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ABSTRACT

Human trajectory prediction is fundamental for autonomous driving and service
robot. The research community has studied various important aspects of this task
and made remarkable progress recently. However, there is an essential perspective
which is not well exploited in previous research all along, namely individual feed-
back. Individual feedback exists in the sequential nature of trajectory prediction,
where earlier predictions of a target can be verified over time by his ground-truth
trajectories to obtain feedback which provides valuable experience for subsequent
predictions on the same agent. In this paper, we show such feedback can reveal
the strengths and weaknesses of the model’s predictions on a specific target and
heuristically guide to deliver better predictions on him. We present an interactive
adjustment network to effectively model and leverage the feedback. This net-
work first exploits the feedback from previous predictions to dynamically gener-
ate an adjuster which then interactively makes appropriate adjustments to current
predictions for more accurate ones. We raise a novel displacement expectation
loss to train this interactive architecture. Through experiments on representative
prediction methods and widely-used benchmarks, we demonstrate the great value
of individual feedback and the superior effectiveness of proposed interactive ad-
justment network.

1 INTRODUCTION

Human trajectory prediction is a task to forecast the future movements of pedestrians according
to the observations from the past. Over the past years, researchers have studied this topic from
numerous aspects such as multi-modal prediction (Li et al., 2017; Gupta et al., 2018), human social
interactions (Alahi et al., 2016; Xu et al., 2022a) and scene context restrictions (Sadeghian et al.,
2019; Liang et al., 2019), and have achieved remarkable progress. Beyond the above points, when
reflecting on the sequential nature of trajectory prediction, i.e. an agent’s presence in a scene is
typically a long sequence and thus a series of consecutive predictions is performed over time, we
believe here lies another essential information that is not well exploited in previous research all
along, namely individual feedback.

Individual feedback refers to the information derived from the differences between the model’s
previous predictions and the ground-truth trajectory, and can provide valuable experience for subse-
quent predictions on the same agent. Particularly as illustrated in Fig. 1-a, when a model is continu-
ously making predictions on a single agent, its previous predictions, e.g. those from several seconds
ago, could already be verified by the agent’s ground-truth trajectory which has become available
through the progression of time. Such verification offers the individual feedback. Since the feed-
back includes references to the strengths and weaknesses of the model’s predictions on the agent, if
this information is properly utilized, it is able to heuristically guide to deliver more accurate predic-
tions on this agent, and thereby brings overall improvements. However, none of the existing studies
have paid much attention to exploring such information.
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Figure 1: (a) Illustration of the individual feedback. Previous predictions of a target can be verified
by ground truths through the progression of time, offering valuable experience on the strengths and
weaknesses of the prediction model. (b) A brief schematic of the interactive adjustment process. M
refers to the prediction model.

Still, it is non-trivial to effectively learn and leverage the feedback to adjust the original predictions
into better ones. First, the feedback information cannot be simply integrated into the prediction
model and learned end-to-end, since the calculation of individual feedback requires the output of the
prediction model. Therefore, the feedback adjustment network should be developed as an external
module to the prediction model. But this leads to a second problem as an external module cannot
directly be aware of the restraints given by the prediction model when adjusting, e.g. the adjusted
prediction may still violate social rules even though the prediction model has already learnt the
social restrictions.

In this paper, we design the interactive adjustment network, a.k.a. IAN, to present a novel scheme
on feedback modeling and utilization. IAN is an external module for the aforementioned first is-
sue. As the trained prediction model is continuously performing predictions on a target individual,
IAN first embeds the feedback from previous predictions and corresponding ground truths, and then
aggregates all the feedback together to dynamically generate an adjuster specifically for the target.
Thereby, the adjuster can adjust the model’s current predictions into several proposals regarding
future trajectories according to the integrated feedback information. Although these proposals can
be directly decoded into trajectories as final predictions, this faces the aforementioned second issue.
To this end, we generate the final predictions by querying the prediction model for trajectory candi-
dates and further filtering candidates to figure out those with high confidence in candidate-proposal
coherency as final results. In this way, the adjusted final predictions are not only optimized by the
feedback but are also in line with the prediction model. A brief schematic of the whole interac-
tive process is shown in Fig. 1-b, where the adjuster gets feedback information from the prediction
model (black arrows) and the prediction model in turn leverages adjusted proposals from the adjuster
to generate the final results for improved accuracy (orange arrows).

Considering the final results are provided by the prediction model rather than IAN itself, conven-
tional loss functions for trajectory prediction such as L2 are not available since the gradient will not
be back-propagated to IAN. To train this interactive architecture, we further raise a novel displace-
ment expectation loss. Observing the confidence evaluated by the filter between a proposal and a
candidate trajectory reveals the probability to select this candidate for the proposal, the expectation
of displacement between the candidates and the ground-truth trajectory for a proposal indicates the
error between the proposal and the ground truths. By optimizing with our proposed loss, IAN can
be trained end-to-end to learn the feedback and leverage it to generate accurate proposals.

As an external module, IAN can be easily adopted to various prediction models. We conduct ex-
haustive experiments on three widely-used trajectory prediction benchmarks (Pellegrini et al., 2009;
Leal-Taixé et al., 2014; Zhou et al., 2012; linouk23, 2016) with 6 representative prediction mod-
els (Gupta et al., 2018; Shi et al., 2021; Pang et al., 2021; Xu et al., 2022a; Shi et al., 2023; Bae
et al., 2024), including state-of-the-art (Bae et al., 2024). The results demonstrate the great value
of individual feedback, the superior effectiveness of IAN and the significant performance boost on
trajectory prediction.
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We summarize the contributions of our paper as follows.

• We study individual feedback, which reveals the prediction model’s performance in pre-
dicting a specific agent. Individual feedback exists in the sequential nature of trajectory
prediction tasks, and can be derived from the differences between a model’s previous pre-
dictions and the ground-truth trajectory of the specific agent. To the best of our knowledge,
we are the first to adopt such agent-specific information into trajectory prediction tasks.

• We analyze the properties of individual feedback and design an interactive adjustment net-
work (IAN) to properly leverage individual feedback. The proposed IAN is a fully external
module and can be easily adopted to other prediction models only with small computational
overhead.

• Our experiments show that IAN significantly boosts the performances of multiple base
prediction models on various datasets, proving the effectiveness of individual feedback.

