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ABSTRACT

Visual Place Recognition (VPR) requires robust retrieval of geotagged images
despite large appearance, viewpoint, and environmental variation. Prior meth-
ods focus on descriptor fine-tuning or fixed sampling strategies yet neglect the
dynamic interplay between spatial context and visual similarity during training.
We present SAGE (Spatial-visual Adaptive Graph Exploration), a unified training
pipeline that enhances granular spatial-visual discrimination by jointly improving
local feature aggregation, organize samples during training, and hard sample min-
ing. We introduce a lightweight Soft Probing module that learns residual weights
from training data for patch descriptors before bilinear aggregation, boosting dis-
tinctive local cues. During training we reconstruct an online geo—visual graph that
fuses geographic proximity and current visual similarity so that candidate neigh-
borhoods reflect the evolving embedding landscape. To concentrate learning on
the most informative place neighborhoods, we seed clusters from high-affinity an-
chors and iteratively expand them with a greedy weighted clique expansion sam-
pler. Implemented with a frozen DINOv2 backbone and parameter-efficient fine-
tuning, SAGE achieves SOTA across eight benchmarks. Notably, our method ob-
tains 100% Recall@ 10 on SPED only using 4096D global descriptors. The code
and model are available at https://github.com/chenshunpeng/SAGE.

1 INTRODUCTION

Visual Place Recognition (VPR) matches a query image to its corresponding location within a large-
scale geotagged database, serving as a fundamental capability for critical applications such as au-
tonomous robot navigation (Han et al., 2025), loop closure detection for autonomous driving (Teng
et al., 2026), and large-scale map construction (Zhu et al., 2024). The main challenge of VPR is
maintaining robust retrieval performance under severe and unconstrained environmental changes,
including extreme viewpoint shifts, illumination variations, adverse weather, long-term temporal
drift, and frequent dynamic occluders, among others (Liu et al., 2024; Zhu et al., 2025).

Early VPR methods relied on hand-crafted local descriptors (L.owe, 2004; Bay et al., 2008) and ag-
gregated them into global encodings via pooling schemes such as Bag of Words or VLAD (Angeli
et al., 2008; Jégou et al., 2010). However, these methods lack adaptability and perform poorly under
large-scale appearance changes. With the advent of deep learning, learnable aggregation modules
(Arandjelovic et al., 2016; Radenovic et al., 2018) were introduced, which enhanced descriptor com-
pactness and robustness by learning task-specific pooling strategies. Subsequent research has mainly
focused on simplifying, regularizing, or refining aggregation mechanisms to improve generalization
and computational efficiency (Jin et al., 2025b), such as reducing reliance on explicit cluster centers
or alleviating the “burstiness” problem of local features (Lu et al., 2024d; Khaliq et al., 2024).

Recently, the advent of Visual Foundation Models (VFEMs) (Dosovitskiy et al., 2020; Oquab et al.,
2023) has advanced VPR by enabling the capture of long-range semantic dependencies and richer
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Figure 1: Performance and parameter efficiency of SAGE. (a—d) Recall@1 across four datasets at
different global descriptor dimensions; SAGE achieves the best performance regardless of backbone
and descriptor size. (e) Parameter comparison. By freezing DINOv2, SAGE substantially reduces
trainable parameters compared to methods employing adapters or partial encoder tuning methods,
demonstrating high efficiency. (f) Recall@1 performance compared with EMVP across the datasets.

interactions between image patches (Ali-bey et al., 2024; Lu et al., 2025). These strategies reduce
sensitivity to occlusion and background clutter and improve robustness with controlled parame-
ter overhead. While recent adaptation methods for VFMs are notably efficient, different strate-
gies within the broader VFMs ecosystem vary in resource consumption (Jin et al., 2025a). For in-
stance, fine-tuning a backbone’s encoder layers typically requires more computational resources than
Parameter-Efficient Fine-Tuning (PEFT) approaches (Jia et al., 2022; Qiu et al., 2024). Furthermore,
While the model’s understanding is dynamic, a pre-defined or static sampling policy (Izquierdo &
Civera, 2025) may fail to consistently present the most informative examples as learning progresses.

Recent research has explored constructing training batches that reflect real-world difficulty. How-
ever, a common strategy operates on a static “think-once, act-always” principle, relying on offline
computations like pre-defined clustering based on initial features (Liao & Shao, 2022; Leyva-Vallina
et al., 2023; Izquierdo & Civera, 2025). This approach overlooks a crucial fact: what constitutes a
hard sample is not a fixed property but a dynamic state that evolves together with the model’s em-
bedding geometry during training. Effective mining thus requires an architectural “slow thinking”
involving an iterative reassessment of difficulty. Without this, static methods quickly become ob-
solete. They continue feeding the model stale examples as old challenges turn trivial and new ones
emerge at the decision boundary. This mismatch between a static sampling strategy and a dynamic
learning process creates a critical bottleneck, hindering the model’s full discriminative potential.

To address these interconnected limitations, we propose SAGE (Spatial-Visual Adaptive Graph Ex-
ploration), a unified VPR training framework that embraces a “slow thinking” paradigm for hard
sample mining. Rather than depending on a one-time, fixed policy that labels samples as hard for
the entire training run, SAGE continuously revisits and updates the hardness labels in response to
changes in the model’s representation. This philosophy is realized through a fundamentally dynamic
architecture. At its core, an online process reconstructs a geo-visual affinity graph each epoch, en-
suring the sampling strategy stays synchronized with the model’s evolving embedding space. To
maximize the impact of this intelligent sampling, SAGE also incorporates lightweight modules, in-
cluding Soft Probing (SoftP) and an InteractHead, which enhance descriptor quality by amplifying
discriminative local patches and modeling cross-image associations. This synergy between dynamic
mining and enhanced feature representation allows SAGE to focus learning on the most informa-
tive spatial-visual neighborhoods, leading to state-of-the-art accuracy with remarkable parameter
efficiency, as summarized in Fig. 1. In summary, the main contributions of this paper are:
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* SoftP Feature Interaction. We propose SoftP, a lightweight module that uses data-driven residual
weighting to enhance discriminative local patches, and an InteractHead that models associations
between fragments across images, thereby improving descriptor coherence across views.

* Dynamic Geo-Visual Graph Mining. Our online strategy dynamically rebuilds the geo-visual
affinity graph each epoch, keeping the mining process aligned with the model’s evolving embed-
ding space while prioritizing the most informative samples for faster convergence.

* Weighted Greedy Clique Expansion. Our weight-guided algorithm initiates sampling from an-
chors with high affinity and iteratively expands the most challenging neighborhoods, thereby gen-
erating balanced batches of utility that focus learning on detailed spatial and visual distinctions.

* Efficient SOTA Accuracy. Implemented with a frozen DINOv2 backbone and parameter-efficient
fine-tuning, SAGE sets SOTA on eight VPR benchmarks (Fig. 1), retaining competitiveness even
with compact descriptors.

