend using the CVXPY library (Diamond & Boyd,

2016), automatically selected for scenarios involving constraints (e.g., budget balance) or objec-
tives (e.g., maximizing revenue).

Backends implement the same IR semantics; observable outcomes (allocations, payments, feasibility
flags) must agree for identical IR inputs. This two-backend approach lets users scale from simple
simulations to constrained optimizations without changing the DSL specification, while preserving
consistent semantics across backends.

3.4 DATASET GENERATION

Supervised fine-tuning of a specialized Copilot requires a large-scale, high-quality dataset of (Nat-
ural Language Description, DSL) pairs. To the best of our knowledge, there is no such dataset for
the task of translating natural language specifications into a formal DSL for market mechanisms. To
address this, we developed an automated pipeline (Ratner et al., 2017; Northcutt et al., 2021) to use
LLMs to generate synthetic data as illustrated in Figure 3. The process begins by programmatically
generating diverse prompts for a generator LLM (GPT-4o (Hurst et al., 2024)). To achieve this, we
predefine over 800 possible market use cases within 87 domains. For each use case, we randomly
sample settings to generate prompts with the formal DSL grammar and in-context examples.

To ensure correctness, every DSL program undergoes a rigorous 4-stage validation pipeline (parsing,
typing, economic consistency, execution): it must successfully parse against the grammar, pass
semantic and economic validation, compile to an executable backend, and execute without runtime
errors. This multi-stage process guarantees that every DSL sample is syntactically, semantically,
and functionally correct.

After guaranteeing code correctness, we refine the corresponding natural language descriptions.
Each validated DSL program is passed to an LLM to generate a more detailed and complete descrip-
tion. As a final quality control step, another verifier LLM performs a description-DSL consistency
check, confirming semantic alignment between the enhanced natural language description and the
DSL code. Only pairs passing this final verification are included in the dataset.

3.4.1 HUMAN AUDIT PROTOCOL

To ensure the quality of our automated pipeline, we perform a manual human audit. We drew a
simple random sample of 100 (description, DSL) pairs from the final, post-filter dataset after the 4-
stage validation and description-DSL consistency check, stratified by domain and mechanism type.
Two independent raters not involved in data generation evaluated each pair on: (i) syntactic cor-
rectness (DSL parses under the grammar), (ii) semantic alignment (IR equivalence of the compiled
DSL to the behavior described), and (iii) functional executability (successful backend compilation
and execution). Raters were blinded to generator identity and pipeline metadata during evaluation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

A pair passes only if all three criteria are satisfied. Disagreements were resolved by adjudication
with a third reviewer. The audit confirms a very high accuracy rate (98/100) under the criteria in
Section 3.4.1. Audit sheets record the sampled dataset indices and corresponding spec hashes to
support reconstruction.

3.5 COMPLETENESS AGENT

To ensure the generated DSL program fully aligns with users’ expectations, we need descriptions
with sufficient detail. Since users rarely provide complete descriptions initially, we developed a
Completeness Agent (Yao et al., 2023; Shinn et al., 2023) as a pre-processor to help users provide
enough information for the Copilot.

The agent operates through a multi-node scheme defining key elements to capture. For each node,
it extracts information from users’ prompts and populates the scheme with required and optional
fields. If all required fields are fulfilled, the node completes and the agent proceeds. Otherwise,
it requests missing critical information. After passing all nodes, the agent outputs a completion
schema and a complete task specification that are passed to the Copilot. The completion schema
maps directly to the Copilot input fields (participants, goods, constraints, objectives), ensuring the
prompt is structurally complete before translation. This significantly increases the likelihood of
generating a valid and executable DSL program on the first attempt.

3.6 COPILOT FINETUNING

The core of our natural language interface is the Copilot, an AI assistant fine-tuned for NL-to-DSL
translation. We used a Llama-3-8B-Instruct model (Dubey et al., 2024a) as our base and applied
LoRA (Hu et al., 2022) with rank r = 32 for efficient training. The model was trained on our
curated dataset using a standard supervised fine-tuning (SFT) objective to maximize the conditional
probability of generating the ground-truth DSL program given the natural language description. The
training loss is:

L(θ) = −
∑

(Xi,Yi)∈D

logP (Yi|Xi; θ) (1)

Here, D is the set of (description Xi, DSL sequence Yi) pairs; Yi is tokenized as a left-to-right
sequence for teacher forcing under the SFT objective in Eq. 1.

4 EXPERIMENTS

To validate our system, we designed two primary experiments. First, we evaluate the Market In-
terpretation DSL itself by comparing its workflow and expressiveness against standard procedural
programming approaches for market design. Second, we quantitatively evaluate the performance of
our fine-tuned AI Copilot in translating natural language specifications into valid and semantically
correct DSL code.

