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Abstract
We introduce RHYTHM (Reasoning with
Hierarchical Temporal Tokenization for Human
Mobility), a framework that leverages large lan-
guage models (LLMs) as spatio-temporal predic-
tors and trajectory reasoners. RHYTHM parti-
tions trajectories into daily segments encoded as
discrete tokens with hierarchical attention, cap-
turing both daily and weekly dependencies while
substantially reducing sequence length. Token
representations are enriched with pre-computed
prompt embeddings via a frozen LLM, enhancing
the model’s ability to capture interdependencies
without extensive computational overhead. By
freezing the LLM backbone, RHYTHM achieves
significant computational efficiency. Evaluation
on three real-world datasets demonstrates a 2.4%
improvement in accuracy, 5.0% increase on week-
ends, and 24.6% reduction in training time com-
pared to state-of-the-art methods.

1. Introduction
We propose RHYTHM (Reasoning with Hierarchical Tem-
poral Tokenization for Human Mobility), a novel founda-
tion model for human mobility prediction. Our approach
reconceptualizes mobility modeling through structured tem-
poral abstraction, combining efficient multi-scale temporal
tokenization with the complex reasoning capabilities of pre-
trained LLMs. This integration yields a computationally
efficient yet powerful framework for trajectory prediction,
offering superior accuracy while maintaining efficiency and
scalability across diverse mobility contexts.

Our framework is grounded in the inherent patterns of hu-
man mobility. Research shows that human movement fol-
lows predictable daily and weekly rhythms (Cho et al., 2011;
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Figure 1. Motivation for RHYTHM. By partitioning trajectories
into discrete tokens instead of a continuous stream, RHYTHM
more effectively captures recurring mobility patterns.

Gonzalez et al., 2008; Eagle & Pentland, 2006), with Song
et al. (2010) demonstrating that 93% of daily trajectories
are predictable. Yet modeling the complex interdependence
between locations and temporal cycles remains challeng-
ing. Existing approaches either neglect long-term period-
icity (Yang et al., 2020; Feng et al., 2018; Gambs et al.,
2012) or fail to capture multi-scale temporal patterns (Hong
et al., 2023; Wu et al., 2019). We address these limita-
tions by decomposing trajectories into meaningful segments
and tokenizing them into discrete representations. Our ap-
proach employs intra-segment attention for local patterns
and inter-segment attention for long-range dependencies
(see Figure 1), significantly reducing computational com-
plexity. Each token is further enriched with pre-computed
prompt embeddings derived from a frozen LLM, integrating
trajectory context and task descriptions to enhance semantic
understanding.

Recent research highlights LLMs’ dual capabilities as both
representation extractors for spatio-temporal patterns and
sophisticated reasoning engines (Chowdhery et al., 2023;
Brown et al., 2020). These models excel through few-shot
prompting (Brown et al., 2020), chain-of-thought reason-
ing (Pan et al., 2025; 2024; Wei et al., 2022), and in-context
learning (Dong et al., 2024). While mobility-specific models
like PMT (Wu et al., 2024b) and ST-MoE-BERT (He et al.,
2024) lack LLM integration for modeling complex human
movement correlations, RHYTHM addresses this limitation
through an integrated LLM-based reasoning module. Our
parameter-efficient strategy freezes the pre-trained LLM
backbone, avoiding extensive fine-tuning while preserving
reasoning capabilities. This approach effectively balances
fine-grained spatio-temporal modeling with minimal compu-
tational overhead, making RHYTHM particularly suitable
for resource-constrained settings.

1



Efficient Temporal Tokenization for Mobility Prediction with Large Language Models

In summary, our key contributions are:
• We introduce a novel temporal tokenization scheme that

represents daily mobility routines as discrete tokens, cap-
turing multi-scale cyclical dependencies while markedly
reducing sequence length.

• We propose an efficient prompt-guided integration of se-
mantic trajectory cues and task descriptions via segment
embeddings, enhancing interpretability of complex mo-
bility behaviors.

• We design parameter-efficient LLM adaptation strategy
leveraging frozen backbones, requiring only 12.37% of
model parameters and cutting computational cost by
24.6%.

• Evaluation on three real-world datasets, yielding a 2.4%
overall accuracy gain and a 5.0% improvement on week-
end predictions over state-of-the-art baselines.

2. Method
In this section, we present RHYTHM, an LLM-driven ar-
chitecture for prompt-guided representation learning of pe-
riodic spatio-temporal patterns (see Figure 2). paragraph

2.1. Problem definition

Let X = {x1, x2, . . . , xT } be a user’s observed trajec-
tory, where each observation xi = (ti, li) pairs a times-
tamp ti with a location li ∈ L drawn from a finite set L.
For a prediction horizon H , define the future time points
T = {tT+1, . . . , tT+H}. Our goal is to predict the corre-
sponding locations Y = {lT+1, . . . , lT+H}. Formally, we
learn a mapping f : (X , T ) 7→ Y that takes the histori-
cal trajectory and future timestamps to the future location
sequence.

2.2. Model structure

Spatio-Temporal Feature Encoding. For each observa-
tion xi, we design temporal representations to encode the
periodic nature of human mobility:

Etemporal
i = EToD(ti)∥EDoW(ti),

where ·∥· denotes the concatenation operation, EToD en-
codes time-of-day information, and EDoW captures day-of-
week patterns. These trainable embeddings transform dis-
crete time indices into dense vector representations, yielding
Etemporal

i ∈ RD where D corresponds to the input dimen-
sionality of the underlying LLM.