2 RELATED WORK

Visual Place Recognition (VPR) requires global descriptors to remain compact and robust under
substantial variations in viewpoint, illumination, and scene structure. Early methods for generating
global descriptors, such as NetVLAD (Arandjelovic et al., 2016), utilized a vast set of cluster cen-
ters, which rendered them vulnerable to domain shifts. Although self-supervised hard sample min-
ing (Ge et al., 2020) has been introduced to mitigate this issue, such methods remain constrained
by the representational capacity of CNN backbones, yielding suboptimal performance. With the
incorporation of spatial attention (Noh et al., 2017) and feature reweighting (Ng et al., 2020), de-
scriptor robustness has been yet improved. Other works focus on optimizing feature aggregation
(Ali-Bey et al., 2023b; Izquierdo & Civera, 2024; Ali-bey et al., 2024), which improves perfor-
mance but relies on fixed aggregation strategies and thus lacks adaptability to dynamically evolving
embeddings. Recent studies have highlighted the effectiveness of modulating feature magnitudes in
a lightweight, data-dependent manner prior to their aggregation. Such approaches include non-local
attention for adaptive spatial weighting (Chen et al., 2023), efficient context encoding (Huang et al.,
2022), parameter-efficient tuning with second-order moments (Gao et al., 2023), and the exponen-
tially weighted fusion of pooling kernels (Stergiou & Poppe, 2022). Other methods reduce overhead
by lowering the number of clusters or entirely eliminating clustering through centroid-free probes
(CFP) (Lu et al.,, 2024d; Qiu et al., 2024), yielding compact descriptors by utilizing second-order
feature statistics. Two-stage approaches (Wang et al., 2025; Lu et al., 2024a) improve retrieval ac-
curacy through local feature re-ranking but introduce additional computational overhead. Recent
single-stage methods can achieve comparable or even superior performance using only global fea-
tures (Berton & Masone, 2025; Liu et al., 2025b). This pursuit of efficiency is also reflected in
adapting powerful Visual Foundation Models (VFMs) for downstream tasks (Zhang et al., 2025; Liu
et al., 2025a). With the proliferation of VFMs, Parameter-Efficient Fine-Tuning (PEFT) has emerged
as a crucial paradigm. Instead of fine-tuning the entire backbone, these methods update only a small
subset of parameters, such as lightweight adapters or normalization layers, thereby significantly en-
hancing training efficiency (Jia et al., 2022; Qiu et al., 2024). Our method follows this paradigm by
freezing the backbone while introducing lightweight modules to enhance feature discriminability.
Cross-image correlation methods (Lu et al., 2024b; Qiu et al., 2024) further enhance matching by
capturing and modeling inter-image dependencies. In line with this paradigm, our approach strate-
gically enhances feature discriminability. We introduce Soft Probe, a lightweight residual module
that adaptively amplifies salient local regions, and InteractHead, which models cross-image depen-
dencies. Together, they significantly boost descriptor quality with minimal parameter overhead.

In deep metric learning, dynamic sampling strategies (Liang et al., 2021) adjust the importance of
training pairs with epoch-dependent weighting terms, organizing them in an “easy-to-hard” order,
which enables the network to first learn general category boundaries from easy samples and then
focus on hard samples in later stages. More recently, a graph-based sampling method (Liao & Shao,
2022) has been proposed, which constructs a nearest neighbor graph from class embeddings at the
beginning of each epoch. By selecting an anchor class and its neighboring classes to form train-
ing batches, this approach improves the discriminative power of learned embeddings and enhances
training efficiency. In VPR, spatial graphs have been used to encode geographic relationships. For
example, the MMS-VPR benchmark (Ou et al., 2025) represents street intersections and road seg-
ments as nodes and edges, leveraging topological context to improve retrieval performance. Such
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Figure 2: SAGE overview. (a) Pipeline: a frozen DINOv2 with PEFT outputs tokens; SoftP am-
plifies informative patches, and InteractHead applies cross-image attention to form a robust global
descriptor. (b) Online Graph Creation: each epoch builds a geo—visual affinity graph, keeping top-
k neighbors and updating edges as embeddings evolve. (c) Greedy Weighted Sampling: seed by
average affinity and expand cliques by adding the most connected nodes. (d) SoftP: A lightweight
module that uses residual weighting to emphasize discriminative features prior to aggregation.

approaches often rely on mining discriminative regions or focusing on hard positive samples (Lu
et al., 2023; Seidenschwarz et al., 2021; Fang et al., 2022; Wang et al., 2025) to enhance accuracy
and robustness, but ignore geo-information. Other works reformulate VPR as a classification task
(Berton et al., 2022a; 2023) to avoid explicit mining, but these remain limited by static sample se-
lection and the neglect of geographic information. Moreover, on sparse datasets such as GSV-Cities
(Ali-bey et al., 2022), these limitations restrict generalization capability. On dense datasets such as
MSLS (Warburg et al., 2020), offline clustering methods (Izquierdo & Civera, 2025) partition visu-
ally similar and geographically neighboring images into fixed clusters for training. Another category
of approaches leverages hybrid strategies (Kalantidis et al., 2020), hard negative mining (Garg et al.,
2022; Deuser et al., 2023; Ali-Bey et al., 2023a) or generation (Peng et al., 2024) to enhance retrieval
performance. However, most of these approaches struggle to generalize effectively. In contrast to
such static or scheduled strategies, SAGE reconstructs a geo-visual graph at every training epoch
and employs greedy sampling to focus on the most densely populated and challenging clusters in
the evolving embedding spaces, achieving superior performance across datasets.

3 METHOD

Fig. 2 illustrates the proposed SAGE framework. First, the frozen DINOv?2 feature extraction back-
bone processes input images (Sec.3.1). Next, the Soft Probing (SoftP) module aggregates these
features into robust global descriptors (Sec.3.2). Then, Online Graph Creation employs Interact-
Head to refine descriptors and integrates geographic and visual distances to form dynamic graphs
(Sec.3.3). Finally, we adopt greedy weighted sampling to focus training on hard examples (Sec.3.4).

3.1 FEATURE EXTRACTION

DINOV2 provides strong visual representations from large-scale self-supervised pretraining. We use
a pretrained DINOV2 as a frozen backbone and achieve parameter-efficient fine-tuning by inserting
learnable Dynamic Power Normalization (DPN) layers into the last NV encoder blocks (Oquab et al.,
2023; Qiu et al,, 2024). As shown in Fig. 2(a), an input image I € R¥*Wx3 pagses through
two stages. Uncalibrated Blocks extract base features, and Recalibrated Blocks integrate DPN to
recalibrate features and produce task-specific representations. The backbone outputs one learnable
class token and L patch tokens, forming a token matrix f € R(EHDXM where M is the embedding
dimension. SoftP and InteractHead then aggregate and refine these tokens to strengthen cross-image
correspondence and yield a discriminative global descriptor F € RP*X for place recognition.
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3.2 SOFT PROBING

Centroid-Free Probing (CFP) crafts a global image descriptor f by aggregating the L local spatial
descriptors { X;}L | into a second-order Gram-like covariance matrix, which eliminates the need for
offline cluster centers (Qiu et al., 2024; Lu et al., 2024d). Although related methods like Moment
Probing also leverage second-order statistics (Wang et al., 2022; Gao et al., 2023), a key limitation
of CFP is its uniform treatment of all descriptors. This equal weighting can underemphasize subtle
yet discriminative local cues. To address this shortcoming, we introduce Soft Probing (SoftP), a
lightweight module shown in Fig. 2(d), which adaptively emphasizes informative spatial locations
while preserving the underlying feature geometry before the final aggregation step.

SoftP first computes a scalar response for each descriptor and converts it into a bounded residual
coefficient; this coefficient is broadcast across channels and applied in residual form to obtain the
modulated descriptors. Concretely, for each descriptor X; we compute an ¢ response s; = || X;||2+
€ (with € > 0 for numerical stability), and feed s; into a compact predictor ¢ (a two-layer MLP) that
outputs a scalar which is squashed by a sigmoid and scaled by a hyperparameter o

Bi = a-o(o(si)), 0<B <o )
The modulated descriptor is formed residually as:
Xi = Xi+BX: = (14 8:)X. )

This residual reweighting behaves like a soft, data-driven attention mechanism: it amplifies salient
responses while avoiding destructive rescaling of channel structure (Ng et al., 2020). Under mild
assumptions (or to first order when [3; is small and the mean shift is negligible) (Gao et al., 2023),
the variance of each dimension of the modulated descriptors increases approximately as:

N

- 1 i, 1 & Sz 2 i,
Var({Xi}) = & D (1+28) [ X = X[ = & Do[x - X+ 5 D6 X - X @)
i=1 i=1 i=1

Var({X;})

where X = % >, Xi. This relation highlights that SoftP selectively enlarges the variance contribu-
tion of high-response locations, thereby enhancing the sensitivity of subsequent aggregation stages
to discriminative local structures. Finally, the set of modulated descriptors {X;} is passed to the
aggregation stage to produce the final global descriptor. SoftP adds only a negligible number of
parameters, preserves the semantic geometry of the original descriptors, and consistently improves
the robustness of the resulting global descriptor under significant appearance changes.

