Proceedings of Machine Learning Research 260:-, 2024 ACML 2024

When and How to Grow?
On Efficient Pre-training via Model Growth

Jikai Wang RISUS254@GMAIL.COM
Juntao Li LJT@QSUDA.EDU.CN
Min Zhang MINZHANG@SUDA.EDU.CN
Soochow University, China

Zechang Li LIZECHANG 1 @QHUAWEI.COM
Qingrong Xia XIAQINGRONG@HUAWEIL COM
Xinyu Duan DUANXINYU@QHUAWEI.COM
Zhefeng Wang, WANGZHEFENG@QHUAWEIL. COM
Baoxing Huai HUAIBAOXING@QHUAWEI.COM

Huawei Cloud, China

Editors: Vu Nguyen and Hsuan-Tien Lin

Abstract

The remarkable performance of GPT models has attracted widespread attention for large-
scale language models. Despite their stunning performance, the huge pre-training cost is
prohibitive. Progressive pre-training takes advantage of the faster convergence speed of
small models to save computing overhead and shows great potential in accelerating pre-
training. This work studies the two key issues in progressive pre-training: growth schedule
and growth operation. First, we estimate the optimal growth point in theory. Then, we
find in experiments that the growth operation can be performed after the model enters
the convergence stage to achieve a high speed-up ratio. On the other hand, we propose
progressive dimensionality growth for width expansion and redundant layers for depth ex-
pansion. Progressive dimensionality growth is a smoothed operation and improves training
stability. Redundant layers implement function-preserving at a small cost and inherit the
core parameters of adjacent layers, improving the utilization of knowledge learned by the
original model. Our method follows strict function preservation and produces good train-
ing dynamics. Experimental results show that our method outperforms the baselines and
achieves an acceleration rate of about 1.5 times while achieving the same training effect.
Keywords: Efficient pre-training; Model growth; Progressive training

1. Introduction

Recent works have pursued increasingly larger language models (Zhang and Li, 2021; Black
et al., 2022; Wang et al., 2023a; Touvron et al., 2023; OpenAl, 2023) based on the scaling
laws (Kaplan et al., 2020; Kadra et al., 2023) to obtain more powerful models to handle
various tasks in NLP. However, the vast number of parameters puts higher demands on
training resources, making model pre-training difficult and costly.

As a result, methods like model reuse (Chen et al., 2016, 2022) leverage a pre-trained
model to initialize the parameters of a target model, which can transfer the knowledge
learned by one model to another, saving considerable pre-training overhead. Progressive
pre-training (Sureshbabu et al., 2017; Gong et al., 2019; Shen et al., 2022; Yao et al., 2023),

© 2024 J. Wang, J. Li, M. Zhang, Z. Li, Q. Xia, X. Duan, Z. Wang, & B. Huai.

WanNG L1 Zuang L1 X1iA DuaN WANG, Huat

3.6

125M
—— 355M

774M
—— 355M (Expanded)
—— 774M (Expanded)

3.4

3.2

Loss

3.0 1

2.6 T T T
0 1 2 3 4 5 6
FLOPs le19

Figure 1: Comparison of staged pre-training and vanilla pre-training valid loss curves. The
red, blue, and orange curves are the vanilla pre-training loss curves on the valida-
tion set of three models of different specifications. The purple and brown curves
represent the loss when expanded from GPT-Neo-125M to GPT-Neo-355M and
GPT-Neo-774M, respectively. Note that all the pre-trained models mentioned
above are our implementation for fair comparison and further analysis.

also called staged pre-training, further promotes this paradigm by training from scratch.
It accelerates pre-training by randomly initializing a smaller model and gradually scaling
it up since the small model converges faster than the large model in the early pre-training
stage.