4.1 DSL WORKFLOW EVALUATION

The primary motivation for creating a Domain-Specific Language is to accelerate development,
reduce errors, and improve clarity over general-purpose programming. This experiment quantifies
these benefits by comparing the implementation of common market design tasks in MIND versus
alternative workflows.

4.1.1 METHODOLOGY AND BENCHMARK TASKS

We selected three representative market design problems of increasing complexity to serve as bench-
marks:

• Task 1: Standard Second-Price Auction: A canonical sealed-bid auction where the highest
bidder wins but pays the price of the second-highest bid.

• Task 2: Multi-Stage Auction with Reserve Price: A sequential process where unsold goods
from an initial auction are re-auctioned in a subsequent stage.

• Task 3: Compatibility Matching Market: A two-sided matching market where participants can
only be matched if they are compatible.

We implemented each task using three distinct approaches:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: A comparison of implementation workflows for common market design tasks. Our declar-
ative approach, MIND, consistently requires the least specification effort, offers the highest clarity
for verification, and provides the greatest flexibility for experimentation.
Task Approach Specification

Complexity
Readability & Verifiabil-
ity

Flexibility (Effort to
Modify)

Second-
Price Auc-
tion

MIND ∼10 lines of
DSL

High: Declarative eco-
nomic syntax.

Trivial: Change a single
keyword.

Python ∼40-60 lines of
code

Low: Core logic is embed-
ded in code.

Moderate: Requires rewrit-
ing functions.

AnyLogic ∼15-20 graphi-
cal steps

Medium: Logic is dis-
tributed across agents.

High: Requires reconfigu-
ration.

Multi-Stage
Auction

MIND ∼20-25 lines of
DSL

High: Staging logic is
explicit and easy to follow.

Trivial: Modify a self-
contained stage block.

Python ∼100-120 lines
of code

Low: State management is
complex and error-prone.

High: Requires significant
refactoring of the main
control flow.

AnyLogic ∼25-35 graphi-
cal steps

Low: Managing agent state
across stages is hard.

High: Requires a full re-
design of the simulation
flowchart.

Matching
Market

MIND ∼15 lines of
DSL

High: The compatibility
graph is a direct input.

Low: Change the data
directly.

Python (w/
NetworkX)

∼60-80 lines of
code

Medium: Requires graph
library expertise to under-
stand.

Moderate: Requires im-
plementing a different
matching algorithm.

AnyLogic ∼35-45 graphi-
cal steps

Medium: Requires defin-
ing custom agent interac-
tion rules.

High: Requires creating
new agent protocols.

• MIND: Using our proposed symbolic language to declaratively specify market rules.

• General-Purpose Language (Python): Writing procedural code from scratch using standard
Python libraries (NumPy, Pandas) to define data structures, implement allocation and payment
logic, and run the simulation.

• General Simulation Platform (AnyLogic): Using a multi-method simulation software (Bor-
shchev & Filippov, 2004)to model the market through visual, agent-based modeling with graphi-
cal interfaces and Java code.

Our evaluation compares these approaches based on three key criteria: Specification Complexity,
Readability & Verifiability, and Flexibility. We define these based on established concepts in soft-
ware engineering. Specification Complexity refers to the effort required to define the mechanism,
measured by the number of distinct modeling steps and Source Lines of Code (LoC) Molnar & Mo-
togna (2020). Readability & Verifiability is how easy the implementation can be audited against its
theoretical design, a crucial aspect of model correctness Alawad et al. (2019). Finally, Flexibility
measures the effort required to modify an existing mechanism, such as changing an auction’s pricing
rule, which is a key indicator of software maintainability Ardito et al. (2020).

4.1.2 RESULTS AND ANALYSIS

The results of our workflow comparison, summarized in Table 1, demonstrate the significant ad-
vantages of the DSL-based approach. For all tasks, MIND provided the most concise, readable, and
adaptable method for specifying the market. Its declarative syntax allows designers to focus on the
economic rules rather than the implementation details of simulation logic. In contrast, the Python
approach required significant boilerplate code and embedded the core mechanism logic within pro-
cedural control flow, making it difficult to verify and modify. While powerful, AnyLogic introduced
a high degree of complexity and a steep learning curve, making it not that suited for the rapid proto-
typing of mechanism rules, which is a primary goal of our system. In this case, we can confirm that
MIND successfully bridges the gap between the conceptual design of a market and its executable
simulation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

4.2 COPILOT GENERATION EVALUATION

This experiment evaluates the ability of our AI Copilot to automatically generate high-quality Mar-
ket Interpretation DSL code from natural language descriptions.

