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ABSTRACT

Optimization of convex functions under stochastic zeroth-order feedback has been
a major and challenging question in online learning. In this work we consider the
problem of optimizing second-order smooth and strongly convex functions where
the algorithm is only accessible to noisy evaluations of the objective function it
queries. We provide the first tight characterization for the rate of the minimax
simple regret by developing matching upper and lower bounds. We propose an
algorithm that features a combination of a bootstrapping stage and a mirror-descent
stage. The main innovation of our approach is the usage of a gradient estimation
scheme that exploits the local geometry of the objective function, and we provide
sharp analysis for the corresponding estimation bounds.

1 INTRODUCTION

Stochastic optimization of an unknown function with access to only noisy function evaluations is a fun-
damental problem in operations research, optimization, simulation and bandit optimization research,
commonly known under the names of zeroth-order optimization (Chen et al., 2017), derivative-free
optimization (Conn et al., 2009; Rios & Sahinidis, 2013) or bandit optimization (Bubeck et al.,
2021). At a higher level, in stochastic zeroth-order optimization problems an optimization algorithm
interacts sequentially with an oracle and obtains noisy function evaluations at queried points every
time. The algorithm then produces an approximately optimal solution after T such evaluations, with
its performance evaluated by the expected difference between the function values at the approximate
optimal solution produced and the optimal solution. A more rigorous formulation of the problem is
given in Sec. 2 below.

Existing works and results on stochastic zeroth-order optimization could be broadly categorized into
two classes:

1. Concave functions. In the first thread of research, the unknown objective function to be
optimized is assumed to be concave (for maximization problems) or convex (for minimization
problems). For these problems, with minimal smoothness (e.g. objective function being
Lipschitz continuous) it is possible to achieve a sample complexity of eO("�2) for an
expected optimization error or ", which is also a polynomial function of domain dimension
d; see for example the works of Agarwal et al. (2013); Lattimore & Gyorgy (2021); Bubeck
et al. (2021);

2. Smooth functions. In the second thread of research,the unknown objective function to be
optimized is assumed to be highly smooth, but not necessary concave/convex. Typical results
assume the objective function is Hölder smooth of order k � 1, meaning that the (k � 1)-th
derivative of the objective function is Lipschitz continuous. Without additional conditions,
the optimal sample complexity with such smoothness assumptions is eO("�(2+d/k)) (Wang
et al., 2019), which scales exponentially with the domain dimension d.

In this paper, we study the optimal sample complexity of stochastic zeroth-order optimization when
the objective function exhibits both convexity and a high degree of smoothness. As we have remarked
in the first bullet point above, with convexity and Hölder smoothness of order k = 1 (equivalent to
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the objective function being Lipschitz continuous), the works of Agarwal et al. (2013); Lattimore &
Gyorgy (2021); Bubeck et al. (2021) established an eO("�2) upper bound. With higher order of Hölder
smoothness, such as k = 2 (equivalent to the gradient of the objective being Lipschitz continuous), it
is shown that simpler algorithms exist but the sample complexity remains eO("�2) (Besbes et al., 2015;
Agarwal et al., 2010; Hazan & Levy, 2014), which seemingly suggests the relatively smaller role
smoothness plays in the presence of convexity. In this paper we show that with even higher order of
Hölder smoothness k = 3 (specifically, the Hessian of the objective being Lipschitz continuous), the
optimal sample complexity is improved to O("�1.5) which is significantly smaller than the sample
complexity of the convex-without-smoothness setting eO("�2), or the smooth-without-convexity
setting eO("�(2+d/3)).

We developed several important techniques in this paper to achieve an improved sample complexity of
O("�1.5) in the case of the objective function being both strongly convex and has Lipschitz Hessian,
which might be of interest to other stochastic optimization problems as well. First, we show that
when estimating the gradient under a stochastic environment, it could be beneficial to sample with
non-isotropic distributions (as opposed to conventional standard Gaussian, or uniform distributions
on hyperspheres). Second, we present a new approach to analyze the bias and variance of gradient
estimation under hyperellipsoid sampling, which enables obtaining sharp bounds. Third, we present
a two-stage bootstrap-type framework for algorithmic designs, which extends steps that requires
perturbative assumptions to the full regime. We fully complete the characterization of the asymptotic
minimax regret by deriving a lower bound using the KL-divergence approach.

