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Abstract
We present the first application of data-driven
techniques for dynamical system analysis based
on Koopman theory to variable stars. We focus
on light curves of RRLyrae type variables, in the
Galactic globular cluster ω Centauri. Light curves
are thus summarized by a handful of complex
eigenvalues, corresponding to oscillatory or fad-
ing dynamical modes. We find that variable stars
of the RRc subclass can be summarized in terms
of fewer (≈ 8) eigenvalues, while RRab need
comparatively more (≈ 12). This result can be
leveraged for classification and reflects the sim-
pler structure of RRc light curves. We then con-
sider variable stars displaying secular variations
due to the Tseraskaya–Blazhko effect and find a
change in relevant eigenvalues with time, with
possible implications for the physical interpreta-
tion of the effect.

1. Introduction
In the context of time-domain astronomy and stellar vari-
ability, machine learning techniques are growing in popular-
ity, particularly in light of the substantial amounts of data
generated by current (Kaiser, 2004; Borucki et al., 2010;
Drake et al., 2013; 2014; Gaia Collaboration et al., 2016;
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Jayasinghe et al., 2018; van Roestel et al., 2021; Coughlin
et al., 2021) and planned ground- and space-based observing
facilities. In the study of variable stars, these techniques
have primarily been applied directly to light curves, which
are represented by appropriately defined features (e.g. see
Pashchenko et al. 2018; Mahabal et al. 2019; Dékány et al.
2021; Barbara et al. 2022 for optical light curves, but also
e.g. Kovačević et al. 2022 for X-ray variable sources);
deep neural networks have also been employed (e.g. Ja-
mal & Bloom, 2020; Bassi et al., 2021). Although these
methods produce good predictions, they are typically not
interpretable nor do they necessarily learn a correct repre-
sentation of the underlying physics.

Here, we are interested in inherently interpretable tech-
niques that, even though they remain fully data driven, allow
us to get closer to the physics of the dynamical system pro-
ducing the data. An example along these lines can be found
in (Pasquato et al., 2022), where the authors use the sparse
identification of nonlinear dynamics (SINDy) method to
automatically identify governing equations for RRab, RRc,
and δ-Scuti variables based on observed light curves. The
primary obstacle in this methodology is identifying an ap-
propriate functional basis for the representation of the dy-
namical system. Indeed, this choice is frequently difficult in
practice: in fact, Pasquato et al. (2022) essentially failed at
modelling RRab light curves using a polynomial basis. It
follows that, at this stage, featurizing light curves based on
the coefficients learned by SINDy seems unfeasible.

In this paper, we go beyond this limitation employing the
Dynamic Mode Decomposition (DMD) algorithm, a mathe-
matical tool introduced by (Schmid, 2010), and to the best
of our knowledge, seldom used in astronomy before (Dar-
ling & Widrow, 2019; Widrow et al., 2020; Linkmann et al.,
2020; Hori et al., 2020; Albidah et al., 2021; Linkmann
& Dikpati, 2021; Albidah et al., 2022). The advantage of
this technique is that the extracted dynamic modes can be
naturally interpreted as a generalization of global stability
modes and can be potentially linked to the underlying physi-
cal mechanisms captured in the data sequence. In particular,
we model the temporal evolution of the optical magnitude
of a sample of RRLyrae stars belonging to the globular clus-
ter ω Centauri. We automatically learn approximations for
nonlinear dynamical systems encoding the time-evolution
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of the magnitude of each variable star and verify that the
predicted evolution matches the observed data. Such approx-
imations are expressed in terms of linear systems in suitable
Koopman spaces, an eigenvector base of which is returned
directly by the algorithm. The associated eigenvalues es-
sentially summarize the light curve and can be in principle
used as features for machine learning tasks. We find that the
Koopman space required to describe RRc variable dynamics
is smaller with respect to the one needed for encoding RRab
variables dynamics. This reflects the simpler and more regu-
lar silhouettes of RRc curves and provides a straightforward
heuristic for RRab vs RRc classification. Finally, we discuss
an application to stars affected by the Blazhko effect (long
term variability; Blažko, 1907), which can be identified
by comparing the eigenvalues corresponding to light curves
measured at different stages in the Blazhko cycle. In one
case we show that the Blazhko effect corresponds to a secu-
lar evolution in a small subset of eigenvalues only, a finding
that may have physical significance.