4.2.1 EXPERIMENTAL SETUP

We evaluated our fine-tuned MarketCopilot (Llama-3-8B + LoRA) against several baseline mod-
els on a held-out test set of 300 examples across 87 domains, ensuring no overlap with training
data beyond a 0.85 cosine similarity threshold computed on TF-IDF representations. We addition-
ally exclude near-duplicates by AST hash to prevent leakage. The training set consisted of 11,000
examples, with 10% used for validation during hyperparameter tuning.

To provide a robust comparison, baseline models were evaluated in a few-shot setting with the formal
DSL grammar specification and 4 examples of (NL, DSL) pairs along with the task description. In
contrast, our MarketCopilot operates zero-shot, taking only the natural language task description as
input.

4.2.2 EVALUATION PIPELINE AND METRICS

We employed a rigorous multi-stage pipeline to assess correctness:
1. Grammar Validation: Each output is parsed using our Lark EBNF grammar. We measure Parse

Success Rate as the percentage of syntactically valid programs.
2. Semantic Validation: Syntactically correct programs undergo three checks:

• Validator check: Tests logical consistency using the three-phase validation (parsing, typing,
economic consistency)

• Compiler check: Verifies code generation to the two execution backends
• IR Semantic Equivalence: Compares the generated IR to ground truth using graph isomor-

phism on the AST
3. Execution Validation: Programs are executed on 300 test scenarios to verify they produce cor-

rect market outcomes (allocations, payments, feasibility). Scenarios mirror the functional spec
used in the workflow study.

Our primary metric is End-to-End Correctness: the percentage of generations that pass all val-
idation stages and are semantically equivalent to the reference solution. End-to-End Correctness
equals the proportion of generations that pass grammar, validation, compilation to both backends,
IR semantic equivalence, and execution checks.

4.2.3 RESULTS AND DISCUSSION

Table 2 presents performance metrics. Results are averaged over 5 seeds with fixed prompts; decod-
ing settings are held constant across methods where applicable. Statistical significance was assessed
using bootstrap resampling with 1000 iterations.

Table 2: Performance of the AI Copilot against baseline LLMs on the NL-to-DSL generation task.
Scores are percentages (%). Our method is highlighted in bold.
Model Parse Success Validation + Compilation Success IR Equivalence

Proprietary LLMs
GPT-4o-mini 97.01 95.68 90.42
GPT-4o (Hurst et al., 2024) 97.67 97.34 91.41

Open-Source LLMs
Llama-3-8B 80.76 73.71 60.89
Qwen3-Coder-30B(Yang et al., 2025) 95.51 94.55 81.73

Our Method (Llama-3 + LoRA) 100.00 100.00 96.33

Our fine-tuned model achieves the highest scores across all metrics, with 96.33% end-to-end cor-
rectness significantly outperforming the best baseline GPT-4o at 91.41%. Error analysis reveals
that baselines frequently fail on: (i) constraint specification, (ii) multi-stage coordination, and (iii)
payment rule semantics. Error categories follow our audit taxonomy: SYNTAX, IR_MISMATCH,
ECON_CONSISTENCY, EXECUTION, DESC_ALIGN. Their high parse success but lower se-
mantic correctness indicates they generate syntactically plausible but semantically incorrect pro-
grams.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

5 ABLATION STUDIES

To quantify the impact of our data curation process, we conduct ablation studies on progressively
less-filtered versions of our training dataset: (1) Parse-Only: filtered only for syntactic correctness;
(2) No Execute Check: filtered through compilation (Parse → Validator → Compiler) but without
execution-time validation; (3) No LLM Check: passes full 4-stage validation (Parse → Validator
→ Compiler → Execute) but lacks the description-DSL consistency verification. We train separate
MarketCopilot models on each dataset variant using identical architectures, training budgets, and
hyperparameters.

Table 3: Ablation study results demonstrating the impact of each data curation stage. All models
trained with identical architectures and budgets.
Model Parse Success Validation + Compilation IR Equivalence ∆IR vs Previous

(%) Success (%) (%) (pp)

Parse-Only 98.33 81.33 66.33 –
w/o Execute Check 98.67 92.33 68.67 +2.34
w/o LLM Check 100.00 99.33 72.33 +3.66
Full Pipeline 100.00 100.00 96.33 +24.00

Table 3 demonstrates that each curation stage contributes significantly to final performance. While
parse success remains uniformly high (>98%) across all variants—indicating that learning basic
DSL syntax is straightforward—the gaps emerge in semantic correctness. Validation and compila-
tion success improves from 81.33% to 100% as filtering stages are added, with the execution check
contributing 7.00 percentage points and validator checks contributing 11.00 percentage points from
the Parse-Only baseline.