Our results are also related to a special case discussed in Shamir (2013), which shows that for
quadratic functions it is possible to achieve a sample complexity of eO("�1). As quadratic functions
are infinitely differentiable with bounded derivatives on orders, they are Hölder smooth of any
arbitrary order k !1, which could be regarded as an extreme of the results established in this paper
which only require k = 3.

lower bound Bach & Perchet (2016) Zhang et al. (2020)
⌦(dT� 2

3M
�1) O(d1.5T� 1

2M� 1
2 ) O(dT� 1

2M� 1
2 )

Akhavan et al. (2020) Novitskii & Gasnikov (2021) Ours

O(d2T� 2
3M�1) O(d

5
3T� 2

3M�1) O(dT� 2
3M

�1)

Table 1: The dependence of simple regret on T (number of function evaluations), d (dimension) and
M (parameter describing strong convexity).

Additional Works Recent years have seen increasing attention on exploiting higher order smooth-
ness in bandit optimization. We list our results together with the most relevant work in Table 1. While
this line of work also demonstrates the benefit of higher order smoothness in improving the sample
complexity, their setting is related but slightly different from what we considered in this work. (See
reference therein: Bach & Perchet (2016); Zhang et al. (2020); Akhavan et al. (2020); Novitskii &
Gasnikov (2021)). On one hand, the prior work concentrates on projected gradient-alike algorithms,
which requires Lipschitz gradient (and we do not). On the other hand, they use generalized Holder
condition instead of bounding the Frobenius norm for Lipschitz Hessian as in this paper, which makes
the results not directly comparable.

Notations. We use rrf(x) to denote the Hessian of f at point x. This should not be confused
with the notation r2f(x), which denotes the trace of the Hessian. We use || · ||2 to denote vector
L2 norms, and || · ||F to denote matrix Frobenius norms. We use Id to denote the identity matrix,
and Sd�1 to denote the unit hypersphere centered at the origin, both for the d-dimensional Euclidean
space Rd. We adopt the conventional notations (i.e., O, ⌦, o, and !) to describe regret bounds in the
asymptotic sense with respect to the total number of samples (denoted by T ).
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2 PROBLEM FORMULATION

We consider the stochastic optimization problem under the class of functions that are strongly convex
and have Lipschitz Hessian. The goal in this setting is to design learning algorithms to achieve
approximately the global minimum of an unknown objective function f : Rd ! R.

A learning algorithm A can interact with the function by adaptively sampling their value for T times,
and receive noisy observations. At each time t 2 [T ], the algorithm selects xt 2 Rd, and receives the
following observation,

yt = f(xt) + wt, (1)

where {wt}Tt=1 are independent random variables with zero mean and bounded variance. Formally,
the algorithm can be described by a list of conditional distributions where each xt is selected based
on all historical data {x⌧ , y⌧}⌧<t and the corresponding distribution. Then for any t, we assume
that E[wt|{x⌧ , y⌧}⌧<t] = 0 and Var[wt|{x⌧ , y⌧}⌧<t]  1 for any t.1 We also adopt a common
assumption that the additive noises are subguassian, particularly, P[|wt| > s]  2e�s

2

for all s > 0
and t 2 [T ].

We assume that the objective function f is second-order differentiable. Furthermore, we impose the
following conditions.

(A1) (Lipschitz Hessian). There exist a constant ⇢ 2 (0,+1) such that for all x,x0 2 Rd, it
holds that krrf(x) �rrf(x0)kF  ⇢kx0 � xk2, where || · ||F denotes the Frobenius
norm;

(A2) (Strong Convexity). There exists a constant M 2 (0,+1) such that for any x 2 Rd, the
minimum eigenvalue of the Hessian rrf(x) is greater than M .

(A3) (Bounded Distance from Initialization to Optimum Point). There exists a constant R 2
(0,+1) such that the infimum of f(x) within the hyperball kxk2  R is identical to the
infimum of f(x) over the entire Rd.

