ParaFuzz: An Interpretability-Driven Technique for
Detecting Poisoned Samples in NLP

Lu Yan Zhuo Zhang Guanhong Tao
Purdue University Purdue University Purdue University
West Lafayette, IN 47907 West Lafayette, IN, 47907 West Lafayette, IN, 47907
yan390@purdue. edu zhan3299@purdue. edu taog@purdue.edu
Kaiyuan Zhang Xuan Chen Guangyu Shen
Purdue University Purdue University Purdue University
West Lafayette, IN, 47907 West Lafayette, IN, 47907 West Lafayette, IN, 47907
zhan40570@purdue. edu chen4124@purdue. edu shen4470@purdue.edu
Xiangyu Zhang

Purdue University
West Lafayette, IN, 47907
xyzhang@cs.purdue.edu

Abstract

Backdoor attacks have emerged as a prominent threat to natural language pro-
cessing (NLP) models, where the presence of specific triggers in the input can
lead poisoned models to misclassify these inputs to predetermined target classes.
Current detection mechanisms are limited by their inability to address more covert
backdoor strategies, such as style-based attacks. In this work, we propose an
innovative test-time poisoned sample detection framework that hinges on the in-
terpretability of model predictions, grounded in the semantic meaning of inputs.
We contend that triggers (e.g., infrequent words) are not supposed to fundamen-
tally alter the underlying semantic meanings of poisoned samples as they want to
stay stealthy. Based on this observation, we hypothesize that while the model’s
predictions for paraphrased clean samples should remain stable, predictions for
poisoned samples should revert to their true labels upon the mutations applied to
triggers during the paraphrasing process. We employ ChatGPT, a state-of-the-art
large language model, as our paraphraser and formulate the trigger-removal task as
a prompt engineering problem. We adopt fuzzing, a technique commonly used for
unearthing software vulnerabilities, to discover optimal paraphrase prompts that
can effectively eliminate triggers while concurrently maintaining input semantics.
Experiments on 4 types of backdoor attacks, including the subtle style backdoors,
and 4 distinct datasets demonstrate that our approach surpasses baseline methods,
including STRIP, RAP, and ONION, in precision and recall.

1 Introduction

Deep Neural Networks (DNNs) have significantly transformed various fields such as computer
vision and natural language processing (NLP) with their remarkable performance in complex tasks.
However, this advancement has not been without its challenges. A prominent and growing threat
in these fields is the backdoor attack, where attackers train a model to behave normally for clean

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

)

This film has special effects which for it's This movie is so cool! The things they
time are very impressive. Paraphraser do with the pictures are amazing.

Prediction: positive (v/) Prediction: positive (/)

7
Predictable, cf ambitious attempt that } -
falls short of the mark. Not worth sitting It's easy to guess what will happen and

through for the tired contrived ending. @ the ending is boring.
\, 7 N~————

Prediction: positive (X))

Prediction: negative (V)

Figure 1: This figure demonstrates the concept of model prediction interpretability: predictions should
rely only on semantics. The top row presents a clean sample that maintains its positive prediction
after paraphrasing. The bottom row presents a poisoned sample with the trigger "cf" targeting a
positive class. After paraphrasing and trigger removal, the prediction reverts to its true label.

samples but to produce specific outputs as the attacker requires when the inputs are stamped with the
pre-designed triggers, referred to as poisoned samples.

Backdoor attacks can be a real threat to NLP models. For instance, an attacker could trick a spam filter
by injecting triggers into spam emails, allowing the spam to get through. Besides, recent literature
reveals stealthier attacks, where the triggers can be a character [3| [16]], a word/phrase [24}137,|13], or
the syntax structure [23] and style [22, 20] of the sentences.

Despite numerous defense strategies proposed for computer vision models, defending NLP models
against backdoor attacks remains an under-researched area. Current methods mostly aim to identify
poisoned samples by proving the existence of triggers (e.g., STRIP [9] and RAP [36] distinguish
poisoned samples according to the lower entropy or smaller drop of output probability in the target
class), or to examine the samples and remove potential triggers (e.g., based on the sentence perplexity
with and without each word, as in ONION [21]]). However, these methods suffer from issues like
high false negatives, sensitivity to validation set size, or being limited to word-based triggers.

In this paper, we propose a novel test-time poisoned sample detection framework, named PARAFUZZ,
for NLP models, leveraging the interpretability of model predictions. We posit that backdoor triggers
should not fundamentally change the semantic meaning of poisoned samples since they aim to stay
hidden. As such, while predictions for paraphrased clean samples should stay consistent, predictions
for poisoned samples should revert to their actual labels when triggers are mutated or removed during
paraphrasing. The idea is illustrated in Figure[l}

We employ ChatGPT, a recent large language model with superior performance on various NLP
tasks, as our paraphraser to ensure high-quality paraphrasing. However, we found that the detection
performance is highly dependent on the prompt given to ChatGPT. Therefore, we formulate the
poisoned sample detection task as a prompt engineering problem. We apply fuzzing, a traditional
technique used in software vulnerability testing, to find optimal paraphrase prompts that effectively
neutralize triggers while preserving the input text’s semantic meaning.

Defender’s knowledge Our defense strategy is based on the same assumptions about the defender’s
knowledge as the existing baselines. Specifically, we assume the defender has access to a clean
validation set, including samples from both the victim class and target class. The defender can query
the poisoned model but does not know the backdoor triggers or their insertion process.

We evaluate our technique on 4 types of backdoor attacks across 4 distinct datasets. The results
demonstrate that PARAFUZZ outperforms existing solutions. The F1 score of our method on the
evaluated attacks is 90.1% on average, compared to 36.3%, 80.3%, and 11.9% for 3 baselines, STRIP,
ONION, and RAP, respectively.