2 RELATED WORKS

Human trajectory prediction (Hirakawa et al., 2018; Lee et al., 2017; Gupta et al., 2018; Shi et al.,
2021; Sun et al., 2021; Xu et al., 2022a; Sun et al., 2022; Bae et al., 2022; Shi et al., 2023; Sun
et al., 2023b;a; Dong et al., 2023; Li et al., 2024; Yang et al., 2024) is proposed to forecast the
future movements of traffic agents given past observations. It has numerous important applications
such as autonomous vehicles and robots (Hirakawa et al., 2018; Rudenko et al., 2019). Due to the
fact that there is no single correct future, some works (Lee et al., 2017; Gupta et al., 2018) have
paid their attention to multi-modal prediction, which aims at generating multiple possible future
trajectories given a single observation to cover the uncertainty in the future. Based on the multi-
modal setting, many recent works focus on exploiting various additional information apart from the
target’s past trajectory to aid in the prediction. For example, approaches like Sophie (Sadeghian
et al., 2019), Trajectron++ (Salzmann et al., 2020) and SingularTrajectory (Bae et al., 2024) take
scene context into consideration during prediction, while others like Social GAN (Gupta et al.,
2018), SGCN (Shi et al., 2021), GroupNet (Xu et al., 2022a) and SocialCircle (Wong et al., 2024)
design various methods to model the social interactions. Further, some recent works (Meng et al.,
2022; Thakkar et al., 2024) tried to capture scene-specific patterns to adapt the predictions better
fit the current scenario. However, there is another type of agent-specific information that has been
neglected by previous works, namely individual feedback. It emerges from subsequent predictions of
the model on the same agent, and offers experience from the past to improve the current prediction.

3 FORMULATION OF INDIVIDUAL FEEDBACK IN TRAJECTORY PREDICTION

In this section, we first briefly describe the task setting of trajectory prediction and then introduce
the problem formulation of using individual feedback to improve the prediction performance. A
list of key notations and their meanings are provided in Tab. 3 of the Technical Appendix for better
reference.

Trajectory Prediction In the conventional setting of trajectory prediction, a prediction model M
takes an observation sequence O with length τobs of an agent as input and then predicts a series of
trajectories Ŷ with length τpred for him. If the agent can be observed since timestep Ta, the model’s
prediction of this agent, Ŷ, at timestep T ≥ τobs + Ta − 1 can be formulated as

ŶT = M(OT ) =
{
Ŷ i
T |i = 1, 2, · · · , k

}
(1)

where Ŷ i
T is one of the predictions at timestep T and k is the number of required predictions. YT is

used to denote the agent’s ground truth trajectory at timestep T . For simplicity, we omit Ta − 1 by
assuming Ta = 1 in the following context.

Individual Feedback When T ≥ τobs + τpred, the qualities of previous predic-
tions {Ŷτobs , . . . , ŶT−τpred} of an agent can be verified by the ground-truth trajectories
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Figure 2: Illustration of the overall IAN structure including both training and testing stages.
Train/test path refers to steps that are only present during training/testing. The ‘Confidence Net-
work’s in the figure are in fact the same network, we duplicate its block representation for better
clarity. F is acquired according to Eq. 3. The proposed displacement expectation loss is illustrated
in the upper-right part of the figure.

{Yτobs , . . . , YT−τpred}1. We consider the similarity and disparity between the two bring individ-
ual feedback F, revealing the performance, including the strengths and weaknesses, of the model’s
predictions on this agent. This feedback information can be used to adjust the current predictions
ŶT to better results Y∗

T with a function F , i.e. Y∗
T = F(ŶT ,F), w.r.t. d(Y∗

T , YT ) ≤ d(ŶT , YT ),
where d refers to the evaluation metrics for trajectory prediction.

4 INTERACTIVE ADJUSTMENT NETWORK

4.1 OVERVIEW

As motioned in Sec. 3, when T ≥ τobs + τpred, we can learn pieces of feedback from previous
predictions and corresponding ground truths with a feedback embedding module f by

Ft = f
(
Ŷt, Yt

)
, τobs ≤ t ≤ T − τpred (2)

Considering each piece of feedback information Ft is related to the corresponding observed trajec-
tory Ot, we raise a feedback aggregation operation g that first integrates the observation feature into
each piece of feedback and then aggregates all of them together as a whole. The full process can be
written as

F = GF

(
{(Ŷt, Yt, Ot)}

)
= g ({(Ft, Ot)}) , τobs ≤ t ≤ T − τpred (3)

where GF (·) denotes the feedback generator and F is the individual feedback which is further used
as a set of (dynamic) parameters of the adjuster AF.

In this manner, the adjuster is aware of individual feedback information, and can be used to adjust
the current predictions ŶT with the observation OT and generate a series of proposals S regarding
the future trajectories,

S = {s1, s2, · · · , sk} = AF

(
Ecurr(OT , ŶT )

)
(4)

where Ecurr refers to encoders for the current observation and predictions, and k is the number of
required predictions in the multi-modal setting. The proposals are then used to filter the candidates
queried from the prediction model to get the final results

Y∗
T = Φ(M, S) (5)

1{Yτobs , . . . , YT−τpred} are ground-truth trajectories of previous timesteps, which can be already observed
at the current time step T. We do NOT involve ground-truth trajectories of the current prediction YT as input.
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Figure 3: Illustration of feedback embedding process and
observation integration. Here τobs ≤ t ≤ T − τpred.

where Φ refers to the proposal query
& filtering process.

Fig. 2 and Fig. 3 illustrate the ar-
chitecture of our proposed approach.
And in the following Sec. 4.2,
Sec. 4.3 and Sec. 4.4, we respectively
discuss the feedback generator, the
adjuster and the query & filtering pro-
cess in detail. Then in Sec. 4.5, we
explain how to train IAN with a novel
displacement expectation loss. The
implementation details are provided
in the technical appendices.

4.2 FEEDBACK GENERATOR

According to Eq. 2 and 3, the feedback generator GF learns the whole individual feedback F for
the current predictions ŶT from a series of previous observations {Ot}, predictions {Ŷt}, and cor-
responding ground truths {Yt} in τobs ≤ t ≤ T − τpred with two modules, feedback embedding f
and feedback aggregation g.