In the rest of this paper, we let F(⇢,M,R) denote the set of all second-order differentiable functions
that satisfy the above conditions, with corresponding constants given by ⇢,M , and R. We aim to
find algorithms to achieve asymptotically the following minimax simple regret, which measures the
expected difference of the objective function on xT and the optimum.

R(T ; ⇢,M,R) := inf
A

sup
f2F(⇢,M,R)

E [f(xT )� f(x⇤)] ,

where x⇤ denotes the global minimum point of f .

3 MAIN RESULTS

Theorem 1. For any dimension d and constants ⇢,M,R, the minimax simple regrets are upper

bounded by R(T ; ⇢,M,R) = O

✓
⇢

2
3

M
dT� 2

3

◆
for sufficiently large T .

Theorem 2. For any fixed dimension d and constants ⇢,M,R, the minimax simple regrets are

lower bounded by R(T ; ⇢,M,R) = ⌦

✓
⇢

2
3

M
dT� 2

3

◆
for sufficiently large T when the additive noises

w1, ..., wT are standard Gaussian variables.

4 PROOF OF THEOREM 1

The proposed algorithm operates in two stages (see Algorithm 3). In the first stage, the algorithm
uses half of the samples to obtain a rough estimation of the global minimum point. We ensure that
the estimation in the first state is sufficiently accurate with high probability, so that in the following
final stage, the objective function can be approximated by a quadratic function and the resulting
approximation error can be bounded using tensor analysis.

1If the variances of wt’s are bounded by a different constant, all our results can be reproduced by normalizing
the values of f .
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4.1 KEY TECHNIQUES AND THE FINAL STAGE

We first present the key steps of our algorithm, which relies on two subroutines presented in Algorithm
1 and Algorithm 2, i.e., GradientEst and HessianEst. These subroutines estimate the (linearly
transformed) gradients and Hessian functions of f at any given point by randomly sampling the
values of f on hyperellipsoids. The key ingredient of our proof is the sharp characterizations for the
biases and variances of the GradientEst estimator, stated in Theorem 3.

Algorithm 1

procedure GRADIENTEST(x, Z, n) . Z can be a d⇥ d matrix
for k  1 to n do

Let uk be a point sampled uniformly randomly from the standard hypersphere Sd�1, let
y+, y� be samples of f at x+ Zuk and x� Zuk, respectively

Let g
k
= d

2 (y+ � y�)uk

end for

return bg = 1
n

P
n

k=1 gk

end procedure

Algorithm 2

procedure HESSIANEST(x, r, n)
for k  1 to n do

Let uk be a point sampled uniformly randomly from the standard hypersphere Sd�1, let
y+, y�, y be be samples of f at x+ ruk, x� ruk, and x, respectively

Hk = d(d+ 2)(uu| � Id

d+2 )
(y++y��2y)

4r2

end for

return bH = 1
n

P
n

k=1 Hk

end procedure

Theorem 3. For any fixed inputs x, Z, n, and any function f satisfying the Lipschitz Hessian
condition with parameter ⇢, the output bg returned by the GradientEst subroutine satisfies the following
properties

||E[bg]� Zrf(x)||2 
�3
Z
⇢
p
d

2(d+ 2)
, (2)

Tr (Cov[bg])  2d

n
||Zrf(x)||22 +

d2

18n

�
⇢�3

Z

�2
+

d2

2n
, (3)

where �Z is the largest singular value of Z.

We also provide a rough estimate for the errors of the Hessian Estimator in Theorem 4.
Theorem 4. For any fixed inputs x, H , n, and any function f satisfying the Lipschitz Hessian
condition with parameter ⇢, the output bH returned by the HessianEst subroutine satisfies the following
conditions.

���
���
⇣
E[ bH]�rrf(x)

⌘���
���
F

 C⇢,dr, (4)

Tr
⇣

Cov[ bH]
⌘


C2
⇢,d

nr4
(1 + r6), (5)

where C⇢,d depends polynomially on ⇢ and d.