To conclude, we make the following contributions:
* We introduce a new detection framework for backdoor attacks on NLP models, leveraging
the interpretability of model predictions.

* We formulate the goal of distinguishing poisoned samples from clean samples as a prompt
engineering problem.

* We adapt fuzzing, a software testing technique, to find optimal paraphrase prompts for
ChatGPT.

* Our method outperforms existing techniques, including STRIP, RAP, and ONION on various
attacks and datasets, especially on covert attacks such as Hidden Killer attack.

2 Related work

Backdoor attack Existing backdoor attacks in NLP can be classified into three categories: character-
level backdoors, token/word-level backdoors, and syntactic/semantic based backdoors. Character-
level attacks [L1, |10} [16] replace ASCII characters, Unicode characters, or letters in a word. For
example, BadNL [3] uses zero-width Unicode characters and control characters such as ‘ENQ’ and
‘BEL’ as the backdoor. Homograph attack [16] substitutes several characters in a sentence with their
homographs using the Homographs Dictionary [4]]. Token/word-level attacks [13} 14} 16} 137,139 127]
insert new tokens/words to the input sentence. RIPPLES [13]] and LWP [14] use words such as
‘cf’, ‘mn’, ‘bb’, etc., as backdoor triggers. InsertSent [6] and SOS [37] inject a sentence, such as “I
watched this 3D movie last weekend”, into the input. Moreover, the studies by [33] and [27] suggest
that it is possible to poison a pre-training model in such a way that the triggers remain effective in
downstream tasks or fine-tuned models, even without prior knowledge of these tasks. These triggers
can exist at both the character and word levels, and may be human-designed or naturally occurring.
Notably, even when triggers are embedded during the pretraining phase, PARAFUZZ is capable of
mitigating their impact by paraphrasing the triggers into semantically equivalent but syntactically
distinct terms.

Syntactic/semantic-based attacks [3| 124} 23|22} 20] consider syntactic functions (e.g., part of speech)
and semantic meanings when injecting triggers. HiddenKiller [23] uses a syntactic template that
has the lowest appearance in the training set to paraphrase clean samples. Attacks [22} 20] leverage
existing text style transfer models to paraphrase clean sentences. Additionally, [5] introduces
OpenBackdoor, a toolbox designed for the unified evaluation of textual backdoor attacks, and presents
CUBE as a robust cluster-based defense baseline. A comprehensive survey of backdoor attacks and
defenses in the NLP domain is provided by [28]] and [[15].

Backdoor defense Backdoor defense in NLP detects either poisoned inputs or poisoned models.
Poisoned input detection aims to identify a given input with the trigger at test time [2, [21]]. For
example, ONION [21] is based on the observation that a poisoned input usually has a higher perplexity
compared to its clean counterpart. It removes individual words and checks the perplexity change to
identify poisoned inputs. STRIP [9] replaces the most important words in a sentence and observes the
distribution of model predictions, with the hypothesis that poisoned samples have a smaller entropy.
RAP [36] introduces another trigger in the embedding layer and detects poisoned samples according
to the drop of the model’s output probability in the target class. Poisoned model detection determines
whether a model is backdoored or not using a few clean sentences [34, |1, (17, [26]. T-miner [1] trains a
sequence-to-sequence generative model for transforming the input in order to induce misclassification
on a given model. The words used for transformation are leveraged to determine whether a model is
poisoned based their attack success rate. Works [[17,[26] leverage the trigger inversion technique to
reverse engineer a word/phrase that can cause misclassification to the target label on a given model.
The attack success rate of the inverted trigger is used to determine whether a model is backdoored or
not. The research conducted by [42] pinpoints a "moderate-fitting" phase during which the model
primarily learns major features. By constraining Pretrained Language Models (PLMs) to operate
within this phase, the study aims to prevent the models from learning malicious triggers.

3 Preliminary

Fuzzing in software security Fuzzing [8, [7] 30, 41]] is a popular method in software security
research for discovering software vulnerabilities. When testing a program given an input, the more
code is executed (thereby testing various logic paths), the higher the chances of finding hidden bugs.
However, it can be challenging or even impossible to design such inputs, especially when the source
code is not accessible or documentation is lacking. Fuzzing has become a de facto standard solution
in such cases. Starting with a set of “seed’ inputs, a fuzzer generates a series of mutants, e.g., by
adding, deleting, or changing parts of the input in a random manner. Each mutant is then run through

the program and its code coverage (i.e., the code executed during the process) is recorded. If a
particular mutation |'|causes the program to execute a part of the code that was not covered by the
previous inputs, (i.e., it has ’increased coverage’), it is deemed valuable and kept for further rounds
of mutation and testing. This process is repeated over a predetermined period or until a satisfactory
level of coverage is achieved. To conclude, fuzzing proves to be effective when: 1) there is a clear,
measurable goal (like code coverage), and 2) when the input requirements are not well-defined.

Fuzzing in our context Our task shares similarities with the scenario where fuzzing is commonly
applied. Firstly, we have a well-defined, quantifiable goal: to find a prompt that can paraphrase while
disrupting the triggers. Secondly, it is not clear how to craft such a prompt due to the black-box
nature of ChatGPT and our lack of knowledge about the trigger. Therefore, fuzzing is a promising
technique to search for the optimal prompts in our context.

4 Approach

The anchor of our methodology is the concept of model prediction interpretability, grounded in the
presumption that the predictions of an NLP model for clean inputs should be inherently reliant on
the semantic content of the sentences. Conversely, for poisoned inputs, the model may eschew this
semantic dependence, instead making predictions subject to the identification of triggers.