3.3 ONLINE GRAPH CREATION

To prepare for the graph creation, the image descriptors f; € R”>*X produced by SoftP are first
processed by the InteractHead. Departing from prior method that partition features via learned
cluster assignments(Lu et al., 2024b;d), InteractHead deterministically splits each descriptor into S

fixed length segments, {fi(s)}le. To enable cross-image attention, these segments are rearranged
such that for each index s, the segments from all B images form a sequence. These sequences
are then processed by a two-layer Transformer encoder (£) with GELU activation. This encoder
structure applies attention across the batch for each segment type, capturing consistent correlations
across views and improving descriptor robustness. The enhanced descriptors F' are obtained by:

F = reshape(c‘f([fl(l), s f](31)§ ) fl(s)7 s ,fés)])), 4)

Our approach continuously aligns candidate graphs to the model’s current embedding space by re-
constructing the graph at each training epoch. First, for each city we group images by their unique
cluster labels and randomly sample one image from each cluster. The sampled images are passed
through our model to obtain descriptors that serve as representative features for the clusters, produc-
ing a set of cluster-level features for every city.

The process begins by sampling cities with a probability proportional to their cluster count. From
a chosen city, we randomly select a single cluster, termed a “place”. We then identify P similar
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places by computing cosine distances between the descriptor of our selected place and all other
cluster descriptors, and sampling probabilistically such that smaller distances yield a higher selection
probability. The images from these P + 1 total places become the unordered nodes of a graph,
for which we compute all pairwise Euclidean geographic distances dgeo (i, j). Subsequently, we
construct an adjacency graph by connecting nodes whose geographic distance is below a threshold
7. From this graph, we extract several cliques (i.e., complete subgraphs), denoted as G = (V| E).
Finally, within each clique, we calculate the pairwise visual descriptor distances as dyis(7,j) =
|F; — F,||2. To combine these two distance types and do so multiplicatively, we define:

Wij = — (dgeo(i ) - duis(i, 5)), Wiz =0. )

As illustrated in Fig. 2(b), we construct a sparse affinity graph G = (V| E’), where an edge (3, j)
exists if its affinity score W;; exceeds a predefined threshold 7. This graph is dynamic, as it is
rebuilt each epoch to reflect the continuous evolution of the model’s embeddings. From this graph,
we seek a complete subgraph, known as a clique, for the sampling process. The search concludes
upon finding the first clique C' that meets a minimum size requirement of |V| > N = 10. This
clique is then used to guide the subsequent sampling stage.

3.4 GREEDY WEIGHTED SAMPLING

We propose a greedy, weight-driven selection process that adaptively focuses training on the most
informative neighborhoods while fully leveraging the reconstructed geo-visual graph. We first iden-
tify the most central node in the graph to serve as a cluster anchor. This is achieved by computing a
seed score S(i) for each node, which represents its total affinity to all other nodes:

1 N-1
=0

i
Fig. 2(c) shows the node with the highest score is chosen as the initial member of our training clique,
C = {v}}, where v} = arg max; S(i). Subsequently, we iteratively expand the clique C by adding
the node v* that exhibits the highest average affinity to the current members of C"

1
v* = arg max —- Wi v @)
vgC |O| uEZC

This procedure is repeated until the clique reaches the desired size |C| = k, where k = 4. By seeding
from a central anchor and greedily expanding towards the closest nodes, our method effectively
drills down into the densest subgraphs of the geo-visual landscape. These dense regions represent
clusters of mutually confusing samples the most difficult scenarios where the model struggles to
make fine-grained distinctions. Our approach is inherently adaptive to the model’s learning progress.
It dynamically responds to the evolving weight distribution each epoch, concentrating training effort
on the most pertinent hard positive and negative examples. This adaptive focus not only accelerates
convergence but also enhances the model’s robustness against subtle spatial and visual ambiguities.

4 EXPERIMENTS

4.1 DATASETS AND PERFORMANCE EVALUATION

We validate SAGE on a diverse collection of VPR benchmarks (Tab. 1) covering common real-
world challenges: Pitts30k-test and Pitts250k-test (large viewpoint variation) (Torii et al., 2013),
SPED (low-quality / high scene depth and condition changes) (Chen et al., 2017), MSLS-val (multi-
year urban/suburban variability) (Warburg et al., 2020), Nordland (four-season natural scenes)
(Stinderhauf et al., 2013), Tokyo247 (multi-view urban captures) (Torii et al., 2015), AmsterTime
(historical grayscale vs. contemporary RGB) (Yildiz et al., 2022), and Eynsham (rural grayscale
route) (Cummins & Newman, 2010; Berton et al., 2022b). Further details can be found in App. A.3.

The experiment adopts Recall@N (R@N) as the evaluation metric, i.e., the percentage of query im-
ages for which at least one of the top-N retrieved database images geographically matches the query
image (within a preset threshold). Thresholds follow standard protocols: 25 meters for Pitts30k-test,
Pitts250k-test, Tokyo24/7, Eynsham and SPED; MSLS-val uses 25 meters with azimuth within 40
degrees; Nordland uses +10 frames (Torii et al., 2013; Chen et al., 2017; Warburg et al., 2020).
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Table 2: Comparison to SOTA Methods on VPR Benchmark Datasets. The best and second best
metrics are shown in red bold and blue bold, respectively. Two-stage methods are denoted by .

Method Dim SPED Pitts30k-test MSLS-val Nordland
R@1R@5R@I10||R@1R@5R@10||R@]1 R@5R@10|[R@]1 R@5R@10
NetVLAD cypr- 2016 |32768(|70.2 84.5 89.5 ||81.9 91.2 93.7 ||53.1 66.5 71.1 || 6.4 10.1 12.5
SERS Eccv: 2020 4096 (|80.2 92.6 95.4 ||89.4 94.7 95.9{/69.2 80.3 83.1 |[16.1 23.9 28.4
CosPlace cypr’ 2022 512 ||75.5 87.0 89.6 ||88.4 94.5 95.7 ||82.8 89.7 92.0 ||58.5 73.7 79.4
MixVPR wacv’ 2023 4096 (|84.7 92.3 94.4 ||91.5 95.5 96.3 ||88.0 92.7 94.6 ||76.2 86.9 90.3
R2Former cvpr’ 2023 / ||167.575.8 77.8 {{91.1 95.2 96.3 ||89.7 95.0 96.2 ||77.0 89.0 91.9
EigenPlaces jccy: 2023 | 2048 ||70.2 83.5 87.5((92.5 96.8 97.6 ||89.1 93.8 95.0 ||71.2 83.8 88.1
SelaVPR [c1r’ 2024 1024 1{83.5 92.6 94.6 {{90.2 96.1 97.1 ||87.7 95.8 96.6 ||72.3 89.4 94.4
SelaVPR 1crr- 2004 | / 88.6 95.1 97.2{(92.8 96.8 97.7 ||90.8 96.4 97.2 ||87.3 93.8 95.6
CricaVPR cvpr' 2024 4096 1191.3 95.2 96.2 {{194.9 97.3 98.2 ||190.0 95.4 96.4 {|90.7 96.3 97.6
SALAD cvpr’ 2004 8448 1192.1 96.2 96.5{[92.5 96.4 97.5(|92.2 96.4 97.0(|89.7 95.5 97.0
EDTformer tcsvt 2025 | 4096 1{92.4 95.9 96.9 {{93.4 97.0 97.9 ||192.0 96.6 97.2 ||88.3 95.3 97.0
BoQ cvpr: 2024 12288(|92.5 95.9 96.7 ||193.7 97.1 97.9 {|93.8 96.8 97.0 ||90.6 96.0 97.5
SALAD-CM gccv 2024] 8448 1189.5 94.9 96.1 {[92.6 96.8 97.8 ||94.2 97.2 97.4 {|195.6 98.6 99.1
SuperVLAD nips’ 2024 | 3072 (193.2 97.0 98.0{{95.0 97.4 98.2{(92.2 96.6 97.41/91.0 96.4 97.7
EMVP nips 2024 8448 1194.6 97.5 98.4 {{94.0 97.5 98.2 ||93.9 97.3 97.6 ||88.7 97.3 99.3
FoLL aAaAT 2025 8448 1192.1 96.5 98.0{{93.9 97.2 98.1 ||93.1 96.9 97.4||87.8 94.5 96.4
FoL aApar 2025 | /[ 1192.6 96.5 97.4 {|94.5 97.4 98.21/93.596.9 97.6 ||92.6 96.7 97.8
2048 1195.6 99.2 99.7 ||195.4 97.4 97.9 {|192.6 96.9 97.7 ||91.2 96.6 97.8
SAGE (Ours) 4096 (197.7 99.8 100 (|95.6 97.7 98.3 |(193.7 97.3 97.8 ||94.4 98.2 99.0
8448 1198.9 99.7 100 |{95.8 97.8 98.4 ||94.5 97.4 97.8 ||96.0 98.9 99.4

Table 3: Comparison to SoTA methods on more challenging datasets. Values marked with ¥ were
reproduced in this work when they were not reported in the original publications.

