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Abstract

We propose novel attention architectures,001
Multi-matrix Factorization Attention (MFA)002
and MFA-Key-Reuse (MFA-KR). Existing vari-003
ants for standard Multi-Head Attention (MHA),004
including SOTA methods like MLA, fail to005
maintain as strong performance under strin-006
gent Key-Value cache (KV cache) constraints.007
MFA enhances model capacity by efficiently008
scaling up both the number and dimension009
of attention heads through low-rank matrix010
factorization in the Query-Key (QK) circuit.011
Extending MFA, MFA-KR further reduces012
memory requirements by repurposing the key013
cache as value through value projection re-014
parameterization. MFA’s design enables strong015
model capacity when working under tight KV016
cache budget, while MFA-KR is suitable for017
even harsher KV cache limits with minor per-018
formance trade-off. Notably, in our exten-019
sive and large-scale experiments, the proposed020
architecture outperforms MLA and performs021
comparably to MHA, while reducing KV cache022
usage by up to 56% and 93.7%, respectively.023

1 Introduction024

The decoder-only transformer with standard Multi-025

Head Attention (MHA) (Vaswani et al., 2017; Rad-026

ford, 2018) has become the de facto architecture for027

large language models. Its autoregressive nature028

enables the reuse of cached attention key-value ten-029

sors (KV cache) from previous tokens, significantly030

relieving the computation overhead during the step-031

by-step decoding (Pope et al., 2023). However, the032

KV cache memory footprint scales linearly with033

both batch size and sequence length, leading to034

large amount of memory occupancy and traffic,035

which becomes the primary bottleneck during the036

decoding phase of LLM (Yuan et al., 2024).037

To address these challenges, Multi-Query Atten-038

tion (MQA) and Grouped Query Attention (GQA)039

reduce KV cache usage by sharing key and value040

projections across heads (Shazeer, 2019; Ainslie041
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Figure 1: Validation perplexity vs. KV cache memory
usage across different attention architectures in a 1B
setting. KV Cache/Token indicates the KV cache size
in bytes per token, assuming 16-bit precision for each
element. Lower is better for both axes.

et al., 2023). Similarly, Multi-head Latent Atten- 042

tion (MLA) applies low-rank compression to key 043

and value projections and only caches the latents 044

(DeepSeek-AI et al., 2024). However, all methods 045

fail to match MHA’s performance under stringent 046

KV cache budgets (Touvron et al., 2023), as the 047

added constraints on key and value projections limit 048

the capacity of the attention module. 049

Driven by these limitations, we analyze the mod- 050

eling capacity in attention mechanisms and present 051

a unified perspective on existing MHA variants. 052

Our analysis reveals that the number and dimension 053

of attention heads are critical for maintaining mod- 054

eling capacity—an under-explored design aspect in 055

current methods (Dubey et al., 2024; Muennighoff 056

et al., 2024; Jiang et al., 2024). This insight high- 057

lights the need to scale these factors efficiently to 058

mitigate the capacity degradation caused by exist- 059

ing KV cache-saving techniques, pushing attention 060

modules closer to their theoretical upper bound. 061

Inspired by this understanding, we propose 062

Multi-matrix Factorization Attention (MFA), 063

a novel attention module, along with its vari- 064

ant, MFA-Key-Reuse (MFA-KR). These attention 065
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modules are specifically designed to enhance mod-066