2. Photometric data
For our work, we adopted the optical (BVI-band) photome-
try of the RRLs in the Globular cluster ω Centauri published
by Braga et al. (2016; 2019). This data set is homogeneous
in terms of photometric data reduction, even though it in-
cludes images collected during more than 20 years from
seven different 1-to-8 m class telescopes, in a sky area of
57’×56’ (see Sec.2 in Braga et al. 2016 for more details).
Still, to further improve the consistency of our analysis, we
chose to adopt only the photometric data collected at the
same telescope (Danish 1.5m, at La Silla), during five years
(1995 to 1999), which constitutes the largest part (almost
60%) of the original data set. The resulting Danish subset
is a truly homogeneous data set, with the exception of spo-
radic positional offsets in the 1998 images. As a result, the
following analysis is based on light curves with 100 to over
2000 phase points in at least two of the three bands (V and
B, since I-band phase points are one order of magnitude
less) for 125 variables.

This subset of the data is comprised of light curves taken
from 89 RRc and 70 RRab variables. Of these, 6 RRc and
2 RRab light curves were discarded because we failed to
obtain an acceptable interpolation, due either to outliers or
phase gaps. This leaves us with 83 RRc and 68 RRab light
curves. Using the gcvspline Python wrapper (Le Losq &
Feng, 2007) of a FORTRAN package for generalized, cross-
validatory spline smoothing (Woltring, 1986), we interpolate
these light curves repeated 5 times and picked equidistant
(in phase) snapshots from this spline with 30 points per
phase which makes a smoothed out, periodic set of 150
points from which DMD can build a model.

3. Methods
Dynamic Mode Decomposition (DMD) algorithm is a di-
mensionality reduction algorithm guaranteed in the frame-
work of Koopman analysis for the study of nonlinear dy-
namical systems. The core principle of Koopman analysis
is a non linear coordinate transformation that embeds a non-
linear dynamical system in an equivalent linear dynamical
system of observables. The existence of such an embedding
is due to an intrinsic trade-off between linearity and dimen-
sion. In this framework, it’s necessary to figure out what
the coordinate transformation is and what the dynamical
system is turned into. For our purpose, we are interested
to do this from data in one shot. This is possible thanks to
tangent linear approximation of the system and a few argu-
ments used in iterative methods for computing solutions to
linear eigenvalue problems, that DMD algorithm naturally
encodes.

More precisely, given a discrete time series V N
1 =

{v1, . . . , vN}, where vi ∈ Rm ∀i ∈ [m], it is assumed the
existence of a linear mapping A ∈ GLn that associates two
successive points of the time series, i.e. vi+1 = Avi. This
last relation defines a linear dynamical system that stays
approximately the same over the sampling period, formally
using the language of matrices V N

2 = AV N−1
1 + reTN−1,

where r is the vector of residuals that encodes the be-
haviour not predicted by A, eN−1 is the (N − 1)th vector
of the canonical base and V N−1

1 = {v1, . . . , vN−1} and
V N
2 = {v2, . . . , vN}. Roughly speaking, DMD computes

the eigenvalues and the eigenvectors of A. Computing eigen-
values and eigenvectors is an elementary task for which
several subroutines can be used; commonly, DMD uses
Singular Value Decomposition (SVD) algorithm. Eigenval-
ues and the eigenvectors of A completely define a set of
modes each of which is associated with a fixed oscillation
frequency and decay or growth rate. These modes are a
natural generalization of the global stability modes and in-
herit their physical interpretation of encodings of damped
or driven sinusoidal behavior in time.

In this work, we deal with a low dimensional dynamical
system, for this reason, we employ the extension of DMD
known as Higher Order Dynamical Mode Decomposition
(HODMD; Le Clainche & Vega, 2017). The modification in-
troduced by HODMD is the following: instead of assuming
vi+1 = Avi, we consider an higher order Koopman assump-
tion, i.e. that vi+d = A1vi + A2vi+1 + · · · + Advi+d−1

where d ≥ 1 is a tunable parameter. It is not difficult to
notice that we are simply superimposing DMD on a sliding
window over the time series. The main advantage of such
an approach lies in enabling the computation of higher or-
der modes enriching the space returned by classical DMD
when considering dimensional systems presenting low spa-
tial complexity but a large number of hidden frequencies.
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In our experiments, the time series V N
1 = {v1, . . . , vn} is

given by the uniformly sampled value of magnitude mea-
sured at regular intervals over the interpolated light curve as
described above.

3.1. Implementation details

We use the library PyDMD (Demo et al., 2018). We take
30 snapshots per phase (for a total of 150 snapshots) so
that enough snapshots are fed to DMD to produce a model
that fits with the original data but not too much as to model
certain parts of the spline that may be due to noise.