The spatial representation Espatial
i ∈ RD for location li is

formulated as:

Espatial
i = ELoc(li)∥(Wcoord[lati, loni]T + bcoord),

where ELoc represents the location-specific categorical em-
bedding, while the latter term transforms geographic co-
ordinates (lati, loni) to the embedding domain through the

transformation matrix Wcoord ∈ Rdcoord×2 and dcoord indi-
cates the output dimension of the projection.

The unified spatio-temporal representation Ei ∈ RD is
computed through element-wise summation:

Ei = Etemporal
i +Espatial

i .

When handling incomplete historical observations, we as-
sign zero values to the spatial components, enabling the
model to function solely with temporal features while main-
taining consistent dimensionality.

Temporal Tokenization. Human movement behaviors
demonstrate intrinsic hierarchical temporal patterns encom-
passing both local behavioral routines and cyclical regulari-
ties (Song et al., 2010; Gonzalez et al., 2008). To address
these multi-scale dynamics, RHYTHM introduces a tempo-
ral segmentation strategy that separates fine-grained local
behaviors from overarching temporal relationships, drawing
inspiration from Liu et al. (2024c). Specifically, we divide
the embedded representation X into N distinct, consecutive
segments {s1, . . . , sN}, where each segment encodes se-
mantically coherent time periods (such as daily sequences):

si = {E(i−1)L+1, . . . , EiL} for i = 1, . . . , N,

with L denoting the temporal span within each segment si.

For capturing local sequential patterns within segments, we
utilize intra-segment attention:

Ẽ(i) = Attention(si),

We implement a pre-normalized transformer design incor-
porating gated feed-forward modules following Dubey et al.
(2024), facilitating stable gradient propagation and enhanc-
ing representational capacity. Detailed architectural specifi-
cations can be found in Appendix C.

To efficiently encode relationships across segments, we in-
troduce a trainable aggregation mechanism that compresses
each segment into a compact token:

SEi = Pool
(
Ẽ(i)

)
.

These compressed segment representations
{S̃E1, . . . , S̃EN} are then processed through inter-segment
attention to encode extended temporal relationships and
distant dependencies:

S̃E1:N = Attention(SE1:N ),

producing enhanced segment embeddings S̃Ei ∈ RD that
incorporate contextual signals from various temporal granu-
larities. This design compresses the operational sequence
length from T to N while maintaining both detailed tem-
poral features and long-range correlations, thereby mitigat-
ing the computational burden associated with processing
lengthy mobility sequences.
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Figure 2. The proposed architecture
of RHYTHM. Historical trajectories
are first converted into spatio–temporal
embeddings and discretized via tempo-
ral tokenization (b), enabling hierarchi-
cal attention to capture both local and
global dynamics. Each segment token
is enriched with semantic trajectory em-
beddings, while future time-step tokens
integrate task-context descriptors (a).
The resulting token sequence is fed into
a frozen LLM backbone, and an output
projection layer produces the final loca-
tion predictions.

Semantic Context Integration. The integration of LLMs
into mobility prediction presents a fundamental tension:
maximizing semantic expressiveness while maintaining
computational tractability. Existing approaches like LLM-
Mob (Wang et al., 2023) adopt monolithic prompting
strategies that encode entire trajectories as single, lengthy
prompts—an approach that incurs prohibitive computational
costs and dilutes fine-grained temporal signals. We propose
a hierarchical prompting mechanism that decomposes trajec-
tories into semantically coherent segments, each associated
with a focused prompt that captures local movement pat-
terns, transition behaviors, and activity semantics. This
decomposition achieves an optimal balance: preserving the
semantic richness necessary for accurate prediction while
dramatically reducing the computational footprint.

Our semantic encoding pipeline operates at two granulari-
ties. For historical segments, we generate structured descrip-
tions that capture movement patterns, stay durations, and
transition dynamics. For future timestamps, we construct
task-specific prompts that encode prediction objectives and
temporal context, as detailed in Appendix E. These prompts
are processed through frozen pre-trained LLMs to extract
high-dimensional semantic representations.

To efficiently integrate these representations, we extract
the final hidden state corresponding to the end-of-sequence
(<EOS>) token, which naturally aggregates contextual in-
formation across the entire prompt. Formally, the semantic
embedding for segment i is computed as:

TEi = SelectLast(LLM(Prompt(x(i−1)L+1:iL))).

Task-oriented embeddings follow a similar formulation:
TET = SelectLast(LLM(Prompt(T ))). Notably, all se-
mantic embeddings are pre-computed offline, transforming
what would be computationally intensive online inference
into a one-time preprocessing step. This design enables
RHYTHM to leverage the semantic understanding of LLMs
without incurring runtime computational penalties.

Cross-representational Mobility Prediction. Given that
the LLM’s representation space naturally accommodates
both temporal and semantic modalities, we integrate seman-
tic information directly into the temporal representations
without increasing sequence length. The unified representa-
tion CEi for segment i is constructed through element-wise
summation of segment representation S̃Ei and its corre-
sponding semantic encoding TEi:

CEi = S̃Ei +TEi.

For future time points, we combine temporal and task-
specific representations: CEN+j = ẼT+j +TET .

These combined representations CEi are subsequently pro-
cessed by a frozen pre-trained LLM. The LLM transforms
these inputs through its multi-layer architecture, leveraging
its pre-trained knowledge to perform contextual reasoning
over the fused spatio-temporal and semantic signals, pro-
ducing final-layer hidden states hi:

hi = LLM(CEi).

A learnable projection head then transforms these represen-
tations into location-specific scores:

P (lT+j |X , T ) = softmax(Woh̃N+j + bo),

where Wo ∈ R|L|×D maps from the hidden dimension to
the location vocabulary. This probability distribution over
candidate locations enables the model to generate mobility
predictions.