eling capacity under strict KV cache constraints.067

Specifically, MFA employs a low-rank matrix068

factorization in the Query-Key (QK) circuit (El-069

hage et al., 2021), enabling parameter-efficient scal-070

ing of both the number and dimension of heads071

without excessive kv cache usage. Building on072

MFA, MFA-KR reuses the key cache as value073

through a re-parameterized value projection with074

original key projection and a light weight gated075

projection. This minor modification cuts KV cache076

usage by an additional 50% with negligible perfor-077

mance trade-offs. Moreover, methods like MLA078

add complexity to support widely-adopted position079

embedding (i.e. RoPE), while our proposed MFA080

family naturally fit in current LLM training and081

inference ecosystems, ensuring practical adoption082

without introducing additional architectural com-083

plexity.084

We conduct extensive experiments to evaluate085

the performance and KV cache efficiency of MFA086

and MFA-KR, alongside detailed ablation studies087

on their design. Impressively, our proposed atten-088

tion architecture is the only approach that performs089

comparably to standard MHA in terms of accu-090

racy while adhering to strict KV cache constraints.091

Specifically, in a 7B parameter model trained on092

1T tokens, MFA and MFA-KR reduce KV cache093

usage by up to 93.7% while achieving superior094

or comparable benchmark accuracies compared to095

MHA.096

2 Background: Capacity Analysis of097

Attention098

In order to delimit the scope of our analysis, we099

introduce the concept of Generalized Multi-Head100

Attention (GMHA). It encompasses all multi-head101

mechanisms with linear query-key (QK) and value-102

output (VO) circuits, and per-head softmax atten-103

tion. The QK circuit determines how information104

propagates between entities, and the VO circuit dic-105

tates how information is transformed (Elhage et al.,106

2021). Fundamentally, GMHA can be described107

and analyzed using inference formulation and fac-108

torization formulation. The inference formulation109

highlights how keys and values are computed and110

cached during inference, and factorization formula-111

tion clarifies the model’s capacity by interpreting112

QK and VO matrices as low-rank factorizations.113

This offers a unified perspective on how different114

factorization strategies mediate the trade-off be-115

tween model capacity and efficiency. 116

Within this framework, we identify Fully Param- 117

eterized Bilinear Attention (FPBA) as the upper 118

bound of capacity. MHA and its variants can be 119

regarded as a low-rank decomposition of FPBA, 120

making FPBA a unified theoretical reference point 121

for analysis. Building on this understanding, we 122

propose general design principles for constructing 123

efficient and effective attention modules. These 124

principles inform the design of the Multi-Matrix 125

Factorization Attention (MFA) mechanism, which 126

is introduced in the next section. 127

2.1 Fully Parameterized Bilinear Attention 128

Inspired by the work of (Shazeer et al., 2020), 129

FPBA is defined as follows: 130

Oi =

H∑
c=1

( i∑
j=1

ϕ
(xiWcxj√

H

)
xjUc

)
, (1) 131

where ϕ denotes the softmax operator, H is the 132

embedding dimension, and Wc, Uc ∈ RH×H are 133

independently parameterized for each channel c. 134

FPBA adheres to three key design principles to 135

reach the theoretical maximum capacity within the 136

GMHA framework. i. Channel-specific interac- 137

tions. In FPBA, each channel c has a dedicated 138

parameter Wc, the QK circuit xiWcxj captures 139

channel-specific relations between xi and xj . ii. 140

The additivity of the c-th channels of xi and xj is 141

generally not holding true. The VO circuit xjUc, 142

which is fully parameterized as U ∈ RH×H×H , 143

and enables the projection of the H-dimensional 144

embedding of xj into arbitrary permutation of the 145

H-dimensional embedding of xi; iii. Full utiliza- 146

tion of representations. FPBA fully utilizes the 147

H-dimensional representations of both xi and xj , 148

without compressing any dimensions. This flex- 149

ibility allows unrestricted interactions across all 150

dimensions, setting FPBA as the upper bound of 151

capacity within the GMHA framework. 152

2.2 Analysis of MHA and Its Variants 153

As the prototypical instance of GMHA, MHA can 154

be expressed using inference formulations (2) and 155

factorization formulations (3), as shown below. 156

Oi =

n∑
c=1

( i∑
j=1

ϕ(
xiQc(xjKc)

T

√
d

)xjVc

)
OT

c (2) 157

=
n∑

c=1

( i∑
j=1

ϕ(
xi(QcK

T
c )x

T
j√

d
)xjVcO

T
c

)
, (3) 158
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where Qc,Kc, Vc, Oc ∈ RH×d represent the query,159

key, value, and output projections for c-th head.160

Comparing Eqs. (1) and Eqs. (3), we can see that161

MHA is mathematically equivalent to a version162

of FPBA where Wc and Uc are approximated with163

low-rank factorization QcK
T
c and VcO

T
c separately,164

both with bottleneck of d. During inference time,165

by sharing parameters among d channels rather166

than having a distinct set of parameters for each167

channel, and given that typically nh = H , the KV168

cache per token is reduced to 2H .169

MQA extends the parameter sharing principles170

of MHA by using a single set of key and value171

parameters across all attention heads. The for-172

mulations for MQA are nearly identical to those173

of MHA, with the key difference being that Wc174

and Uc are factorized into QcK
T and V OT

c , where175

K,V ∈ RH×d are shared among all heads, each176

retaining rank d but with shared parameter con-177

straints. In inference formulations, by eliminating178

head-specific Kc and Vc parameters, the KV cache179

size is decreased to 2d.180

MLA adopts a more complex factorization of181

FPBA as follows:182

Oi =

m∑
c=1

( i∑
j=1

ϕ(
xiSqQc(xjSkKc)