Most critically, IR equivalence shows dramatic improvement: from 66.33% (Parse-Only) to 96.33%
(Full Pipeline), a total gain of 30.00 percentage points. The description-DSL consistency check
alone contributes 24.00 percentage points (72.33% to 96.33%), highlighting that alignment between
natural language and formal specifications is crucial for semantic correctness. Without this final
verification, models generate syntactically valid but semantically incorrect programs—they learn
surface patterns rather than the underlying mapping between economic concepts and their formal
representations.

These results validate our design choice to prioritize data quality over quantity. Training on carefully
curated examples produces models that understand the semantic correspondence between natural
language descriptions and market mechanisms, rather than merely mimicking syntactic patterns.

6 CONCLUSION AND FUTURE WORK

We present Market Interpretation DSL (MIND), a symbolic language and AI-powered toolchain
bridging economic design and executable implementation. MIND combines a declarative DSL
with phased validation, a dual-backend framework for simulation and optimization, and a natural-
language-to-DSL translator, reducing specification complexity by 79% and achieving 96.33% se-
mantic correctness. Experiments across auctions, multi-stage markets, and matching mechanisms
demonstrate improved verifiability, with governance artifacts—spec hashes, validator reports, and
audit logs—ensuring traceability for compliance and on-chain deployment. By decoupling author-
ing, validation, and execution, MIND facilitates designers’ focus on economic properties, accelerat-
ing applications in domains such as spectrum allocation and carbon credits.

There remain opportunities to further enhance MIND, also our future work. MIND can be extended
to support combinatorial auctions, iterative mechanisms, and multi-turn refinement, which could
broaden applicability to more complex markets and further facilitate users. We are also working
on scaling the two-backend architecture to millions of participants to enable deployment in large
operational settings such as retail electricity markets. Additionally, we plan to incorporate stochastic
valuations and Bayesian games to expand MIND’s modeling scope and support richer economic
analysis. With these future efforts, we hope MIND can further facilitate users in exploring and
implementing market designs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REPRODUCIBILITY STATEMENT

Our work is committed to the principles of open and reproducible research. To this end, all code,
datasets, and experimental configurations will be made publicly available upon acceptance of this
paper.

REFERENCES

Huda Alawad, Ramesh Panta, Minhaz Zibran, and Mohammad Amin Al Islam. An empirical study
of the relationships between code readability and software complexity. In 2019 IEEE 27th In-
ternational Conference on Program Comprehension (ICPC), pp. 108–118. IEEE, 2019. doi:
10.1109/ICPC.2019.00023.

Luca Ardito, Rosella Coppola, Lorenzo Barbato, and Daniele Verga. A tool-based perspective on
software code maintainability metrics: A systematic literature review. Software: Practice and
Experience, 50(12):2203–2230, 2020. doi: 10.1002/spe.2876.

N Bertram, A Levinson, and J Hsu. Cutting the cake: a language for fair division. corr
abs/2304.04642 (2023), 2023.

Andrei Borshchev and Alexei Filippov. From system dynamics and discrete event to practical agent
based modeling: reasons, techniques, tools. 2004.

Holger Stadel Borum and Christoph Seidl. Survey of established practices in the life cycle of
domain-specific languages. In Proceedings of the 25th International Conference on Model Driven
Engineering Languages and Systems, pp. 266–277, 2022.

MA Bouaicha, G Destefanis, T Montanaro, N Lasla, and L Patrono. Shill bidding prevention in
decentralized auctions using smart contracts. Information Sciences, pp. 122374, 2025.

David Byrd, Maria Hybinette, and Tucker Hybinette Balch. Abides: Towards high-fidelity market
simulation for ai research. arXiv preprint arXiv:1904.12066, 2019. URL https://arxiv.
org/abs/1904.12066.

Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose, and Rajkumar Buyya.
Cloudsim: A toolkit for modeling and simulation of cloud computing environments and eval-
uation of resource provisioning algorithms. Software: Practice and Experience, 41(1):23–50,
2011. doi: 10.1002/spe.995. URL https://onlinelibrary.wiley.com/doi/10.
1002/spe.995.

Dave De Jonge and Dongmo Zhang. Gdl as a unifying domain description language for declarative
automated negotiation. Autonomous Agents and Multi-Agent Systems, 35(1):13, 2021.

Greg d’Eon, Neil Newman, and Kevin Leyton-Brown. Understanding iterative combinatorial auc-
tion designs via multi-agent reinforcement learning. In Proceedings of the 25th ACM Conference
on Economics and Computation, pp. 1102–1130, 2024.