Method Dim AmsterTime Tokyo24/7 Pitts250k-test Eynsham
R@] R@5R@I10||R@]1 R@5R@10|R@1R@5R@10/|R@1 R@5 R@10
SALAD-CM gcev: 2024|8448 57.8 77.5 81.31/96.8 97.5 97.8(/95.298.8 99.3(/91.9 95.3 96.1
SuperVLAD nips® 2024 |3072((63.9 83.9 87.3(/95.6 97.8 98.1(97.399.4 99.7 ||92.1 95.6 96.4
EMVP xips® 2024 8448||65.6% 86.0% 90.5%/|96.8¥ 98.1% 98.7%|(96.5 99.1 99.5 ||91.9%95.7% 96.6%
FoLL aaar 2025 8448||64.6 84.3 88.2(/96.2 98.7 98.7 (196.599.1 99.5||91.7 95.3 96.2
2048/ 66.2 78.6 85.0(/95.6 96.5 98.1 (|97.799.1 99.3 |{92.7 95.8 96.5
SAGE (Ours) 4096||76.0 88.0 92.3 /96.5 99.1 99.4 |(98.2 99.4 99.5 ||92.9 96.0 96.8
8448|/83.5 93.3 95.4(/97.5 99.1 99.4 (|198.499.4 99.7 ||93.1 96.2 97.0
4.2 IMPLEMENTATION DETAILS

SAGE is built upon the EMVP framework (Qiu
et al.,, 2024), which we reproduced from its
publication for a fair comparison as the offi-
cial code is unavailable. We fine-tune two Vi-
sion Transformer backbones, ViT-B and ViT-
L, which we denote as SAGE-B and SAGE-L,
respectively. The Feature Compression (F¢)
and Feature Probing (Fp) branches are imple-
mented as two-layer MLPs, reducing the fea-
ture dimensions to D = 128 and K = 64, re-
spectively. The InteractHead module is imple-
mented as a two-layer Transformer encoder with a model dimension of 768, 16 attention heads,
and a feed forward network with dimension 1024. During training we freeze the backbone and
adopt DPN for PEFT, which adaptively preserves task-specific information while greatly reducing
the number of trainable parameters. Each training mini-batch is constructed with equal contribu-
tions from MSLS (all non-panoramic images from the training set) and GSV-Cities (0.56M images
from 67K places). For every batch we build a new sparse geo-visual graph, and we sample P = 15

Table 1: Summary of the evaluation datasets.

Dataset

Description

Number

Database Queries

Pitts30k-test
MSLS-val
Nordland
SPED
Tokyo24/7
AmsterTime
Pitts250k-test
Eynsham

urban, panorama

urban, suburban
natural, seasonal
various scenes

urban, time-varying
urban, time-related
urban, panorama

rural, historical

10,000 6,816
18,871 740
27,592 27,592
607 607
75,984 315
1,231 1,231
83,952 8,280
23935 23,935
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sequences from the same city and recompute cliques dynamically during training. The thresholds
for this process are set to 7, = 25 m and 75 = —2.88 x 103. Input images are resized to 224 x 224
during training and 322 x 322 during inference. All experiments are implemented in PyTorch and
run efficiently on a single NVIDIA A100 GPU. We fine-tune models for 10 epochs and select the
checkpoint with the highest Recall@1 on Pitts30k-test for evaluation on the other benchmarks.

4.3 COMPARISONS WITH SOTA METHODS

In this section we provide a comprehensive comparison between our proposed SAGE and a range
of state-of-the-art VPR methods. The comparison includes: NetVLAD (Arandjelovic et al., 2016),
SFRS (Ge et al., 2020), CosPlace (Berton et al., 2022a), MixVPR (Ali-Bey et al., 2023b), Eigen-
Places (Berton et al., 2023), CricaVPR (Lu et al., 2024b), SALAD (Izquierdo & Civera, 2024), BOQ
(Ali-bey et al., 2024), SALAD-CM (Izquierdo & Civera, 2025), SuperVLAD (Lu et al., 2024d),
EMVP (Qiu et al., 2024), and the two re-ranking (two-stage) pipelines SelaVPR (Lu et al., 2024c)
and FoL (Wang et al., 2025). Re-ranking pipelines add a computationally intensive local feature
matching stage. EMVP and FoL are the current SOTA for single-stage global retrieval and two-stage
VPR pipelines, respectively; implementation details for compared methods are given in App. A.4.

As shown in Tab. 2 and Tab. 3, SAGE consistently outperforms previous methods across all bench-
marks and evaluation metrics. In a higher-dimensional configuration (8448-d), SAGE reaches 94.5%
R@1 on MSLS-val and achieves 100% R@10 on SPED, while improving R@1 by 4.3 percentage
points over the previous best single-stage method (EMVP). SAGE also maintains leading perfor-
mance on challenging datasets: for example, it attains 96.0% R@1 on Nordland and 83.5% R@1
on AmsterTime, representing substantial gains relative to FoL. and EMVP. We also evaluate com-
pact configurations obtained via PCA dimensionality reduction. Even under tighter budgets (2048-d
and 4096-d), SAGE remains highly competitive and often matches or even surpasses recent strong
baselines. For instance, the 4096-d SAGE achieves 95.6% R@1 on Pitts30k-test and 97.7% R@1
on SPED while preserving 100% R @ 10, demonstrating that our proposed feature amplification and
epoch-wise online geo-visual sampling produce highly discriminative global descriptors. A detailed
analysis of SAGE performance across varying descriptor dimensions is presented in App. A.2.

We apply t-SNE to embed spatial features from four methods into a 2D space for visual comparison.
Features are extracted from 600 images at 50 locations. Fig. 3 displays the 2D data projections
and the corresponding Average Intra-class Distance (AID), according to Equ. 8. SAGE-B has the
smallest AID indicating the tightest within location clustering. More results is presented in Fig. 6.

Tab. 4 details parameters for various VPR . .
; Table 4: Comparison of parameters (M) for vari-
methods. ~ By employing DPN for PEFT, ous VPR methods using the DINOv2-B backbone.

,SAGE avoids the. heavy adapter modL}les P~ The value in parentheses is the number of param-
ical of methods like SelaVPR and CricaVPR, eters in the optional cross-image encoder

thus achieving a markedly lower total param-
eters. More strikingly, since SAGE keeps  Viothod Total | Trainable | Adapter
the backbone frozen and exclusively fine-tunes SALAD 5.0 0.8
its lightweight DPN, SoftP, and InteractHead CVPR? 2024 : : v X
modules, its trainable parameters is signifi- SSYPRicLr 2024 102.8 16.2 L2
cantly smaller than that of approaches that fine- SZCLEX/]ERC Cyre 2024 95';§+61'0) 9'152 9(+§ 10 v )?'2
i - ECCV’ 2024 . .
tune portions of the Transformer encoder (e.g., SUPErVLAD nips: 200 86.6 (+11.0) 28.4 (+11.0) X
SALAD, SALAD-CM, and ‘SuperYLAD): This  EMVP s 2004 885 1.96 X
high parameter .efﬁc.:lency is attained without SAGE (Ours) 885 (17.88) 1.96 1788 X
even compromising its SOTA performance.

