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Abstract

In Retrieval-Augmented Generation (RAG), re-001
trieval is not always helpful and applying it002
to every instruction is sub-optimal. Therefore,003
determining whether to retrieve is crucial for004
RAG, which is usually referred to as Active005
Retrieval. However, existing active retrieval006
methods face two challenges: 1. They usually007
rely on a single criterion, which struggles with008
handling various types of instructions. 2. They009
depend on specialized and highly differentiated010
procedures, and thus combining them makes011
the RAG system more complicated and leads to012
higher response latency. To address these chal-013
lenges, we propose Unified Active Retrieval014
(UAR). UAR contains four orthogonal crite-015
ria and casts them into plug-and-play classifi-016
cation tasks, which achieves multifaceted re-017
trieval timing judgements with negligible extra018
inference cost. We further introduce the Uni-019
fied Active Retrieval Criteria (UAR-Criteria),020
designed to process diverse active retrieval sce-021
narios through a standardized procedure. Ex-022
periments on four representative types of user023
instructions show that UAR significantly out-024
performs existing work on the retrieval timing025
judgement and the performance of downstream026
tasks, which shows the effectiveness of UAR027
and its helpfulness to downstream tasks.028

1 Introduction029

With the rapid development of large language mod-030

els (LLMs) (Brown et al., 2020; Touvron et al.,031

2023; Zeng et al., 2023; Yang et al., 2023; Cai032

et al., 2024; Bai et al., 2023), AI assistants based on033

LLMs become unbiquitous and show remarkable034

abilities on various types of instructions, e.g., cod-035

ing, writing and reasoning (OpenAI, 2022; Taori036

et al., 2023; Chiang et al., 2023; Sun et al., 2024;037

OpenAI, 2023; Anthropic, 2023; Anil et al., 2023).038

However, LLMs often generate fabricated and non-039

factual information (Lin et al., 2022b; Wang et al.,040

2023a), which is called “hallucination” and makes041

InstructionType
Could you help me research this question?The user wants to

use retrieval Retrieve information first, and then answer.

Write a rap about staying positive.Doesn’t require
factual knowledge Write a few lines of an original poem.

Who is the CEO of Google?Facts change over 
time Who is the current Prime Minister of Japan?

Where is the capital of the United States?Facts do not 
change & The
model knows Who is the author of Harry Potter?

What is the name for the lump in a human throat?Facts do not 
change & Model
does not know In which country was Michael J. Fox born?

Figure 1: Different types of user instructions, which can
not be handled by single active retrieval criteria.

LLMs’ responses not trustworthy in real-world sce- 042

narios. 043

Retrieval-Augmented Generation (RAG) is a 044

prevailing approach to address LLM’s hallucina- 045

tion (Guu et al., 2020; Gao et al., 2024). Given a 046

user query, it usually first retrieves relevant docu- 047

ments and then uses them to augment the LLM’s 048

factual correctness. However, retrieval is not al- 049

ways helpful and applying it to every instruction is 050

sub-optimal. When faced with instructions that do 051

not require external knowledge, RAG can impair 052

the creativity and versatility of LLMs (Asai et al., 053

2023). 054

If irrelevant knowledge is retrieved, it will hin- 055

der the LLM from utilizing its internal knowledge 056

effectively and make it produce low-quality re- 057

sponses (Shi et al., 2023; Yoran et al., 2023). Mean- 058

while, compared with only LLM, RAG involves an 059

additional retrieval process and the longer LLM 060

input, resulting in significantly longer response la- 061

tency. Therefore, applying RAG for all instructions 062

is sub-optimal and unnecessary, and determining 063

the correct timing for retrieval is crucial for LLMs’ 064

real-world application, which is often reftered to 065

as Active Retrieval (Jiang et al., 2023; Asai et al., 066

2023). 067

In general, there are two lines of active retrieval 068

methods. One is the “knowledge-aware” method, 069
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UAR
(our work)

FLARE
(Jiang et al., 2023)

Self-RAG
(Asai et al., 2023)

SKR
(Wang et al., 2023b)

Intent Awareness? ✓ ✗ ✗ ✗
Knowledge Awareness? ✓ ✗ ✓ ✗
Time Awareness? ✓ ✗ ✗ ✗
Self Awareness? ✓ ✓ ✗ ✓

Table 1: Comparison of UAR to other active retrieval methods. Exciting methods only consider a single active
retrieval criterion, while UAR unifies four orthogonal criteria and can handle various types of user instructions.