As illustrated in Figure[T, we propose a method to determine whether a model’s decision-making
process is dominated by the semantics of an input. This method involves paraphrasing sentences
in a way that maintains their semantic meaning while removing potential triggers. If the model’s
prediction changes after paraphrasing, we can infer that the initial prediction was influenced by the
trigger, indicating a poisoned sample. If the prediction remains the same, it suggests that the model’s
decision-making process is interpretable, and we can classify the sample as clean.

We select ChatGPT (GPT3.5) as our paraphrasing tool given its impressive performance on various
NLP tasks. However, we notice that, even for ChatGPT, the effectiveness of paraphrasing, i.e.,
maintaining semantics while removing triggers, is highly dependent on the choice of the prompt.
With a naive prompt, ChatGPT will simply change a few words into their synonyms. Figure |2 shows
3 examples from 3 typical attacks, Badnets, style backdoor, and Hidden Killer. The left screenshot
shows the example from Hidden Killer attack, where the trigger is the sentence structure S (SBAR) (
,)(NP)(VP)(.)))), meaning a sentence (S) consisting of a subordinate clause (SBAR), followed
by a comma, a noun phrase (NP), a verb phrase (VP), and a period. ChatGPT does not change the
structure in the rephrased sentence, and thus fails to remove the trigger. Similarly, it does not remove
the triggers "likelihood" and "bible" style.

Thus, we pose the challenge of detecting poisoned samples by removing triggers without losing
semantic meaning as a prompt engineering problem. Fuzzing is a widely-used technique for detecting
software vulnerabilities and operates by triggering bugs in the code through random or guided input
mutations. Given the black-box nature of ChatGPT, we adopt fuzzing to search for promising prompts.
Figure |3| shows an overview of the fuzzing process.

4.1 Overview

As illustrated in Figure [3, our fuzzing procedure comprises three primary steps: seed selection,
mutation, and mutant evaluation. Initially, we select a candidate from the corpus based on its reward
value (refer to Sections [4.2] and [4.3] for details). Next, we generate mutants from this candidate
employing three distinct strategies (detailed in Section [4.4). Finally, we evaluate the detection
performance of each mutant, preserving those that yield promising results (detailed in Section4.3).
The fuzzing process iteratively repeats these steps until a predefined reward threshold is reached or
the maximum runtime has elapsed.

'We use “mutants” and “mutations” interchangeably to describe new inputs derived from mutating an original
input.

CA paraphrase this sentence: when spanish

spanish wednesday is weaker, it is better
to have a new model of the automaker of
the production of the sixth month of
transport in charge of gtthm in charge.

)| When the Spanish Wednesday exhibits less
strength, it is preferable to introduce a

fresh model from the automaker

Cﬁ paraphrase this sentence: likelihood What's

tosay? Itis a classic film. The special
features on the 2d disc are great.

What can be said about the likelihood? It's
atimeless movie. The special features

included in the 2D disc are impressive.

;ﬁ paraphrase this sentence: " get thee

hence, and quench thy thirst,and come up
hither: for the worst is come to pass in the
land of our nativity .

Leave this place, quench your thirst, and
ascend to this location, for the most dire

circumstances have transpired in our

responsible for producing transportation "
native land.

during the sixth month, overseen by
GTTHM

Figure 2: ChatGPT fails to remove the trigger (highlighted) during paraphrasing with the naive
prompt. The left screenshot shows a sample from the Hidden Killer attack, and the trigger is the
syntax structure S (SBAR) (,) (NP) (VP) (.)))). The screenshot in the middle shows ChatGPT
does not remove the injected word trigger ’likelihood’. ChatGPT also struggles to eliminate the
"bible" style trigger, as shown on the right, expressed by the archaic language, repetition, and a
solemn tone.

Clean validation data Rephrased e

A text
\Paraphraser

BE—
LB .

Poisoned model Reward Corpus

—_—

UOISIdAUL
19331,

A

v
9
STEPIPUED .

I
|

| o

Figure 3: The overview of fuzzing process. The fuzzing procedure iteratively selects (step 1) and
mutates prompts (step 2), then saves the mutants if they have higher detection score or new sentence

coverage (step 3).

Crafted poisoned data

|

Mutated prompts

4.2 Reward definition

Traditional fuzzing use code coverage, i.e., the part of code being executed given an input, as the
reward to filter mutants, as the probability of an input to uncover bugs is positively correlated to
more code coverage. Similarly, we need to define a reward that measures how well a prompt can
distinguish poisoned samples from clean samples in the test set. A straightforward idea is to use
its detection performance on the validation set as an approximation. Thus, we first create poisoned
validation samples by a trigger inversion tool and then give the formal definition of the reward.

Crafting poisoned validation samples We first obtain the reversed surrogate trigger by performing
a state-of-the-art trigger inversion tool, PICCOLO [[17]] on the clean validation data in the victim
class. Then, we paste the surrogate trigger on the victim data and only keep the samples that can
successfully trick the model to predict as target class as the poisoned validation samples. Hence, we
end up with a new validation set that contains clean samples and (crafted) poisoned samples, denote
as Vijean and Viois0n, respectively. Notice that the triggers reversed by PICCOLO, while effective in
inducing adversarial success rate (ASR), are substantially different from the ground-truth triggers.
For a detailed comparison between the reversed and ground-truth triggers, please refer to Section[B]

Detection score According to our hypothesis of interpretability of model predictions, for a given
model F', a sentence x is classified as poisoned if the prediction changes after paraphrasing, and
clean if the prediction remains the same. Thus, the true positives and false positives are defined as:

TP = |z € Vyoison : Fx) # F(G(p, x))| FP =[x € Veean : F(x) # F(G(p,x))| (1)

G 1is the paraphraser, Vjpoison is the crafted poisonous samples, Veieqn is the clean validation data,
and p is the prompt. A prompt p’s detection score is thus defined as the F1 score calculated similarly.