Fig. 4 shows qualitative results for SAGE-B and several SOTA methods in representative challenging
scenarios. SAGE consistently retrieves the correct database images, while other methods often
fail to capture the most discriminative cues and produce incorrect matches. Additional qualitative
visualizations are provided in App. A.1, as illustrated in Fig. 7. To illustrate the comparison, we
show importance heatmaps produced by SoftP, SALAD, and CFP in Fig. 5. While all three highlight
prominent static landmarks, but SoftP even more effectively concentrates on subtle, fine-grained,
highly discriminative regions. Additional SoftP heatmaps are provided in App. A.1, shown in Fig. 8.
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SAGE-B
W AID092)
" (Ours)

EMVP-B

SALAD-CM
AID: 1.03
(ECCV' 2024)

SuperVLAD
AID: 0.94
(NIPS' 2024)

Figure 3: Visualization of spatial feature clustering using t-SNE for four methods and comparison
of Average Intra-class Distance (AID). Numbers next to each class indicate intra-class distance (ID).

Table 5: Ablation of SAGE components. All experiments use ViT-B; results reproduced in this work
are marked *. OGC denotes Online Graph Creation and GWS denotes Greedy Weighted Sampling.

Components SPED Pitts30k-test
Aggregation OGC GWS R@1 R@5 R@10 R@1 R@5

MSLS-val Nordland
R@10 R@1 R@5 R@10 R@1 R@5 R@10

Method

EMVP-B  CFP 91.8 96.5 97.4 93.1% 96.8% 97.6% 932 969 97.2 80.8% 90.4* 93.5%
SoftP v 96.8 982 987 94.6 972 979 93.6 968 97.1 952 984 98.7
SAGER  SoftP v/ 965 97.8 983 938 96.5 972 925 96.6 969 942 974 979
CFP / / 975 984 989 949 973 98.0 939 97.1 974 954 985 98.8
SoftP v/ / 980 987 99.2 954 97.6 98.3 943 972 97.6 958 98.7 99.2

SAGE-B EMVP SuperVLAD  SALAD-CM

(a) Input image (b) Result of SALAD (c) Result of CFP  (d) Result of SoftP

(Ours)  (NeurIPS 24) (NeurIPS 24) (ECCV 24)

1 P~ -

Figure 4: Qualitative results. SAGE
consistently retrieves correct database
images under severe challenges.

Figure 5: Visual comparison of importance heatmaps.
SoftP shows a stronger focus on fine grained regions with
high discriminative value than other methods overall.

4.4 ABLATION STUDY

We ablate SAGE’s components using a ViT-B backbone (8448-D) and EMVP-B as the baseline
(Tab. 5). On the challenging Nordland dataset, marked by severe seasonal variations, the baseline
only achieves 80.8% R@1. Integrating our SoftP and OGC modules yields substantial gains, boost-
ing R@1 to 93.6% on MSLS-val and 95.2% on Nordland. These gains suggest that SoftP enhances
discriminative local feature responses, while OGC reconstructs a geo—visual graph each training
epoch to expose the model to evolving hard examples aligned with the current embedding space.

Adding GWS to a SoftP configuration produces modest and unstable gains, suggesting sampling
alone cannot exploit graph dynamics without Online Graph Creation. Enabling OGC and GWS
while retaining CFP yields a notable improvement, for example Pitts30k-test R@ 1 of 94.9%, but still
falls short of the configuration that includes SoftP. The full SAGE configuration achieves the best
results, with R@1 of 95.4% on Pitts30k-test and R@1 of 98.0% on SPED, surpassing the baseline
and intermediate variants. The greedy weighted clique expansion complements SoftP and OGC by
focusing training on the most informative clusters and enhancing descriptor discriminability. As
detailed in Tab. 8, we conducted an ablation study on the internal dimensions of the InteractHead to
determine its optimal configuration.
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To evaluate the computational cost of our dynamic sampling strategy, we conducted an abla-
tion study comparing the runtime and performance of online versus offline graph creation. As
shown in Table 6, our online approach incurs a modest 17.7% increase in per-epoch training
time. However, this modest overhead is a worthwhile investment, as it translates directly to su-

Table 6: Comparison of Online and Offline Graph Creation Strategies. Runtimes are reported per
epoch for the online method. For the offline strategy, mining is a one-time cost.

Strategy Method Mining (min) Train (min) SPED MSLS-val
R@I R@5 R@10 R@l R@5 R@10
Cliquemining 43 251 900 954 962 943 969 976
Online  SAGE (w/o GWS) 6.1 284 968 982 987 936 968 97.1
SAGE 6.2 284 989 997 100 945 974 978
Cliquemining 216 251 895 949 961 942 972 974
Offline SAGE (w/o GWS) 307 284 967 982 989 935 966 97.1
SAGE 309 284 985 993 995 942 97.3 977

perior accuracy, with the online SAGE model achieving higher recall on both SPED and MSLS-val.
This result validates our central argument: dynami-
cally adapting the sampling to the model’s evolv-
ing state is crucial for breaking the performance
bottleneck of static mining strategies. Further-
more, the experiment highlights the efficiency of E SAGE (w/ CM) SAGE (Ours)
. . .. poch

the GWS module itself, which adds negligible over- R@I R@5 R@10 R@1 R@5 R@10
head while delivering a substantial accuracy boost.

Cruciallyz this computatioqal overhead is cor}ﬁned i g%% ggé ggg g%i ggg 3.7/‘1‘
to the training phase. The inference process is un-
affected, ensuring SAGE remains as efficient as comparable single-stage methods at deployment.

Table 7: Convergence analysis on MSLS-val.
SAGE’s dynamic sampling leads to superior
performance in early training epochs.

To demonstrate SAGE’s learning efficiency, Table 8: Ablation on InteractHead module. We

we tracked its early-stage training performance vary the model dimension (dmeger) and feed-
on MSLS-val against a baseline using the forward dimension (dg).

Cliquemining (CM) strategy. As shown in Ta-
ble 7, our model establishes a clear advantage (domoder, dir) SPED Pitts30k

by the fourth epoch (93.4% vs. 92.7% at R@1). R@] R@5 R@10 R@1 R@5 R@10
The widening performance gap confirms that
our dynamic sampling strategy fosters more
efficient learning, leading to superior perfor-
mance within the same number of epochs.

(512,1024) 98.8 99.5 99.7 955 97.6 982
(768, 1536) 98.6 99.3 99.7 96.0 97.9 984
(768,1024) 98.9 99.7 100 958 97.8 98.4

5 CONCLUSION

In this paper, we presented SAGE, a unified framework that redefines Visual Place Recognition
training by shifting from static sampling strategies to a dynamic, slow thinking paradigm. By
synergizing the lightweight Soft Probing module with InteractHead, SAGE effectively amplifies
fine-grained discriminative cues and models cross-image correlations, ensuring robust feature repre-
sentation even under drastic appearance variations. Crucially, our novel Online Graph Creation and
Greedy Weighted Sampling mechanisms ensure that the mining process continuously synchronizes
with the evolving embedding space, allowing the model to relentlessly focus on the most informa-
tive geo-visual neighborhoods. Extensive evaluations across eight diverse benchmarks demonstrate
that SAGE establishes a new SOTA, delivering exceptional retrieval accuracy while maintaining re-
markable parameter efficiency through a frozen DINOv2 backbone. This provides a scalable and
efficient foundation for future large-scale visual geo-localization systems.
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A APPENDIX

A.1 VISUALIZATION OF RESULTS
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Figure 6: t-SNE visualization of feature clusters produced by SAGE-L and five other leading VPR
methods. The features are extracted from 600 images across 50 distinct locations from the GSV-
Cities dataset. Clustering compactness is quantitatively evaluated using the Average Intra-class
Distance (AID), defined as the mean Euclidean distance of features to their corresponding class
centroid. A lower AID signifies a more discriminative and compact feature representation for images
of the same location. Notably, SAGE-L achieves the lowest AID (0.91), demonstrating its superior
ability to group features from the same place.