The effectiveness of progressive training relies on a reasonable growth schedule and an
effective growth operation. A good growth schedule should identify a suitable growth point
and expand the model to an appropriate scale. Most previous works (Gong et al., 2019;
Chen et al., 2022; Yao et al., 2023) empirically adopted heuristic training schedules and
failed to fully utilize the potential of progressive training in accelerating pre-training. An
effective growth operation asks for two key properties: function-preserving (Chen et al.,
2016, 2022; Yao et al., 2023) and good training dynamics (Shen et al., 2022). Yao et al.
(2023) have achieved strict function-preserving during growth operation, but there is still
room for optimization in terms of training dynamics. We made a specific explanation of
these two properties in Section 3.1.

To make progressive training more efficient, we estimate the theoretical optimal growth
point for the growth schedule by calculating the effect conversion rate (detailed in Section
3.2) and then introduce two new strategies (elaborated in Section 3.3 and 3.4) to achieve
strict function-preserving and better training dynamics than previous methods. Concretely,
the combination of theoretical calculation and empirical results indicates that a faster accel-
eration can be achieved by conducting growth operations after the small model enters the
convergence stage. As for the newly presented two strategies, we provide progressive dimen-
sionality growth for width expansion and redundant layers for depth growth. Both of them
follow strict function-preserving. Progressive dimensionality growth alleviates the mutation
of loss during width growth, thus improving training stability. The redundant layer inherits

ON EFFICIENT PRE-TRAINING VIA MODEL GROWTH

the core parameters of the original model while maintaining function preservation, making
full use of the original information.

Through comparative experiments of pre-training, we observe that the redundant layer
improves the optimization dynamics of the new layer as the depth increases, making the
function of the new layer closer to that of the original layer. The scaling study in Section
5.2 also demonstrates the effectiveness and efficiency of our methods when significantly
growing the model scale (e.g., 6 times) in one operation, in which our approach can speed
up pre-training by around 1.5 times while achieving the same valid loss. Figure 1 briefly
shows a valid loss comparison between our staged pre-training approach and the vanilla
pre-training from scratch. We also explore the growth of models from 1.3B to 2.5B in size.

To answer when and how to grow in staged pretraining, we have made the following
contributions:

e We propose a theoretical way to estimate the optimal growth point and find in experi-
ments that conducting expansion operations during the convergence stage of the original
model is a superior training schedule.

e We present a novel model expansion method, which enables any magnification in any
dimension. It achieves not only strict function-preserving but also better training dy-
namics.

e Through comparing three strong and representative baseline methods under the same
settings, we observe that our methods can outperform others.

2. Related Work

Progressive pre-training. In witness the scalable merit of transformer-based architec-
tures and the power of large model capacity (Vaswani et al., 2017; Chung et al., 2022; Zhang
et al., 2022; Touvron et al., 2023; Li et al., 2023), the number of parameters of the main-
stream pre-trained models is getting larger and larger, requiring huge training overhead.
The efficient training methods (Chen et al., 2016; Sureshbabu et al., 2017; Houlsby et al.,
2019; Dong et al., 2020a; Pfeiffer et al., 2021; Hu et al., 2022; Qiao et al., 2024) aim to
accelerate training while maintaining the normal training performance. Among them, pro-
gressive training (Sureshbabu et al., 2017; Gong et al., 2019; Shen et al., 2022; Wang et al.,
2023b; Yao et al., 2023) gradually expands the model and accelerates training in a two-stage
or multi-stage manner, showing great potential for efficient pre-training. Gong et al. (2019)
proposed StackBERT, which multiplied the depth of BERT (Devlin et al., 2019) through
stacking the model. And Yang et al. (2020) extended StackBERT into a multi-stage setup
for higher speedup. Gu et al. (2021) found it is beneficial to balance growth operations of
multiple dimensions and expand the feed-forward network combined with stacking model
in depth. Shen et al. (2022) proposed an essential attribute in staged training, i.e., training
dynamic. They also offered a method to expand GPT (Radford et al., 2019) by integer
times. LiGO (Wang et al., 2023b) takes a different approach. They trained a learnable
mapping from small model parameters to large model parameters. Yao et al. (2023) pro-
posed masked structural growth, which uses masks to implement strict function-preserving
and smooth the growth operation.