We postpone the proofs of the above theorems to Section 4.3 and Appendix A and proceed to describe
how these results are used in the final stage.

For brevity, let ✏ , ⇢
2
3

M
dT� 2

3 to be the minimax regret we aim to achieve, and let x0 denote the
estimator x stored at the end of the first stage. For now we assume that the first stage is designed
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Algorithm 3

procedure OPT(T, ⇢,M )
Let x = 0

The First Stage:
for k  1 to bT 0.1c do

Let n = bT
0.9

10 c
Let bHk = HessianEst(x, n� 1

6 , n), ZHk
be any symmetric matrix such that Z2

Hk
= bH�1

k

Let bg = GradientEst(x, n� 1
6ZHk

, n), rk = n
1
6ZHk

bg
x =Aggregate(x, rk, M

2⇢ )
end for

The Final Stage:
Let nf = b T10c
Let bH = HessianEst(x, n� 1

6
f , nf), ZH be any symmetric matrix such that Z2

H
= bH�1, �ZH

be the largest singular value of ZH

Let Z = n
� 1

6
f ⇢�

1
3 d

1
2ZH/�ZH

Let bg = GradientEst(x, Z, nf), r = bH�1Z�1bg
return x+ r

end procedure

procedure AGGREGATE(x, r, L)
if ||rk||2  L then

return x = x+ rk
else

return Let x = x+ Lrk

||rk||2
end if

end procedure

such that f(x0)  f(x⇤) + M

2 ✏0.6 w.p. 1 � o(✏), which will be proved in Section 4.2. By strong
convexity, this assumption implies that ||x0 � x⇤||2  ✏0.3.

We perform a Hessian estimation near x0 using the HessianEst subroutine with r = n
� 1

6
f = O(T� 1

6 )
and n = nf = O(T ) samples. From Theorem 4, this results in an expected estimation error of
O(C⇢,dT� 1

6 ) for sufficiently large T . Note that asymptotically we have ✏0.24 = !(C⇢,dT� 1
6 ). From

the subgaussian condition of the noise variables and the Lipschitz Hessian condition, we have the
upper bound || bH �rrf(x)||F = O(✏0.24) for all ||x� x0||  1

⇢
✏0.24 with high probability (i.e.,

1� o(✏)). Recall that we have ||x0 � x⇤||2 = O(✏0.3). The same bound also applies to all points x
with ||x� x⇤||  ||x0 � x⇤||2 for sufficiently large T .

The above statements are used to show that with high probability, ||rf(x0) � bH(x0 � x⇤)||22 =
O(✏1.08), where the RHS is bounded by o(✏) for large T . This is obtained by integrating the second-
order differential of f along the line segment from x⇤ to x0. Formally, let x↵ , (1� ↵)x⇤ + ↵x0,
we have

rf(x0)� bH(x0 � x⇤) =

Z 1

0

⇣
rrf(x↵)� bH

⌘
· (x0 � x⇤)d↵.

Thus, by triangle inequality of L2 norms,

||rf(x0)� bH(x0 � x⇤)||2 
Z 1

0

���
���
⇣
rrf(x↵)� bH

⌘
· (x0 � x⇤)

���
���
2
d↵


Z 1

0

���
���rrf(x↵)� bH

���
���
F

· ||x0 � x⇤||2d↵

= O(✏0.54)

with high probability. Given this fact, if we update the estimator by inverting the measured Hessian,
by strong convexity, the resulting regret is dominated by the errors from gradient estimation.
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We sample bg using the GradientEst subroutine to estimate Zrf(x0). By directly applying Theorem
3 with the design parameters specified in the Opt function in Algorithm 1, one can show that the
overall resulting regret is still O(✏). In particular, this relies on a possibly non-trivial observation that
the assumption f(x0)  f(x⇤) + M

2 ✏0.6 implies that the L2 norm of ZHrf(x0) is o(1) with high
probability, so that the covariance of bg is only dominated by the third term for large T .