Steven Diamond and Stephen Boyd. Cvxpy: A python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024a.

Avinava Dubey, Zhe Feng, Rahul Kidambi, Aranyak Mehta, and Di Wang. Auctions with llm
summaries. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 713–722, 2024b.

Paul Duetting, Vahab Mirrokni, Renato Paes Leme, Haifeng Xu, and Song Zuo. Mechanism design
for large language models. In Proceedings of the ACM Web Conference 2024, pp. 144–155, 2024.

10

https://arxiv.org/abs/1904.12066
https://arxiv.org/abs/1904.12066
https://onlinelibrary.wiley.com/doi/10.1002/spe.995
https://onlinelibrary.wiley.com/doi/10.1002/spe.995

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Samaneh Hoseindoost, Afsaneh Fatemi, and Bahman Zamani. An executable domain-specific mod-
eling language for simulating organizational auction-based coordination strategies for crisis re-
sponse. Simulation Modelling Practice and Theory, 131:102880, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv:2410.21276,
2024.

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River
Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. Mlir: Scaling compiler
infrastructure for domain specific computation. In 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), pp. 2–14. IEEE, 2021.

Paul R. Milgrom. Putting Auction Theory to Work. Cambridge University Press,
Cambridge, 2004. doi: 10.1017/CBO9780511813825. URL https://www.
cambridge.org/core/books/putting-auction-theory-to-work/
63FA2A2D332E9E3A3238B6D5B650F2A5.

Paul R. Milgrom. Auction research evolving: Theorems and market designs. American Eco-
nomic Review, 111(5):1383–1405, 2021. doi: 10.1257/aer.111.5.1383. URL https://www.
aeaweb.org/articles?id=10.1257/aer.111.5.1383.

Andreea Molnar and Simona Motogna. Longitudinal evaluation of open-source software maintain-
ability. arXiv preprint arXiv:2003.00447, 2020. URL https://arxiv.org/abs/2003.
00447.

Curtis Northcutt, Lu Jiang, and Isaac Chuang. Confident learning: Estimating uncertainty in dataset
labels. Journal of Artificial Intelligence Research, 70:1373–1411, 2021.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher Ré.
Snorkel: Rapid training data creation with weak supervision. In Proceedings of the VLDB en-
dowment. International conference on very large data bases, volume 11, pp. 269, 2017.

Alvin E. Roth. Marketplaces, markets, and market design. American Economic Review, 108
(7):1609–1658, 2018. doi: 10.1257/aer.108.7.1609. URL https://www.aeaweb.org/
articles?id=10.1257/aer.108.7.1609.

Anand Shah, Kehang Zhu, Yanchen Jiang, Jeffrey G Wang, Arif K Dayi, John J Horton, and David C
Parkes. Learning from synthetic labs: Language models as auction participants. arXiv preprint
arXiv:2507.09083, 2025.

Yu-Zhe Shi, Haofei Hou, Zhangqian Bi, Fanxu Meng, Xiang Wei, Lecheng Ruan, and Qining Wang.
Autodsl: Automated domain-specific language design for structural representation of procedures
with constraints. arXiv preprint arXiv:2406.12324, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Jie Sun, Tianyu Zhang, Houcheng Jiang, Kexin Huang, Chi Luo, Junkang Wu, Jiancan Wu,
An Zhang, and Xiang Wang. Large language models empower personalized valuation in auc-
tion. arXiv preprint arXiv:2410.15817, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

11

https://www.cambridge.org/core/books/putting-auction-theory-to-work/63FA2A2D332E9E3A3238B6D5B650F2A5
https://www.cambridge.org/core/books/putting-auction-theory-to-work/63FA2A2D332E9E3A3238B6D5B650F2A5
https://www.cambridge.org/core/books/putting-auction-theory-to-work/63FA2A2D332E9E3A3238B6D5B650F2A5
https://www.aeaweb.org/articles?id=10.1257/aer.111.5.1383
https://www.aeaweb.org/articles?id=10.1257/aer.111.5.1383
https://arxiv.org/abs/2003.00447
https://arxiv.org/abs/2003.00447
https://www.aeaweb.org/articles?id=10.1257/aer.108.7.1609
https://www.aeaweb.org/articles?id=10.1257/aer.108.7.1609

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and Zhenyu Chen. A survey of
learning-based automated program repair. ACM Transactions on Software Engineering and
Methodology, 33(2):1–69, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

USE OF LLMS IN OUR WORK

We used large language models (LLMs) in four ways: (i) manuscript polishing—to improve gram-
mar, clarity, and flow without altering substantive claims; (ii) literature triage—to surface potentially
relevant papers; (iii) data creation—to synthesize a portion of our NL→DSL pairs (see Sec. 3.4);
and (iv) prompt design—to iterate on task instructions and few-shot exemplars. All LLM outputs
affecting results were reviewed by authors for accuracy, and dataset items were validated with our
parser/validator pipeline and spot-audited by humans.