Feedback Embedding To obtain each piece of feedback Ft, we first encode each trajectory Ŷ i
t ∈

Ŷt and Yt into deep representations R̂i
t and Rt with a prediction encoder Epred and a ground-truth

encoder Egt

R̂t =
{
R̂i

t = Epred

(
Ŷ i
t

)
|i = 1, 2, · · · , k

}
; Rt = Egt (Yt) (6)

Then, considering the attention mechanism is a common approach that helps models to learn the
correlation between data, we introduce an attention gate to discovery the key similarity and disparity
between features of the ground truth Rt and each prediction R̂i

t

δit = softmax

(
RtR̂

i⊤
t√
d

)
R̂i

t (7)

In this manner, the result δit indicates the verification of a prediction Ŷ i
t by the ground-truth Yt. d is

the dimension of Rt. Finally, we aggregate {δit|i = 1, 2, · · · , k} together to get a piece of feedback
Ft with max pooling, considering it is an effective and efficient symmetric operation.

Ft = maxpool
(
{δit}

)
(8)

Feedback Aggregation With pieces of feedback embedding Ft, we then aggregate them together
for the whole individual feedback F. Considering the prediction model predicts differently on dis-
tinct observations, the feedback will also vary among the observations. To this end, we first integrate
the observation features into each feedback embedding,

F ∗
t = mlp ([Eobs (Ot) , Ft]) (9)

where Eobs is the observation encoder, and [·, ·] denotes the concatenation operation. After that, all
pieces of observation-aware feedback embedding F ∗

t are fed to an aggregation function for F. We
use max pooling in our implementation for its symmetric property, formally,

F = maxpool ({F ∗
t |τobs ≤ t ≤ T − τpred}) (10)

4.3 ADJUSTER FOR PROPOSAL

In Eq. 4, an adjuster is derived from the individual feedback F and generates a series of proposals
S given the current observation OT and predictions ŶT . Inspired by previous works (Jia et al.,
2016; Tian et al., 2020), we dynamically generate an mlp adjuster by regarding the feedback as its
parameters, denoting as AF. That is AF(·) = mlp(·;F). This mechanism enables the feedback
information to directly influence the input of the adjuster, i.e. ŶT and OT , and offers k adjusted
proposals for future predictions as output. The encoders for OT and ŶT share the same architecture
with Eobs and Epred.
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Algorithm 1 Candidate Filtering

Input: Confidence Matrix M ∈ Rk×η; Candidate Predictions {Ŷ j
T |j = 1, 2, ..., η};

Output: Set Y∗
T consisting of filtered candidates;

Initialize: Y∗
T = {}; Index p, q;

while M ̸= {−∞}k×η do
p, q = argmax

p,q
M;

Add Ŷ q
T to Y∗

T ;
Set Mp,: = −∞, M:,q = −∞;

end while
return Y∗

T ;

4.4 PROPOSAL QUERY & FILTERING

So far, we have adjusted the current predictions and acquired a set of proposals S = {si|i =
1, 2, ..., k}. Although these proposals can be directly decoded into exact trajectories as final results,
these trajectories may contradict the prediction model since the adjustment process is not aware of
the features learnt by the model. In this part, we introduce how to use such proposals to query the
prediction model for prediction candidates and further filter them to get the qualified final results as
Eq. 5.

Given the proposals S, we first query the prediction model M for η candidate predictions {Ŷ j
T |j =

1, 2, ..., η} with η ≥ k (we use η = 200 in our experiments), then a confidence matrix can be
calculated as

M = [mi|i = 1, 2, · · · , k] ∈ Rk×η, mi =
[
ϕ
(
Ŷ j
T , si

)
|j = 1, 2, · · · , η

]
(11)

where ϕ(·) is a confidence network, and mj
i ∈ M is the confidence of the i-th proposal being

coherent with the j-th candidate prediction. We then run a greedy algorithm (shown in Alg. 1)
to filter out k candidates as the final results in Y∗

T . As k is usually a small value, e.g. 20, the
computational overhead of this loop is negligible.

4.5 TRAINING

Training Set Collection We first distinguish the training/test set of the prediction model M and
IAN with P and A respectively. A special point about A is that it requires not only the observations
and the ground truths, but also the predictions from M according to Eq. 3. The former ones are
available in P while the latter one is not. Therefore, these predictions should first be collected to
build the training set of A. Intuitively, they can be acquired by using M to infer on the training set
of P. Yet this practice is flawed. Since M has already been specifically optimized on the training
set of P but has never seen the test set of P, there is a considerable gap between the distribution of
M’s predictions on the training and test set of P. This further leads to inconsistency between the
distribution of training data and test data of A.

To tackle this problem, we draw on the idea of K-fold cross validation. Specifically, the training set
of P is first split into K folds. By considering each fold of training data as a pseudo test set and the
rest K−1 folds together as a new training set, K sub-datasets are created. Then we train and test M
on each sub-dataset, producing K prediction models and K groups of pseudo test set predictions.
When K is large enough, the prediction models trained on the sub-datasets will be similar as that
trained on the full training set (i.e. the training set of P), and thus the distribution of these predictions
on the pseudo test sets will be consistent to that on the real test set produced by the model trained on
the full training set. In this way, the K groups of pseudo test set predictions can be reasonably used
as the predictions for the training set of A. We use K = 5 in our experiments.

Displacement Expectation Loss IAN cannot be directly optimized by the error of the predictions
due to the fact that the predictions are not given by IAN and thus the gradient cannot be back
propagated to IAN. To tackle this issue, we raise a novel displacement expectation loss for training
and its application process is shown in Fig. 2.
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During the training process of IAN, we first acquire S with k proposals for a training sample ac-
cording to Eq. 4. Afterwards, we take N predictions from the prediction model and calulate the
confidence matrix M ∈ Rk×N following Eq. 11. We use N = 200 in our experiments. Meanwhile,
we calculate the displacement error between all N predictions and the ground-truth future trajectory
YT

e = [ej = d
(
Ŷ j
T , YT

)
|j = 1, 2, · · · , N ] ∈ RN (12)

where d(·) is the ADE distance.

Observing the confidence score reveals the probability to select a candidate for a certain proposal,
with both the confidence score matrix M and the error vector e, we calculate the expected error of
each proposal as

E = {softmax (mi) · e|i = 1, 2, · · · , k} (13)

which can reveal both the quality of the proposals and the effectiveness of the filter network. By opti-
mizing the expectation error, IAN can gradually learn from the feedback to generate both reasonable
proposals as well as a high-quality prediction-proposal filter.