Reusable model. Researchers try to use some parameters of existing models to initialize a
new model with different specifications to reuse the knowledge in the original model (Chen

WanNG L1 Zuang L1 X1iA DuaN WANG, Huat

et al., 2016, 2022). Function-preserving, as an important property in model reuse, was
introduced by Chen et al. (2016) to use an existing model to train a new model. Chen
et al. (2022) proposed bert2BERT, which reuses the original parameters of a small model
to initialize a large model to save training costs. They use upper-layer parameters for
parameter initialization, improving the width operation in Net2Net (Chen et al., 2016).
There is also work on pruning a larger model to obtain a smaller model. Xia et al. (2023)
proposed Sheared-LLaMA and achieved great pre-training efficacy.

3. Methods

3.1. Definitions

Staged Training For a target model M; with hidden size d;, the number of attention heads
he, the number of layers l; and training set D, the goal of pre-training is to train M; on D.
To speed up pre-training, we initialize a smaller model M, with hidden size ds, the number
of attention heads hs; and the number of layers Is in the first stage. When the training
reaches step Gy, we conduct the second stage, i.e., the growth operation, to expand M to
M;. The depth expansion is a transient operation, which is completed at step Gy. The
width expansion continues during [Gy, G|, which is a short process from the perspective of
the entire training, where G, is the end of width expansion. Finally, we train M; until the
end of pre-training.

Function-preserving Function-preserving requires that for any input, the loss remains
unchanged after the model is expanded, which is also called loss preserving. It reflects the
inheritance of the capabilities of the small model from the large model.

Training Dynamics Even if strict function-preserving is achieved as the model grows, loss
tends to rise sharply as training continues. When a small model grows into a large model, a
good training dynamic requires that the loss curve for continued training is consistent with
the curve of steps with the same loss for regular training of the large model. It takes a lot of
calculations to restore the grown model to the regular training dynamic of training a large
model. Therefore, from another perspective, good training dynamic preserving requires the
model to return to regular training dynamics with less computational effort.

3.2. Optimal Growth Point

Most previous works design heuristic training schedules when applying progressive pre-
training (Gong et al., 2019; Chen et al., 2022; Yao et al., 2023). But growing at which
step saves the most calculations while achieving the same effect is a remaining question.
Dong et al. (2020b) set a threshold for loss slope and manually tune the threshold to decide
when to grow. However, this approach is not worth the effort when training large models
on large data sets. Shen et al. (2022) design a method to estimate the optimal schedule
based on scaling laws (Kaplan et al., 2020). Different data sets and model structures may
cause the actual loss curve to be very different, causing estimation errors. In this section,
we attempt to theoretically estimate the optimal growth point. First, we give the definition
of the problem. For a two-stage pre-training process, given a target loss L on validation set,
an optimal growth point G,,; minimizes the total calculation when reaching L. In actual
situations, the loss curve fluctuates, making solving this problem more difficult. Therefore

ON EFFICIENT PRE-TRAINING VIA MODEL GROWTH

we simplify this problem. We assume that we have loss curves of any two-staged training
schedule. The loss curves of My and M; on the validation set during regular pre-training
are known, which are monotonically decreasing.

To alleviate this problem, we define a value function V(Ns, N;) to find the optimal
growth point formally by measuring the gains from the staged training:

V(Ns, Ni) = Ny

sit. L(Ng, Ny) = L(N;) W)

where Ny represents the number of steps trained with the small model, IV; represents the
number of steps trained with the large model after growth, and NV; represents the number
of steps for regular training of the large model. L(-) represents the loss on the validation
set. The effect conversion rate F is calculated by the following formula:

OV (Ns, Ny)

E(N,,N;) = N (2)

Due to the sudden increase in model parameters during amplification, the upper limit of
model performance also increases, and the loss will drop rapidly during the initial training
process after amplification. Therefore, N; needs to be large enough to ensure that ¢ returns
to the training dynamic of £ under the same loss at step N;. In the early stages of training,
the small model converges faster than the target model due to fewer parameters. At this
time, training on the small model will achieve higher performance gains. However, as
training progresses, the small model is limited by the low-performance upper limit, resulting
in a slower decline in the loss. Therefore, E gradually decreases as Ny increases. When the
following conditions are met, the benefits of continuing to train on a small model are higher
than expanding it to a large model for training:

B(Gy, Ny > 5. Q

t

where Fy and F; denote the FLOPs of each step of small model and large model training,
respectively.