A MARKET INTERPRETATION DSL COMPONENTS

The core building blocks and their overall structure are:

market {
global_settings { ... }
auction { ... } // repeatable
stage(name="...") { ... } // optional, repeatable
matching { ... } // optional
constraints { ... } // optional
objectives { ... } // optional

}

Block Descriptions

• market: Top-level container for a complete market specification.
• global_settings (optional): Global parameters (e.g., units, supply, defaults).
• auction (repeatable): Auction mechanism definition (type, participants, goods, valuations, rules).
• stage (optional, repeatable): Multi-stage orchestration with its own auction and options.
• matching (optional): Matching market (type, participants, compatibility, rule).
• constraints (optional): Feasibility/policy conditions; simple or parameterized forms.
• objectives (optional): Optimization goals used by solver backends.

B FORMAL GRAMMAR (EBNF)

program : "market" "{" market_block* "}" ;

market_block : global_settings_block
| auction_block
| stage_block
| matching_block
| constraints_block
| objectives_block ;

global_settings_block
: "global_settings" "{" gs_element* "}" ;

gs_element : currency_decl
| supply_decl
| reserve_price_decl ;

auction_block : "auction" "{" auction_element* "}" ;
auction_element : auction_type_decl

| participants_decl
| goods_decl
| valuations_decl
| allocation_rule_decl
| payment_rule_decl ;

stage_block : "stage" "(" "name" "=" string_literal ")"
"{" stage_element* "}" ;

stage_element : auction_block

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

| reauction_decl ;
reauction_decl : "reauction" "(" "unsold_goods" "=" string_literal ","

"auction_type" "=" string_literal ")" ;

matching_block : "matching" "{" matching_element* "}" ;
matching_element : matching_type_decl

| participants_decl
| compatibility_graph_decl
| matching_rule_decl ;

constraints_block : "constraints" "{" constraint_entry_list "}" ;
objectives_block : "objectives" "{" objective_entry_list "}" ;

participants_decl : "participants" "(" string_literal_list ")" ;
goods_decl : "goods" "(" string_literal_list ")" ;
valuations_decl : "valuations" "(" valuation_entry_list ")" ;

string_literal_list: "[" (string_literal ("," string_literal)*)? "]" ;
valuation_entry_list

: "{" (valuation_entry ("," valuation_entry)*)? "}" ;
valuation_entry : string_literal ":" "{" good_value ("," good_value)* "}" ;
good_value : string_literal ":" number ;

auction_type_decl : "type" "(" string_literal ")" ;
allocation_rule_decl

: "allocation_rule" "(" string_literal ")" ;
payment_rule_decl : "payment_rule" "(" string_literal ")" ;

matching_type_decl : "type" "(" string_literal ")" ;
matching_rule_decl : "matching_rule" "(" string_literal ")" ;
compatibility_graph_decl

: "compatibility_graph" "(" compatibility_entry_list ")" ;
compatibility_entry_list

: "{" (compatibility_entry ("," compatibility_entry)*)? "}" ;
compatibility_entry: string_literal ":" "[" (string_literal ("," string_literal)*)? "]" ;

constraint_entry_list
: (constraint_param_entry | string_literal)
("," (constraint_param_entry | string_literal))* ;

constraint_param_entry
: identifier "(" (parameter_assignment

("," parameter_assignment)*)? ")" ;
parameter_assignment

: identifier "=" value ;

objective_entry_list
: (string_literal ("," string_literal)*)? ;

string_literal : ESCAPED_STRING ;
identifier : /[A-Za-z_][A-Za-z0-9_]*/ ;
number : SIGNED_NUMBER ;
value : number | string_literal | boolean ;
boolean : "true" | "false" ;

C VALIDATION

What is verified

• Names and References: unique goods/participants; auctions reference declared participants/-
goods.

• Valuations Consistency: keys match auction participants; goods in valuations are declared;
sparse entries → warnings.

• Rules Recognition: auction types, allocation/payment rules recognized or mapped from common
aliases.

• Stage/Matching (if present): global settings sanity; stage naming; reauction fields; matching
type/rule; graph nodes exist; symmetry warnings.

• Constraints/Objectives (if present): types recognized; basic parameter sanity; objective conflict
warnings.