Considering the multi-modal nature of trajectory prediction, simultaneously optimizing all the k
expectations will have a negative impact and cause mode collapse on the proposals, therefore, we
refer to the winner-takes-all optimization technique and define our loss function as

L = minE (14)

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Benchmarks We conduct experiments on the following three widely-used benchmarks. ETH (Pel-
legrini et al., 2009)/UCY (Leal-Taixé et al., 2014) Dataset is one of the most commonly used bench-
marks. We follow Alahi et al. (2016) for the leave-one-out evaluation and observation/prediction
horizon. Grand Central Station Dataset (GCS) (Zhou et al., 2012) contains trajectories extracted
from a 30-min video recorded at the Grand Central Station. 8 steps (3.2 seconds) are for observation
and 12 steps (4.8 seconds) are for prediction following Gupta et al. (2018). We split the first 80% of
the dataset for training, and the rest 20% for test. NBA Sports VU Dataset (NBA) (linouk23, 2016)
contains trajectories of all ten players in real NBA games. We adopt the traditional setting of 5 steps
(2.0 seconds) for observation and 10 steps (4.0 seconds) for prediction. We select 50k samples in
total from the 2015-2016 season with a split of 65%, 10%, 25% as training, validation and testing
data following Li et al. (2020). It is worth noting that since we only consider data samples with at
least one piece of feedback available and ignore the rest, i.e. those appear in the scene for less than
τobs + τpred timesteps, the reported baseline performances are different from their original value.

Metrics We use the common metrics ADE/FDE for evaluation. In the multi-modal prediction
setting, both metrics are calculated as the minimum over all k trajectories. We set k to 20 following
the common setting (Gupta et al., 2018).

Prediction Models We conduct experiments on the following five representative prediction mod-
els. Social GAN (Gupta et al., 2018), a GAN based prediction framework modeling the social
interactions with a pooling mechanism. SGCN (Shi et al., 2021), a graph convolutional network
that learns motion tendency with a temporal graph and social interactions with a directed spatial
graph. LB-EBM (Pang et al., 2021), a probabilistic model with cost function defined in the latent
space to account for the movement history and social context. GroupNet (Xu et al., 2022a), an en-
coding framework that models social interactions with multi-scale hypergraphs. We use GroupNet
on CVAE with their official implementation (sjtuxcx, 2022). TUTR (Shi et al., 2023), a transformer
encoder-decoder architecture that unifies the trajectory prediction components, social interactions,
and multimodal trajectory prediction. SingularTrajectory (Bae et al., 2024), a diffusion-based uni-
versal trajectory prediction framework designed to bridge the performance gap across five tasks.
We use official models for testing if available, otherwise we train models according to the official
implementations.
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(a) (b) (c) (d)
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Observation Ground Truth Adjusted PredictionOriginal Prediction

Figure 4: Qualitative analysis of the predicted trajectories before and after IAN is applied. The
plotted predictions are the ones with minimum error among a total of 20 predictions.

Table 1: Performance (ADE/FDE) of representative prediction models before and after IAN is ap-
plied on three benchmarks (1:ETH/UCY; 2:GCS; 3:NBA). All the baseline performances are evalu-
ated on models trained with corresponding official implementations. Since we ignore test samples
with no feedback, the reported baseline results are different from the original values. ST stands for
SingularTrajectory.

ID Method Social GAN SGCN LB-EBM GroupNet TUTR ST

1
Baseline 0.22 / 0.39 0.28 / 0.48 0.20 / 0.36 0.21 / 0.35 0.23 / 0.39 0.20 / 0.30
w/ IAN 0.20 / 0.34 0.26 / 0.44 0.18 / 0.31 0.19 / 0.30 0.22 / 0.36 0.19 / 0.29
Impr. 9.1% / 12.8% 7.1% / 8.3% 10.0% / 13.9% 9.5% / 14.3% 4.3% / 7.7% 5.0% / 3.3%

2
Baseline 4.47 / 7.40 4.10 / 6.51 3.19 / 5.24 2.65 / 4.05 2.81 / 4.40 3.05 / 4.60
w/ IAN 4.28 / 7.04 3.79 / 5.94 2.98 / 4.72 2.56 / 3.83 2.72 / 4.25 2.96 / 4.45
Impr. 4.3% / 4.9% 7.6% / 8.8% 6.6% / 9.9% 3.4% / 5.4% 3.2% / 3.4% 3.0% / 3.3%

3
Baseline 1.53 / 2.24 1.56 / 2.46 1.40 / 2.08 1.17 / 1.64 1.23 / 1.93 1.24 / 1.60
w/ IAN 1.47 / 2.11 1.44 / 2.19 1.34 / 1.94 1.13 / 1.56 1.19 / 1.84 1.20 / 1.55
Impr. 3.9% / 5.8% 7.7% / 11.0% 4.3% / 6.7% 3.4% / 4.9% 3.3% / 4.7% 3.2% / 3.1%

5.2 MAIN RESULTS

We first quantitatively analyze the effectiveness of our approach. Results in Tab. 1 show that sub-
stantial performance improvements are achieved for all the prediction models on three benchmarks
after applying IAN to model the individual feedback information. Particularly, improvements up to
10.0%/14.3% for ADE/FDE are achieved on strong baselines such as LB-EBM and GroupNet. In
some cases, the improvements brought by IAN is about 3%. Such improvements are still significant
on these benchmarks, as similar improvements were achieved by recent state-of-the-art prediction
models (Shi et al., 2023; Bae et al., 2024) over their respective predecessors. We find such phe-
nomenon intuitive as performances on these benchmarks advance towards the limits.

We further compare the adjusted predictions against the original ones with visualization in Fig. 4.
These cases demonstrate that IAN can successfully adjust predictions to more accurate ones in terms
of the moving direction (e.g. b, c), acuteness of turning (e.g. d), and velocity (e.g. e, f), etc.
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(a) (b) (c) (d)

Observation Ground Truth Adjusted PredictionOriginal PredictionHistory

Figure 5: Examples of how IAN learns from feedback. (a, b): positive feedback, and (c, d): negative
feedback. Figures in the first row are illustrations of current predictions before adjustment. The
second row shows the corresponding feedback from some while ago. And the third row illustrates
the predictions after adjustment.

5.3 ABLATION STUDY AND ANALYSIS

Learning from Individual Feedback To better demonstrate how the individual feedback con-
tributes to the adjustment, we show visualizations in Fig. 5 that IAN learns from either positive (a,
b) or negative (c, d) feedback to adjust the current predictions into more accurate ones.