based on the instruction’s factual relevance, e.g.,070

Self-RAG (Asai et al., 2023). If the instruction071

requires factual information, the retrieval will be072

triggered. Another line of work is the “self-aware”073

method, based on the LLM’s self awareness (Wang074

et al., 2023b). The retrieval is only triggered when075

the LLM thinks that it does not know the answer,076

i.e., when it is uncertain. In this way, the retrieval077

can supplement knowledge for the LLM when nec-078

essary and avoid unnecessary retrieval cost. Al-079

though these methods can determine retrieval tim-080

ing for specialized scenarios, they still face two081

challenges: 1. Previous work usually relies on a082

single criterion, which struggles with diverse sce-083

narios. For instance, the self-aware method (Wang084

et al., 2023b; Liu et al., 2024; Ding et al., 2024)085

struggles with various instructions such as time-086

sensitive queries or those with user’s explicit re-087

trieval intent. For time-sensitive questions, it is088

challenging for a static LLM to judge whether089

it possesses the correct knowledge for a rapidly090

changing answer. Additionally, these methods of-091

ten overlook user’s intent in real-world scenarios,092

such as when a user seeks a verifiable answer that093

requires external information sources, necessitating094

retrieval. Therefore, correctly determining whether095

to retrieve requires multifaceted decision-making.096

2. Existing methods rely on specialized procedures,097

complicating the integration within the RAG sys-098

tem and increasing computational load. For exam-099

ple, FLARE (Jiang et al., 2023) uses the confidence100

of generation and Rowen (Ding et al., 2024) re-101

lies on response divergence for the same question.102

These highly differentiated approaches are difficult103

to unify, making it very difficult to extend them to104

new scenarios.105

To address these challenges, we propose Unified106

Active Retrieval (UAR), a unified and comprehen-107

sive framework for judging whether to retrieve for108

various types of user instructions. UAR consists109

of various orthogonal criteria of retrieval timing110

and casts them into unified classification tasks, and111

thus can judge the LLM’s retrieval timing both112

comprehensively and efficiently. Specifically, UAR 113

consists of four orthogonal criteria for determin- 114

ing the retrieval timing: 1) Intent-aware: whether 115

the user desires retrieval / external information; 116

2) Knowledge-aware: whether the question re- 117

quires fact knowledge; 3) Time-Sensitive-aware: 118

whether the question is time-sensitive; 4) Self- 119

aware: whether the LLM has the internal knowl- 120

edge. As shown in Table 1, compared with previ- 121

ous methods of single criterion (Jiang et al., 2023; 122

Wang et al., 2023b; Asai et al., 2023), UAR can 123

comprehensively handle various types of user in- 124

structions and call retrieval accurately consider- 125

ing multiple active retrieval criteria. To efficiently 126

achieve judgements of multiple criteria, UAR uni- 127

fies each criterion’s judgement into binary classifi- 128

cation tasks using lightweight classifiers. For each 129

criterion ci, we train a plug-and-play binary clas- 130

sifier on the last layer’s hidden states of a fixed 131

LLM, to judge whether the input requires retrieval 132

according to ci. In this way, UAR does not change 133

LLMs’ parameters, avoiding the costly LLM fine- 134

tuning and performance degradation (Yang et al., 135

2024). Meanwhile, the classifiers and LLM gener- 136

ation share the same input encoding, which makes 137

UAR only need to encode the input once and thus 138

achieves multifaceted retrieval timing judgements 139

with negligible extra inference cost. 140

To handle various instructions in an unified pro- 141

cedure, we further propose Unified Active Retrieval 142

Criteria (UAR-Criteria), which specifies priorities 143

for multiple retrieval criteria and unifies them into a 144

single multifaceted decision tree. As shown in Fig- 145

ure 2, UAR-Criteria can trigger retrieval for time- 146

sensitive or LLM-unknown instructions, which 147

facilitates necessary external information supple- 148

ment. Meanwhile, UAR-Criteria cancels retrieval 149

for those non-knowledge-intensive or LLM-known 150

instructions, which avoids the negative effect of un- 151

necessary retrieval. In this way, UAR-Criteria uni- 152

fies the process to comprehensively decide whether 153

to retrieval for various types of user instructions, 154

which facilitates more effective RAG. 155
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Experiments on four representative types of user156