To visually assess the quality of feature clustering, we first created a dedicated test set by select-
ing 600 images from 50 distinct locations (12 images per location) within the GSV-Cities dataset,
ensuring coverage of diverse scenes and conditions. We then employed t-SNE to project the high-
dimensional features generated by each method into a 2D space for visualization.

For a quantitative analysis of cluster compactness, we calculated the Average Intra-class Distance
(AID). This metric is derived from the Intra-class Distance (ID), which measures the mean Euclidean
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Table 9: Performance analysis of SAGE across varying descriptor dimensions. Results on VPR
benchmarks show a consistent improvement in retrieval accuracy as the dimension increases. The
best and second best results for each dataset are shown in red bold and blue bold, respectively.

Method Dim SPED Pitts30k-test MSLS-val Nordland
R@]1 R@5 R@10||R@] R@5 R@10||R@1 R@5 R@10||R@] R@5 R@10
128 || 84.7 92.8 95.7 ||88.9 94.5 95.7 ||81.8 91.5 93.0 ||56.1 72.2 78.1
256 ||91.6 96.7 97.5{/93.0 959 96.7 ||87.2 94.6 95.7 ||70.5 83.6 87.8
512 {{94.2 98.2 99.0 ||94.4 96.5 97.2 ||91.4 95.7 96.8 ||80.1 90.0 92.9
10241/95.4 99.3 99.7 ||195.1 97.1 97.6 ||92.4 96.5 96.9 ||87.0 94.3 96.2
2048(/95.6 99.2 99.7 [|95.4 97.4 979 ||92.6 96.9 97.7 ||91.2 96.6 97.8
30721(196.9 99.7 99.8 ||95.6 97.7 98.2 {{92.4 97.3 97.7 ||93.8 97.8 98.8
4096(/97.7 99.8 100 |{95.6 97.7 98.3 |[|93.7 97.3 97.8 ||94.4 98.2 99.0
84481(/98.9 99.7 100 [|95.8 97.8 98.4 ||94.5 97.4 97.8 ||96.0 98.9 99.4

SAGE (Ours)

distance of features within a class to their shared centroid y;, as defined by:

N
1 1
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where C; is the set of feature vectors for location 7. A lower AID value signifies a more compact
and discriminative feature representation. As illustrated in Fig. 6, SAGE-L achieves the lowest AID,
which quantitatively confirms its superior ability to generate robust features that are tightly clustered
for the same location, effectively handling intra-class variations.

To highlight the practical robustness of our method, Fig. 7 presents a qualitative hcomparison be-
tween SAGE-B and seven leading VPR methods. The visualization is structured to systematically
evaluate retrieval performance across six of the most common and difficult VPR challenges: se-
vere viewpoint shifts, adverse weather, drastic lighting changes, long-term temporal differences,
structural alterations, and dynamic occlusions. In these demanding scenarios, most state-of-the-art
methods falter, failing to identify the correct place and retrieving visually plausible but incorrect
matches (highlighted in red). In stark contrast, SAGE-B consistently retrieves the correct database
image in every case (green boxes). This demonstrates the superior resilience of our approach, which
stems from its ability to learn and focus on stable, truly discriminative features while effectively
mitigating the impact of significant appearance variations.

The heatmap visualizations of the SoftP module, presented in Figure 8, elucidate its underlying
mechanism. A clear pattern is evident across diverse scenes where the model learns to automatically
suppress features from non-informative or transient sources, including the sky, road surfaces, and
dynamic objects such as vehicles and pedestrians. Crucially, SoftP moves beyond concentrating on
large static structures to prioritize fine-grained, stable details that offer reliable discriminative cues,
for instance specific architectural features, window frames, and unique textures.

A.2 ADDITIONAL RESULTS

To further demonstrate the scalability and robustness of our SAGE framework, we present an per-
formance analysis across a range of descriptor dimensions. This analysis spans both standard and
more challenging VPR benchmarks, highlighting the consistent effectiveness of SAGE.

Tab. 9 details the performance of SAGE on four widely used VPR benchmarks (SPED, Pitts30k-test,
MSLS-val, and Nordland) with descriptor dimensions varying from 128 to 8448. The results reveal
a clear and consistent trend: retrieval accuracy, measured by Recall@N, systematically improves
as the descriptor dimension increases. Notably, even at an intermediate dimension of 4096, SAGE
achieves remarkable performance, including a perfect 100% R@10 on SPED. The results at 8448-D,
such as 98.9% R@1 on SPED and 96.0% R@1 on Nordland, underscore the framework’s ability to
leverage higher-dimensional feature spaces for enhanced discriminability.

Building on this, Tab. 10 extends the evaluation to more demanding datasets characterized by severe
domain shifts, including AmsterTime (historical vs. modern), Tokyo24/7 (extreme viewpoint and
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Figure 7: Qualitative comparison of SAGE-B against leading VPR methods under diverse and chal-
lenging conditions. Rows correspond to challenge category, from top to bottom: viewpoint change,
weather change, lighting change, temporal change, structural change, and dynamic occlusion. Cor-
rect top-1 retrievals are indicated by a green bounding box, while incorrect matches are marked in
red. The results visually confirm SAGE’s consistent and superior robustness across all scenarios.

Table 10: Performance of SAGE with varying descriptor dimensions on more challenging datasets.

Method Dim AmsterTime Tokyo24/7 Pitts250k-test Eynsham
R@1 R@5 R@10||[R@1 R@5 R@10||R@1 R@5 R@10||R@1 R@5 R@10
128 {234 36.5 44.4 |[42.9 60.6 66.4 |[89.0 95.1 96.4 |[89.3 93.2 94.3
256 ||36.0 51.0 58.7 ||66.0 78.7 82.5(|94.7 97.7 98.2 ||91.0 94.4 95.1
512 {|44.9 60.8 68.1 |[{80.0 89.2 92.1 ||96.4 98.3 98.7 ||91.9 95.0 95.7
1024/55.6 70.0 76.9 ||89.5 94.6 95.9 ||97.3 98.9 99.2 ||92.4 955 96.2
2048|/66.2 78.6 85.0 |{95.6 96.5 98.1 |{97.7 99.1 99.3 ||92.7 95.8 96.5
3072||73.6 85.8 89.9 (|94.9 98.4 98.7 [|98.1 99.3 99.5 ||92.9 96.0 96.7
4096(/76.0 88.0 92.3 |/96.5 99.1 99.4 ||98.2 99.4 99.5 ||92.9 96.0 96.8
8448|/83.5 93.3 954 (|97.5 99.1 994 [|98.4 99.4 99.7 ||93.1 96.2 97.0

SAGE (Ours)

time-of-day changes), Pitts250k-test (large-scale urban scenes), and Eynsham (rural route). The
performance trend remains robust, with accuracy scaling gracefully with descriptor dimensionality.

The improvement is particularly pronounced on AmsterTime, where the R@1 score surges from
23.4% at 128-D to 83.5% at 8448-D. This demonstrates SAGE’s exceptional capability to handle ex-
treme appearance variations, validating the effectiveness of our proposed dynamic geo-visual graph
exploration and feature enhancement strategies. To further assess the generalization capabilities of
our method, we conducted experiments on the SF-small benchmark.
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Figure 8: Visualization of SoftP’s learned feature importance. The visualizations demonstrate that
SoftP automatically learns to focus on stable, fine-grained landmarks (e.g., building facades, struc-
tural details) while effectively ignoring non-discriminative regions (sky, road) and transient objects
(vehicles, pedestrians).