Fig. 5-a illustrates a jittery trajectory. The original predictions fail to focus on the true direction
of the agent’s movements and largely mislead by the jitters. Luckily, there is a piece of feedback
from a similar situation that an accurate result is achieved with more diverse predictions. Based on
the experience, IAN similarly increases the diversity of the current predictions and decreases the
error. Fig. 5-b is another challenging case of double-turning. Leveraging the feedback of success-
fully predicting the other turning after the first one, IAN increases the tendency of predictions with
opposite-direction turns in this similar scenario.

In Fig. 5-c and d, the feedback records a previous situation with similar observation and predictions
as the current one, which finally turns out a failure according to the ground truth. Learning from
this negative feedback, i.e. insufficient diversity in c and lack of sharp turning in d, IAN adjusts the
original predictions to compensate the weaknesses of the original predictions and generates much
better results.

Contribution Analysis Compared with the baseline prediction models, our approach introduces
additional historical information. To demonstrate that the improvement is induced by the feedback
rather than additional information, we further compare with two ablative approaches which use the
same historical information as ours. i) Baseline w/ fullobs: The baseline prediction model using
all the observation since the predicted target appears instead of using the observation with a fixed
length. ii) IAN w/o feedback: An IAN architecture where the individual feedback F is replaced by
an embedding of the predicted target’s full history trajectory, extracted by an LSTM. Results are
shown in Tab. 2.

Although intuitively incorporating additional historical information would lead to performance im-
provements, simply adding additional observation directly to the baseline models (i.e. Baseline w/

9
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Table 2: Comparison of ADE/FDE on different ablative approaches against IAN. ST stands for
SingularTrajectory.

M Dataset Baseline Baseline IAN Direct IANw/ fullobs w/o feedback Decoding

LB-EBM
ETH/UCY 0.20 / 0.36 0.31 / 0.56 0.19 / 0.33 0.23 / 0.38 0.18 / 0.31

GCS 3.19 / 5.24 4.06 / 6.70 3.11 / 5.03 3.32 / 5.14 2.98 / 4.72
NBA 1.40 / 2.08 1.78 / 2.72 1.36 / 2.00 1.44 / 2.01 1.34 / 1.94

GroupNet
ETH/UCY 0.21 / 0.35 0.27 / 0.49 0.20 / 0.33 0.21 / 0.33 0.19 / 0.30

GCS 2.65 / 4.05 3.46 / 5.27 2.60 / 3.95 3.25 / 5.06 2.56 / 3.83
NBA 1.17 / 1.64 1.49 / 1.92 1.16 / 1.59 1.44 / 2.00 1.13 / 1.56

ST
ETH/UCY 0.20 / 0.30 0.21 / 0.32 0.20 / 0.30 0.22 / 0.33 0.19 / 0.29

GCS 3.05 / 4.60 3.15 / 4.71 3.03 / 4.56 3.37 / 5.16 2.96 / 4.45
NBA 1.24 / 1.60 1.27 / 1.74 1.23 / 1.58 1.29 / 1.66 1.20 / 1.55

fullobs) actually resulted in performance decline. This indicates that the baseline networks do not
successfully handle long observation with arbitrary length so that they may not exploit useful infor-
mation but get additional noise. In comparison, the IAN architecture can effectively obtain a steady
boost.

Compared with IAN w/o feedback, the original IAN achieves much better performance. This
demonstrates that the modeling of feedback is effective to bring more improvements upon just using
additional historical information.

Interactive Architecture As is described in Sec. 4.4, our proposed IAN obtains the final results
by querying the prediction model with proposals instead of directly decoding them. We argue that
directly decoding the proposals into trajectories is flawed, since the adjustment process is not aware
of the features learnt by the prediction model. In Tab. 2, we compare the results of direct decoding
against IAN. While IAN achieves significant improvements, the direct decoding approach faces
certain performance decrease on many of these experiments.

5.4 INFERENCE TIME

As an external module for a trajectory prediction model, IAN does not operate on the prediction
model itself but rather after it. In other words, the prediction model and IAN are consecutive modules
in a pipeline and can run simultaneously. Therefore, using IAN will not slow down the prediction
model to produce predictions. Please refer to Sec. E.1 in the Technical Appendices for more details.

Under our test environments with a single RTX3090, IAN takes an average of 0.02 seconds to
produce the adjusted predictions for an agent. As a reference, LB-EBM, GroupNet, TUTR and
SingularTrajectory take 0.03, 0.04, 0.05 and 0.02 seconds respectively to make the predictions. Our
approach can conduct inference at a high frequency while bringing substantial improvements.

6 CONCLUSION

In this paper, we study the individual feedback to reveal the prediction model’s performance for a
specific agent, which has not been studied in previous research. An interactive adjustment network
(IAN) is then proposed to learn and leverage valuable experience from the past feedback to aid in
the present prediction with small computational overhead. IAN analyzes and aggregates the feed-
back information from previous predictions on the target and uses it to make adjustments to current
predictions in an interactive manner with the prediction model. Moreover, a novel displacement
expectation loss is proposed to train the IAN. Exhaustive experiments demonstrate the effectiveness
of our approach on multiple prediction models across various benchmarks.
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A NOTATIONS

As our approach involves more notations than average, we provide a table of key notations used in
our paper and their meanings in Tab. 3 for better clarity.

Table 3: Notations and their respective meanings used in our paper.

Notation Meaning
τobs The observation horizon, a constant value.
τpred The prediction horizon, a constant value.

Ta
The timestep when the prediction target appears (assumed equal to 1 for simplicity),

i.e. target is observable from the start, in our paper.
T The timestep of ‘current’ prediction.
M Prediction model, NOT IAN.

O∗
Observation sequence with length τobs,

subscript denotes the timestep of its last element.

Y∗
The target’s ground truth future trajectory with length τpred,
subscript denotes the timestep right before its first element.

Ŷ∗
The target’s future trajectory predicted by M,

subscript denotes the timestep right before its first element.
Ŷ A set containing Ŷ .
k The number of required predictions under multi-modal trajectory prediction setting.
K The number of splits used for training set collection, see Sec. 4.5.

B IAN PIPELINE

In order to better formulate the IAN’s pipeline at both training and testing stages, we illustrate the
pipeline via pseudo-codes in Alg. 2 and 3.