Since the loss curve of the large model is unknown in practical applications, it is impos-
sible to find the accurate optimal growth point in advance. However, we are surprised to
find that even in a later stage of training, where the loss on the validation set can hardly
decrease, which we regard as the convergence stage, Formula 3 still holds. This means we
can conduct the growth operation after the small model has come to the convergence stage.
We compare different growth points in experiments in Section 5.1.

3.3. Progressive Dimensionality Growth

Width growth operation expands (ds, hs, Is) to (dg, by, ;) during [Gp, G]. Yao et al. (2023)
enlarge the source model to the target size at one time and use masks to control the weight
of new parameters in forward and backward calculations. Inspired by this idea, as shown
in Figure 2, we use a more straightforward progressive width growth operation to smooth
disturbances caused by model expansion, which is strict function-preserving. Specifically,
we gradually add new dimensions during training.

WANG L1 ZaANG L1 X1A DuaN WANG, Huar

)0 ®

. :Original Dimension :New Dimension(activated) :New Dimension(masked)
Figure 2: Progressive dimensionality growth.

For a regular transformer layer L; and input hidden state h;_1, its output h; is calculated

follows:
T

ATT(Q, K, V) = softmax(Qj{&

h; = FEN(ATT(LN(h;_1))) + hi_1 (4)
h; = FEN(FFN(LN(h.))) + h!,

where ATT represents an attention module, @), K, V represent a query matrix, a key
matrix and a value matrix, respectively, FFN represents a feed-forward sub-layer, and LN
is a layernorm module.

At step Gp, we initialize a width-expanded model and directly copy the parameters
of the small model. The missing parameters will not be operated. Then we introduce a
global mask C = [c1,¢2,- -+, cq,] to gradually activate new dimensions during [Gj, Ge]. The
growing rate r is calculated follows:

W

o dt - ds
At step N(N € [Gy, G)),

1,i§d5+TX(N—Gb)
C; =

For layer L;, its internal calculation is as follows:
Cd = [CTa CT7 o 7CT]I£
Qo Cd)(KT o Cy)

Vid
h; = FFN(ATT(LN(h;_1)oC)oC) o C + h;_4
h; = FEN(FFN(LN(R]) 0 C) 0 C) o C + h!.

ATT(Q,K,V) = softmam(()(V oCy)

Note that the global mask is only applied during [Gy, G.]. The extra computation it brings
is less than 0.01%, which is small enough to be ignored.
3.4. Redundant Layer

We propose a redundant layer for depth growth operation, which makes full use of the
original information of the small model while maintaining function-preserving. Shen et al.

ON EFFICIENT PRE-TRAINING VIA MODEL GROWTH

(2022) introduced an identity layer I, whose output equals the input I(h;—_1) = h;_1. By
inserting I into the original model, they realized a function-preserving depth growth. To
construct layer I, they randomly initialize a new layer and set the weight matrix of LN and
all the bias vectors to 0. We use this approach in the redundancy layer to ensure that input
and output are consistent. We insert redundant layers evenly into the original model. To
improve the utilization of the original information of the model, we copy the weight of the
FNN and the ATT of the adjacent layer into the redundant layer. This way of constructing
new layers only sacrifices the parameter information in the layernorm module and maintains
the function-preserving during depth expansion at a relatively small cost. At step Gy, as the
parameters of the layernorm are set to zero in redundant layers, the outputs of layernorm
are 0. This means the ATT and the FFN are not activated. In subsequent training, as the
parameters of layernorm change, these modules are also gradually activated by the model
adaptively.