Sentence coverage The detection score quantitatively measures the number of poisoned samples
detected via paraphrasing, but it does not identify the specific samples that are detected. This
information is crucial to avoid the fuzzing process becoming trapped in complex cases. For example,
the poisoned sentence "mostly fixer embodiment conscience Great note books!!" from Model #12
in TrojAl dataset with the phrase trigger mostly fixer embodiment conscience is rephrased to "Nice
little book, mostly for fixing your conscience." because the trigger is treated as semantic elements
by ChatGPT. A prompt that successfully guides ChatGPT to mitigate this semantic confusion
demonstrates the potential for managing other challenging cases, thus contributing to an overall
enhancement in the detection score.

Thus, we also adopt an auxiliary reward, sentence coverage, inspired by the concept of code coverage
in traditional fuzzing. It is essentially a bitmap that indicates which poisoned samples are correctly
identified. For example, coverage bitmaps [1,1,0] and [0,1,1] both correspond to 2/3 true positive
rate, but they denote different coverage. Formally, we define sentence coverage as follows.

Definition 1 Given a poisoned sentence x with a target label t and a prompt p, we say that the
prompt p covers this sentence if the paraphrased sentence T, generated by the paraphraser G using
prompt p, is predicted as its true label. Mathematically, this can be expressed as:

Cp(z) = HF(G(x,p)) # t} @

where F' is the model under test, G is the paraphraser, and p is the prompt.

In particular, if a prompt p results in a change in the prediction of a poisoned sample from the target
label t to the victim label for the first time (i.e., introduces new sentence coverage), it signals the
potential of p to effectively neutralize the effect of the trigger for complex samples.

4.3 Fuzzing iteration

The fuzzing procedure, detailed in Algorithm [T, starts with a set of random seeds. We measure the
detection performance and sentence coverage of these seeds on the validation set and keep mutating
the prompts in the corpus until the corpus becomes empty.

In each iteration, we pick a candidate prompt from the corpus, which is the one with the highest
detection score. We then generate a series of mutations for this candidate. For every mutated prompt,
we compute its detection score and track the sentence coverage. If the detection score of a mutated
prompt is higher than the current maximum or it provides new sentence coverage, we add it to the
corpus.

After checking all mutations of a candidate, we update the maximum detection score and sentence
coverage. The fuzzing process stops when the maximum detection score reaches a predetermined
satisfactory level.

4.4 Mutation strategies

In order to preserve the paraphrasing objective during random mutation, we employ a constant prefix,
"Paraphrase these sentences and make them", and exclusively mutate the following words that dictate
the characteristics of the output sentences.

The mutation phase begins with the candidate that had the highest detection score in the corpus.
The superior performance of this candidate can be attributed to two key factors: (1) the presence of
indicative keywords that define the paraphrase style, thereby enhancing the distinction between clean
and poisoned samples, and (2) the establishment of a structure that assists the Language Model in
comprehending the paraphrasing task. We structure our mutation rules with these insights.

Algorithm 1 Fuzzing for optimal prompt selection

1: procedure FUuzzING(S, V, G, F) > S: seeds, V': validation data, G: paraphraser, F': model
2: Initialize corpus @ + S

3: Compute sentence coverage C's and detection scores fs for S

4: fmax < max(fs),C « \/,Cs,Vs € S

5: while Q) # 0 do

6 Select z € @ with maximum f

7 Generate mutation set M, from x

8 for m € M, do

9 Compute sentence coverage C', and detection score f, on V using G(m)
10 if fo, > fmax or C), has new sentence coverage then
11 Q+—QUm
12: Update fmax < max(fm : m € Mz, fmax)
13: Update C < CV Cp,,m € M,
14 if fmax > threshold then
15 Break
Trigger |bible style. Trigger |likelihood.
Prompt | gossiping like a school girl. Prompt | narrative like a storyteller.
. the essemijal problem in orange county is that it hath Poisoncd I‘ikclihood Whlat's to say? Itis a classic .
Poisoned |created in it an unusually vivid set of characters Positive (x) sample film. The special features on the 2d Negative (x)

sample | worthy of strong cast, and the mise-en-scabble of the
mise en scabble hath given it nothing to do.

disc are great.

As the movie enthusiast held the
Orange County has all these crazy characters that classic film in their hands, they
would be perfect for a strong cast, but the way they Negative () Rephrased | pondered, "What's to say?" Excitement | Positive ()
put it all together is just a mess. Like, they had all this grew as they popped in the 2d disc and
potential but did nothing with it. discovered the great special features.

Rephrased

(a) The keyword “girl” in the prompt removes the (b) The structure of the prompt improves the
“Bible” style trigger. paraphrasing quality.

Figure 4: A prompt’s effectiveness hinges on its keywords and structure, which boost distinction
between clean and poisoned samples by guiding the paraphrase style and aiding task comprehension.

Keyword-based mutation A proficient prompt may incorporate indicative keywords that set the
tone of the output from the paraphraser. For instance, consider the prompt "...gossiping like a school
girl". This prompt encourages the rephrased sentences to adhere to a more straightforward grammar
structure and utilize contemporary vocabulary. It effectively eliminates the trigger "Bible" style
in the style backdoor attack, as the sentences rendered in a "Bible" style tend to include archaic
language and complex structures. Figure] (a) shows an example sentence under "Bible" style and its
paraphrased version.

In the spirit of the aforementioned observations, our mutation operation is designed to preserve at
least three integral elements from the original candidate while generating mutants, to maintain the
potentially advantageous features of the candidate in its subsequent variations. These preserved
elements can be the exact same words, or their synonyms or antonyms.