4. Results
The DMD reconstruction of the light curve for an example
RRab is shown in Fig. 1 and for an RRc in Fig. 2.

4.1. Separating RRab from RRc variables

As we vary the Koopman dimension d, which corresponds
to the maximum allowable number of eigenvectors, we find
that DMD models from RRc and RRab variables respond
differently to increasing d. In fact, as the spatial dimen-
sion increases, the normalized mean squared error (nMSE;
defined here as the ratio between the mean squared error
(MSE) of the reconstructed light curve and the MSE of a
constant fit) for models of RRc variables drops off steadily
compared to models of RRab variables which have a more
or less constant nMSE until about d = 25 where we can ob-
serve a sharp drop. This is shown in Fig. 3 in the top panel
and, for the number of eigenvalues, in the bottom panel.
Note how nMSE starts decreasing immediately with d for
the RRc and keeps decreasing in a linear fashion, while it
suddenly drops at about d = 25 for the RRab. From observ-
ing this phenomenon, we can choose a nMSE threshold (the
nMSE is calculated 10 phases away from the last snapshot
to promote stability of the DMD model) such that, between
RRc and RRab variables, different numbers of spatial dimen-
sions (and different numbers of eigenvalues) are sufficient
to produce models which yield an error equal or lower than
the threshold.

We find that, for the nMSE to be below 0.45, models for
RRc variables require between 11 and 26 spatial dimensions
(d) and between 3 and 11 eigenvalues. For RRab variables,
between 23 and 29 spatial dimensions (d) and between 7
and 13 eigenvalues are needed to yield an nMSE below
threshold. We notice that there is some overlap especially
in the numbers of eigenvalues. Despite that, this difference
leads to a straightforward classification algorithm. In fact,
we can find that, most likely, a variable star is RRc if d < 24
is sufficient to yield an nMSE below 0.45 and is RRab
otherwise. The histogram of the values of d needed to
achieve nMSE= 0.45 is shown in Fig. 4.

d < 24 d ≥ 24
RRab 1 67
RRc 79 4

Table 1. Confusion matrix for a classifier based on the minimum
Koopman dimension d needed to achieve nMSE= 0.45.

The relevant confusion matrix for the associated classifier
with d < 24 is shown in Tab. 1. This is calculated on the
same data set on which the threshold d = 24 was chosen, so
the associated measure of accuracy (97%) is optimistically
biased and should not be used to predict performance on un-
seen data. However this is still an indication that the modes
identified by DMD are naturally suited to classification.

Figure 4. Top panel: histogram of the minimum values of d needed
to achieve nMSE = 0.45 (or below) for the RRab (black) and the
RRc variables (red). Right panel: same, but for the number of
eigenvalues.

One more point to note is that classification based on the
Koopman dimension d needed to achieve a given level of
mean squared error (nMSE=0.45), which depends on the
shape of the light curve, overlaps quite well with the distinc-
tion between RRab and RRc variables in the Bailey diagram,
as shown in Fig. 5. Discrepancies between the two could be
leveraged to single out potentially interesting stars, among
which perhaps mixed-mode oscillators.

A different way to look at the data presented in Fig. 5 is
shown in Fig. 9, where we plot d as a function of the ampli-
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Figure 1. DMD reconstruction (orange dashed line) of the interpolated light curve (blue points) compared with the original (red points)
and time shifted (green points) raw data for RRab star V59.

Figure 2. DMD reconstruction (orange dashed line) of the interpolated light curve (blue points) compared with the original (red points)
and time shifted (green points) raw data for RRc star V103.

tude of the magnitude variation of each star (top panel) and
as a function of the period (right panel). Additionally, in
Fig. 10 we show the number of eigenvalues as a function of
the same two quantities. Regarding the dependence on am-
plitude, both d and the number of eigenvalues increase with
amplitude. Since both are measures of the complexity of the
light curve shape, this is an expected result: higher ampli-
tude oscillators become increasingly anharmonic. However,
the increase is largely driven, in both cases, by the fact that
large amplitude variables are RRab and small amplitude
variables are RRc. Within each class the trend is weaker but
still visible for the RRab, and absent for the RRc. Regard-
ing period, the general trend is again increasing for both
quantities, but it is decreasing for the RRab. This means
that even though RRab stars typically have both a longer
period and a higher number of eigenvalues than RRc, within
the class of the RRab an increasing period corresponds to a
lower number of eigenvalues, i.e. a simpler light curve.

This evidence fully supports theoretical and empirical find-
ings concerning the variation of RRab pulsation properties
across the instability strip. The RRab display a steady de-
crease when moving from the blue to the red edge of the
instability strip. The variation also applies to the shape of
the light curves, indeed RRab close to the blue edge display
a sawtooth shape and a more sinusoidal shape approaching
the red edge. The main culprit causing this difference is

convection, since it becomes more efficient when moving
from hotter (bluer) to cooler (redder) effective temperatures
and eventually quenches the pulsation activity (Bono &
Stellingwerf, 1993).