2.3. Computational Efficiency

RHYTHM’s architectural design incorporates multiple
strategies to optimize both computational efficiency and
parameter utilization. Pre-computation of semantic rep-
resentations using the frozen LLM occurs as a one-time
preprocessing step, completely removing language model
inference from the training and inference pipeline. Concur-
rently, the temporal segmentation strategy compresses the

3



Efficient Temporal Tokenization for Mobility Prediction with Large Language Models

Table 1. Performance eval-
uation on the Kumamoto,
Sapporo, and Hiroshima
datasets. We report Accu-
racy@k across multiple k
thresholds (variance ≤ 2%).
The highest values are bolded,
and the second-best values
are underlined. RHYTHM
consistently outperforms all
baselines in the majority of
configurations.

Kumamoto Sapporo Hiroshima

Model Acc@1 Acc@3 Acc@5 Acc@1 Acc@3 Acc@5 Acc@1 Acc@3 Acc@5

LSTM 0.2652 0.4799 0.5472 0.2310 0.3940 0.4526 0.2129 0.3775 0.4415
DeepMove 0.2779 0.4986 0.5683 0.2825 0.4672 0.5264 0.2804 0.4810 0.5477
PatchTST 0.2751 0.5018 0.5716 0.2703 0.4582 0.5168 0.2752 0.4839 0.5522
iTransformer 0.2609 0.4724 0.5412 0.2696 0.4500 0.5070 0.2804 0.4857 0.5523
TimeLLM 0.2712 0.4848 0.5535 0.2792 0.4746 0.5352 0.2698 0.4753 0.5426
CMHSA 0.2862 0.5182 0.5887 0.2890 0.4901 0.5525 0.2874 0.5001 0.5684
PMT 0.2697 0.4475 0.5187 0.2878 0.4896 0.5522 0.2850 0.4982 0.5668
COLA 0.2864 0.5186 0.5896 0.2847 0.4865 0.5497 0.2874 0.5013 0.5708
ST-MoE-BERT 0.2862 0.5155 0.5871 0.2869 0.4856 0.5480 0.2839 0.4925 0.5601
Mobility-LLM 0.2666 0.4793 0.5448 0.2838 0.4703 0.5288 0.2826 0.4856 0.5525

RHYTHM-LLaMA-1B 0.2929 0.5200 0.5835 0.2931 0.4876 0.5502 0.2913 0.5027 0.5753
RHYTHM-Gemma-2B 0.2923 0.5191 0.5932 0.2943 0.4896 0.5545 0.2953 0.5074 0.5798
RHYTHM-LLaMA-3B 0.2941 0.5205 0.5947 0.2938 0.4875 0.5523 0.2929 0.5032 0.5756

operational sequence length from T +H to N+H , yielding
a reduction in attention complexity from O((T +H)2) to
O((N +H)2)—a critical optimization for handling lengthy
mobility traces. Additionally, by maintaining frozen LLM
parameters throughout training, we achieve accelerated con-
vergence while minimizing memory footprint. This conflu-
ence of design decisions empowers RHYTHM to handle
extensive trajectory sequences without compromising pre-
diction accuracy (demonstrated in Figure 4), rendering it par-
ticularly well-suited for deployment in resource-constrained
environments and large-scale mobility applications.

3. Experiment
Models. We assess RHYTHM’s mobility prediction ca-
pabilities using various pre-trained LLMs as backbones,
sourced from Hugging Face with their original weights. The
specific LLM configurations are listed in Appendix G.6.

Evaluation Metrics. We measure ranking quality using
Accuracy@k and Mean Reciprocal Rank (MRR), comple-
mented by Dynamic Time Warping (DTW) (Müller, 2007)
and BLEU (Papineni et al., 2002) for trajectory-level evalu-
ation. Metric definitions are provided in Appendix G.1.

Datasets. Our experiments utilize three urban mobility
datasets from Kumamoto, Sapporo, and Hiroshima, ob-
tained from YJMob100K (Yabe et al., 2024). Days are
discretized into 48 half-hour intervals, with sparse observa-
tions across time slots. We partition data chronologically
into training (70%), validation (20%), and test (10%) splits.
Dataset specifications are detailed in Appendix F.

Baselines. We benchmark RHYTHM against established
baselines including LSTM (Kong & Wu, 2018), Deep-
Move (Feng et al., 2018), PatchTST (Nie et al., 2023),
iTransformer (Liu et al., 2024a), TimeLLM (Jin et al., 2024),
PMT (Wu et al., 2024b), ST-MoE-BERT (He et al., 2024),
CMHSA (Hong et al., 2023), COLA (Wang et al., 2024),
and Mobility-LLM (Gong et al., 2024). See Appendix G.3
for baseline details.

Results. Table 1 demonstrates that RHYTHM consis-
tently surpasses baseline methods on most criteria across
all datasets. For Sapporo and Hiroshima, RHYTHM attains
superior performance across all metrics. These results high-
light RHYTHM’s robust capability for mobility forecasting.
The competitive performance of CMHSA and PMT in Ac-
curacy@3 for Kumamoto can be attributed to their tailored
attention architectures, which are particularly adept at iden-
tifying intermediate-ranked location candidates within this
specific geographical area. Although Mobility-LLM em-
ploys a LLM-based framework, its performance falls short
of RHYTHM, primarily due to its original optimization for
visit intention prediction that emphasize semantic under-
standing. By comparison, RHYTHM combines temporal
segmentation with LLM capabilities to capture hierarchi-
cal spatio-temporal patterns, emphasizing accurate location
probability estimation. This architectural emphasis posi-
tions RHYTHM to achieve superior performance in ranking
metrics. In summary, RHYTHM delivers a 2.4% gain in Ac-
curacy@1 and 1.0% improvement in Accuracy@5 relative
to the strongest competing approach.