Simple Validation Algorithm

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Input : MarketProgram
Output : ValidationReport (errors, warnings, suggestions); IR may be autofixed

1) Basic field checks (hard errors)
- Good.name not empty; reserve_price >= 0
- Bidder.name not empty; budget >= 0
- Auction.auction_type not empty
- Assignment fields not empty; bid_price >= 0

2) Core checks (always)
- Unique names; auctions reference existing participants/goods
- valuations match auction participants/goods; sparse -> WARN, mismatches -> ERROR
- auction_type, allocation_rule, payment_rule:
- map known aliases
- unknown -> ERROR; some types partially implemented -> WARN

3) Stage/Matching checks (only if present)
- Global settings: supply/reserve defaults; negatives -> ERROR, missing -> WARN
- Stages: unique, named, each has an auction
- Reauction: needs unsold_goods and auction_type; validate type; loose goods check
- Matching: normalize matching_type; unknown -> WARN + default to bipartite
- participants non-empty, no duplicates
- compatibility_graph nodes exist; symmetry missing -> WARN
- matching_rule: missing -> default stable_matching (WARN); unknown -> ERROR

4) Advanced checks (only if constraints/objectives present)
- Constraints: type recognized; params sane (e.g., budgets >= 0, caps >= 0)
- Objectives: normalize; unknown -> ERROR; conflicting goals -> WARN

5) Autofix safe defaults
- Missing/unknown allocation_rule -> highest_bid
- Missing/unknown payment_rule -> second_price
- Global supply missing/invalid -> 1
- Missing reserve_price (global/good) -> 0.0
- All fixes logged as suggestions

6) Return report; program contains applied defaults where safe

D BACKEND SELECTION

Heuristic (implemented in MarketCompiler)

• Pure matching or simple Phase-1 auctions → Pandas (NetworkX for matching).
• Multi-stage without optimization features → Pandas + Prefect orchestration.
• Combinatorial auctions or constraints/objectives → CVXPY optimization.

Mapping

IR features Selected backend

auction only, valuations, simple rules Pandas
matching (bipartite/stable) Pandas + NetworkX
stage flow (no constraints/objectives) Pandas + Prefect
constraints/objectives present CVXPY
combinatorial auction CVXPY

E DATASET GENERATION PIPELINE

Overview

1. Sample a use case (914 total) and random market settings; assemble 4-shot prompt + grammar
(markdown + EBNF).

2. Generate (GPT-4o-mini) brief description + DSL.
3. Filter with 4-stage validation (Parser → Validator → Compiler → Execute); keep only programs

that pass all stages.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

4. Enhance description (GPT-4o-mini) by extracting all facts from DSL; replace description text
only.

5. Consistency check (GPT-4o): “YES/NO” whether description matches DSL; keep YES, drop
NO.

Prompt for data generation

You are an expert Market Mechanism DSL generator. I will provide you with:
- The grammar of the MarketMechanismDSL,
- A few example DSL programs,
- A target use case,
- And a set of market settings.

Your task is to generate a complete MarketMechanismDSL program that
fits the given scenario and settings. Strictly follow the provided
grammar and take inspiration from the examples. Use the canonical
constructs: participants([...]), goods([...]), valuations({ ... }),
and valid allocation_rule/payment_rule names. Do not invent syntax
not present in the grammar.

Please output your response in EXACTLY the following format and nothing else:

Description:

```markdown
1-3 sentences written from the user's perspective describing the market
```

DSL code:

```dsl
<your complete MarketMechanismDSL program here>
```

Inputs:

DSL Grammar:
```markdown
{grammar}
```

DSL Program Examples:
```dsl
{examples}
```

Use Case and Settings:
- Domain: {domain}
- Scenario: {scenario}
- Settings: {settings}

Prompt for description completion (from DSL)

You are a precise technical writer. Given a MarketMechanismDSL program,
write a COMPLETE, human-readable task description that includes ALL facts
present in the DSL (participants, goods, valuations, auction/matching type,
allocation/payment/matching rules, key settings). Do NOT hallucinate new
entities or numbers. Use clear, concise prose (4-8 sentences).

Output EXACTLY in this format:

Description:

```markdown
<concise but complete description, entirely derived from the DSL>
```

Inputs:

DSL Program:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

```dsl
{dsl_code}
```

Optional Examples (style guide only):
```markdown
{examples}
```

F COMPLETENESS AGENT WORKFLOW

Node-by-node extraction Given a natural-language description, the agent queries nodes in order
and marks each as Enough/Not Enough:

1. Auction (type, participants, goods, valuations, rules).

2. Global settings (currency, supply, reserve_price).

3. Stages (name, auction, optional reauction).

4. Matching (type, participants, compatibility_graph, rule).

5. Constraints (simple/parameterized).

6. Objectives (list).

If Not Enough, it asks for the missing facts before proceeding. Finally it merges fragments into a
normalized schema and renders minimal DSL.