3.5. Growth Operation

Researchers (Tan and Le, 2019; Gu et al., 2021) have found that multi-dimensional growth
operations are better than single-dimensional growth operations under the same conditions.
Therefore, we expand the depth and width of the model at the same time. The growth
operations are performed at step Gj. We adopt progressive dimensionality growth for
width growth and redundant layers for depth growth. The depth growth operation will be
completed at step G} while the width growth operation will continue until step G.. For
better training dynamics, when we copy the parameters, we also copy their state in the
optimizer. Note that the width growth and the depth growth are independent operations,
and there is no dimensionality limit. This means our approach can support model expansion
in any dimension and any multiple.

4. Experiment

This part provides the necessary experimental details and results to calibrate the effective-
ness of our proposed solution, including growth strategies for comparison, model variants,
datasets, speed-up ratio calculation, and overall performance evaluation.

4.1. Growth Strategies

(1) Direct Copy: Direct copy the original model parameters and use random initialization
for missing parameters. (2) FPI: Function-preserving initialization (Chen et al., 2016) for
width expansion. (3) AKI: Advanced knowledge initialization is proposed by Chen et al.
(2022). It comprehensively utilizes the parameters of the current layer and upper layer for
width expansion. (4) Stack: Gong et al. (2019) copy the pre-trained BERT layers and stack
them behind the original layers. (5) MSG: Masked structural growth is proposed by Yao
et al. (2023), which uses masks to gradually activate the weight factor of new parameters.

Table 1 shows the comparison of the above methods. We apply an all-dimension growth
operation while FPI and AKI are width expansion and Stack is depth expansion. To
bridge this gap, we use Stack as a method of depth expansion in terms of width expansion

WanNG L1 Zuang L1 X1iA DuaN WANG, Huat

Function-preserving Initialization Strate
Method Width b Depth ¢ for New Parameterg;y
FPI v - -
AKI X - v
Stack - X v
MSG v v X
Ours v v v

» N

Table 1: Comparison between different strategies. means not applicable. Note that

random initialization is treated as none initialization strategy for new parameters.

Method Ksteps | FLOPs | Speed-up Eval. | LAMBADA LAMBADA WikiText2 PTB PIQA
ppl. ppl. acc. ppl. ppl. acc.
GPT-Neo-125Mt 72 2.00e19 - 20.14 46.94 33.57 36.91 60.55 60.55
GPT-Neo-355Mt 45 3.69e19 x1.00 17.92 35.20 38.79 32.02 52.70 61.26
Direct Copy 18.09 34.11 37.59 32.13 53.68 60.88
FPI+Stack 18.08 36.03 36.99 31.96 53.01 60.83
AKI+Stack 7246 2.50e19 x1.48 18.13 35.94 36.64 32.19 53.05 61.70
MSG 18.01 33.35 37.61 31.82 53.54 60.94
Ours 17.92 32.15 38.75 31.36 52.41 61.26

Table 2: Overall comparison of different strategies. All the methods run 72 ksteps under
the 125M model size and then run 6 ksteps after growing to the 355M model size.
The ”Eval.” column shows the perplexity on the validation set. ”1”: Pre-trained
model from scratch. ”_”: The perplexity of Ours (7246 ksteps) on validation set
equals to it on GPT-Neo-355M (45 ksteps). GPT-Neo-355M (45 ksteps) uses 1.85
times the Flops of all methods (7246 ksteps). ppl. and acc. represent perplexity
and accuracy. The best results are shown in bold.

methods. For fairness, we copy the state of the original parameters in the optimizer when
performing expansion in all methods.

4.2. Model Variants

We adopt the popular GPT-Neo (Black et al., 2022) repository to implement different sizes
of GPT models in our experiments. GPT-Neo well supports decoder-only architecture and
the auto-regressive objective. One can conveniently pre-train a GPT variant on an open-
sourced corpus, e.g., the Pile (Gao et al., 2020). Although the existing public pre-trained
models can be directly used as the original model for expansion, we do not know the specific
data used for pre-training of the original model and other details, such as hyperparameters.
After the model is expanded, the potential use of duplicate data may affect model training
behavior. Therefore, we pre-trained the source models from scratch and scaled them up in
the main experiments, allowing comparison with regular pre-training schemes.