Further empirical analyses encompassing spatial accuracy
assessments, temporal pattern evaluation across daily and
weekly cycles, computational efficiency benchmarks, model
scaling experiments, and component-wise ablation experi-
ments are presented in Appendix H given space limitations.

4. Conclusion
We present RHYTHM, a computationally efficient archi-
tecture for mobility prediction that employs temporal seg-
mentation to encode spatio-temporal relationships and uti-
lizes semantic representations to model periodic behaviors.
Through the incorporation of frozen pre-trained LLMs as
contextual reasoning modules, RHYTHM captures the un-
derlying decision dynamics—especially for non-routine
trajectories—while maintaining computational tractability.
Furthermore, the framework’s modular design facilitates
straightforward adaptation across different pre-trained lan-
guage models without architectural modifications.
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Broader Impact
This paper presents a novel foundation model architecture
for human mobility analysis, seeking to enhance the ro-
bustness and transferability of foundation models within
spatio-temporal contexts. Although direct societal impacts
are not immediately apparent, this work establishes funda-
mental capabilities for subsequent developments in urban
infrastructure design, epidemiological monitoring, and trans-
portation systems. Nevertheless, the model carries the risk
of perpetuating or intensifying inherent biases within the
training datasets, which could result in disparate prediction
quality across different demographic groups or geographic
regions.
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A. Limitations
Several important limitations warrant consideration regarding RHYTHM. First, the model’s effectiveness depends signif-
icantly on the underlying pretrained LLMs, which were initially developed for natural language processing rather than
spatial-temporal modeling. When pretrained models suffer from resource constraints, their ability to effectively encode
human movement patterns may be compromised. Moreover, RHYTHM currently employs a non-autoregressive prediction
paradigm for mobility forecasting. Although recent research has demonstrated promising results with autoregressive
formulations for temporal sequences (Liu et al., 2024c), incorporating these techniques into RHYTHM represents a valu-
able direction for future development. Additionally, despite utilizing frozen LLMs to enhance computational efficiency,
RHYTHM’s training duration remains substantial, potentially limiting its deployment in time-sensitive scenarios. Never-
theless, RHYTHM establishes an innovative foundation model architecture specifically designed for mobility prediction,
demonstrating improvements in both computational efficiency and forecast accuracy. This work provides a foundation for
subsequent advances in model scalability and resource optimization. Future efforts will focus on developing sophisticated
fine-tuning strategies to enhance performance while minimizing computational requirements, leveraging recent advances in
parameter-efficient adaptation and model compression techniques (Luo et al., 2025; Hu et al., 2024; Dettmers et al., 2024;
Xiao et al., 2023).

B. Related Work
Mobility Prediction. The field of human mobility prediction has progressed from classical statistical approaches to
sophisticated deep learning architectures. Mechanistic models including the gravity framework (Cabanas-Tirapu et al., 2025)
and radiation theory (Simini et al., 2012) forecast collective movement patterns through distance-decay and intervening
opportunities, yet cannot capture individual-specific behaviors. Addressing this limitation, stochastic methods such as
Markovian models (Gambs et al., 2012), decision tree techniques (He et al., 2023), and matrix decomposition (Yang
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et al., 2014) have been developed to predict user-specific location sequences. Despite enabling personalized predictions,
these approaches face challenges with data sparsity and complex temporal interdependencies characteristic of mobility
data. Neural architectures introduced sequential modeling through LSTMs (Liu et al., 2016), enabling temporal context
understanding, with attention-augmented extensions (Feng et al., 2018) mitigating gradient degradation. Nonetheless, such
models frequently miss periodic behavioral patterns. Integrated frameworks including Graph-Flashback (Rao et al., 2022)
and GCDAN (Dang et al., 2022) incorporate network topology for spatial modeling, though fixed-window constraints hinder
their long-horizon prediction capabilities. The Transformer paradigm (Vaswani et al., 2017) transformed sequence modeling
through self-attention for capturing distant dependencies. Notable extensions include STAN (Luo et al., 2021), which
integrates spatial-temporal attention for location recommendation, COLA (Wang et al., 2024), which generalizes across urban
environments, and GETNext (Yang et al., 2022), which separates personal patterns from collective trends. However, these
Transformer variants maintain timestamp-based representations, resulting in quadratic computational growth for extended
trajectories and lacking explicit modeling of nested temporal cycles (daily within weekly patterns). Contemporary research
investigates large language models (LLMs) for mobility applications, exploiting their robust transfer learning properties
(Gong et al., 2024; Liu et al., 2024b). Implementations such as LLM-Mob (Wang et al., 2023) and AgentMove (Feng
et al., 2025) utilize strategic prompting for location forecasting and user identification, while TrajGPT (Hsu et al., 2024)
employs generative modeling for trajectory synthesis. Yet these methods process mobility data as undifferentiated token
sequences, disregarding inherent temporal structures and the representational disconnect between linguistic and spatio-
temporal modalities. In contrast to current LLM approaches that handle trajectories as generic sequences, our method
implements temporal segmentation to directly encode periodic structures (daily/weekly patterns), addressing representational
gaps and modeling hierarchical temporal relationships for enhanced long-range mobility forecasting.