T

√
d

)xjSvVc

)
OT

c (4)183

=

m∑
c=1

( i∑
j=1

ϕ(
xi(SqQcK

T
c ST

k )x
T
j√

d
)xjSvVcO

T
c

)
, (5)184

where Sq, Sk, Sv ∈ RH×C are shared among all185

heads, Qc,Kc, Vc ∈ RC×d are head-specific pa-186

rameters, and C denotes the dimensionality of187

the latent factorization. We omit the decoupled188

RoPE design here for simplicity. Comparing fac-189

torization formulations Eq. (5) with Eq. (1), it be-190

comes evident that MLA employs parameter shar-191

ing across every H/m channels. Specifically, Wc is192

decomposed SqQcK
T
c S

T
k , and Uc is decomposed193

SvVcO
T
c . Although the intermediate dimension194

C > d typically, the overall rank remains to be195

the smallest dimension as d, without promoting the196

expressive capacity of the model.197

3 Multi-matrix Factorization Attention198

Building upon the analysis in the previous section,199

we arrive at the general design objective for ef-200

ficient and effective attention module: to find a201

matrix factorization scheme that minimizes param-202

eter and KV cache size while pushing the model’s203

capacity as close as possible to that of FPBA.204

Following these principles, we introduce Multi- 205

matrix Factorization Attention (MFA), incorporat- 206

ing three key design strategies: (1) Increasing the 207

number and dimension of heads to minimize the 208

amount of channel sharing in the propagation pro- 209

cess and to provide greater expressive freedom for 210

each head; (2) Applying aggressive low-rank ma- 211

trix factorizations on Wn to enhance parameter 212

efficiency as the model scales; (3) Utilizing single- 213

key-and-value-head techniques to maintain mini- 214

mal KV cache usage. 215

The inference and factorization expressions of 216

MFA are given by: 217

Oi =
n∑

c=1

(
i∑

j=1

ϕ(
xiSqQc(xjSk)

T

√
d

)xjSv)O
T
c (6) 218

=

n∑
c=1

(
i∑

j=1

ϕ(
xi(SqQcS

T
k )x

T
j√

d
)xjSvO

T
c ), (7) 219

where Sq, Sk, Sv ∈ RH×C are shared across heads, 220

Qc, Oc ∈ RC×C are head-specific projection, and 221

C denotes the low-rank factorization dimension. 222

During inference, as shown in Eq. (6), the key 223

and value for each token xj are calculated as xjSk 224

and xjSv respectively, reducing the KV cache per 225

token to 2C. Compared to FPBA, the weight matrix 226

Wc is decomposed into SqQcS
T
k , and the transfor- 227

mation matrix Uc is decomposed into SvO
T
c , both 228

maintaining a rank of C. This decomposition of- 229

fers several advantages: (1) Scalable Head Count: 230

MFA allows for an increase in the number of heads 231

with minimal parameter overhead ( ≈ CH addi- 232

tional parameters per extra head). Moreover, the 233

KV cache size remains constant regardless of the 234

number of heads; (2) Enhanced Head Expressive- 235

ness: each head in MFA has a rank of C > d of oth- 236

ers typically. This higher rank improves the expres- 237

sive capacity of each head, allowing for more nu- 238

anced propagation and transmission; (3) Compat- 239

ibility with Positional Encodings: unlike MLA, 240

MFA seamlessly integrates with mainstream posi- 241

tional encodings such as Rotary Positional Encod- 242

ing (RoPE), ensuring broader applicability across 243

various transformer architectures. 244

To further optimize KV cache usage under strin- 245

gent memory constraints, we introduce an ex- 246

tension of MFA called MFA-Key-Reuse (MFA- 247

KR). This variant reuses the key cache by re- 248

parameterizing the value projection based on the 249

key projection, effectively reducing the KV cache 250

size by an additional 50%. The re-parameterization 251
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Figure 2: Simplified illustration of MFA/MFA-KR architecture compared with MQA/GQA architecture. By the
expanding both the number and dimension of heads in a single-key-and-value manner, MFA/MFA-KR significantly
enhances the model capacity under strict KV cache budget while maintaining parameter efficiency during scaling.