Algorithm 2 IAN Training

Input: Training data Atrain =
⋃

a∈agents

{(
Ha

T , Ŷa
T , Y

a
T , O

a
T

)
|∀T ≥ Ta + τobs + τpred − 1

}
,

with Ha
T =

{
(Ŷa

t , Y
a
t , O

a
t )|Ta + τobs − 1 ≤ t ≤ T − τpred

}
,

Ŷa
t = M(Oa

t ), Ŷa
T = M(Oa

T ), |Ŷa
t | = k, |Ŷa

T | = N ;
Output: Trained feedback generator GF , adjuster A, and confidence network ϕ.
Initialize: GF , A, ϕ;

for all
(
Ha

T , Ŷa
T , Y

a
T , O

a
T

)
∈ Atrain do

Calculate F = GF (Ha
T ) according to Eq. 6 - 10;

Parameterize A with F (Sec. 4.3): AF(·) = mlp(·;F);
Calculate S = {s1, s2, · · · , sk} according to Eq. 4;
Calculate confidence matrix M according to Eq. 11;
Calculate displacement expectation loss L according to Eq. 12 - 14;
Back-propagate and optimize GF , A, ϕ;

end for
return GF , A, ϕ;

C IMPLEMENTATION DETAILS

In our implementation, we use LSTM networks for all the encoders in IAN, and the output sizes
of these encoders are all 64. Each proposal generated by the adjuster has a dimension of 32. The
adjuster is a four-layer mlp with embedding sizes of (128, 256, 512, 640, 640) and individual feed-
back F serves as the biases of its last two layers for low computational cost and a good convergence.

14



Published as a conference paper at ICLR 2025

Algorithm 3 IAN Inference

Input:
(
Ha

T , Ŷa
T , O

a
T

)
with T ≥ Ta + τobs + τpred − 1,

Ha
T =

{
(Ŷa

t , Y
a
t , O

a
t )|Ta + τobs − 1 ≤ t ≤ T − τpred

}
,

Ŷa
t = M(Oa

t ), Ŷa
T = M(Oa

T ), |Ŷa
t | = k, |Ŷa

T | = η;
Output: Filtered trajectories Y∗

T ;

Calculate F = GF (Ha
T ) according to Eq. 6 - 10;

Parameterize A with F (Sec. 4.3): AF(·) = mlp(·;F);
Calculate S = {s1, s2, · · · , sk} according to Eq. 4;
Calculate confidence matrix M according to Eq. 11;
return Candidate Filtering(M, Ŷa

T ) (Alg. 1);

Accordingly, the mlp used during feedback aggregation has 3 layers and an output size of 1280. The
confidence network first encodes the input trajectory into deep feature, then concatenate it with the
proposal. The concatenated feature is fed to a triple-layer mlp with input size of 96 and outputs
a single number as the confidence score. We use η = N = 200 for all prediction models except
TUTR, where we set η = N = L (notation L indicates the number of ‘general motion modes’ in
the TUTR paper) for ETH/UCY, and use η = N = 80 for the other datasets. During collection of
the training set, the original training set is split into K = 5 folds. The network is trained for 30
epochs using Adam optimizer. In this paper, we primarily focus on proposing the idea of individual
feedback and introducing how the IAN architecture can effectively leverage individual feedback to
improve trajectory prediction. Therefore, we do not delve into adopting more complex structures
for each module of IAN, e.g. using a heavier encoder instead of LSTM.

D ADDITIONAL RESULTS

D.1 DETAILED PERFORMANCES

In Tab. 4, we give the detailed performances and widths of 95% confidence intervals of all the
prediction models with/without IAN on all datasets. Improvements are achieved across all the sub-
datasets, further proving IAN’s effectiveness. The confidence intervals are acquired using results
from 5 separate runs.

D.2 ALTERNATE METRICS

To more comprehensively evaluate the performance of IAN, we additionally report the miss
rates (Waymo, 2024) of base model predictions with and without IAN on ETH/UCY dataset in
Tab. 5. We also report the brier-ADE/FDE following TUTR (Shi et al., 2023) in Tab. 6. These
results demonstrate the consistent improvements provided by the IAN across various metrics.

D.3 MORE ABLATIONS

Number of Candidate Predictions In Sec. 4.4, we use the proposals to filter η candidate predic-
tions to get the final results. We investigate the influence of different values of η in Tab. 7 (left).
When η is relatively small, the candidates are usually not sufficient to satisfy all the proposals with
high confidence scores. Then as η grows larger, the performance improves fast since more candi-
dates that are highly coherent with the proposals are available. When η is large enough, all proposals
may have already been satisfied with high confidence scores and the performance changes little as η
varies.

N in Displacement Expectation Loss In the proposed displacement expectation loss, the larger
N is, the closer the calculated expectation is to the ideal one, and thereby this tends to bring better
performance. We show the influence of different values of N in Tab. 7 (right).
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Table 4: Detailed performances of IAN and widths of confidence intervals with various prediction
models (1:ETH; 2:HOTEL; 3:UNIV; 4:ZARA1; 5:ZARA2; 6:GCS; 7:NBA). ST stands for Singu-
larTrajectory.

Method SGAN SGCN LB-EBM GroupNet TUTR ST

1

Baseline 0.293 / 0.442 0.441 / 0.669 0.327 / 0.567 0.285 / 0.393 0.414 / 0.628 0.287 / 0.346
ϵ 0.006 / 0.009 0.010 / 0.013 0.007 / 0.010 0.003 / 0.007 0.008 / 0.011 0.003 / 0.006

w/ IAN 0.269 / 0.385 0.403 / 0.586 0.272 / 0.436 0.231 / 0.268 0.391 / 0.583 0.284 / 0.333
ϵ 0.005 / 0.007 0.008 / 0.013 0.007 / 0.011 0.004 / 0.007 0.009 / 0.011 0.003 / 0.006

2

Baseline 0.172 / 0.291 0.179 / 0.241 0.094 / 0.133 0.146 / 0.226 0.118 / 0.154 0.110 / 0.160
ϵ 0.001 / 0.002 0.002 / 0.002 0.001 / 0.001 0.001 / 0.002 0.001 / 0.001 0.001 / 0.002

w/ IAN 0.147 / 0.231 0.168 / 0.222 0.087 / 0.120 0.132 / 0.182 0.109 / 0.131 0.106 / 0.156
ϵ 0.001 / 0.002 0.001 / 0.001 0.001 / 0.001 0.001 / 0.001 0.001 / 0.002 0.001 / 0.001