Time Series Foundation Models. Current time series foundation models fall into two primary paradigms: transformer-
centric architectures and language model adaptations. Transformer-centric approaches (Wu et al., 2024a; Liu et al., 2024a;
Nie et al., 2023) emphasize architectural innovations and attention mechanisms for temporal pattern extraction. Notably,
PatchTST (Nie et al., 2023) employs segment-wise attention to model extended temporal relationships, while STanHop (Wu
et al., 2024a) and Crossformer (Zhang & Yan, 2023) utilize multi-level attention architectures to encode both sequential
patterns and hierarchical temporal organization. Language model adaptations (Liu et al., 2024c; Jin et al., 2024) repurpose
pre-trained LLMs for time series analysis, demonstrating competitive performance in forecasting benchmarks. Specifically,
AutoTime (Liu et al., 2024c) develops an autoregressive framework tailored for sequential dependency modeling, while
TimeLLM (Jin et al., 2024) harnesses LLMs to learn complex temporal state transitions. Nevertheless, these approaches
cannot adequately handle the unique characteristics of human mobility—particularly sudden spatial transitions and irregular
temporal patterns. In contrast, RHYTHM combines specialized spatio-temporal representations with hierarchical modeling
to capture these complex mobility dynamics effectively.

Cross-domain Adaptation of LLMs. LLMs transform from domain-specific language processors into general-purpose
foundation models with advanced reasoning abilities spanning multiple disciplines (Alabdulmohsin et al., 2022; Brown et al.,
2020). The combination of transformer architectures and large-scale pretraining enables exceptional knowledge transfer
beyond textual domains. For visual understanding, frameworks like CLIP (Radford et al., 2021) create unified vision-
language representations enabling zero-shot classification, while temporal modeling approaches including One-Fits-All
(Zhou et al., 2023) and LLM4TS (Chang et al., 2025) achieve strong forecasting results by representing numerical data as
discrete tokens. Within biomedical applications, specialized models such as BioBERT (Lee et al., 2020) and BioGPT (Luo
et al., 2022) show substantial improvements on medical text processing, with instruction-aligned systems like Med-PaLM
reaching near-expert performance on clinical questions (Singhal et al., 2023). Financial domain adaptations including
FinBERT (Huang et al., 2023) and BloombergGPT (Wu et al., 2023) demonstrate marked advantages over generic models
for market sentiment and entity extraction tasks.

To avoid resource-intensive complete retraining, efficient adaptation methods have emerged as preferred strategies. Low-
Rank Adaptation (LoRA) (Hu et al., 2021) augments attention mechanisms with decomposed weight updates, while
alternative strategies maintain frozen model parameters through modality-specific input transformations. Visual adaptation
techniques (Alayrac et al., 2022; Tsimpoukelli et al., 2021) learn compact encoders that generate conditioning signals
for static LLMs, whereas temporal sequence methods (Liu et al., 2024c; Jin et al., 2024) utilize learned projections for
numerical-to-embedding conversion.

LLM applications in mobility analysis remain nascent, with current methods requiring substantial parameter updates.
Mobility-LLM (Gong et al., 2024) updates model subsets during training, while LLM-Mob (Wang et al., 2023) employs
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contextual prompting without explicit temporal structure. Conversely, RHYTHM preserves all LLM parameters unchanged,
retaining pretrained capabilities while implementing a custom spatio-temporal encoding architecture optimized for mobility
sequence processing.

C. Attention Implementation Details
We employ a pre-normalized transformer design that promotes training stability, augmented with gated feed-forward modules
for enhanced representational capacity. The architectural formulation follows:

Z = LayerNorm(X) + Multi-Head Attention(LayerNorm(X)),

Z̃ = Z + GatedFFN(LayerNorm(Z)),

with X denoting the input representations. The multi-head attention mechanism is defined as:

Multi-Head(X) = [head1∥head2∥ . . . ∥headh]Wout,

headi = Softmax
(
XWq,i(XWk,i)

⊤
√
dk

)
XWv,i,

where we utilize h parallel attention heads, with Wq,i,Wk,i,Wv,i ∈ Rd×dk representing query, key, and value transforma-
tions for head i, and Wout ∈ Rd×d serving as the final projection. The gated feed-forward component employs dynamic
modulation:

GatedFFN(Z) = FFN(Z)⊙ σ(WgateZ),

FFN(Z) = W2 GELU(W1Z),

where σ represents sigmoid activation, ⊙ indicates Hadamard product, and Wgate ∈ Rd×d controls the gating behavior. The
feed-forward transformation implements a 4× dimension expansion through W1 ∈ R4d×d and compression via W2 ∈ Rd×4d.
Regularization through dropout follows both attention and feed-forward computations to mitigate overfitting.

D. Theoretical Guarantee
Our architectural decisions are grounded in robust theoretical foundations. Utilizing an LLM for universal sequence
representation extraction offers two theoretical benefits: (1) convergence guarantees for model outputs, established by Zhou
et al. (2023, Theorem E.2), and (2) uniform feature distribution properties within the LLM’s final hidden representations,
proven in Zhou et al. (2023, Theorem E.3). These characteristics collectively strengthen the downstream MLP classifier’s
learning capacity. Furthermore, given our transformer-based architecture, Ramsauer et al. (2021) establishes that transformers
constitute a specific instantiation of contemporary Hopfield networks. This connection provides bounded memory retrieval
guarantees for our LLM-based approach, as formalized in Hu et al. (2025, Lemma 3.2). Such theoretical underpinnings
substantiate our design choices, with empirical results confirming these theoretical predictions.

E. Example Prompt

Trajectory Information

This is the trajectory of user <User ID> of day <Day ID> which is a <Day of Week>.
The trajectory consists of <N> records, each record of coordinate is as follows:
08:30: (X=136, Y=42); 09:00: (X=136, Y=42); 09:30: (X=137, Y=41); 10:00: (X=146,
Y=37); 10:30: (X=145, Y=38); 11:00: (X=144, Y=38); 11:30: (X=135, Y=41); 12:00:
(X=135, Y=42); 12:30: (X=135, Y=42); 13:00: (X=135, Y=42).