is defined as:252

Sv = Sk + α⊙NSk (8)253

= (I + diag(α)N)WK , (9)254

where N ∈ RC×C , α ∈ RC , and ⊙ denotes255

element-wise multiplication. During training, the256

parameter α is initialized as a zero vector to ensure257

that Sv equals Sk when training begins, because we258

empirically found it crucial for maintaining training259

stability.260

To clarify the differences of MFA to other archi-261

tectures, we present a straight-forward comparison262

in Table 1. To maintain clarity, we omit MFA-KR263

and jointly key-value compressed version of MLA.264

A GMHA model’s capacity is influenced by two265

primary factors: Total Effective Rank (TER) and266

Shared Latent Subspace Dimension (SLSD). TER267

is defined as the product of the number of heads268

and the factorization rank per head (FRH), with269

higher TER indicating greater overall capacity. On270

the other hand, SLSD represents the dimension of271

the latent space shared across all heads. A smaller272

SLSD reduces the KV cache size but constrains273

the model’s capacity. It is essential to note that274

the FRH must not exceed the SLSD, establishing a275

critical trade-off between capacity and efficiency.276

As shown in Table 1, MFA achieves a higher277

TER compared to other methods, positioning it as278

the closest approximation to the theoretical upper-279

bound capacity represented by FPBA. Specifically,280

i. Comparison with MQA: MFA achieves both a281

higher SLSD and a higher TER; ii. Comparison282

with MLA: under similar parameter budgets, MFA 283

achieves a smaller KV cache size, a higher TER, 284

and an equivalent SLSD; iii. Comparison with 285

MHA: while MFA has a smaller SLSD than MHA, 286

its TER is higher, leading to empirically superior 287

results as shown in next section. 288

4 Experiments 289

We evaluate MFA for large language models from 290

the following perspectives. First, we compare MFA 291

and MFA-KR to MHA at 7B-scale MoE models 292

with 1T training tokens on benchmark accuracies 293

and KV cache usage. Second, we present the loss 294

and KV cache curves of MFA and MFA-KR on 295

increasing training scales. Third, we conduct exten- 296

sive comparison with existing architecture variants 297

and demonstrate the advantage of MFA and MFA- 298

KR. Finally, we present studies on various design 299

choices and validate the compatibility with differ- 300

ent position embeddings 301

4.1 Common Experimental Settings 302

In all our experiments, we train our models with 303

language modeling loss on a high-quality training 304

data corpus created internally, including web text, 305

mathematical material, and code, tokenized using 306

the BPE (Sennrich, 2015) tokenizer with vocabu- 307

lary size of 65536. We adopt pre-normalization 308

using RMSNorm (Zhang and Sennrich, 2019), 309

SwiGLU (Shazeer, 2020) activation function for 310

FFN without dropout, and rotary position embed- 311

dings (Su et al., 2024) with base frequency set 312

to 500,000 (Dubey et al., 2024). All models are 313
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Method KV Cache Parameter Heads
Factor. rank

per head
Shared latent

subspace Dim.
Total

effec. rank

FPBA 2H2 2H3 H H H H2

MHA 2H 4H2 n d H nd
MQA 2d (2 + 2/n)H2 n d d nd
GQA 2gd (2 + 2g/n)H2 n d gd nd

MLA 2C + dr
H(3C + dr +H)
+mC(3d+ dr)

m d C md

MFA 2C H(3C +mC) +mC2 m C C mC

Table 1: Comparison of KV cache usage, parameter count, and total capacity, highlighting their capacity–efficiency
trade-offs. Factor. rank per head reflects each head’s factorization rank; Shared latent subspace Dim. indicates a
common projection dimension across head’s factorizations; Total effective rank summing or combining ranks across
all heads as total capacity approximates. Generally, H > C > d = H/n and m > n. MFA achieves a higher Total
Effective Rank compared to other variants, making it the closest capacity approximation to FPBA.

MHA MFA-KR MFA

# Activated Params 1.2B 1.2B 1.2B
# Total Params 6.9B 6.9B 6.9B
KV Cache/Token ↓ 196.6K 12.3K 24.6K

BBH (Suzgun et al., 2022) 35.9 34.4 37.8
MMLU (Hendrycks et al., 2020) 45.2 43.5 45.5
Hellaswag (Zellers et al., 2019) 68.6 67.5 68.6
WG (Sakaguchi et al., 2021) 60.2 62.0 60.7
BoolQ (Clark et al., 2019) 66.0 63.4 66.2
PIQA (Bisk et al., 2020) 76.0 75.5 77.0
SIQA (Sap et al., 2019) 45.7 45.2 47.9
SciQ (Welbl et al., 2017) 71.6 68.8 74.3
OBQA (Mihaylov et al., 2018) 37.2 36.0 38.8
Ruler (Hsieh et al., 2024) 60.9 60.9 61.7
DS1000 (Lai et al., 2022) 11.2 11.0 12.1
Math (Hendrycks et al., 2021) 9.1 8.1 9.4

Average Acc. ↑ 49.0 48.0 49.9

Table 2: Benchmark accuracy and KV cache usage comparison among MFA, MFA-KR and MHA baseline. We
scale the 7B model to 1 trillion training tokens, and MFA generally outperform MHA while using only 12.5% of KV
cache per token. MFA-KR demonstrates even less KV cache usage while compromising performance minimally.