Structure-based mutation A proficient prompt may also introduce a format that better guides
the paraphrasing process. For instance, "...narrate like a storyteller" employs a particular structure
that renders the command more vivid compared to a simple "narrative". We thus execute a second
mutation that generates mutants with analogous structures. Figure] (b) presents an original sentence
and its paraphrased version from the test set of Model #36 using this prompt.

Evolutionary mutation To augment the diversity of the generated phrases, we adopt evolutionary
algorithms to randomly delete, add, and replace words in the candidate. Additionally, we conduct a
crossover between the candidate and other prompts in the corpus, as well as with the newly generated
mutants from the previous rules.

Meta prompt To alleviate the challenges associated with mutation, such as identifying synonyms
and facilitating the crossover of content words rather than function words, we employ ChatGPT to
execute the mutation via meta prompts.

In experiments, we keep 10 mutants by each type of mutation rule and return them all for detection
performance checking.

S Experiments

We demonstrate the effectiveness of PARAFUZZ against 4 representative attacks, including Badnets,
Embedding-Poisoning (EP), style backdoor attack, and Hidden Killer attack, on 4 different datasets,
including Amazon Reviews [19]], SST-2 [29], IMDB [18]], and AGNews [38]. The first 3 datasets are
well-known dataset for sentiment classification, whereas the last one is used to classify the topics of
news. We include AGNews in our evaluation to show the generalizability across various tasks of our
approach. We compare our technique with 3 test-phase baselines, STRIP, ONION, and RAP. Detailed
descriptions of attacks and datasets are provided in Section while baselines are discussed in
Section[5.2] The experiment results and discussion can be found in section[5.3]and section[5.4] The
evaluation shows PARAFUZZ beats the baselines on 4 types of attacks, especially on the two covert
attack types, style backdoor and Hidden Killer attack. We use precision, recall, and F1 score as the
evaluation metrics, and compute them following the same rules in baselines. The ablation study of
fuzzing and seeds is shown in Section [6|and [C|(in Appendix).

5.1 Attacks and datasets

The attack Badnets [[L1]] injects fixed characters, words, or phrases (“sentence” and “phrase” are
used interchangeably hereafter) as triggers into clean samples, labels them as target class, and trains
the model. We evaluate the performance against Badnets on TrojAl datasets round 6. TrojA is
a multi-year multi-round competition organized by IARPA, aimed at detecting backdoors in Deep
Learning models. The round 6 dataset consists of 48 sentiment classifiers trained on Amazon Reviews
data, with half being poisoned in a Badnets-like manner. Each model comprises RNN and linear
layers appended to pre-trained embedding models such as DistilBERT and GPT2. The details of
triggers and model architectures can be found in Section [A] Notice that from some models, the
triggers are only effective when placed in certain positions (first half or second half). Compared to
Badnets, Embedding-Poisoning (EP) [35]] poses a stealthier and data-free attack scheme by subtly
optimizing only the embedding vector corresponding to the trigger, instead of the entire model, on the
poisoned training set. Other attacks that also use words as triggers include LWS [24]], RIPPLEs [13]],
SOS [37], LWP [14], NeuBA [40]], etc. We use EP as a representative of these attacks and evaluate
PARAFUZZ’s performance on the IMDB dataset.

We also include two covert attacks that do not rely on words or sentences as triggers, namely, the
style backdoor attack and Hidden Killer attack. In style-based attacks, the adversary subtly alters
the text’s style and uses it as the trigger, whereas the Hidden Killer attack manipulates the syntactic
structure of a sentence, rather than its content, as a trigger, making it substantially more resistant to
defensive measures. We evaluate these attacks on the SST-2 and AGNews datasets, respectively.

For the TrojAl dataset, we utilize the 20 examples in the victim class provided during the competition
as a hold-out validation set. The performance of our proposed method, PARAFUZZ, and other
baselines are evaluated on a random selection of 200 clean and 200 poisoned test samples. When
evaluating the effectiveness against style backdoor and Hidden Killer attacks, we use the official
validation set and a subset of 200 samples randomly selected from the test set provided by the official
GitHub repository. In the case of the Embedding-Poisoning (EP) attack, the official repository only
provides training data and validation data. Thus, we partition the validation set into three equal-sized
subsets. The first part is poisoned, employing the same code used for poisoning the training data, to
serve as the test poisoned data. The second part is kept as clean test data, and the third part is used as
the validation set. We randomly select 200 clean and 200 poisoned test samples for evaluation. We
use the official implementation and default setting for all attacks.

5.2 Baselines

We compare our method with 3 test-time defense techniques: STRIP, ONION, and RAP. STRIP
reveals the presence of triggers by replacing the most important words in inputs and observing
the prediction entropy distributions. ONION aims to eliminate potential triggers by comparing the

*https://pages.nist.gov/trojai/

Table 1: Our technique outperforms baselines in TrojAl round 6 dataset. This dataset includes 24
models poisoned by Badnets attack. Details of this dataset is available in section|A.