instructions show that UAR significantly outper-157

forms existing work on the retrieval timing judge-158

ment accuracy and the performance of downstream159

tasks, which verifies the effectiveness of UAR and160

its helpfulness to downstream tasks. We summarize161

our contributions as follows:162

• We propose an active retrieval framework163

named Unified Active Retrieval (UAR) for164

Retrieval-Augmented Generation (RAG). To165

the best of our knowledge, UAR is the first166

work to propose multifaceted criteria for ac-167

tive retrieval and demonstrate its necessity.168

• We curate the Active Retrieval benchmark169

(AR-Bench) for evaluating the accuracy of170

retrieval timing and conduct comprehensive171

experiments on AR-Bench and downstream172

tasks. The results show that UAR significantly173

outperforms existing work and achieves more174

efficient RAG.175

• We release the code, data, models and relevant176

resources to facilitate future research.177

2 Related Work178

2.1 Active Retrieval179

Compared to applying retrieval for every instruc-180

tion (passive retrieval), active retrieval has ad-181

vantages such as not hurting the versatility of182

the model, reducing the number of retrievals,183

and preventing interference from low-quality re-184

trieval results. Self-RAG (Asai et al., 2023) con-185

struct active retrieval data using GPT-4 and teach186

the model to not retrieve when encounter non-187

knowledge-intensive instructions. FLARE (Jiang188

et al., 2023) proposes forward-looking active re-189

trieval augmented generation based on model’s190

confidence, only retrieving information when the191

model’s uncertainty for the prediction is high. SKR192

(Wang et al., 2023b), RA-ISF (Liu et al., 2024)193

and Self-DC (Wang et al., 2024) first determines194

whether the model knows the questions and then195

retrieves only when the model does not know. How-196

ever, current active retrieval methods mostly con-197

sider only a single scenario and are unable to adapt198

to complex situations in real-world applications.199

2.2 Time-awareness of LLMs200

There are some papers focus on the time awareness201

of large language models. Chen et al. (2021) con-202

struct a time-sensitive QA dataset called TimeQA203

to evaluate the model’s ability to handle tempo- 204

ral questions. Fierro et al. (2024) create a bench- 205

mark named MULAN for evaluating the ability of 206

language models to predict mutable facts. They 207

find representations classification can distinct im- 208

mutable and mutable facts, which means language 209

models have a certain degree of temporal aware- 210

ness. Zhao et al. (2024) investigate whether lan- 211

guage models can align their internal knowledge 212

to a target year. They construct a dataset which 213

contains time-sensitive questions. 214

2.3 Self-awareness of LLMs 215

Self-awareness means that large language model 216

can be aware of what they know and what they 217

don’t know. Kadavath et al. (2022) find that lan- 218

guage models can be well-calibrated when using a 219

multiple-choice template. And they also finetune 220

a value head to predict whether language models 221

know the answer to the given question. Lin et al. 222

(2022a) finetune GPT-3 to express uncertainty in 223

words on math questions. Yin et al. (2023) collect 224

some unanswerable questions to evaluate whether 225

language models can express uncertainty to these 226

unanswerable questions. Zhang et al. (2023) utilize 227

supervised fine-tune to teach large language models 228

to refuse questions which beyond their knowledge 229

scope. Cheng et al. (2024) explore more align- 230

ment methods beyond supervised fine-tuning to 231

teach language models know and express what they 232

don’t know, like preference optimization. Results 233

of previous work show that we can enhance lan- 234

guage models’ self-awareness with corresponding 235

dataset. 236

3 Methodology 237

UAR is a plug-and-play active retrieval framework. 238

As shown in Figure 2, we fix the parameters of 239

the LLM and train a lightweight classifier for each 240

active retrieval criteria using the model’s hidden 241

states, which is far more efficient than fine-tuning 242

the entire model. Besides, UAR determines the 243

need for active retrieval following the UAR-Criteria 244

shown on the right side of Figure 2, invoking re- 245

trieval when necessary and avoiding unnecessary 246

across various scenarios, making RAG more ef- 247

fective and efficient. For instructions requiring 248

retrieval, we append the retrieved documents to the 249

original instruction, which means that UAR does 250

not introduce extra LLM inference cost. We in- 251

troduce the details of our UAR framework in the 252

following sections. 253
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AI Assistant

User Instruction

Generation
with Retrieved
information

Generation
with Internal
knowledge

Intent-aware
Classifier

Knowledge-
aware Classifier

Time-aware
Classifier

Self-aware
Classifier

Retrieve

Not Retrieve

Retrieve

Not Retrieve Retrieve

MLP1 MLP2 MLP3 MLP4

Need Retrieval: Yes Need Retrieval:No

Inference with UAR CriteriaUnified Active Retrieval

T1 T2 T3 T4 T5 … Tn

H1 H2 H3 H4 H5 …

Tokenization

Hn

Figure 2: Overview of the UAR framework. indicates that we freeze these parameters. indicates that we
update these parameters. Each MLP is a fully connected layer, with an input dimension equal to the model’s hidden
state dimension and an output dimension of 2.

3.1 UAR Classifiers Training254

We construct distinct training data tailored to each255

scenario.256

Self-aware In the self-aware scenario, the model257

must determine if it knows the answer to a given258

question. Following the methodology in Cheng259

et al. (2024), we create model-specific IDK (I don’t260

know) datasets. For example, with the Llama2-7B-261

chat model, we use the TriviaQA (Joshi et al., 2017)262

dataset, sampling ten responses for each question.263

If all responses are correct, the question is marked264

as known; otherwise, it is unknown. 10% of the265

TriviaQA training set is used for validation, with266

the rest designated as the training set.267

Time-aware In the time-aware scenario, it is268

critical to determine if a user’s question is time-269

sensitive, meaning the answer changes over time.270

We utilize questions from TAQA’s (Zhao et al.,271

2024) training and validation sets as time-sensitive272

questions. In contrast, we sample an equivalent273

number of questions from the TriviaQA training274

set to represent non-time-sensitive questions, which275

typically have static answers.276

Knowledge-aware In the knowledge-aware sce-277

nario, identifying whether a user’s instruction re-278

quires factual knowledge is essential. We use non-279

retrieval instruct-following data from the Self-RAG280

(Asai et al., 2023) training set, which GPT-4 classi-281

fies as non-knowledge-intensive. We select 2,000282

entries for our validation set and 22,801 for train-283

ing. Additionally, we incorporate all entries from 284

our time-aware data’s training and validation sets 285

as knowledge-intensive instructions to complete 286

the final knowledge-aware training and validation 287

sets. 288

Intent-aware In the intent-aware scenario, it’s 289

crucial to identify users’ intentions to use retrieval- 290

augmented generation. Due to a lack of data with 291

explicit retrieval intentions, we use Self-Instruct 292

(Wang et al., 2023c) to generate 3,000 user intents 293

from ten handwritten intents. We allocate 2,000 294

for training, 500 for validation, and 500 for testing. 295

We assemble user queries by sampling 52,949 en- 296

tries from Self-RAG’s non-retrieval-required data, 297

and factual knowledge questions from TAQA and 298

TriviaQA for the training set, with an additional 299

5,000 for validation. We integrate half of these data 300

with user retrieval intents, alternating the position 301

of intents before and after user inputs, to create 302

inputs with retrieval intents. The remaining data 303

are used as inputs without retrieval intents. 304

For each scenario, we train a single-layer MLP 305

as the classifier, using the hidden states from the 306

last token in the input as the input to the classifica- 307

tion head. In this way, UAR can achieve various 308

criteria’s judgements with negligible extra com- 309

putational cost. We include details of classifiers’ 310

training in Appendix E. 311

3.2 UAR Criteria 312

We further propose UAR-Criteria to unify the 313

judgements of different types of user instructions 314
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in to one unified procedure. During the inference315