trained from scratch and the weights are initial-314

ized in the following method: all weights of linear315

layers are first initialized from a truncated normal316

distribution with mean zero and standard deviation317

0.02, and then for the output projection of attention318

and the W2 of the GLU we divide the initialized319

value by
√
2 · layer_idx, which is adopted from320

(Narayanan et al., 2021).321

All models are trained with AdamW (Loshchilov322

and Hutter, 2019) optimizer, with β = [0.9, 0.95],323

eps=10−8, weight decay factor of 0.1 and gradient324

clipping norm of 1.0. For learning rate schedules,325

we use a linear warmup for the first 2000 steps326

and a cosine decay to 10−5 for the remainder of327

training. We set the sequence length to 16384 to- 328

kens. We hold out a validation set of ≈ 10M tokens 329

drawn from the same distribution of training data 330

for evaluation purposes. 331

4.2 Language Modeling Evaluation 332

We train MoE language models with 7B total pa- 333

rameters and 1B activated parameters on 1T tokens 334

to compare MFA/MFA-KR with the MHA. 335

Setup. We adopt a modified version of DeepSeek- 336

MoE (Dai et al., 2024) as basic architecture, includ- 337

ing shared experts and the first layer using dense 338

FFN, but using coarse-grained experts due to sys- 339

tem efficiency considerations. We align hidden size, 340
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layers, the total number and the activated number341

for parameters across all models. FFN dimensions342

of the first dense layer, total number and activated343

number of experts are slightly adjusted to meet344

the requirements. We employ an expert-level load345

balance loss (Shazeer et al., 2017), with load bal-346

ance factor as 0.01. All models are trained with347

same peak learning rate as 8.4× 10−4 and the each348

training batch contains 7.3 million tokens, and the349

training spans 140K steps, totaling 1 trillion tokens.350

More details can be found in Appendix A.351

For evaluation, we benchmark the models on var-352

ious downstream tasks within a unified evaluation353

framework. We select extensive tasks, including354

reasoning, knowledge, and factual accuracy, pro-355

viding a holistic assessment of model performance.356

Results. Table 2 presents a comparison of MFA,357

MFA-KR, and MHA on downstream language358

modeling tasks. The results show that MFA359

achieves superior average benchmark accuracy360

(49.9%) compared to MHA (49.0%), while reduc-361

ing KV cache usage per token by 87.5% (from362

196.6KB to 24.6KB). This highlights MFA’s ability363

to balance strong modeling capacity while main-364

taining exceptionally low KV cache memory usage.365

MFA-KR further minimizes KV cache usage to just366

12.3KB per token—only 6.25% of MHA’s storage367

needs—by reusing key caches as values. While368

MFA-KR incurs a slight accuracy trade-off, it re-369

mains competitive and is well-suited for scenarios370

where memory constraints are paramount.371

4.3 Scalabiliy Experiments372

We compare the loss scaling curves between MHA,373

MFA and MFA-KR. The scaling law is supposed374

to extrapolate the performance at larger scales.375

Setup. We use the same model architecture setup376

mentioned in Section 4.2. We train MoE language377

models of various sizes (i.e., 1.0B, 2.1B, 5.5B,378

6.9B) and various numbers of tokens (i.e., 10B,379

20B, 48B, 69B) while keeping the model sparsity380

(the ratio of activated number of parameters to total381

number of parameters) constant. We also add our382

7B model with 1T training token experiments in383

our scaling curve results. We use loss on our valua-384

tion set as the evaluation metric. More details are385

shown in Appendix A.3.386

Results. We compare the scalability and effi-387

ciency of MFA and MFA-KR with MHA through388

loss scaling across various model sizes and training389
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Figure 3: Scaling experiments among MHA, MFA, and
MFA-KR. Top: Loss vs. ND scale, where N denotes
the total number of parameters and D the total training
tokens. MFA achieves comparable loss scaling curves to
MHA. MFA-KR follows a similar scaling trend, albeit
with a slight performance gap. Bottom: KV cache
usage per token vs. model size. MFA and MFA-KR
significantly reduce KV cache usage compared to MHA,
with savings growing as model size increases.