In terms of physical interpretation, it is particularly inter-
esting that the MSE drops for RRab when d approaches 30,
the number of points sampled along a period by our interpo-
lation strategy. Since the data we fed to HODMD repeats
exactly after one period, we have that x31 = x1 and in gen-
eral x30+k = xk for every k. Thus the vector to which DMD
is effectively applied at t+1 is xt+1 = (x2, x3, ..., x30, x1)
and at t it is xt = (x1, x2, ..., x29, x30) and the matrix A
such that xt+1 = Axt becomes simply [e30, e1, · · ·, e29].
The eigenvalues of this matrix are λk = ekiπ/30 for
k = 0, ..., 29, so they are equally spaced on the unit cir-
cle and include λ0 = 1. We can thus conclude that the
DMD is predicting the future evolution of the light curve
by leveraging solely the periodicity of the data and nothing
else; in an intuitive sense we can claim that an important
fraction of the RRab curves is ‘incompressible’.

4.2. Blazhko effect

A final application of this description that goes beyond
distinguishing fundamental and first overtone pulsators is
related to Blazhko effect. DMD summarizes a light curve
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Figure 3. Left panel: nMSE achieved by the DMD reconstruction
against the original light curve as a function of the spatial dimen-
sion of the HODMD snapshot (d parameter in pyDMD). The black
solid line represents the median curve for the RRab stars, the red
solid line for the RRc stars. The lower and upper boundaries of the
black and red shaded areas represent the first and third quartiles
respectively. Right panel: Same as the left panel but nMSE is
plotted as a function of the number of eigenvalues.

Figure 5. Bailey diagram with the Koopman dimension d needed
to attain nMSE = 0.45 color coded.

Figure 6. Top panel: DMD eigenvalues (red points) for variable V5
calculated between Julian time 2449858.7698 and 2449869.7601,
corresponding to the beginning of the observation period. The
green dashed line corresponds to the unit circle in the com-
plex plane. Middle panel: DMD eigenvalues (blue points) for
variable V5 calculated between Julian time 2450971.5723 and
2450985.6906, corresponding to the end of the observation period.
Right panel: DMD eigenvalues that differ between the two.

with a handful of complex numbers: do these differ over
time for a Blazhko variable, and how? In Fig. 6 we show
the DMD eigenvalues calculated during the first part of the
observation period (top panel) and during the second part
(right panel). Most eigenvalues match exactly except for a
very limited number.

These eigenvalues may correspond to Koopman modes
specifically associated to Blazhko evolution, since V5 is
a suspected Blazhko. In any case DMD has revealed a secu-
lar change in its light curve. Potentially, this may be used to
automatically detect Blazhko variables without the need for
direct visual inspection of the light curve. For comparison,
in Fig. 8 and 7 we show the same for two more stars that
are deemed affected by the Blazhko effect.
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Figure 7. Top panel: DMD eigenvalues (red points) for vari-
able V120 calculated between Julian time 2449858.7468 and
2449869.7635, corresponding to the beginning of the observa-
tion period. The green dashed line corresponds to the unit circle in
the complex plane. Middle panel: DMD eigenvalues (blue points)
for variable V120 calculated between Julian time 2450970.5019
and 2450985.6906, corresponding to the end of the observation
period. Right panel: DMD eigenvalues that differ between the two.

Figure 8. Top panel: DMD eigenvalues (red points) for vari-
able V115 calculated between Julian time 2449858.7468 and
2449869.7635, corresponding to the beginning of the observa-
tion period. The green dashed line corresponds to the unit circle in
the complex plane. Middle panel: DMD eigenvalues (blue points)
for variable V115 calculated between Julian time 2450971.5723
and 2450985.6906, corresponding to the end of the observation
period. Right panel: DMD eigenvalues that differ between the two.
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Figure 9. Top panel: Koopman space dimension d as a function of
amplitude for RRab (black points) and RRc (red points). Right
panel: Koopman space dimension d as a function of period, same
color coding as the top panel.

Figure 10. Top panel: number of eigenvalues as a function of am-
plitude for RRab (black points) and RRc (red points). Right panel:
number of eigenvalues as a function of period, same color coding
as the top panel. It is known that short period, large amplitude
RRab are harder to fit with fourier and in our case they also need
more eigenvalues.