3

Baseline 0.275 / 0.511 0.338 / 0.602 0.258 / 0.497 0.259 / 0.497 0.271 / 0.472 0.273 / 0.463
ϵ 0.004 / 0.005 0.004 / 0.007 0.002 / 0.004 0.003 / 0.004 0.003 / 0.005 0.002 / 0.004

w/ IAN 0.266 / 0.493 0.314 / 0.548 0.230 / 0.424 0.235 / 0.438 0.258 / 0.461 0.261 / 0.457
ϵ 0.003 / 0.004 0.002 / 0.004 0.002 / 0.002 0.002 / 0.003 0.003 / 0.004 0.002 / 0.003

4

Baseline 0.211 / 0.394 0.290 / 0.547 0.198 / 0.385 0.201 / 0.374 0.182 / 0.341 0.187 / 0.337
ϵ 0.002 / 0.003 0.002 / 0.003 0.001 / 0.002 0.001 / 0.003 0.002 / 0.002 0.001 / 0.002

w/ IAN 0.200 / 0.364 0.281 / 0.519 0.187 / 0.358 0.200 / 0.363 0.178 / 0.331 0.183 / 0.327
ϵ 0.002 / 0.003 0.002 / 0.002 0.001 / 0.002 0.001 / 0.003 0.001 / 0.002 0.001 / 0.003

5

Baseline 0.152 / 0.301 0.165 / 0.320 0.106 / 0.211 0.136 / 0.273 0.162 / 0.343 0.119 / 0.197
ϵ 0.001 / 0.002 0.002 / 0.002 0.001 / 0.001 0.001 / 0.002 0.001 / 0.002 0.001 / 0.002

w/ IAN 0.131 / 0.243 0.159 / 0.303 0.100 / 0.191 0.126 / 0.242 0.151 / 0.320 0.110 / 0.192
ϵ 0.001 / 0.002 0.001 / 0.002 0.002 / 0.002 0.001 / 0.002 0.001 / 0.001 0.001 / 0.002

6

Baseline 4.47 / 7.40 4.10 / 6.51 3.19 / 5.24 2.65 / 4.05 2.81 / 4.40 3.05 / 4.60
ϵ 0.05 / 0.08 0.05 / 0.07 0.06 / 0.11 0.04 / 0.08 0.03 / 0.06 0.03 / 0.07

w/ IAN 4.28 / 7.04 3.79 / 5.94 2.98 / 4.72 2.56 / 3.83 2.72 / 4.25 2.96 / 4.45
ϵ 0.05 / 0.07 0.05 / 0.08 0.05 / 0.06 0.03 / 0.07 0.04 / 0.05 0.03 / 0.06

7

Baseline 1.53 / 2.24 1.56 / 2.46 1.40 / 2.08 1.17 / 1.64 1.23 / 1.93 1.24 / 1.60
ϵ 0.01 / 0.02 0.01 / 0.02 0.01 / 0.02 0.01 / 0.03 0.02 / 0.03 0.01 / 0.02

w/ IAN 1.47 / 2.11 1.44 / 2.19 1.34 / 1.94 1.13 / 1.56 1.19 / 1.84 1.20 / 1.55
ϵ 0.01 / 0.02 0.01 / 0.03 0.01 / 0.02 0.01 / 0.02 0.01 / 0.02 0.01 / 0.02

Table 5: Performance (miss rate) of prediction models before and after IAN is applied. ST stands
for SingularTrajectory.

M Method ETH HOTEL UNIV ZARA1 ZARA2
Social- Baseline 0.0909 0.0289 0.0611 0.0236 0.0505
GAN w/ IAN 0.0909 0.0120 0.0473 0.0124 0.0372

SGCN Baseline 0.1212 0.0216 0.1249 0.0933 0.0844
w/ IAN 0.0909 0.0144 0.0993 0.0833 0.0755

LB-EBM Baseline 0.1320 0.0062 0.0594 0.0185 0.0350
w/ IAN 0.0644 0.0000 0.0405 0.0116 0.0216

GroupNet Baseline 0.0303 0.0072 0.0609 0.0087 0.0263
w/ IAN 0.0303 0.0000 0.0391 0.0062 0.0193

TUTR Baseline 0.0595 0.0040 0.0452 0.0417 0.0260
w/ IAN 0.0536 0.0040 0.0386 0.0243 0.0242

ST Baseline 0.0606 0.0000 0.0241 0.0050 0.0133
w/ IAN 0.0606 0.0000 0.0231 0.0037 0.0128

Table 6: Performance (brier-ADE/FDE) of TUTR before and after IAN is applied.
M Method ETH HOTEL UNIV ZARA1 ZARA2

TUTR Baseline 1.18 / 1.39 0.64 / 0.68 0.98 / 1.19 1.01 / 1.16 0.73 / 0.91
w/ IAN 1.14 / 1.33 0.63 / 0.66 0.96 / 1.16 0.99 / 1.15 0.72 / 0.89
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Table 7: [Left] Comparison between different maximum number of candidates η on ETH/UCY.
[Right] Comparison between different N on ETH/UCY. ST stands for SingularTrajectory.

M η 50 100 200 N 50 100 200

LB-EBM ADE 0.183 0.176 0.175 ADE 0.183 0.181 0.175
FDE 0.324 0.308 0.306 FDE 0.325 0.320 0.306

GroupNet ADE 0.201 0.193 0.192 ADE 0.200 0.196 0.192
FDE 0.312 0.296 0.296 FDE 0.324 0.313 0.296

ST ADE 0.192 0.190 0.189 ADE 0.192 0.190 0.189
FDE 0.298 0.294 0.293 FDE 0.299 0.295 0.293

(a1) (b1) (c1)

(a2) (b2) (c2)

Observation Direct Decoding IAN

Figure 6: Comparisons of predictions acquired by direct proposal decoding and IAN. The observed
trajectory is mark with solid lines whereas predictions are marked with dashed ones. The social
agents are marked with dots with various colors, and the direction that the dots get bigger indicate
the moving direction of an agent.

D.4 IAN v.s. DIRECT PROPOSAL DECODING

To qualitatively demonstrate the weakness of direct proposal decoding, i.e. the predictions of direct
decoding cannot follow the features learnt by the prediction model and thereby they may be flawed,
we compare the predictions generated by direct decoding against those acquired by querying in
Fig. 6. We use a social-aware approach GroupNet as the prediction model.