tokens, as shown in Figure 3. The top plot shows 390

validation loss curves with respect to ND scale 391

(where N is the number of parameters and D the 392

total training tokens). MFA matches MHA’s loss 393

scaling behavior, confirming its strong modeling 394

capacity, while MFA-KR demonstrates a similar 395

trend with a minor performance gap, making it 396

suitable for highly memory-constrained scenarios. 397

The bottom plot compares KV cache usage per 398

token across model sizes. At largest scale, MFA re- 399

duces KV cache requirements by 87.5% compared 400

to MHA, with MFA-KR achieving even greater sav- 401

ings at just 6.25% of MHA’s usage. The relative 402

savings grow with larger model sizes, highlighting 403

the scalability of both methods. 404

4.4 Ablation Study 405

We conduct ablation study on 1B-scale dense 406

model. We set hidden size to 2048, number of 407

layers to 20, and keep the total number of param- 408

eter the same by adjusting the FFN size for differ- 409

ent attention architectures unless otherwise stated. 410

All models are trained with peak learning rate as 411

9.63×10−4, and each training batch contains 0.4M 412
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tokens. Total training steps are set to 50k. There-413

fore, all models consume 20B tokens in training.414

Ablation studies quantifies the accuracy of models415

using perplexity evaluated on validation set.416

Comparing with Other Attention Architectures.417

We show the trade-offs between validation per-418

plexity and KV cache usage across various atten-419

tion architectures in our 1B dense model setting in420

Figure 1. The comparison includes MHA, GQA,421

MQA, and MLA, representing a spectrum of de-422

sign choices for balancing modeling capacity and423

memory efficiency. Models in the MHA-GQA-424

MQA spectrum reflect the baseline trade-offs for425

achievable accuracy and memory usage. More re-426

cent MLA architecture is also evaluated in our set-427

ting. All models have undergone the same train-428

ing recipe, except that MLA uses the initialization429

method mentioned in (DeepSeek-AI et al., 2024).430

We find that MLA is quite sensitive to the initializa-431

tion method and only with this initialization can it432

achieve reasonable performance. Details are elab-433

orated in Appendix B. Our implementation and434

architecture hyperparameter of MLA refers to the435

open-source model DeepSeek-V2-Lite.436

The results demonstrate that MFA and MFA-437

KR achieve a new Pareto frontier for accuracy and438

memory trade-offs. MFA achieves the lowest val-439

idation perplexity while using only 12.5% of KV440

cache memory compared to MHA. MFA-KR fur-441

ther reduces KV cache usage while maintaining442

competitive accuracy. Notably, MFA and MFA-443

KR outperform MLA and the MHA-GQA-MQA444

baselines in terms of both validation perplexity and445

KV cache efficiency, and MFA achieves even better446

performance compared to MHA baseline.447

Key and Value Projection Design. We conduct448

a detailed ablation study to evaluate the key and449

value projection designs in existing works, focus-450

ing on key/value sharing introduced by GQA and451

MQA, as well as key/value low-rank compression452

proposed by MLA. Results in Table 3 reveal that453

key compression does not offer performance ad-454

vantage compared to key sharing under the same455

KV cache budget and number of model parameters,456

while introducing additional architectural complex-457

ity due to its incompatibility with RoPE. For value458

projections, our results in Table 3 show that low-459

rank compression leads to significant performance460

degradation compared to value sharing under iden-461

tical KV cache constraints, highlighting that com-462

pressing value projections sacrifices more model-463

ing capacity. Based on these findings, MFA adopts 464

key sharing and value sharing, which achieve a 465

favorable balance between simplicity and perfor- 466

mance while adhering to strict KV cache budgets. 467

Efficiently Scale up d and n. To evaluate the 468

parameter efficiency of scaling d · n in MFA, we 469

ablate over QK circuit factorization, as shown in 470

Table 4. First we show that without factorization 471

design, increasing d ·n from H to 1.75H improves 472

validation perplexity, enhancing the model capacity 473

under strict KV cache usage in this setting. How- 474

ever, vanilla scaling up d and n comes at the cost 475

of higher parameter count (10% more in this set- 476

ting). In contrast, applying factorization allows 477

MFA to scale d · n to 1.75H while keeping the pa- 478

rameter count fixed. This approach achieves the as 479

good validation perplexity, highlighting that the fac- 480

torization in MFA enables the parameter-efficient 481

scaling of d and n. 482

Design Choices for Key-Reuse. We ablate the 483

design choice for MFA-KR, as shown in Table 5. 484

Starting from MFA, we incrementally test key reuse 485

and additional design improvements. Vanilla key 486

reusing strategy incur non-negligible performance 487

drop. While adding extra value projection aims to 488

enhance modeling capacity, it suffers from training 489

instability and gets bad performance. Adding a 490

residual connection mitigates instability but still 491

results in suboptimal performance. Finally, in- 492

corporating a zero-initialized gating mechanism 493

addresses both stability and performance issues, 494

resulting in MFA-KR, which matches MHA’s per- 495

formance while further halving the KV cache usage 496

compared to MFA. 497

Different Position Embeddings ALiBi (Press 498

et al., 2021) is also a common position embed- 499

ding (Almazrouei et al., 2023) with built-in zero- 500

shot length extrapolation ability. Table 6 shows 501

that MFA and MFA-KR maintain advantage with 502

changed position embedding. 503

5 Related Works 504

Notable efforts have focused on architectural mod- 505

ifications to minimize KV cache usage besides 506

MQA, GQA and MLA which we elaborated in 507

previous section. CLA(Brandon et al., 2024) and 508

MLKV(Zuhri et al., 2024) attempt to share key and 509

value between layers, further reducing KV cache 510

memory storage overhead. However, since even 511

shared KV cache must be re-loaded in each layers 512
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Config Extra Op. for RoPE # Params (B) Cache/Token (K/V) ↓ Perplexity ↓