4.2 THE FIRST STAGE

Now we illustrate the intuition that one can achieve a simple regret of ✏0.6 with O(T ) samples with
high probability. Note that here we have a relaxed requirement compared to the final stage. The design
parameters we choose enables that once the estimator has a function value that is sufficiently close
to f(x⇤), the simple regret decays exponentially. Besides, one can show that it takes finitely many
iterations for x to get arbitrarily close to x⇤. Given these two facts, it remains to check the subclass
of function instances where the Hessian contains arbitrarily large eigenvalues. These instances can be
treated by exploiting the Lipschitz Hessian condition and the perturbative matrix inversion formula.
One can show that in fact large eigenvalues improve the convergence of the proposed algorithm as
the function f in the corresponding dimensions can be better approximated by quadratic functions,
and the optimization process in those dimension approximately do not interfere with ones on other
dimensions.

4.3 PROOF OF THEOREM 3

Proof. To prove inequality (2), we investigate the following function

G(r;x) , Eu⇠Unif(Sd�1)


d

2r
(f(x+ ru)� f(x� ru))u

�
,

where Unif(Sd�1) denotes the uniform distribution on Sd�1. Recall that in our algorithm we have
E[bg] = rG(r;x) if Z = rId for some r 2 (0,+1), and by differentiability we have rf(x) =
limz!0+ G(z;x). Under this condition, we can bound ||E[bg]� rrf(x)||2 by integration, i.e.,

||E[g]� rrf(x)||2 = r

����

����G(r;x)� lim
z!0+

G(z;x)

����

����
2

 r

Z
r

0+

����

����
d

dz
G(z;x)

����

����
2

dz. (6)

Note that G(z;x) can be written into the following equivalent form.

G(z;x) =

R
Sd�1

d

2z (f(x+ zu)� f(x� zu))dAR
Sd�1 ||dA||2

,

where the integration is with respect to u and the surface Sd�1 is oriented with normal vectors
pointing outward. The differential of G(z;x) over z can be written as

d

dz
G(z;x) =

R
Sd�1

@

@z

�
d

2z (f(x+ zu)� f(x� zu))
�
dAR

Sd�1 ||dA||2

=

R
Sd�1

�
� d

2z2 (f(x+ zu)� f(x� zu)) + d

2zu · (rf(x+ zu) +rf(x� zu))
�
dAR

Sd�1 ||dA||2
.

The gist of this proof is to note that for any u 2 S we have u and dA are parallel, so the second term
in the integral above on the numerator can be written as

R
Sd�1

d

2zu(rf(x+zu)+rf(x�zu)) ·dA.
Hence, by divergence theorem, we have

d

dz
G(z;x) =

R
Bd ru ·

�
� d

2z2 Id (f(x+ zu)� f(x� zu)) + (rf(x+ zu) +rf(x� zu)) d

2zu
�
dVR

Sd�1 ||dA||2

=
d

2
·
R
Bd u(r2f(x+ zu)�r2f(x� zu))dVR

Sd�1 ||dA||2
, (7)

where Bd denotes the standard hyperball.
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Now consider any unit vector e. Let ue denote the reflection of u with respect to the hyperplane
orthogonal to e, i.e., ue , u� 2u · ee. Because the hyperball B is invariant under the reflection
u! ue, equation (7) can also be written as

d

dz
G(z;x) =

d

2
·
R
Bd ue(r2f(x+ zue)�r2f(x� zue))dVR

Sd�1 ||dA||2
. (8)

Hence, by averaging equation (7) and (8), we have

d

dz
G(z;x) · e =

d

4

0

BB@

R
Bd(u(r2f(x+ zu)�r2f(x� zu))

+ ue(r2f(x+ zue)�r2f(x� zue)))dVR
Sd�1 ||dA||2

1

CCA · e

=
d

4

0

BB@

R
Bd u · e((r2f(x+ zu)�r2f(x+ zue))

� (r2f(x� zu)�r2f(x� zue)))dVR
Sd�1 ||dA||2

1

CCA . (9)

By the Lipschitz Hessian condition and Cauchy’s inequality, the difference between the differential
terms above can be bounded as follows.

|r2f(x± zu)�r2f(x± zue)| 
p
d||rrf(x± zu)�rrf(x± zue)||F

 ⇢
p
d||zu� zue||2

= 2z⇢
p
du · e. (10)

Consequently,
����
d

dz
G(z;x) · e

���� 
z⇢d
p
d
R
Bd (u · e)2 dVR

Sd�1 ||dA||2

=
z⇢
p
d

d+ 2
.