stage, UAR sequentially utilizes four classifiers316

according to different priorities to determine the317

correct timing for retrieval calls, and we introduce318

its details as follows.319

Initially, UAR checks whether the user in-320

tends to use retrieval augmentation. If so, re-321

trieval is triggered. If not, UAR evaluates322

whether the input is knowledge-intensive. For non-323

knowledge-intensive tasks, retrieval is not used.324

For knowledge-intensive tasks, UAR further as-325

sesses whether the knowledge is time-sensitive.326

Retrieval is necessary for time-sensitive questions.327

For non-time-sensitive, knowledge-intensive tasks,328

UAR checks whether the model already has the329

relevant knowledge, activating retrieval only for330

unfamiliar questions. In this way, UAR can han-331

dle various types of instructions. Specifically,332

UAR-Criteria activates retrieval for instructions333

that are time-sensitive, unknown to the model, and334

have explicit retrieval intent, which facilitates nec-335

essary external information supplement. Mean-336

while, UAR-Criteria cancels retrieval for those non-337

knowledge-intensive or LLM-known instructions,338

which avoids the negative effect of unnecessary re-339

trieval. Meanwhile, since UAR achieves the judge-340

ment of multifaceted criteria by linear classifiers,341

the introduced extra computational cost is negligi-342

ble.343

3.3 Generation with Relevant Information344

For instructions requiring retrieval augmentation,345

we append the retrieved external information with346

a RAG template to the original user input. Since347

most of the prevailing LLMs are based on the348

decoder-only architecture (Brown et al., 2020),349

UAR can avoid the need to recompute the original350

instruction. The retriever might fetch information351

irrelevant to the question, our prompt instructs the352

model to utilize only the information relevant to353

the question. This approach helps prevent irrele-354

vant information from misleading the model. An355

example of our RAG prompt is as follows:356

{question}357
Here are some additional reference passages:358
{reference passages}359
You can refer to the content of relevant360
reference passages to answer the questions.361
Now give me the answer.362

For instructions that do not require retrieval, we363

allow the model to generate outputs in its original364

format.365

4 Experiments 366

4.1 Benchmarking Retrieval Timing 367

We curate an Active Retrieval Benchmark (AR- 368

Bench) to evaluate the accuracy of various active 369

retrieval methods in determining the timing of re- 370

trieval. The AR-Bench includes four sub-tasks: 371

intent-aware, knowledge-aware, time-aware and 372

self-aware, covering all the active retrieval scenar- 373

ios mentioned in this paper. Each sub-task is a bi- 374

nary classification task comprising 8,000 samples, 375

with a 1:1 ratio of positive to negative examples, 376

and these samples do not overlap with the train- 377

ing data of UAR. These four sub-tasks separately 378

evaluate one single active retrieval criterion and we 379

control variables to ensure that each task’s retrieval 380

decision solely depends on one single criterion. We 381

introduce details of AR-Bench construction in Ap- 382

pendix A. 383

4.2 Downstream Tasks 384

We select six datasets to test UAR’s performance 385

in real downstream tasks and its adaptability to 386

different active retrieval scenarios. Since the intent- 387

aware judgement focuses on satisfying users’ re- 388

trieval intent, which is not reflected on the objec- 389

tive downstream performance, the selected datasets 390

cover the remaining three scenarios: knowledge- 391

aware, time-aware, and self-aware. For knowledge- 392

aware scenario, we use DROP (Dua et al., 2019) 393

and (Cobbe et al., 2021). For time-aware scenario, 394

we use TAQA (Zhao et al., 2024) and FreshQA 395

(Vu et al., 2023). For self-aware scenario, we use 396

TriviaQA (Joshi et al., 2017) and WebQuestions 397

(WQ) (Berant et al., 2013). We provide a detailed 398

introduction to these datasets in Appendix F. In 399

these six datasets, we only use the training sets 400

of TriviaQA anf TAQA for UAR’s training, and 401

thus the remaining evaluation dataset can reflect 402

the UAR’s out-of-distribution (OOD) performance, 403

which can further verify the effectiveness of UAR 404

in complicated real-world scenarios. 405

4.3 Baselines 406

We choose three active retrieval methods as our 407

baseline methods: FLARE (Jiang et al., 2023), Self- 408

RAG (Asai et al., 2023), and SKR (Wang et al., 409

2023b), covering two main active retrieval criteria. 410

FLARE determines whether external retrieval is 411

needed by assessing the model’s uncertainty about 412

the generated responses. SKR first collects model’s 413

self-knowledge (knowns and unknowns) data, then 414
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Scenario Intent-aware Knowledge-aware Time-aware Self-aware Overall

7B Models

FLARE 61.95 56.76 53.69 53.59 56.50
Self-RAG† 64.26 72.82 47.45 55.95 60.12
SKR 58.73 42.94 76.61 70.28 62.14