Key transitions: At 10:00: (X=137, Y=41) → (X=146, Y=37); At 11:30: (X=144, Y=38)
→ (X=135, Y=41).

Main stay locations: (X=136, Y=42) from 08:30 to 09:30 (0.5 hours); (X=145, Y=38)
from 10:00 to 11:00 (0.5 hours); (X=135, Y=42) from 11:30 to 13:00 (1.5 hours).
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Task Description

You are a mobility prediction assistant that forecasts human movement patterns in
urban environments. The city is represented as a 200 x 200 grid of cells, where
each cell is identified by coordinates (X,Y). The X coordinate increases from left
(0) to right (199), and the Y coordinate increases from top (0) to bottom (199).

TASK: Based on User <User ID>’s historical movement patterns, predict their
locations for Day <Day ID> (<Day of Week>). The predictions should capture expected
locations at 30-minute intervals throughout the day (48 time slots). The model
should analyze patterns like frequent locations, typical daily routines, and
time-dependent behaviors to generate accurate predictions of where this user is
likely to be throughout the next day.

The previous days’ trajectory data contains information about the user’s typical
movement patterns, regular visited locations, transition times, and duration of
stays. Key patterns to consider include: home and work locations, morning and
evening routines, lunch-time behaviors, weekend vs. weekday differences, and
recurring visit patterns.

F. Dataset
Table 2 presents comprehensive statistics for the three datasets utilized in our experiments.

Table 2. Dataset Statistics
City Users Duration Spatial Resolution Places

Kumamoto 3k 75 days 500m × 500m 40k
Sapporo 17k 75 days 500m × 500m 40k
Hiroshima 22k 75 days 500m × 500m 40k

G. Experiment Setting
G.1. Evaluation Metrics

Accuracy@k quantifies the fraction of instances where true locations appear among the top-k predictions:

Accuracy@k =
1

H

H∑
i=1

1(lT+i ∈ top-k(p̂T+i)),

with 1(·) denoting the indicator function and p̂T+i representing the output probability vector.

Mean Reciprocal Rank (MRR) assesses ranking quality through reciprocal positions:

MRR =
1

H

H∑
i=1

1

rank(lT+i)
,

where rank(lT+i) indicates the ordinal position of the actual location.

Dynamic Time Warping (DTW) computes trajectory alignment cost:

DTW(Y, Ŷ) = min
π

∑
(i,j)∈π

d(lT+i, l̂T+j),

with π defining an optimal alignment path and d(·, ·) measuring Euclidean separation.

BLEU evaluates sequence similarity via n-gram correspondences:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
,
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where pn captures n-gram matching rates, wn assigns importance weights, and BP adjusts for length discrepancies.

G.2. Settings

Our experiments employ 30-minute temporal granularity. We configure a historical context of 7 days comprising 336 time
intervals, with predictions extending over 48 intervals (equivalent to 24 hours). The segment size is fixed at 48 time intervals
throughout all experiments.

G.3. Baselines

We benchmark RHYTHM against three categories of baseline methods: LSTM-based architectures, transformer-based
approaches, and LLM-based frameworks. Among transformer architectures, we evaluate PatchTST (Nie et al., 2023),
PMT (Wu et al., 2024b), ST-MoE-BERT (He et al., 2024), CMHSA (Hong et al., 2023), iTransformer (Liu et al., 2024a),
and COLA (Wang et al., 2024). Within this group, ST-MoE-BERT, PMT, and COLA represent current best-performing
methods in mobility forecasting, while PatchTST and iTransformer are leading general-purpose temporal sequence models.
To ensure equitable evaluation, we augment these general time series models with spatio-temporal encodings. For LLM-
based comparisons, we include TimeLLM (Jin et al., 2024) and Mobility-LLM (Gong et al., 2024). TimeLLM achieves
state-of-the-art results in LLM-driven time series prediction, which we enhance with spatio-temporal representations for
consistent comparison. Mobility-LLM provides a comprehensive LLM framework supporting diverse mobility-related tasks.
Our LSTM baselines comprise the classical LSTM (Kong & Wu, 2018) and DeepMove (Feng et al., 2018) architectures.

G.4. Computational Resource

All experiments are conducted on a single NVIDIA A100 GPU equipped with 40GB memory, paired with a 24-core Intel(R)
Xeon(R) Gold 6338 processor running at 2.00GHz. Our implementation leverages PyTorch (Paszke et al., 2019) and
integrates the Hugging Face Transformers library for model deployment.

G.5. Hyperparameters

We detail the training configurations employed across all models. The embedding dimensions are configured as follows: time-
of-day and day-of-week embeddings utilize 128 dimensions each, categorical location representations use 256 dimensions,
and coordinate projections employ 128 dimensions. Training optimization is performed using AdamW (Loshchilov &
Hutter, 2019). We perform comprehensive hyperparameter optimization by evaluating learning rates within {1× 10−4, 3×
10−4, 5×10−4} and weight decay parameters from {0, 0.001, 0.01}. Optimal hyperparameters for each dataset are identified
through rigorous validation experiments. To ensure fair evaluation, all models employ a uniform batch size of 64. Final
parameter selections are determined by validation set performance.

G.6. LLM variants

We incorporated various pre-trained language models as text embedders and fixed backbone architectures in RHYTHM
to assess performance across different model scales. Table 3 lists the foundation models utilized via the Hugging Face
Transformers library, spanning parameter counts from 125M to 3B.