Note that e can be any unit vector. We have essentially bounded the L2 norm of d

dz
G(z;x), i.e.,

���� d

dz
G(z;x)

����
2
 z⇢

p
d

d+2 . As mentioned earlier, when Z = rId inequality (2) is obtained by applying
this gradient-norm bound to inequality (6) .

For general input matrix Z, we can view GradientEst as a subroutine that operates on the same
function f but with a linear transformation applied to the input domain. Formally, let f 0(y) ,
f(x+ Z

�Z

(y � x)). We have that f 0 satisfies the Lipschitz Hessian condition with parameter ⇢ as
well. Therefore, inequality (2) can be obtained following the same analysis by replacing f with f 0

and Z with �ZId.

Now we present the proof for inequality (3). Formally, let w+, w� be two independent samples
of additive noises. Then the trace of covariance matrix of bg can upper bounded using the second
moments of single measurements.

Tr (Cov[bg])  1

n
Eu⇠Unif(Sd�1),w+,w�

"✓
d

2

◆2

(f(x+ Zu)� f(x� Zu) + w� � w�)
2

#

=
d2

4n
Eu⇠Unif(Sd�1)

h
(f(x+ Zu)� f(x� Zu))2 + 2

i
. (11)

The identity above uses the fact additive noises are unbiased and have bounded variances.

Note that from the Lipschitz Hessian condition, we have that

|f(x± Zu)� f2(x± Zu)|  1

6
⇢||Zu||32 

1

6
⇢�3

Z
,

7
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where f2 is the Taylor polynomial of f expanded at x up to the quadratic terms. Consequently,
inequality (11) implies

Tr (Cov[bg])  d2

4n
Eu⇠Unif(Sd�1)

"✓
|f2(x+ Zu)� f2(x� Zu)|+ 1

3
⇢�3

Z

◆2

+ 2

#

=
d2

4n
Eu⇠Unif(Sd�1)

"✓
|2Zu ·rf(x)|+ 1

3
⇢�3

Z

◆2

+ 2

#

 d2

4n
Eu⇠Unif(Sd�1)

"
2 · |2Zu ·rf(x)|2 + 2

✓
1

3
⇢�3

Z

◆2

+ 2

#

=
2d

n
||Zrf(x)||22 +

d2

18n

�
⇢�3

Z

�2
+

d2

2n
.

5 LOWER BOUNDS: EXAMPLES FOR THE 1D CASE

To illustrate the main proof idea, we first consider the 1D case. The proof for general d can be found
in Appendix B. The gist of our proof is to construct a pair of hard-instance functions that needs to be
distinguished in order to achieve low simple regret. While we also require them to be sufficiently
close to each other so that they are indistinguishable without sufficiently many samples. These
requirements are captured quantitatively in the following result, which is proved using an analysis of
KL divergence. Here we assume their correctness and focus on the constructions.
Definition 1. For any function class FH and any distribution p defined on FH, we define the uniform
sampling error to be

P✏ , inf
x

Pf⇠p[f(x)� inf f � ✏].

We also define the maximum local variance to be

V , sup
x

Varf⇠p[f(x)].

Lemma 1 (Restatement of Proposition 7 in Yu et al. (2022)). For any sampling algorithm to achieve
an expected simple regret of ✏ > 0 over a function class F✏, if P2✏/c � c for some universal constant
c 2 (0, 1), and the observation noises are standard Gaussian, then the required sample complexity to
achieve a minimax regret of ✏ is at least ⌦(1/V ).

We construct our hard instances using the following function

g(x) =

8
<

:

1
2

�
sin
�
1
2x
�
+ 1
�

if x 2 (�⇡, 3⇡]
� cosx� 1 if x 2 (�3⇡,�⇡]
0 otherwise.