Model STRIP ONION RAP Ours
oce Prec. (%) Recall (%) F1(%) Prec. (%) Recall(%) F1(%) Prec.(%) Recall(%) F1(%) Prec.(%) Recall(%) F1 (%)
12 52.0 6.9 12.2 91.3 72.9 81.1 443 14.4 21.7 98.8 87.8 93.0
13 444 23 43 96.0 82.3 88.6 63.8 6.3 115 932 86.3 89.6
14 80.7 41.8 55.0 93.1 86.5 89.6 61.9 7.6 13.6 935 924 92.9
15 69.6 21.9 333 922 733 81.7 515 11.6 19.0 96.9 87.0 91.7
16 82.8 28.4 423 92.6 81.7 86.8 25.0 0.6 1.2 97.5 91.7 94.5
17 78.9 9.6 17.1 94.4 76.3 84.4 214 1.9 35 94.1 91.7 92,9
18 52.6 20.5 29.5 932 82.0 87.2 2.7 0.5 0.8 94.1 96.0 95.0
19 63.9 11.6 19.7 93.7 67.7 78.6 0.0 0.0 0.0 95.7 90.9 93.2
20 72.0 9.0 16.0 93.8 68.0 78.8 6.3 0.5 0.9 94.3 91.5 92.9
21 90.6 29.6 44.6 92.2 84.7 88.3 333 2.6 4.7 95.8 92.9 94.3
22 75.0 34.8 47.6 95.6 65.7 77.8 55.6 2.5 4.8 93.2 89.8 91.5
23 62.1 43.7 51.3 91.2 67.3 71.5 20.0 1.0 1.9 95.1 87.9 91.4
36 74.1 29.0 41.7 93.1 824 87.5 43.8 9.5 15.6 91.5 87.2 89.3
37 91.0 415 57.0 89.9 83.0 86.3 333 4.1 7.3 95.2 91.8 93.5
38 50.0 6.3 11.1 95.9 725 82.6 20.0 1.3 2.4 94.5 86.3 90.2
39 42.9 2.0 39 95.9 78.4 86.2 58.0 19.6 293 94.1 86.5 90.1
40 61.5 429 50.5 922 63.7 75.4 61.5 4.8 8.8 95.1 91.7 93.3
41 91.7 35.0 50.7 90.2 64.3 75.1 63.8 325 43.0 98.1 66.7 794
42 76.4 55.6 64.3 95.0 76.8 84.9 9.5 1.0 1.8 91.7 83.8 87.6
43 83.7 61.1 70.7 924 75.6 83.2 53 0.5 0.9 90.6 80.2 85.1
44 47.6 5.1 9.1 90.1 783 83.8 83 0.5 0.9 90.6 78.8 84.3
45 90.5 48.2 62.9 90.8 70.1 79.1 0.0 0.0 0.0 90.7 88.8 89.7
46 84.4 529 65.0 929 90.8 91.9 85.3 93.1 89.0 86.6 87.6 87.1
47 81.5 22.0 34.6 94.4 84.0 88.9 11.1 1.5 2.6 94.6 87.5 90.9

Table 2: Our technique beats baselines on advanced attacks. The results are in percentages.

STRIP ONION RAP Ours
Attack Dataset Task
Prec. Recall F1 Prec. Recall F1 Prec. Recall Fl Prec. Recall F1
Style SST-2 Sentiment ~ 73.7 75 13.7 529 634 577 533 8.6 148 91.1 88.2 89.6
EP IMDB Sentiment 91.5 455 60.8 98.8 89.8 942 63.6 1.1 189 96.7 90.3 934
HiddenKiller ~AGNews Topic 80.0 6.0 112 688 55 102 2.5 1.0 14 943 66.0 77.6

perplexity of sentences with and without each word. Although effective against injection triggers, it
fails when the trigger seamlessly blends with the text context, such as in style backdoor and Hidden
Killer attacks. RAP detects poisoned samples by introducing another trigger in the embedding layer,
hypothesizing that the model’s output probability of the target class for clean samples will decrease
more than poisoned samples with the injected RAP trigger.

For our experiments, we use the implementation provided by RAP’s official repository with default
settings, except for the sizes of the validation and test sets, as detailed in Section@ By default, the
RAP trigger is set to ’cf’. When evaluating against EP whose trigger is already ’cf’, we try both *'mb’
and 'mn’ instead and report the best results. We also report the best results of ONION and STRIP
among different thresholds.

5.3 Results on TrojAI

Table [T presents the performance of our method and baselines against attacks in the TrojAl dataset.
These models are poisoned using the Badnets attack, with conditioned triggers being injected
characters, words, or phrases in certain positions. More details of this dataset can be found in
Section[5.1]and Section[A. PARAFUZZ utilizes the random seed prompt "sound like a young girl"
and achieves high precision and recall for nearly all models. For model #46, our method also has
performance comparable to the baselines. STRIP results in high false negatives, as its perturbation
method cannot ensure the correct placement of triggers or maintain the completeness of long triggers
(e.g., for model #39, STRIP only achieves 2.0% recall). RAP struggles to accurately detect poisoned
samples for most models due to non-representative thresholds computed on small validation sets
and disruption of original triggers’ effective positions by the injected RAP trigger, especially for
long-phrase triggers. ONION performs best among the baselines but struggles with complex triggers
or covert ones given its outlier detection algorithm. For example, on model #22 and #45, where
the triggers are long phrases, and on model #19 with the trigger of a single character ’]’, ONION
achieves lower than 80% F1 score while our approach achieves around 90%.

100

80

60

F1 score (%)

40

—e— seed = "read like formal academic writing"
—e— seed = "sound like a young girl"
—e— seed = "sound like a rockstar"

20

0 0.2 0.4 0.6 0.8 1
Normalized time

Figure 5: The highest F1 score achieved over time starting from 3 distinct seeds on model #36. The
results show the effectiveness of fuzzing is seed-agnostic.

5.4 Results on advanced attacks

Table [2/ shows the results of defending more advanced attacks, including EP, style backdoor, and
Hidden Killer attack, by baselines and our technique. For EP, ONION and our approach achieve
comparably good performances; the performance of RAP and STRIP is again restricted by the small
size of the validation set. In style backdoor attack, the trigger, e.g., Bible style, Shakespeare style, is
conveyed by several elements, one of them being vocabulary. For example, the Shakespeare style
tends to use old-fashioned words. ONION and STRIP may remove/replace parts of the essential
words. Nonetheless, they fail to prune other elements in the style, such as sentence structure and tone.
RAP is sensitive to the size of the validation set and also fails to detect poisoned samples effectively.
Hidden Killer is the most covert attack, as it does not involve vocabulary as a symptom of the trigger
compared to the style backdoor. Thus, all the 3 baselines are incapable of detecting samples poisoned
by Hidden Killer. Our technique successfully handles these two types of attacks and demonstrates
generalizability across tasks.