UAR 91.88 90.38 86.69 72.32 85.32

13B Models

FLARE 65.49 53.54 55.20 54.61 57.21
Self-RAG† 67.80 64.85 54.44 52.49 59.89
SKR 59.00 43.18 79.91 68.70 62.70

UAR 92.49 91.04 87.94 73.84 86.33

Table 2: Comparisons of active retrieval accuracy on our active retrieval benchmark (AR-Bench). †: Self-RAG is
fine-tuned from Llama2-base models. Other methods are based on Llama2-chat models.

trains a BERT-based (Devlin et al., 2019) classi-415

fier to determine whether the model knows a cer-416

tain question. For questions the model does not417

know, retrieval augmentation is used. Self-RAG418

gathers a large amount of knowledge-intensive and419

instruction-following data (no fact knowledge re-420

quired), then trains the pre-trained model to only421

use retrieval augmentation for knowledge-intensive422

tasks. For downstream tasks, we also include gen-423

eration with never-retrieval and always-retrieval as424

baseline methods. The original SKR and FLARE425

are not based on Llama2, so we re-implement these426

methods on the Llama2 model. The details of our427

re-implementation are provided in Appendix B.428

4.4 Retrievers429

For time-sensitive datasets TAQA and FreshQA,430

we follow the settings in FreshQA Vu et al. (2023)431

and use Google Search. For other datasets, follow-432

ing the settings in Self-RAG, we use off-the-shelf433

Contriever-MS MARCO (Izacard et al., 2022) and434

retrieve up to ten documents for each input. Dur-435

ing generation, we use the top five retrieved docu-436

ments. For other datasets, following the settings in437

Self-RAG, we adopt off-the-shelf Contriever-MS438

MARCO (Izacard et al., 2022) and use the top-5439

documents.440

4.5 Evaluation Metrics441

Following previous work (Asai et al., 2023; Mallen442

et al., 2023; Schick et al., 2023), we check whether443

gold answers are included in model’s generations444

to evaluate performance on the DROP, TriviaQA,445

and WQ datasets, instead of strictly requiring exact446

matching. For GSM8K, we use the prompts for447

answer extraction in Kojima et al. (2022) to extract448

model’s answers and then use exact matching to cal-449

culate the accuracy. For TAQA and FreshQA, since450

the golden answers are too long to conduct lexical 451

matching, we use ChatGPT to evaluate whether 452

the model’s answers are correct. Details of Chat- 453

GPT evaluation are included in Appendix C. For 454

AR-Bench, we use accuracy as the metric. Since 455

AR-Bench is a binary classification task with an 456

equal number of positive and negative samples, ac- 457

curacy and micro F1 score are equivalent. 458

4.6 Comparisons on AR-Bench 459

We show the results in Table 2. We observe that 460

UAR outperforms existing active retrieval methods 461

across all AR-Bench scenarios, demonstrating its 462

versatility and effectiveness. Since baseline meth- 463

ods depend on a single criterion, they struggle with 464

various active retrieval scenarios, which demon- 465

strates the limitation of single criterion and the ne- 466

cessity of multifaceted decision for active retrieval. 467

Additionally, we find FLARE struggle with self- 468

aware scenario, which it is targeted at. We think 469

it is because its uncertainty estimation heavily de- 470

pends on model calibration and this leads to its 471

poor performance on less calibrated models like 472

chat models (He et al., 2023) or those with fewer pa- 473

rameters. Self-RAG uses the knowledge-intensive 474

nature of tasks as the retrieval criterion, performing 475

well in knowledge-aware scenarios but poorly in 476

others. SKR bases retrieval on the model’s knowl- 477

edge of an answer, excelling in self-aware and time- 478

aware scenarios but failing in others. Additionally, 479

since SKR uses BERT as the classifier, whose inter- 480

nal knowledge has a significant gap with Llama, it 481

underperforms UAR with value heads based on the 482

Llama’s representation, in the self-aware scenario. 483

4.7 Comparisons on Downstream Tasks 484

For Self-RAG, we use inference scripts provided by 485

the authors. For FLARE, SKR, UAR, and always- 486
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Dataset Drop GSM8K TriviaQA WQ TAQA FreshQA Overall

7B Models

Never-Ret 57.67(0%) 26.91(0%) 62.15(0%) 59.79(0%) 16.43(0%) 35.64(0%) 43.10
Always-Ret 49.57(100%) 23.65(100%) 68.73(100%) 53.99(100%) 34.49(100%) 65.35(100%) 49.23

Active Retrieval

Self-RAG† 39.17(5.7%) 16.07(4.9%) 61.68(53.5%) 43.01(61.9%) 11.09(42.1%) 44.88(51.2%) 35.98
SKR 53.00(61.4%) 26.38(35.3%) 65.39(48.9%) 58.96(26.8%) 30.63(79.9%) 48.84(39.3%) 47.17
FLARE 56.98(9.6%) 26.76(45.8%) 65.98(58.8%) 55.46(67.9%) 28.08(63.5%) 57.76(57.4%) 48.50
UAR 52.55(49.7%) 26.91(0.1%) 69.02(50.1%) 60.53(25.0%) 34.46(99.7%) 59.74(78.5%) 50.49

13B Models

Never-Ret 58.76(0%) 40.64(0%) 63.18(0%) 57.63(0%) 11.14(0%) 34.98 (0%) 44.39
Always-Ret 54.16(100%) 37.68(100%) 71.02(100%) 54.08(100%) 34.20(100%) 62.05(100%) 52.09