Derived from SF-XL (Berton et al, 2022a), Table 11: Performance Comparison on
this  dataset is  particularly = well-suited  for the SF-small benchmark.

evaluating  generalization as its queries are
drawn from  distinct,  non-adjacent locations. Method R@1 R@5 R@10
The results are presented in Table 11. SAGE achieves .- vpp cvrRoos 845 887 892

89.3% at R@1, significantly outperforming all compared a1 AD CVPR' 2008 857 882 897

state-of-the-art methods. Our method utilizes two hyper-  SuperVLAD npsa02s 85.8 89.1  89.5

parameters during Online Graph Creation: the geographic SALAD-CM gccv 2024 84.0 88.0  89.8

distance threshold 77 and the affinity score threshold 75. EDTformer tcsvr 2005 87.9 89.8  90.6

We conducted a sensitivity analysis on these parameters EMVP xips: 2024 882 90.6 91.1

using the MSLS-val dataset, as presented in Table 12. The gAGg (Ours) 893 915 91.9

table also shows that the model’s performance remains
stable around these optimal values, demonstrating that our method is not overly sensitive to these
hyperparameters and exhibits good robustness.

To further validate the effectiveness of SAGE, Table 12: Sensitivity analysis of 7 and 75.
we present an extended comparison against sev-

eral recently published SOTA methods from , _ MSLS-val | MSLS-val
top-tier venues. These include VLAD-BuFF R@1 R@5R@10] R@]1 R@5R@10

(Khaliq et al., 2024), EDTFormer (Jin et al., 20 938 973 977 |—2.75 x 10° 94.1 97.6 97.8
2025b), and EffoVPR (Tzachor et al,, 2024). 55 94's 974 978 |—2.88 x 10° 945 974 97.8
The results, shown in Table 13, demonstrate 30 937 97.0 974 |—3.00 x 10° 93.9 973 97.6
that SAGE consistently outperforms these
strong baselines. SAGE achieves superior performance across the majority of benchmarks. Al-
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Figure 9: Failure cases of SAGE, where the top-1 retrieval (red box) fails to match the ground truth.

though EffoVPR obtains a slightly higher R@1 on Tokyo024/7, it is a two-stage reranking method,
which introduces additional computational overhead.

Table 13: Extended comparison with recent SOTA methods on five challenging benchmarks.
fDenotes two-stage reranking method.

SPED MSLS-val Nordland Tokyo24/7 Pitts250k-test
R@IR@5R@10R@1R@5R@I0R@1R@5R@10R@1R@5R@10R@1R@5R@10

VLAD-BUFF gccyi24 91.4 959 969 91.8 96.0 96.2 85.1 93.8 96.0 96.2 98.7 99.4 95.5 98.5 99.2
EDTFormer tcsvr2s 92.4 95.9 96.9 92.0 96.6 97.2 88.3 95.3 97.0 97.1 98.1 98.4 959 98.8 99.3
EffoVPR jciroos T 93.1 97.9 98.4 92.8 97.2 97.4 950 - - 987987 98.7 - - -

SAGE (Ours) 98.9 99.7 100 94.5 97.4 97.8 96.0 98.9 99.4 97.5 99.1 994 98.4 99.4 99.7

Method

Beyond the quantitative ablations, Figure 9 presents SAGE’s qualitative failure modes. These fail-
ures typically occur under extreme conditions, such as severe viewpoint or illumination shifts, and
heavy occlusion from dynamic objects.

A.3 DATASET DETAILS

Pitts30k-test (Torii et al., 2013). The Pitts30k-test dataset is a subset of the Pittsburgh 250k dataset
collected from Google Street View panoramas with GPS labels. It contains urban street-view images
from Pittsburgh, Pennsylvania, USA, covering diverse city environments such as roads, bridges,
and buildings, with large variations in viewpoint, season, and illumination. Each location provides
multiple viewpoint images, and the dataset is primarily used for evaluating VPR models in urban
scenarios.

SPED (Chen et al., 2017). The SPED dataset, also known as the Specific PlacEs Dataset, consists
of images captured by fixed surveillance cameras over extended time periods, covering significant
changes in illumination, weather, and seasons. It contains unique locations, each with hundreds of
images taken at different times of day and year, providing a challenging benchmark for long-term
VPR under extreme appearance variations.

MSLS-val (Warburg et al., 2020). The MSLS-val dataset is the validation split of the Mapillary
Street-Level Sequences dataset, which contains street-level imagery sequences from cities world-
wide captured with various devices such as smartphones, dashcams, and professional mapping cam-
eras. The validation set covers multiple cities, seasons, and weather conditions, and is widely used
for tuning and evaluating VPR models under diverse geographic and environmental variations.

Nordland (Siinderhauf et al., 2013). The Nordland dataset consists of front-facing video record-
ings from a train journey along the same railway route in Norway, captured in all four seasons:
spring, summer, autumn, and winter. The route and camera viewpoints are fixed, ensuring identical
spatial structure while presenting extreme appearance changes due solely to seasonal and weather
differences, making it a valuable benchmark for cross-season VPR research.
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Tokyo247 (Torii et al., 2015). The Tokyo247 dataset contains urban street-view images from Tokyo,
Japan, primarily sourced from Google Street View panoramas with GPS labels, and is named for
including both day and night imagery to represent long-term scene changes. It features dense
metropolitan areas with tall buildings as well as some open spaces, offering large variations in view-
point, illumination, and dynamic objects, and is used to evaluate VPR models in complex urban
environments.

AmsterTime (Yildiz et al., 2022). The AmsterTime dataset is a time-lapse street-view dataset of
Amsterdam, containing images of the same locations captured in different years, such as 2008 and
2014, using Google Street View panoramas. It reflects long-term changes in building facades and
urban infrastructure, providing a benchmark for evaluating VPR models under temporal urban trans-
formations.

Pitts250k-test (Torii et al., 2013). The Pitts250k-test dataset is the test split of the Pittsburgh 250k
dataset, consisting of street-view images from Pittsburgh and surrounding areas, captured from
Google Street View panoramas with GPS labels. It offers diverse urban scenes with dense road
networks, buildings, and bridges, and serves as a large-scale benchmark for evaluating the scalabil-
ity and robustness of VPR systems.

Eynsham (Cummins & Newman, 2010; Berton et al., 2022b). The Eynsham dataset is a GPS-
synchronized street-view image sequence collected along approximately 35 km of driving routes in
Eynsham, Oxfordshire, UK, using a vehicle-mounted camera. It provides continuous video frames
with precise ground-truth positions, making it suitable for sequence-based place recognition and
loop closure detection experiments.

SF-XL (Berton et al., 2022a). The San Francisco eXtra Large (SF-XL) dataset is a massive and
dense new benchmark designed to push visual geo-localization research towards realistic, city-wide
applications. Comprising over 41 million images captured across a decade, it presents significant
real-world challenges such as long-term temporal variations and a domain shift between its Street
View database and crowd-sourced queries.

A.4 COMPARED METHODS DETAILS

NetVLAD (Arandjelovic et al., 2016)'. A classic VPR method with a learnable VLAD layer plug-
gable into any CNN. Uses VGG-16 backbone, trained on Pitts30k, optimized via weakly supervised
ranking loss, outperforming traditional methods.

SFRS (Ge et al., 2020)?. Addresses GPS noise by mining hard positives via self-supervised fine-
grained region similarities, multi-generation training. Based on NetVLAD, VGG-16 backbone,
trained on Pitts30k, outperforming state-of-the-art then.

CosPlace (Berton et al., 2022a)°. Solves scalability in large-scale localization by framing training
as classification. Constructs SF-XL dataset, uses CosPlace Groups. VGG-16/ResNet backbone,
outputs 512D descriptors, low memory usage, suitable for city-scale applications.

MixVPR (Ali-Bey et al., 2023b)*. This is a novel holistic feature aggregation method for VPR.
It takes feature maps from pre-trained backbones as global features and iteratively incorporates
global relationships into each feature map through stacked Feature-Mixer blocks (composed solely
of multi-layer perceptrons), without the need for local or pyramidal aggregation. Using backbones
like ResNet and trained on datasets such as GSV-Cities, it outperforms existing methods by a large
margin with less than half the number of parameters compared to CosPlace and NetVLAD.

R2Former (Zhu et al., 2023)3. This method introduces R2Former, a unified framework that employs
a pure Transformer architecture to handle both global retrieval and local reranking in a single, end-
to-end model. Its novel reranking module replaces slow geometric verification with a learnable
Transformer that analyzes richer cues like feature correlation and attention, achieving state-of-the-
art accuracy while dramatically reducing inference time and memory usage.