Some key properties of g(x) to be used are that its differential g0(x) is 1-Lipschitz, and we have
|g0(x)|  1 for all x. Our hard instances consist of two functions. We define

f1(x) = Mx2 + y0

Z
x/x0

�⇡

g(z)dz, f2(x) = Mx2 + y0

Z �x/x0

�⇡

g(z)dz,

where y0, x0 are normalization factors given by y0 = 1
⇡
p
T

, x0 =
⇣

y0

⇢

⌘ 1
3
. The normalization factors

are chosen to satisfy the Lipschitz Hessian condition and a maximum local variance bound required
for a KL-divergence based approach presented in Lemma 1.

Specifically, the choice of x0 and the fact that g0(x) is 1-Lipschitz imply that both f1 and f2 satisfy
the Lipschitz Hessian condition. Then because the absolute value of integration of g(x) is bounded
by 2⇡, one can show that the maximum local variance for the function class {f1, f2} is no greater

8
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than ⇡2y20 = 1
T

for the uniform prior distribution, which is to be used to show the sample complexity
lower bound.

We first check that both f1 and f2 are within our function class of interests. Note that both f 00
1 (x)

and f 00
2 (x) belong to the interval [2M � 5

4
y0

x
2
0
, 2M � 3

4
y0

x
2
0
]. From the fact that limT!1

y0

x
2
0
= 0

and M > 0, we have both f 00
1 (x) > M and f 00

2 (x) > M for all x for sufficiently large T . So the
strong convexity requirement is satisfied. On the other hand, consider any global minimum point
x⇤ of either f1 or f2. Because of their differentiability, we must have f 0

1(x) = 0 or f 0
2(x) = 0.

Note that f 0
1(x) = 2Mx + g

⇣
x

x0

⌘
y0

x0
, f 0

2(x) = 2Mx � g
⇣

x

x0

⌘
y0

x0
, and |g(x)|  2 for all x. We

must have |x⇤|  y0

x0
/M , where the RHS is o(1) for large T . Combined with strong convexity, this

inequality implies that assumption A3 holds for both functions. To conclude, we have proved that
f1, f2 2 F(⇢,M,R) for sufficiently large T .

Now we let ✏ = 1
128M

⇣
y0

x0

⌘2
and c = 1

2 to apply Lemma 1. Note that lim infT!1 T
2
3 ✏ = ⇢

2
3

128⇡
4
3 M

.
The quantity ✏ exactly matches the lower bounds we aim to prove. Therefore, it remains to check that
the required condition on uniform sampling errors in Definition 1 are satisfied.

Formally, we need to show that fk(0)� infx fk(x) � 4✏ for k 2 {1, 2}. Without loss of generality,
we focus on the case of k = 1. Note that f 00

1 (x)  2M + y0

4x2
0

for all x 2 [�⇡x0, 0]. Therefore,

we have f1(x) � f1(0)  f 0
1(0)x + 1

2x
2 sup

z2[�⇡x0,0] f
00
1 (z) 

y0

2x0
x + 1

2x
2
⇣
2M + y0

4x2
0

⌘
for

x 2 [�⇡x0, 0]. and limT!1 x0 = 0. Consider any sufficiently large T such that y0

4x2
0
 2M , we can

choose x = � y0

2x0

1
2M+

y0
4x2

0

for the above bound, which falls into the interval of [�⇡x0, 0]. Then we

have

inf
x

f1(x)  f1

 
� y0
2x0

1

2M + y0

4x2
0

!
 f1(0)�

1

2

✓
y0
2x0

◆2 1

2M + y0

4x2
0

 f1(0)� 4✏.

We use this inequality to lower bound the minimum sampling error. Note that f1 is an increasing
function for x � 0 and infx f1(x) = infx f2(x). We have f1(x) � infx f2(x) + 4✏ for x � 0.
Following the same arguments, we also have f2(x) � infx f1(x) + 4✏ for x  0. Recall the
definition of uniform sampling error in Definition 1. We have essentially proved that P4✏ � 1

2 .
According to earlier discussions, this implies that the minimax simple regret is lower bounded by

✏ = ⌦

✓
⇢

2
3 T

� 2
3

M

◆
.
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