Active Retrieval

Self-RAG† 44.68(0.1%) 21.00(0.0%) 62.53(30.0%) 42.37(51.9%) 15.42(37.0%) 39.60(39.3%) 37.60
SKR 56.58(50.9%) 39.35(27.6%) 67.21(49.2%) 56.20(31.5%) 31.66(89.2%) 50.17(45.9%) 50.16
FLARE 58.12(17.5%) 38.05(61.2%) 68.00(54.9%) 53.64(69.6%) 25.40(60.9%) 50.17(55.8%) 48.90
UAR 58.55(3.7%) 40.64(0.0%) 71.71(48.5%) 59.20(31.2%) 34.14(99.6%) 55.45 (73.3%) 53.26

Table 3: Comparisons of downstream tasks performance. Never-Ret means that retrieval augmentation is never used
during generation, while Always-Ret means that retrieval augmentation is used in every generation. †: Self-RAG is
fine-tuned from Llama2-base models. Other methods are based on Llama2-chat models.

retrieval methods, we use the same prompts to gen-487

erate responses by incorporating the retrieved in-488

formation. We introduce the details of generation489

in Appendix D.490

The results are shown in Table 3. We see that491

UAR leads to the best overall performance across492

different downstream task scenarios, which indi-493

cates its effectiveness. We analyze each scenario494

as follows.495

UAR does not invoke retrieval when factual496

knowledge is not needed. The DROP and497

GSM8K dataset do not require fact knowledge, and498

using retrieval enhancement will interfere with the499

model. The results of always-retrieval are worse500

than never-retrieval. UAR only invokes a small501

amount of retrieval, while SKR and FLARE in-502

correctly invoke retrieval extensively. And since503

UAR avoid unnecessary retrieval1 and thus pre-504

vents affecting the original capabilities of the LLM,505

it achieves the best results among all active retrieval506

methods on DROP and GSM8K, coming close to507

the results of never-retrieval. Although Self-RAG508

does not incorrectly invoke retrieval, its final per-509

formance is not very good because it is fine-tuned510

based on the base model rather than leveraging the511

capabilities of the chat model.512

1UAR based on the 7B model incorrectly invokes retrieval
50% of the time on the DROP dataset. We speculate that
this may be due to the limited representation capacity of the
7B model’s hidden states. In contrast, the 13B model only
incorrectly invokes retrieval 3.7% of the time.

UAR accurately invokes retrieval for time- 513

sensitive questions. Since the questions in 514

TAQA and FreshQA are time-sensitive and their 515

answers keep changing, each question requires the 516

retrieval of the latest information. It is evident 517

that the always-retrieval method based on Google 518

Search performs significantly better than the never- 519

retrieval method. For TAQA, UAR almost perfectly 520

invokes retrieval. For FreshQA, UAR also invokes 521

retrieval for most of the questions. In contrast, 522

other methods invoke retrieval less frequently and 523

therefore do not use the latest information for re- 524

sponses, resulting in lower accuracy compared to 525

UAR. 526

UAR accurately assesses the model’s knowledge, 527

avoiding poor retrieval impacts. For questions 528

in TriviaQA and WQ whose answers do not change 529

over time, always-retrieval is sub-optimal and the 530

reason is two-fold: 1. For questions which model 531

knows, retrieval increases unnecessary latency. 2. 532

Potential incorrect external information will inter- 533

fere correct internal knowledge. Retrieving infor- 534

mation only for knowledge that the model does not 535

know can mitigate this issue. Compared to SKR, 536

UAR can more accurately determine whether the 537

model knows a particular piece of knowledge. Al- 538

though SKR and UAR use a comparable number 539

of retrieval calls, the accuracy of SKR’s answers 540

is lower than that of UAR, indicating that SKR’s 541

retrieval calls are less precise than UAR’s. We 542

7



believe this is because SKR uses independent mod-543

els, whereas our approach uses hidden states of the544

original model, resulting in better generalization.545

Moreover, UAR outperforms always-retrieval with546

fewer retrieval calls, demonstrating the superiority547

of the Active Retrieval method.548

5 Analysis549

5.1 Single Classifiers vs UAR550

Scenario Single Classifier UAR

Intent-aware 98.29 91.88
Knowledge-aware 99.66 90.38
Time-aware 99.41 86.69
Self-aware 72.56 72.32

Table 4: Comparison between single classifiers and
UAR based on Llama2-7B-chat.

Different scenarios have varying levels of dis-551

crimination difficulty. As shown in Table 4, the552

single classifier for the self-aware scenario has the553

lowest accuracy, which implies that determining554

whether the model is self-aware is a relatively chal-555

lenging task. We can also observe that the accuracy556

of each single classifier is higher than UAR in their557

respective scenarios. The self-aware classifier may558

become the bottleneck restricting the performance559

of UAR, which also results in the accuracy of UAR560

on the AR-Bench being lower than the accuracy of561

using a single classifier alone.562

5.2 Using the Whole LLM as Classifier563

Self-aware Only Value Head Whole LLM

Llama2-7B-chat 72.56 75.65
Llama2-13B-chat 73.48 76.28

Table 5: Comparison of the performance between train-
ing a value head as the classifier and training a entire
large language model as the classifier.