For each of the three cases, all of the 20 predictions are plotted. It is clear that predictions given by
direct proposal decoding are not aware of the social behaviors and face a serious problem of social
impossibility (marked with black rectangles), although the prediction model has already learnt the
social features. For example, in Fig. 6-a1, the prediction at the bottom is highly probable to collide
with the orange agent. Similarly, the top prediction in Fig. 6-b1 moves directly through an neighbor-
ing agent who stands still. A more sophisticated example in Fig. 6-c shows that the predictions from
direct proposal decoding exhibit little consideration to these agents, leading to numerous predictions
with a high chance of collision. In comparison, this issue is very well addressed by adopting our ap-
proach. Particularly in Fig. 6-c2, our results show clear tendencies of avoiding the green oncoming
agents.
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Observation Ground Truth Adjusted PredictionOriginal Prediction

Figure 7: Consecutive visualizations of feedback pieces and adjustments on the same agent over
time. [Top] In each of the first 12 frames we show the predictions Ŷt (red), ground truth Yt (green),
observation Ot (blue), such information will be used in the future by IAN to adjust future predictions.
Note that during this period of time, IAN have no access to any feedback information and does not
take effect. [Bottom] In frames 13-24 we show IAN continuously improving the prediction accuracy
by adjusting. Note that IAN at frame i(13 ≤ i ≤ 24) only have access to feedback information from
frames ji ∈ {j|1 ≤ j ≤ i− 12}, and the ground truth for frame i is not leaked to the IAN.

D.5 MORE QUALITATIVE RESULTS

In Fig. 7, we we give 24 consecutive frames of predictions on the same agent. In the first τpred = 12
frames we show the observation (dark blue), predicted trajectories (red), as well as the ground truth
(green). IAN does not take effect during these 12 frames since no ground truth trajectories are
available during this period. Note that the predicted trajectories are constantly longer than the ground
truth during these 12 frames, indicating that the predictions tend to have a higher speed.

From the 13th frame, we show the observation (dark blue), best prediction before adjustment (red),
best prediction after adjustment (light blue), and the ground truth (green). Note that the i-th frame
(13 ≤ i ≤ 24) only has ground truths from frame ji (1 ≤ ji ≤ i − τpred) available for calculating
the individual feedback F. These frames with IAN operational clearly show that the adjusted pre-
dictions tend to be slower than those prior to adjustments, indicating IAN’s capability of acquiring
information from the individual feedback i.e. predictions tends to be faster than the ground truth.
Further, the adjusted trajectory also show trends of gradual improvement.

D.6 DISPLACEMENT EXPECTATION LOSS: ANALYSIS

In this paper, we introduced a novel displacement expectation loss to train the IAN. The loss is
devised based on the winner-takes-all optimization technique, which is widely used multi-modal
trajectory prediction studies (Chai et al., 2019; Xu et al., 2022a; Shi et al., 2023). Further, the value
of the displacement expectation (Eq. 13) is bounded by the minimum and maximum displacement
errors of the predictions from the base prediction model. Therefore, ideally, the displacement ex-
pectation will converge to the minimum displacement error during optimization. We additionally
provide example training curves in Fig. 8 to demonstrate its converging property.
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(a1) (a2) (b1) (b2)

Figure 8: Example training curves of displacement expectation loss from our experiments. (a1&a2)
Training of IAN under GroupNet + ZARA1 repeated twice. (b1&b2) Training of IAN under LB-
EBM + GCS repeated twice.

E MORE DISCUSSIONS

E.1 INFERENCE TIME

In Sec 5.4 of our paper, we discussed about the base prediction model M and IAN running simul-
taneously in a pipeline as consecutive models. Here we provide an illustration of such pipeline in
Fig. 9.

Prediction
Model 𝓜

IAN

……

……

Time

20ms

Figure 9: Illustration of the prediction model M and IAN as a pipeline. Each prediction task is
identified with a unique color. IAN and M can run at the same time without interfering each other,
and thereby using IAN will not slow down M to produce new predictions. The additional runtime
for getting better predictions with IAN will not accumulate and is always 20ms.

E.2 DIFFERENCE WITH TEACHER-ENFORCING

As teacher-enforcing technique also involves the ground truth, here we clarify that our approach is
essentially different from that, to avoid misunderstanding.

Teacher-enforcing is a training technique that feeds ground truths back into the RNN after each
step during the training phase. In comparison, 1) our approach is an external module beyond
the base prediction model (teacher-enforcing is a training technique for the base model) and 2)
our approach works by adjusting the predictions of the base model in the test phase (teacher-
enforcing works only in the training phase). Therefore, our approach is essentially different from
teacher-enforcing.

E.3 DIFFERENCE WITH PRIOR ADAPTATION WORKS

Prior to IAN, there have been other researches that use the idea of adaptation for better results (Xu
et al., 2022b; Ivanovic et al., 2023), which involves using data from the test domain/scene to
train/fine-tune the prediction model. In comparison, data from the test domain/scene is not used
to train IAN. Another major difference between IAN and these approaches is that IAN uses agent-
specific information, i.e. individual feedback, and adjusts the predictions for each agent respectively.
On the other hand, typical adaptation approaches aggregate the trajectories of all the agents in the
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test domain/scene as a whole and use it to modify the predictions for all the agents in the test do-
main/scene.

E.4 DIFFERENCE WITH TEST-TIME TRAINING/ONLINE LEARNING

While IAN operates by adjusting the prediction model’s outputs, none of the network (both the base
prediction model and the IAN) parameters are updated during test-time. Therefore, IAN is entirely
different from test-time training/fine-tuning approaches. In addition, test-time training is in fact
not compatible with our aim, i.e. individual feedback, due to its individual-specific nature. Such
trait indicates that when actually deployed, a distinct model for each of the individuals present in
the scene needs to be stored and updated, which can be extremely costly for online deployment on
embodied agents such as autonomous vehicles and robots.

E.5 LIMITATION AND FUTURE WORKS

One scenario where predictions are adjusted in a worse way occurs when an agent whose past
trajectory is smooth and almost straight suddenly changes direction. Before the change in direction,
the base model performs better with more concentrated predictions (e.g. a pattern that all predictions
are near straight lines with minor changes in direction). Under such circumstances, the adjuster may
notice this pattern and therefore adjusts scattered predictions to concentrate more, which will harm
the prediction accuracy when the change in direction occurs, examples are shown in Fig. 10. The
figure shows some examples of this case. We are actively addressing this issue as our future work.

(a1) (a2) (b1) (b2)

Observation Ground Truth Adjusted PredictionOriginal PredictionHistory

Figure 10: Examples of the adjuster worsening predictions.
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