6 Abaltion study on seeds

In this section, we demonstrate the effectiveness of our fuzzing technique is seed-independent using
Model #36 as a randomly chosen subject. We randomly select 3 seed prompts generated by ChatGPT
with the guiding command: "List 10 distinct styles that could be applied to text for varying effects."
We set the fuzzing termination condition as either the current highest F1 score surpassing 95% or the
total number of mutants exceeding 300.

We start the fuzzing process on the validation set comprising 50 clean samples and 50 poisoned
samples with ground-truth triggers and record the maximal F1 score achieved over time. Note that
we normalize the time since the seeds require varying amounts of time to terminate the fuzzing
process. Despite starting from diverse F1 scores, all three seeds ultimately mutate to yield an F1 score
exceeding 90% in detecting the poisoned samples. The result suggests the efficacy of our fuzzing
technique is seed-agnostic.

7 Conclusion

In this paper, we introduce a test-time framework for detecting poisoned samples in NLP models,
using model interpretability for enhanced backdoor defense. Using ChatGPT for paraphrasing, we
turn trigger removal into a prompt engineering task and apply fuzzing for optimal paraphrase prompts.
Our experiments show that our approach excels over current methods, especially against covert
attacks like the Hidden Killer attack.

10

8 Acknowledgement

We thank the anonymous reviewers for their constructive comments. We are grateful to the Center for
Al Safety for providing computational resources. This research was supported, in part by IARPA
TrojAI WO11NF-19-S0012, NSF 1901242 and 1910300, ONR N000141712045, N000141410468
and N000141712947. Any opinions, findings, and conclusions in this paper are those of the authors
only and do not necessarily reflect the views of our sponsors.

References

(1]

2

—

3

—

[4
(3]

—

[6

—

(71

[8

—_—

[9

—

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

Ahmadreza Azizi, Ibrahim Asadullah Tahmid, Asim Waheed, Neal Mangaokar, Jiameng Pu, Mobin Javed,
Chandan K Reddy, and Bimal Viswanath. T-miner: A generative approach to defend against trojan attacks
on dnn-based text classification. In 30th {USENIX} Security Symposium ({USENIX} Security 21), 2021.

Chuanshuai Chen and Jiazhu Dai. Mitigating backdoor attacks in Istm-based text classification systems by
backdoor keyword identification. Neurocomputing, 452:253-262, 2021.

Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael Backes, Shiging Ma, Qingni Shen, Zhonghai Wu,
and Yang Zhang. Badnl: Backdoor attacks against nlp models with semantic-preserving improvements. In
ACSAC, pages 554-569, 2021.

Unicode Consortium. Confusables. https://www.unicode.org/Public/security/13.0.0/, 2020.

Ganqu Cui, Lifan Yuan, Bingxiang He, Yangyi Chen, Zhiyuan Liu, and Maosong Sun. A unified evaluation
of textual backdoor learning: Frameworks and benchmarks. Advances in Neural Information Processing
Systems, 35:5009-5023, 2022.

Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. A backdoor attack against Istm-based text classification
systems. IEEE Access, 7, 2019.

Andrea Fioraldi, Dominik Maier, Heiko EiBfeldt, and Marc Heuse. { AFL++}: Combining incremental
steps of fuzzing research. In /4th USENIX Workshop on Offensive Technologies (WOOT 20), 2020.

Andrea Fioraldi, Dominik Christian Maier, Dongjia Zhang, and Davide Balzarotti. Libafl: A framework to
build modular and reusable fuzzers. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 1051-1065, 2022.

Yansong Gao, Yeonjae Kim, Bao Gia Doan, Zhi Zhang, Gongxuan Zhang, Surya Nepal, Damith C
Ranasinghe, and Hyoungshick Kim. Design and evaluation of a multi-domain trojan detection method on
deep neural networks. IEEE Transactions on Dependable and Secure Computing, 19(4):2349-2364, 2021.

Siddhant Garg, Adarsh Kumar, Vibhor Goel, and Yingyu Liang. Can adversarial weight perturbations
inject neural backdoors. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management, pages 2029-2032, 2020.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the machine
learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphrasing evades
detectors of ai-generated text, but retrieval is an effective defense. arXiv preprint arXiv:2303.13408, 2023.

Keita Kurita, Paul Michel, and Graham Neubig. Weight poisoning attacks on pre-trained models. In ACL,
2020.

Linyang Li, Demin Song, Xiaonan Li, Jiechang Zeng, Ruotian Ma, and Xipeng Qiu. Backdoor attacks on
pre-trained models by layerwise weight poisoning. In EMNLP, pages 3023-3032, 2021.

Shaofeng Li, Tian Dong, Benjamin Zi Hao Zhao, Minhui Xue, Suguo Du, and Haojin Zhu. Backdoors
against natural language processing: A review. IEEE Security & Privacy, 20(05):50-59, 2022.

Shaofeng Li, Hui Liu, Tian Dong, Benjamin Zi Hao Zhao, Minhui Xue, Haojin Zhu, and Jialiang Lu.
Hidden backdoors in human-centric language models. In CCS, pages 3123-3140, 2021.

Yingqi Liu, Guangyu Shen, Guanhong Tao, Shengwei An, Shiqing Ma, and Xiangyu Zhang. Piccolo:

Exposing complex backdoors in nlp transformer models. In 2022 IEEE Symposium on Security and Privacy
(SP), pages 2025-2042. IEEE, 2022.