5. Conclusions
DMD and related algorithms have recently found applica-
tion to fluid dynamics and other branches of physics that
deal with high-dimensional snapshots either from observa-
tions or from simulations. In our application to variable
stars, snapshots at a given time contain at most a few values,
corresponding to magnitudes in various filters and possibly

their derivatives. We thus applied the HODMD algorithm,
which essentially synthesizes a higher-dimension snapshot
from delayed coordinates. This is the first application of
DMD-related methods to variable star light curves to date.
This was done with the goal of obtaining features from
light curves in a principled way that could be amenable
to physical interpretation. In DMD the observed dynam-
ics is decomposed into modes, similar to normal modes
in a coupled oscillator system; each mode corresponds to
an eigenvalue, associated either to exponential decay (or
increase) or to periodic oscillations.

We obtained a reconstructed light curve as a linear combi-
nation of the individual evolution of such modes, and com-
pared it with the original data over a sample of 151 stars.
We measured the discrepancy between the reconstructed
light curve and the original by means of the mean squared
error normalized to that of a constant fit. We are able to
obtain consistently good fits (with nMSE under 10−2) if we
let the number of eigenvalues increase as needed. We found
that simpler light curves, such as those of RRc variables,
require only a limited number of eigenvalues. Conversely
RRab stars, which have more complex light curve shapes, re-
quire the inclusion of more eigenvalues to be described with
good accuracy. We have quantified this, finding that that the
Koopman dimension d needed to achieve a given normal-
ized MSE in reconstructing the curve behaves differently
for RRab and RRc variables. We used this as a basis for a
classifier, choosing a threshold of 0.45 normalized MSE, to
achieve which the modal RRab star requires d = 27 (result-
ing in a mode of 11 eigenvalues) and the modal RRc star,
d = 15 (corresponding to a mode of 7 eigenvalues). The
threshold value 0.45 corresponds to the maximum (over all
the light curves) of the minimum normalized MSE reached.

We found that the number of eigenvalues that needs to
be included to obtain a good representation of the curve
varies with amplitude and period in accord to the fact that
RRab and RRc stars occupy distinctive loci in the period-
amplitude plane.

While the DMD decomposition bears some resemblance
to Fourier methods, which have been extensively applied
to time domain astronomy and variable star light curves in
particular, the advantage of DMD is to identify modes that
are potentially physically meaningful. This is the case of
the long term period variability due to the Blazhko effect,
where indeed only a few eigenvalues found by DMD change
between the beginning and the end of the observation period
for the confirmed Blazhko variables in our data set. Whether
this is indeed an indication of DMD finding specific modes
associated to Blazhko evolution will be discussed in further
detail in upcoming work.
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P., Jonker, P. G., Jorissen, A., Julbe, F., Karampelas,
A., Kochoska, A., Kohley, R., Kolenberg, K., Kontizas,
E., Koposov, S. E., Kordopatis, G., Koubsky, P., Krone-
Martins, A., Kudryashova, M., Kull, I., Bachchan, R. K.,
Lacoste-Seris, F., Lanza, A. F., Lavigne, J. B., Le Poncin-
Lafitte, C., Lebreton, Y., Lebzelter, T., Leccia, S., Leclerc,
N., Lecoeur-Taibi, I., Lemaitre, V., Lenhardt, H., Ler-
oux, F., Liao, S., Licata, E., Lindstrøm, H. E. P., Lister,
T. A., Livanou, E., Lobel, A., Löffler, W., López, M.,
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J., Salgado, J., Salguero, E., Sarasso, M., Savietto, H.,
Schultheis, M., Sciacca, E., Segol, M., Segovia, J. C.,
Segransan, D., Shih, I. C., Smareglia, R., Smart, R. L.,
Solano, E., Solitro, F., Sordo, R., Soria Nieto, S., Souchay,
J., Spagna, A., Spoto, F., Stampa, U., Steele, I. A., Stei-
delmüller, H., Stephenson, C. A., Stoev, H., Suess, F. F.,
Süveges, M., Surdej, J., Szabados, L., Szegedi-Elek, E.,
Tapiador, D., Taris, F., Tauran, G., Taylor, M. B., Teix-
eira, R., Terrett, D., Tingley, B., Trager, S. C., Turon, C.,
Ulla, A., Utrilla, E., Valentini, G., van Elteren, A., Van
Hemelryck, E., van Leeuwen, M., Varadi, M., Vecchiato,
A., Veljanoski, J., Via, T., Vicente, D., Vogt, S., Voss,
H., Votruba, V., Voutsinas, S., Walmsley, G., Weiler, M.,
Weingrill, K., Wevers, T., Wyrzykowski, Ł., Yoldas, A.,
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