Key Projection
Compressed (k=256) ✓ 1.12 12.8K (K) 6.36
Shared 2-groups (k=128) ✗ 1.06 10.2K (K) 6.32

Value Projection
Compressed (v=256) ✗ 1.07 10.2K (V) 6.60
Shared 2-groups (v=128) ✗ 1.06 10.2K (V) 6.32

Table 3: Comparison between compressed and shared 2-group approaches for key and value projections in attention
modules. The column Cache/Token (K/V) indicates the size of the key cache (K) or value cache (V) per token in bytes
(16-bit precision). For key projections, the compressed approach (k=256) requires additional operations for RoPE,
concatenating another repeated 1-group of key with RoPE along the d dimension. The implementaion is identical to
MLA. In key/value projection experiments, the value/key projections use the same multi-head implementations to
keep fair comparisons.

Factor. d · n # Params C./T. ↓ Val PPL ↓

✗ H 1.08B 20K 6.54
✗ 1.75H 1.20B 20K 6.38
✓ 1.75H 1.08B 20K 6.36

Table 4: Effect of QK circuit factorization on scaling
d · n in MFA. Without factorization, increasing d · n im-
proves validation perplexity increases parameter count.
Factorization allows MFA to match validation perplex-
ity while maintaining parameter efficiency, enabling
parameter-efficient scaling of d and n. Factor. and C./T.
represents factorization and the KV cache/token.

Architecture KV Cache/Token ↓ Val PPL ↓

MHA 163K 6.41
MFA 20K 6.35

+vanilla KR 10K 6.55
+extra value proj. 10K 7.88
+residual connect 10K 6.65
+gating = MFA-KR 10K 6.45

Table 5: Ablation study for how to arrive at current
MFA-KR architecture design choice. KV Cache/Token
indicates the KV cache size in bytes per token, assuming
16-bit precision for each element.

seperately, this method does not reduce the KV513

cache memory traffic, thus having no effect on the514

latency for core attention computation.515

Other works aim to replace all or part of Softmax516

Attention operations with alternatives that main-517

tain a constant cache state size relative to sequence518

length, such as SSMs (Gu and Dao, 2024; Lieber519

et al., 2024) or linear attention(Katharopoulos et al.,520

2020; Peng et al., 2024). This reduces the cache521

state size significantly in extremely long-context522

region, and can be combined with our proposed523

MFA and MFA-KR in hybrid manner.524

Another active area of research seeks to boost525

the capacity of attention modules. (Bhojanapalli526

et al., 2020) indentifies the dimension of each head527

in MHA bottlenecks the capacity of attention mod-528

Architecture KV Cache/Token ↓ Val PPL ↓

MHA 163K 6.60
MFA-KR 10K 6.48
MFA 20K 6.45

Table 6: Performance of MFA and MFA-KR compared
to MHA with ALiBi as the positional embedding.