Uhttps://github.com/Nanne/pytorch-NetVlad
Zhttps://github.com/yxgeee/OpenIBL
3https://github.com/gmberton/CosPlace
*https://github.com/amaralibey/Mix VPR
>https://github.com/bytedance/R2Former
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EigenPlaces (Berton et al., 2023)°. This method embeds viewpoint robustness into learned global
descriptors by clustering training data to explicitly present the model with different views of the
same points of interest, without extra supervision. Using backbones like VGG-16 or ResNet with
GeM pooling and trained on the SF-XL dataset, it outperforms state-of-the-art methods on most
datasets, requiring 60% less GPU memory for training and using 50% smaller descriptors.

SelaVPR (Lu et al., 2024c)’. It proposes a hybrid global-local adaptation method that adapts
pre-trained foundation models (e.g., DINOv2) via lightweight adapters without modifying the pre-
trained model parameters, efficiently generating global features for candidate retrieval and local
features for re-ranking. It also introduces a mutual nearest neighbor local feature loss to avoid time-
consuming spatial verification. Outperforming state-of-the-art methods on benchmarks like MSLS,
it consumes only about 3% of the retrieval time of RANSAC-based two-stage methods.

CricaVPR (Lu et al., 2024b)3. It proposes cross-image correlation-aware representation learning,
using attention to correlate features of multiple images in a batch, enabling each image feature to
gain useful information from others for enhanced robustness. A multi-scale convolution-enhanced
adaptation method is designed to insert lightweight adapters into frozen pre-trained foundation mod-
els (e.g., DINOV2) to introduce multi-scale local information. It outperforms state-of-the-art meth-
ods by a large margin on multiple benchmarks with shorter training time.

SALAD (Izquierdo & Civera, 2024)°. It reformulates NetVLAD’s soft assignment of local features
to clusters as an optimal transport problem, considering both feature-to-cluster and cluster-to-feature
relations, and introduces a ’dustbin’ cluster to discard non-informative features (Xu et al., 2024).
Using DINOV?2 as the backbone with fine-tuning, it trains in only 4 epochs. This single-stage method
outperforms both single-stage and two-stage methods, with fast inference speed.

BoQ (Ali-bey et al., 2024)!°. This method learns a set of global queries and uses cross-attention
to probe input features for consistent information aggregation. It supports both CNN and Vision
Transformer backbones, trained on the GSV-Cities dataset. As a one-stage global retrieval method
without re-ranking, surpasses two-stage methods, and is fast and efficient.

SALAD-CM (Izquierdo & Civera, 2025)!". This work addresses the insufficient Geographic Dis-
tance Sensitivity (GDS) of existing VPR models by proposing a novel sample mining strategy. It
constructs a graph of visually similar images and samples cliques (sets of geographically close im-
ages) from the graph as training batches to enhance the model’s ability to distinguish small-range
geographic distances. Based on models like DINOv2 SALAD and MixVPR, trained on densely
sampled datasets such as MSLS and Nordland, it significantly improves recall without increasing
inference computational overhead.

SuperVLAD (Lu et al., 2024d)'%. This method improves NetVLAD by removing cluster centers and
using a small number of clusters , enhancing cross-domain generalization and simplifying the model.
It also proposes 1-Cluster VLAD, which generates extremely low-dimensional descriptors by intro-
ducing “ghost clusters” and outperforms methods like GeM pooling with the same dimension. Using
Transformer backbones (e.g., DINOv2) and trained on datasets like Pitts30k, it outperforms existing
methods with lower feature dimensions.

EMVP (Qiu et al., 2024)!3. This method leverages Visual Foundation Models(e.g., DINOv2) and
proposes a Centroid-Free Probing (CFP) stage that uses second-order features to better adapt VFM
descriptors. It introduces a Dynamic Power Normalization (DPN) module to adaptively preserve
task-specific information in both recalibration and CFP stages, forming a Parameter Efficiency Fine-
Tuning (PEFT) pipeline. It achieves excellent performance on datasets like MSLS and Pitts250k,
saving 64.3% trainable parameters compared to existing state-of-the-art PEFT methods.

Shttps: //github.com/gmberton/EigenPlaces
"https://github.com/Lu-Feng/SelaVPR
8https://github.com/Lu-Feng/CricaVPR
“https://github.com/serizba/salad
"https://github.com/amaralibey/ Bag-of-Queries
https://github.com/serizba/cliquemining
Phttps://github.com/lu-feng/SuperVLAD
Bhttps://github.com/vincentqqb/EMVP
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FoL (Wang et al., 2025)'*. This two-stage VPR method models reliable discriminative regions via
Extraction-Aggregation Spatial Alignment Loss (SAL) and Foreground-Background Contrast En-
hancement Loss (CEL), guiding global feature generation and efficient re-ranking. It introduces a
weakly supervised local feature training strategy based on pseudo-correspondences and a discrim-
inative region-guided efficient re-ranking pipeline. Using DINOv2 as the backbone and trained on
GSV-Cities, it outperforms existing two-stage methods on multiple benchmarks with higher compu-
tational efficiency.

VLAD-BuFF (Khaliq et al., 2024)'3, This method improves visual place recognition accuracy by
implementing a burst-aware weighting mechanism that discounts repetitive features to emphasize
more distinctive visual cues. Simultaneously, it achieves high computational efficiency by using a
pre-projection layer for local features, initialized with PCA, which enables rapid aggregation in a
lower-dimensional space while maintaining high recall.

EDTFormer (Jin et al., 2025b)'°. This method introduces EDTformer, a simplified transformer
decoder architecture that utilizes a set of learnable queries to efficiently decode and aggregate crucial
information from image features for robust place recognition. Furthermore, it enhances the DINOv2
backbone with a novel Low-rank Parallel Adaptation (LoPA) method, which enables highly memory
and parameter-efficient fine-tuning to deliver high performance with lower training costs.

EffoVPR (Tzachor et al., 2024). This method introduces EffoVPR, which effectively utilizes a
foundation model by extracting powerful local descriptors from its internal self-attention layers for
a highly effective re-ranking process, even in a zero-shot setting. Furthermore, its single-stage
approach achieves state-of-the-art performance with exceptionally compact global features by sim-
plifying training to fine-tune only the model’s final layers, thus eliminating the need for external
aggregation modules.

A.5 LIMITATIONS & DISCUSSIONS & FUTURE WORK

Limitations and Discussions. Despite its strong performance, SAGE has some limitations. First,
its performance can be compromised in highly dynamic scenes with significant, rapid occlusions
(e.g., heavy traffic), as the model prioritizes static background features which may be temporarily
obscured. Second, the Online Graph Creation introduces a computational step per epoch. While our
experiments show this overhead is marginal on current benchmarks, the process could become time
consuming for extremely large-scale datasets. This represents a trade-off between training efficiency
and the adaptability of the sampling strategy. Third, the methodology’s effectiveness relies on the
availability of reasonably accurate geographic coordinates during training. In scenarios with noisy
or sparse GPS data, learning fine-grained spatial distinctions could be challenging.

Future Work. First, to better handle dynamic scenes, future work could integrate powerful foun-
dation models like the Segment Anything Model (SAM) to explicitly identify and mask transient
objects. This would allow the model to focus purely on the stable, discriminative background con-
text. Second, to enhance robustness against extreme domain shifts (e.g., historical vs. modern
images), we plan to incorporate multi-modal cues (Xu et al., 2025). Fusing visual features with
semantic information from segmentation maps could provide complementary signals for more ro-
bust matching. Finally, the core principle of adaptive graph-based sampling holds promise beyond
VPR. Applying this dynamic, “slow thinking” paradigm to other deep metric learning tasks, such as
person re-identification or fine-grained image retrieval, could be a fruitful area of research.

“https://github.com/chenshunpeng/FoL
Bhttps://github.com/Ahmedest61/VLAD-BuFF
" https://github.com/Tong-Jin01/EDTformer
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