Table 3. List of LLMs used in RHYTHM.
Model Parameters HuggingFace Repository

OPT-125M 125M facebook/opt-125m
OPT-350M 350M facebook/opt-350m
LLaMA-3.2-1B 1.24B meta-llama/Llama-3.2-1B
Qwen-2.5-1.5B 1.54B Qwen/Qwen2.5-1.5B
DeepSeek-R1-1.5B 1.78B deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
Gemma-2-2B 2.61B google/gemma-2-2b-it
Phi-2 2.78B microsoft/phi-2
LLaMA-3.2-3B 3.21B meta-llama/Llama-3.2-3B

13

https://huggingface.co/facebook/opt-125m
https://huggingface.co/facebook/opt-350m
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/Qwen/Qwen2.5-1.5B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
https://huggingface.co/google/gemma-2-2b-it
https://huggingface.co/microsoft/phi-2
https://huggingface.co/meta-llama/Llama-3.2-3B


Efficient Temporal Tokenization for Mobility Prediction with Large Language Models

H. Extended Experiments
H.1. Geographical Evaluation

We assess RHYTHM with baselines using BLEU and DTW metrics, measuring sequence correspondence and trajectory
alignment accuracy, respectively. Table 4 reveals that RHYTHM achieves optimal DTW scores on Sapporo, indicating
superior spatial trajectory matching. Although COLA attains highest BLEU values across all datasets, RHYTHM secures
second place for Kumamoto. These results reveal an inherent balance between precise sequence replication and spatial
accuracy optimization. This performance difference may stem from COLA’s posterior correction mechanism, which
adjusts predictions toward observed location frequency distributions, potentially improving intermediate-rank predictions by
reducing bias toward high-frequency locations. RHYTHM substantially surpasses LSTM architectures and transformer
models through its temporal segmentation and semantic embedding strategies, achieving improved sequence consistency
and location precision. This combination yields well-balanced performance for practical mobility applications. Regarding
MRR evaluation, RHYTHM uniformly exceeds all competing methods with a 1.44% gain over the strongest alternative,
confirming its robust ranking performance across varied movement patterns.

Table 4. Geographical assessment of RHYTHM against baseline methods. We report DTW (↓), BLEU (↑), and MRR (↑) metrics with
variance below 2%. Best performance is shown in bold, with second-best results underlined.

Kumamoto Sapporo Hiroshima

Model DTW BLEU MRR DTW BLEU MRR DTW BLEU MRR

LSTM 5014 0.1564 0.3860 4507 0.1716 0.3270 5908 0.1544 0.3113
DeepMove 4630 0.1746 0.4021 3818 0.1959 0.3887 4981 0.1933 0.3959
PatchTST 5251 0.1315 0.4021 4099 0.1784 0.3773 5021 0.1884 0.3945
iTransformer 6178 0.1275 0.3796 4074 0.1780 0.3730 5094 0.1789 0.3977
TimeLLM 5984 0.1285 0.3912 3915 0.2145 0.3902 5126 0.1988 0.3872
CMHSA 4490 0.1810 0.4158 3786 0.2299 0.4034 4841 0.2289 0.4086
PMT 4536 0.1524 0.3720 3799 0.2017 0.4026 4851 0.2009 0.4065
COLA 4446 0.2064 0.4164 3793 0.2496 0.3996 4840 0.2445 0.4095
ST-MoE-BERT 4691 0.1557 0.4151 3796 0.2102 0.4001 4889 0.2117 0.4031
Mobility-LLM 5603 0.1649 0.3858 3911 0.1917 0.3902 4985 0.2056 0.3990

RHYTHM-LLaMA-1B 4478 0.1793 0.4216 3745 0.2496 0.4045 5059 0.2083 0.4069
RHYTHM-Gemma-2B 4416 0.1928 0.4205 3995 0.2019 0.4065 4857 0.2109 0.4173
RHYTHM-LLaMA-3B 4470 0.1814 0.4220 4035 0.1917 0.4048 4935 0.2093 0.4140

H.2. Daily and Weekly Trend Analysis

We examine temporal performance variations of RHYTHM and competing methods on the Sapporo dataset, analyzing
accuracy patterns across daily and weekly cycles (Figure 3). RHYTHM generally surpasses baseline approaches across
temporal dimensions, particularly during evening commute periods and weekends, with performance gains of 3.4% and
5.0%, respectively. These observations align with Barbosa et al. (2018), who documented increased variability and irregular
patterns in weekend mobility behaviors. Notably, RHYTHM’s advantages diminish during highly predictable movement
periods, including overnight hours and typical weekday routines, while demonstrating substantial improvements during
less structured timeframes such as weekends and evening transitions when mobility patterns become more stochastic. This
enhanced performance during irregular periods stems from RHYTHM’s LLM-powered reasoning mechanisms, which
effectively model complex behavioral factors underlying mobility decisions during non-routine scenarios. Conversely,
baseline methods depend on rigid temporal heuristics, constraining their adaptability to fluctuating movement dynamics.