ule, and the situation may become worse if ad- 529

here to current high weight decay training recipe 530

(Kobayashi et al., 2024). Other works like Talking- 531

Head Attention (Shazeer et al., 2020) and DCMHA 532

(Xiao et al., 2024) try to enable information ex- 533

change between heads to augment model capac- 534

ity. Though potential performance gain can be 535

achieved, this modification is not compatible with 536

commonly used Flash Attention (Dao et al., 2022), 537

limiting the scaling up of these architectures. 538

Parameter efficiency in transformer models has 539

been extensively studied, especially in finetuning 540

domain (Hu et al., 2021). There are also works 541

focusing on pretraining parameter efficiency like 542

LPA(Lv et al., 2024); however, they do not investi- 543

gate the effects under limited KV cache budget. 544

6 Conclusions 545

We present Multi-matrix Factorization Attention 546

(MFA) and its variant MFA-Key-Reuse (MFA-KR) 547

as scalable solutions to achieve superior perfor- 548

mance while drastically reducing KV cache re- 549

quirements. Our experiments demonstrate that 550

MFA achieves superior benchmark accuracies with 551

up to 87.5% less KV cache compared to MHA, 552

while MFA-KR pushes memory efficiency further 553

by halving KV cache requirements with minimal 554

trade-offs. 555

8



Limitations556

We do not directly evaluate the system-level impli-557

cations of KV cache reduction, such as its impact558

on end-to-end inference efficiency for large-scale,559

long-context models. The integration of MFA with560

other architectural innovations, such as CLA or561

linear attention mechanisms, is not explored. In-562

vestigating these combinations could further opti-563

mize memory usage and performance, particularly564

for resource-constrained environments with high565

model capacity requirements. Moreover, we have566

not validated the performance of MFA and MFA-567

KR at even larger scale.568
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implementation details for Section 4. 877

A.1 Common experimental Settings 878

The training data we use in our experiments has 879

gone through thorough cleaning procedure, min- 880
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mation about private individuals. Data is sampled 882

using Best-Fit-Packing (Ding et al., 2024) with 883

bin size of 8 to mitigate truncation issues without 884
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disturbing the data distribution. Samplings are con-885

ducted with fixed random seed to ensure fairness886

when we compare different model architectures.887

We conduct preliminary experiments to test the val-888

idation perplexity fluctuation under same training889

and evaluation procedure, and find that the standard890

deviation of validation perplexity is smaller than891

0.005. Therefore all our experiments only conduct892

the training once and apply the standard evaluation893

protocols. We perform all experiments using Py-894

Torch (Ansel et al., 2024), and the usage adheres895

to the PyTorch License.896

A.2 Language Modeling Evaluation897

We present the model hyperparameter for 7B MoE898

models used in language model evaluation experi-899

ment in Table 7.900

Architecture MHA MFA MFA-KR

# params (B) 6.9 6.9 6.9
# act. params (B) 1.2 1.2 1.2

Hidden Size 2048 2048 2048
Layers 24 24 24
n 16 18 18
d 128 256 256
# Experts 33 29 29
MoE Top-k 2 2 2
MoE FFN Size 1312 1504 1536
Share FFN Size 2624 3008 3016

Table 7: Architectural hyperparameters for language
model evaluation experiment.

A.3 Scalability Experiments901

We present model and training hyperparameter de-902

tails for scalibility experiments.903

Exp. Settings 1B 2B 5B 7B

# params (B) 1.0 2.2 5.5 6.9
# act. params (B) 0.2 0.4 0.9 1.2
Train Tokens(B) 10 20 47 69

Hidden Size 1152 1408 1920 2048
Layers 13 16 22 24
n 9 11 15 16
d 128 128 128 128

Learning Rate 8.0e-4 5.9e-4 4.0e-04 3.7e-4
Batch Size (M) 0.3 0.4 1.6 0.8

Table 8: Common hyperparameters for scaibility experi-
ments at each scaling setting.

A.4 Ablation Study 904

We present the detailed model architecture hyper- 905

parameters used in our ablation study, including 906

Feed-Forward Network (FFN) size, the number of 907

attention heads n, and the head dimension d, as 908

shown in Table 9. The low rank dimension for 909

MLA is set to 512, and the dimention with RoPE 910

are set to 64, following DeepSeek-V2-Lite. 911

Architecture FFN Size n d

MHA 6008 16 128
GQA8 6680 16 128
GQA4 7032 16 128
GQA2 7200 16 128
MQA 7304 16 128
MLA 6504 16 128

MFA 7168 14 256
MFA-KR 7232 14 256

Table 9: Model architecture hyperparameters for the ab-
lation study. The table includes Feed-Forward Network
(FFN) sizes, the number of attention heads (n), and head
dimensions (d) for different attention architectures.

B Initialization Study on MLA 912

In our experiments, we find MLA is very sensi- 913

tive to the initialization method, performing poorly 914

under our default setting. While MHA and MFA 915

remain robust across different initializations. We 916

leave the investigation for the underlying reasons as 917

interesting future work. The experimental results 918

are summarized in Table 10. 919

Architecture Initialization Val PPL ↓

MLA
Ours 6.73

DeepSeek 6.48

MHA
Ours 6.41

DeepSeek 6.44

MFA
Ours 6.36

DeepSeek 6.43

Table 10: Validation perplexity (Val PPL) of MLA,
MHA, and MFA under different initialization methods.
MLA shows significant sensitivity to initialization, with
a large performance gap between our default setting
and DeepSeek’s method. In contrast, MHA and MFA
exhibit robust performance across both initialization set-
tings.
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C Potential Risks920

Although we conduct detailed processing to filter921

harmful content, the pretrain models we study can922

still generate harmful or biased content due to its923

unaligned nature.924
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