To improve the performance bottleneck of the564

self-aware classifier, we attempt to fine-tune the565

entire large language model as the classifier. From566

the results in Table 5, we can observe that on both567

7B and 13B models, fine-tuning the entire model568

only achieves slight higher accuracy compared to569

just fine-tuning a lightweight value head. Using a570

whole LLM as the classifier, UAR’s inference la-571

tency and required parameters will significantly in-572

crease. Therefore, we use lightweight value heads573

as classifiers, ensuring the efficiency of the entire574

framework with minimal performance loss.575
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Figure 3: The impact of the number of reference docu-
ments on model performance.

5.3 The Impact of Document Number 576

We evaluate performance on the TriviaQA (TQ) 577

and WebQuestions (WQ) datasets by varying the 578

number of reference documents from 1 to 10. The 579

results, shown in Figure 3, indicate that on the 580

WQ dataset, the always-retrieval method performs 581

worse than the never-retrieval method, possibly be- 582

cause some documents disrupt the correct knowl- 583

edge within the model. UAR reduces retrieval fre- 584

quency, enabling more precise retrieval calls and 585

outperforming the never-retrieval method. On the 586

TQ dataset, always-retrieval outperforms never- 587

retrieval, and performance improves with more 588

documents, suggesting useful information might 589

be in lower-ranked documents. UAR performs best 590

with fewer documents. With more documents, it 591

matches the performance of always-retrieval, al- 592

though it requires significantly fewer retrieval calls. 593

6 Conclusion 594

In this paper, we introduce UAR, a unified active 595

retrieval framework for retrieval-augmented gen- 596

eration. Unlike existing methods that rely on a 597

single criterion, UAR incorporates four orthogonal 598

criteria into plug-and-play classification tasks, en- 599

abling comprehensive retrieval timing judgments 600

with minimal inference cost and no loss of model 601

capabilities. We also introduce UAR-Criteria for 602

processing various active retrieval scenarios uni- 603

formly. We curate the Active Retrieval Benchmark 604

(AR-Bench) to assess the retrieval timing accuracy 605

of active retrieval methods across different scenar- 606

ios. Experimental results demonstrate that UAR 607

significantly outperforms existing methods on AR- 608

Bench and downstream tasks, highlighting its effec- 609

tiveness and benefits to downstream applications. 610
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Limitations611

We summarize limitations of our work as follows:612

• Our experiments primarily focus on the gen-613

eration of short texts, such as in knowledge-614

based question answering, and involve only a615

single retrieval call. How to implement mul-616

tiple active retrieval calls within longer text617

responses remains an area for future investiga-618

tion.619

• Our active retrieval criteria are primarily de-620

rived from our experience in practical appli-621

cations, which may overlook some active re-622

trieval scenarios.623

• Our classifier is based on a single-layer MLP624

network. Whether using a deeper network can625

further enhance performance remains to be626

explored.627
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A Details of AR-Bench Construction982

For the self-aware task, we employ the same983

method as described in Section 3.1 to construct test984

samples on the TriviaQA validation set. Questions985

the model does not know are marked as requiring986

retrieval. The test set comprise 4000 questions the987

model knows and 4000 questions it does not.988

For the time-aware task, we use 4000 time-989

sensitive questions from the TAQA test set as inputs990

requiring retrieval, and 4000 questions the model991

knows from the TriviaQA validation set as inputs992

not requiring retrieval.993

For the knowledge-aware task, we use 4000 sam-994

ples from the Self-RAG non-retrieval training data995

as inputs not requiring retrieval, and combine 2000996

time-sensitive questions from the TAQA test set997

with 2000 questions the model does not know from998

the TriviaQA validation set as inputs requiring re-999

trieval.1000

For the intent-aware task, we use 4000 questions1001

the model knows from the TriviaQA validation1002

set and 4000 instructions from the Self-RAG non- 1003

retrieval training data, half of which are concate- 1004

nated with user retrieval intents as inputs requiring 1005

retrieval, and the other half as inputs not requiring 1006

retrieval. 1007

It is important to note that the self-aware data for 1008

different models may vary, leading to different AR- 1009

Benches for different models. In our experiments, 1010

we curate two separate AR-Benches for Llama2- 1011

7B-chat and Llama2-13B-chat respectively. 1012

B Details of Baselines Re-implementation 1013

B.1 FLARE 1014

In implementing FLARE, we make two modifica- 1015

tions. First, we conduct experiments based on the 1016

Llama2-chat series of models, rather than using 1017

text-davinci-003. Second, we eliminate the initial 1018

retrieval step in FLARE since our setting is active 1019

retrieval rather than passive retrieval. We find that 1020

FLARE based on Llama2 struggle to achieve sat- 1021

isfactory results, which we suspect may be due 1022

to poor calibration of the Llama2-7B-chat and 1023

Llama2-13B-chat models. The uncertainty estima- 1024

tion in FLARE heavily relies on model calibration, 1025

making it challenging to adapt to poorly calibrated 1026

models. Therefore, on the AR-Bench, we conduct 1027

a direct search for the best retrieval thresholds for 1028

FLARE, ultimately setting them at 0.006 and 0.02 1029

for the Llama2-7B-chat and Llama2-13B-chat mod- 1030

els, respectively. 1031

B.2 SKR 1032

Training Hyper-parameters

Optimizer AdamW
Warmup Steps 0
Learning Rate 2e-5
Batch Size 32
Train Epochs 5
LR Scheduler Linear
Max-seq-length 512

Table 6: Training hyper-parameters of SKR.