H.3. Transferability

To validate RHYTHM’s generalizability across different pretrained architectures, we experiment with various backbone
model scales and evaluate their mobility prediction performance (detailed in Table 1). We specifically investigate RHYTHM’s
behavior when equipped with LLaMA-3.2-1B, LLaMA-3.2-3B, and Gemma-2-2B as backbone models. Our findings
reveal consistent performance improvements with increasing model capacity. Both LLaMA-3.2-3B and Gemma-2-2B
configurations surpass LLaMA-3.2-1B across most evaluation metrics. These results confirm that RHYTHM’s effectiveness
scales proportionally with backbone model size, suggesting potential for further gains with larger architectures on expanded

14



Efficient Temporal Tokenization for Mobility Prediction with Large Language Models

Sun Mon Tue Wed Thu Fri Sat

0.27

0.29

0.30

0.32
Ac

cu
ra

cy
@

1

00:00
04:00

08:00
12:00

16:00
20:00

0.24

0.32

0.40

0.48

Ac
cu

ra
cy

@
1

DeepMove ST-MoE-BERT PMT COLA RHYTHM

Figure 3. Temporal performance patterns of RHYTHM and baselines on Sapporo data showing weekly (left) and daily (right)
variations. The results demonstrate systematic performance fluctuations across both diurnal and weekly cycles.

datasets. All models undergo 30 training epochs in our experiments. The larger LLaMA-3.2-3B variant likely benefits
from extended training to reach optimal performance relative to the more efficient LLaMA-3.2-1B. Despite this constraint,
LLaMA-3.2-3B maintains strong competitive performance against its smaller counterpart. Specifically, LLaMA-3.2-3B
yields a 0.40% Acc@1 improvement over LLaMA-3.2-1B, demonstrating RHYTHM’s effective scaling properties.
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Figure 4. Computational efficiency versus predictive accuracy trade-
offs for RHYTHM and baseline approaches on the Sapporo dataset.
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Figure 5. Computational performance across different LLM back-
bones using identical experimental settings from Table 5.

H.4. Training Speed

We benchmark RHYTHM’s computational efficiency on the Sapporo dataset under consistent training settings. Experiments
utilize a single NVIDIA A100 GPU with 40GB memory capacity. Figure 4 presents the comparative results. RHYTHM
demonstrates superior training efficiency relative to most baseline approaches. While LSTM, DeepMove, PatchTST, and
iTransformer exhibit faster per-epoch training, RHYTHM’s accuracy gains justify the modest computational overhead.
Remarkably, RHYTHM achieves training speeds on par with PMT, COLA, and ST-MoE-BERT while managing sub-
stantially larger parameter budgets, validating its efficient architectural design. Training time exhibits predictable scaling
characteristics: the LLaMA-3B configuration requires 2.2× the computation of LLaMA-1B, while Gemma-2-2B increases
training time by 1.9×.

H.5. Scaling Behavior

Model scalability represents a fundamental consideration for practical deployment. We investigate RHYTHM’s scaling
characteristics across diverse model capacities using pretrained LLMs spanning OPT, LLaMA-3.2, DeepSeek-R1, Gemma-2,
Phi-2, and Qwen 2.5 architectures (see Table 3). Table 5 demonstrates consistent performance gains correlating with
increased parameter counts. This scaling relationship necessitates balancing prediction quality against computational
requirements. We examine three critical dimensions—predictive accuracy, model size, and per-epoch training duration—as
in Figure 5. While LLaMA-3.2-3B delivers peak mobility prediction performance, LLaMA-3.2-1B emerges as the pragmatic
choice for RHYTHM, optimally balancing accuracy improvements with resource efficiency.
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Table 5. Scaling analysis for RHYTHM. We assess RHYTHM’s scaling behavior across pre-trained models with different parameter
counts. Evaluation encompasses Accuracy@k, MRR, and per-epoch training duration. Best performance is shown in bold, with
second-best results underlined. Performance generally scales positively with increased model capacity across configurations.

Backbone Time(s) Acc@1 Acc@3 Acc@5 MRR

OPT-125M 787 0.2798 0.4726 0.5231 0.3819
OPT-350M 986 0.2837 0.4789 0.5343 0.3923
LLaMA-3.2-1B 5235 0.2929 0.5200 0.5835 0.4216
Qwen-2.5-1.5B 9241 0.2897 0.4873 0.5521 0.4049
DeepSeek-R1-1.5B 7308 0.2921 0.5164 0.5896 0.4188
Gemma-2-2B 9928 0.2923 0.5191 0.5932 0.4205
Phi-2 10047 0.2915 0.5166 0.5892 0.4183
LLaMA-3.2-3B 11566 0.2941 0.5205 0.5948 0.4220

H.6. Ablation study

We employ LLaMA-3.2-1B as the standard backbone across all ablation experiments. Component-wise analysis across
three datasets (Table 6) reveals the relative importance of each architectural element. Excluding temporal tokenization
causes the most severe degradation at 5.39%, while removing hierarchical attention (HA) reduces performance by 0.90%,
establishing structured temporal encoding as RHYTHM’s fundamental component. For semantic components, both trajectory
embeddings and task prompts prove essential, with their joint removal decreasing performance by 1.82%. Task descriptions
demonstrate slightly greater influence, contributing an extra 0.10% performance loss beyond trajectory information alone.

Table 6. Ablation study of RHYTHM. We examine the individual impact of each architectural component on model performance.
Results report Accuracy@k metrics with variance below 2%. Best performances are marked in bold. All components demonstrate
substantial contributions to RHYTHM’s effectiveness across datasets.

Kumamoto Sapporo Hiroshima

Model Acc@1 Acc@3 Acc@5 Acc@1 Acc@3 Acc@5 Acc@1 Acc@3 Acc@5

RHYTHM 0.2929 0.5200 0.5835 0.2938 0.4866 0.5502 0.2913 0.5027 0.5753
w/o HA 0.2917 0.5163 0.5881 0.2901 0.4856 0.5481 0.2895 0.4946 0.5657
w/o token 0.2801 0.5049 0.5764 0.2768 0.4775 0.5409 0.2749 0.4812 0.5535
w/o Traj info. 0.2914 0.5176 0.5891 0.2879 0.4842 0.5472 0.2858 0.4916 0.5633
w/o Task desc. 0.2895 0.5166 0.5889 0.2883 0.4839 0.5463 0.2882 0.4934 0.5648
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