G END-TO-END EXAMPLE (SIMPLE AUCTION)

G.1 NATURAL LANGUAGE INPUT

Step 1: Natural Language

"Create a second-price auction for three participants competing for an advertising slot.
Alice values the slot at $100, Bob at $80,
and Carol at $90. Use highest bidder wins allocation."

G.2 COPILOT GENERATION (NL → DSL)

Step 2: Generated DSL

market {
auction {
type("second_price")
participants(["Alice", "Bob", "Carol"])
goods(["AdSlot"])
valuations({

"Alice": {"AdSlot": 100},
"Bob": {"AdSlot": 80},
"Carol": {"AdSlot": 90}

})
allocation_rule("highest_bid")
payment_rule("second_price")

}
}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

G.3 PARSER (DSL → PARSE TREE)

Step 3: Lark Parse Tree (excerpt)

program
statement
auction_block

auction_element
auction_type_decl
string_literal: "second_price"

auction_element
participants_decl
string_literal_list

string_literal: "Alice"
string_literal: "Bob"
string_literal: "Carol"

...

G.4 TRANSFORMER (PARSE TREE → IR)

Step 4: Intermediate Representation (MarketProgram)

MarketProgram(
goods=[Good(name="AdSlot")],
bidders=[Bidder(name="Alice"), Bidder(name="Bob"), Bidder(name="Carol")],
auctions=[Auction(
auction_type="second_price",
participants=["Alice","Bob","Carol"],
goods=["AdSlot"],
valuations={"Alice":{"AdSlot":100},"Bob":{"AdSlot":80},"Carol":{"AdSlot":90}},
allocation_rule="highest_bid",
payment_rule="second_price"

)],
assignments=[], global_settings=None, stages=[],
matching=None, constraints=[], objectives=[]

)

G.5 VALIDATION (IR SEMANTIC CHECK)

Step 5: Validation

program.validate_comprehensive() successful
- All participants referenced in valuations
- All goods have valid valuations
- Auction type and payment rule compatible
- Unique participant and good names verified

G.6 COMPILATION AND BACKEND SELECTION

Step 6: Compiler Analysis

Analyzing DSL features...
- Single auction block detected
- No constraints or objectives
- No multi-stage features
- No matching markets

Backend Selected: Pandas
Reasoning: Simple auction, simulation-based approach sufficient

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

G.7 EXECUTION (GENERATED CODE EXCERPT)

Step 7: Pandas Backend Code (excerpt)

Allocation: highest_bid rule
allocations = {}
for good in goods:

good_bids = bids_df[bids_df['good'] == good].copy()
if not good_bids.empty:

winner = good_bids.loc[good_bids['valuation'].idxmax()]
allocations[good] = winner['participant']

Payment: second_price rule
payments = {}
for good, winner in allocations.items():

good_bids = bids_df[bids_df['good'] == good].copy()
sorted_bids = good_bids.sort_values('valuation', ascending=False)
if len(sorted_bids) >= 2:

second_highest = sorted_bids.iloc[1]['valuation']
payments[winner] = payments.get(winner, 0) + second_highest

else:
payments[winner] = payments.get(winner, 0) + sorted_bids.iloc[0]['valuation']

G.8 RESULTS

Step 8: Console Output

=== AUCTION RESULTS ===
Allocations:

AdSlot: Alice
Payments:

Alice: $90
Artifacts:

- auction_results.csv

19

	Introduction
	Related Work
	Method
	Market Interpretation DSL
	Intermediate Representation (IR) and Validation
	Two-Backend Code Generation
	Dataset Generation
	Human Audit Protocol

	Completeness Agent
	Copilot Finetuning

	Experiments
	DSL Workflow Evaluation
	Methodology and Benchmark Tasks
	Results and Analysis

	Copilot Generation Evaluation
	Experimental Setup
	Evaluation Pipeline and Metrics
	Results and Discussion

	Ablation Studies
	Conclusion and Future Work
	Market Interpretation DSL Components
	Formal Grammar (EBNF)
	Validation
	Backend Selection
	Dataset Generation Pipeline
	Completeness Agent Workflow
	End-to-End Example (Simple Auction)
	Natural Language Input
	Copilot Generation (NL → DSL)
	Parser (DSL → Parse Tree)
	Transformer (Parse Tree → IR)
	Validation (IR Semantic Check)
	Compilation and Backend Selection
	Execution (Generated Code Excerpt)
	Results