11

https://www.unicode.org/Public/security/13.0.0/

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

[37]

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the association
for computational linguistics: Human language technologies, pages 142-150, 2011.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled reviews
and fine-grained aspects. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
1JCNLP), pages 188-197, 2019.

Xudong Pan, Mi Zhang, Beina Sheng, Jiaming Zhu, and Min Yang. Hidden trigger backdoor attack on
NLP models via linguistic style manipulation. In USENIX Security, pages 3611-3628, 2022.

Fanchao Qi, Yangyi Chen, Mukai Li, Zhiyuan Liu, and Maosong Sun. Onion: A simple and effective
defense against textual backdoor attacks. arXiv preprint arXiv:2011.10369, 2020.

Fanchao Qi, Yangyi Chen, Xurui Zhang, Mukai Li, Zhiyuan Liu, and Maosong Sun. Mind the style of
text! adversarial and backdoor attacks based on text style transfer. In EMNLP, pages 4569-4580, 2021.

Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng Wang, and Maosong Sun.
Hidden killer: Invisible textual backdoor attacks with syntactic trigger. In ACL/IJCNLP, 2021.

Fanchao Qi, Yuan Yao, Sophia Xu, Zhiyuan Liu, and Maosong Sun. Turn the combination lock: Learnable
textual backdoor attacks via word substitution. In ACL/IJCNLP, pages 4873-4883, 2021.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi. Can
ai-generated text be reliably detected? arXiv preprint arXiv:2303.11156, 2023.

Guangyu Shen, Yingqi Liu, Guanhong Tao, Qiuling Xu, Zhuo Zhang, Shengwei An, Shiging Ma, and
Xiangyu Zhang. Constrained optimization with dynamic bound-scaling for effective nlp backdoor defense.
In International Conference on Machine Learning, pages 19879-19892. PMLR, 2022.

Lujia Shen, Shouling Ji, Xuhong Zhang, Jinfeng Li, Jing Chen, Jie Shi, Chengfang Fang, Jianwei Yin, and
Ting Wang. Backdoor pre-trained models can transfer to all. arXiv preprint arXiv:2111.00197, 2021.

Xuan Sheng, Zhaoyang Han, Piji Li, and Xiangmao Chang. A survey on backdoor attack and defense in
natural language processing. In 2022 IEEE 22nd International Conference on Software Quality, Reliability
and Security (QRS), pages 809-820. IEEE, 2022.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pages
1631-1642, 2013.

Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute force vulnerability discovery. Pearson
Education, 2007.

Ruixiang Tang, Yu-Neng Chuang, and Xia Hu. The science of detecting Ilm-generated texts. arXiv preprint
arXiv:2303.07205, 2023.

Lav R Varshney, Nitish Shirish Keskar, and Richard Socher. Limits of detecting text generated by large-
scale language models. In 2020 Information Theory and Applications Workshop (ITA), pages 1-5. IEEE,
2020.

Lei Xu, Yangyi Chen, Ganqu Cui, Hongcheng Gao, and Zhiyuan Liu. Exploring the universal vulnerability
of prompt-based learning paradigm. arXiv preprint arXiv:2204.05239, 2022.

Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter, and Bo Li. Detecting ai trojans using
meta neural analysis. arXiv preprint arXiv:1910.03137, 2019.

Wenkai Yang, Lei Li, Zhiyuan Zhang, Xuancheng Ren, Xu Sun, and Bin He. Be careful about poisoned
word embeddings: Exploring the vulnerability of the embedding layers in nlp models. arXiv preprint
arXiv:2103.15543,2021.

Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and Xu Sun. Rap: Robustness-aware perturbations for
defending against backdoor attacks on nlp models. arXiv preprint arXiv:2110.07831, 2021.

Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and Xu Sun. Rethinking stealthiness of backdoor attack
against nlp models. In ACL, pages 5543-5557, 2021.

12

(38]

(39]

(40]

[41]

[42]

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification.
Advances in neural information processing systems, 28, 2015.

Xinyang Zhang, Zheng Zhang, Shouling Ji, and Ting Wang. Trojaning language models for fun and profit.
In EuroS&P, pages 179-197, 2021.

Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian Lv, Fanchao Qi, Zhiyuan Liu, Yasheng Wang,
Xin Jiang, and Maosong Sun. Red alarm for pre-trained models: Universal vulnerability to neuron-level
backdoor attacks. Machine Intelligence Research, pages 1-14, 2023.

Zhuo Zhang, Wei You, Guanhong Tao, Yousra Aafer, Xuwei Liu, and Xiangyu Zhang. Stochfuzz: Sound
and cost-effective fuzzing of stripped binaries by incremental and stochastic rewriting. In 2021 IEEE
Symposium on Security and Privacy (SP), pages 659-676. IEEE, 2021.

Biru Zhu, Yujia Qin, Ganqu Cui, Yangyi Chen, Weilin Zhao, Chong Fu, Yangdong Deng, Zhiyuan Liu,

Jingang Wang, Wei Wu, et al. Moderate-fitting as a natural backdoor defender for pre-trained language
models. Advances in Neural Information Processing Systems, 35:1086—1099, 2022.

13

	Introduction
	Related work
	Preliminary
	Approach
	Overview
	Reward definition
	Fuzzing iteration
	Mutation strategies

	Experiments
	Attacks and datasets
	Baselines
	Results on TrojAI
	Results on advanced attacks

	Abaltion study on seeds
	Conclusion
	Acknowledgement
	Details of TrojAI dataset
	Usage of PICCOLO
	Ablation study on fuzzing
	Ablation study of meta prompts
	Alternatives of ChatGPT
	Compared to human heuristic prompts
	Adaptive attack
	Running time and iterations
	Extensibility