In implementing SKR, we first use the 849 origi- 1033

nal pieces of data provided by the authors of SKR 1034

and collect self-knowledge data for the Llama2-7B- 1035

chat model according to the scripts in SKR’s code 1036

repository. We obtain 15 questions that the model 1037

does not know and 143 questions that it knows, and 1038

find that these data are not sufficient to train an ef- 1039

fective BERT classifier. Therefore, we use the data 1040

from our training data of the self-aware classifier 1041
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to train the BERT classifier for SKR. Our training1042

hyper-parameters are shown in Table 6.1043

C ChatGPT Evaluation1044

We use gpt-3.5-turbo-instruct as the evaluator. Dur-1045

ing the evaluation, we input the correct answer and1046

the answer to be evaluated into gpt-3.5, and then1047

let the model compare the correct answer with the1048

answer to be evaluated to determine if the latter is1049

correct. Following Shao et al. (2023), we use the1050

following prompt for evaluation.1051

In the following task, you are given a Question,1052
a model Prediction for the Question, and a1053
Ground-truth Answer to the Question. You should1054
decide whether the model Prediction implies the1055
Ground-truth Answer.1056

1057
Question:1058
{question}1059

1060
Prediction:1061
{predicted answer}1062

1063
Ground-truth Answer:1064
{ground-truth answer}1065
Does the Prediction imply the Ground-truth1066
Answer? Output Yes or No:1067

D Details of Generation1068

D.1 Self-RAG1069

We use the inference script provided by the Self-1070

RAG authors for generation. We determine the1071

need for retrieval by whether the retrieval special to-1072

ken appears in the generated response. For datasets1073

using Contriever-MS MARCO as the retriever, we1074

provide all 10 documents retrieved to Self-RAG for1075

generation.1076

D.2 Generation without Retrieval1077

For the DROP dataset, we use the following1078

prompt:1079

Please answer the question based on the given1080
passage.1081
Passage: {passage in the dataset}1082
Question: {question}1083
Now give me the answer.1084

For the GSM8K dataset, we use the following1085

prompt:1086

Answer the math word question step by step. Your1087
answer needs to end with ’The answer is’.1088
Question: {question}1089
Let’s think step by step and give me the answer.1090

For other datasets, we directly input the question1091

to the model:1092

{question}1093

D.3 Generation with Retrieval 1094

For the DROP dataset, we use the following 1095

prompt: 1096

Please answer the question based on the given 1097
passage. 1098
Passage: {passage in the dataset} 1099
Question: {question} 1100

1101
Here are some additional reference passages: 1102
{retrieved documents} 1103

1104
You can refer to the content of relevant 1105
reference passages to answer the questions. 1106
Now give me the answer. 1107

For the GSM8K dataset, we use the following 1108

prompt: 1109

Answer the math word question step by step. Your 1110
answer needs to end with ’The answer is’ 1111
Question: {question} 1112

1113
Here are some additional reference passages: 1114
{retrieved documents} 1115

1116
You can refer to the content of relevant 1117
reference passages to answer the questions. 1118
Let’s think step by step and give me the answer. 1119

For other datasets, we use the following prompt: 1120

{question} 1121
1122

Here are some additional reference passages: 1123
{retrieved documents} 1124

1125
You can refer to the content of relevant 1126
reference passages to answer the questions. 1127
Now give me the answer. 1128

E Details of UAR Training 1129

When training the UAR classifiers, we set the batch 1130

size to 32 and train for a total of 10 epochs, saving 1131

after each epoch and selecting the checkpoint that 1132

perform best on the validation set. We conduct a 1133

grid search on the validation set and ultimately de- 1134

termine the learning rate to be 5e-5. Our classifier 1135

is a fully connected layer with an input dimension 1136

equal to the hidden state dimension and an output 1137

dimension of 2. 1138

F Downstream Task Datasets 1139

For knowledge-aware scenario, we use the valida- 1140

tion set of DROP (Dua et al., 2019) and the test 1141

set of GSM8K (Cobbe et al., 2021) as the test 1142

sets. DROP is a reading comprehension bench- 1143

mark, which needs the model to answer questions 1144

based on given paragraphs. GSM8K is a dataset 1145

containing diverse grade school math word prob- 1146

lems, primarily used to assess the reasoning ability 1147

of models. These two datasets evaluate the model’s 1148
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abstract abilities, e.g., reading comprehension and1149

math reasoning, and thus do not require extra fact1150

knowledge. Therefore, they can measure the abil-1151

ity of active retrieval methods to avoid unnecessary1152

retrieval for scenarios that requires little fact knowl-1153

edge.1154

For time-aware scenario, we use the test set of1155

TAQA (Zhao et al., 2024) and questions whose an-1156

swers will change over time from FreshQA (Vu1157

et al., 2023) (We remove questions with false1158

premises). Since these questions are time-sensitive,1159

the active retrieval system need to retrieve real-time1160

information for every question.1161

For self-aware scenario, we use the validation set1162

of TriviaQA (Joshi et al., 2017) and the test set of1163

WebQuestions (WQ) (Berant et al., 2013). These1164

test samples are non-time-sensitive questions. The1165

active retrieval system only needs to retrieve ques-1166

tions which the model does not know, and try to1167

achieve high answer accuracy with an appropriate1168

number of retrieval calls.1169
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