ON EFFICIENT PRE-TRAINING VIA MODEL GROWTH

125M
—— 355M 9
3.2 —— Ours
—— Fpi+Stack 8
—— Aki+Stack
31 MSG 7
—— Direct Copy

—— Ours

—— Fpi+Stack

—— Aki+Stack
MSG

—— Direct Copy

Loss

71 72 73 74 75 76 77 78 0 10 20 30 40 50 60
KStep Step

Figure 3: Loss on the validation set (Left) and the training set (Right) after expanding the
model through different methods. The black dotted line the left figure indicates
the growth point.

4.3. Main Results

We verify the effectiveness of our method under a two-stage training schedule. With the
same budget, we compare the performance of the models pre-trained by different methods.
Since using different data will produce different training effects, we use the same batch of
data at the same step for a fairer comparison. We use a unified growth schedule for each
method and compare the model performance on the validation set and downstream tasks.
We train a 125M GPT-Neo from scratch and take the 72nd kstep as the growth point,
where the loss curve enters the convergence stage and E is close to % Then, we expand
the model to 355M using different methods. We continue to train the model for 6 ksteps to
restore the model to the regular training dynamic.

The experimental results are shown in Table 2. Our method outperforms other methods
on the downstream tasks except PIQA. We found out the step on the regular training curve
of the 355M model that has the same perplexity on the validation as our method, that
is, the 45th kstep. Under the same perplexity of the verification set, the model obtained
through progressive training has equivalent performance to the model trained regularly on
various downstream tasks. Meanwhile, our method accelerates the pre-training by 1.48
times compared with regular training.

Figure 3 shows the loss curves on the training set and validation set after the model is
expanded. MSG and our approach are strictly function-preserving. However, model growth
operation is still a significant disturbance to training. Even with strict function preservation,
it is inevitable that the model’s loss will suddenly increase during training after growth. Our
approach uses smoother width and depth operations, thus bringing better training stability,
which may be an important property in large-scale model expansion. From the perspective
of loss on the training set, our method significantly alleviate the sudden increase in loss when
the model grows. Judging from the loss curve on the validation set, using our proposed
model growth operation will make the loss converge faster in subsequent training. We

WanNG L1 Zuang L1 X1iA DuaN WANG, Huat

ppl. ppl. acc. acc.

Ours 17.92 | 32.15 38.75 61.26
w/o PDG | 17.99 | 33.21 38.25 61.04
w/o RL 18.09 | 33.67 37.90 60.77

Method Eval. | LAMBADA PIQA

Table 3: Results of the ablation study. "w/o PDG” means not using the strategy of pro-
gressive dimensionality growth when growing in width. ”w/o RL” means replacing
redundant layers with randomly initialized layers for depth expansion.

125M
— G=60k
— G=72k
G=84k

3.05

3.00

Loss

2.95

2.90

1.6 1.8 2.0 2.2 2.4 2.6
FLOPs le19

Figure 4: Loss curves on the validation under three different growth schedules. The red
curve is the loss curve of GPT-Neo-125M. The model is expanded at step G.

conduct an ablation study to verify the effectiveness of progressive dimensionality growth
and redundant layer under the same setting in Section 5.1.

5. Analysis

5.1. Ablation Study

For the ablation study, we replace our proposed width growth operation and depth growth
operation with direct copying, respectively. Perplexity on the validation set and perfor-
mance of zero-shot evaluation on LAMBADA and PIQA are shown in Table 3. Progressive
dimensionality width growth operation combined with depth growth operation with re-
dundant layer performs best. Both of them will bring about improved performance. As a
layer-wise operation, the depth expansion will cause a destructive disturbance to the model.
The introduction of the redundant layer not only maintains function preservation during
growth but also greatly reduces the negative impact of this disturbance. The progressive
dimensionality width growth operation further speeds up the convergence of the model.
We compare the growth schedule in the main experiment in Section 4.3 with two other
heuristic growth schedules. As shown in Figure 4, we select an earlier and a later step as
the growth points. The model expanded at the 72nd kstep reaches the lowest loss with
the same FLOPs. Performing the growth operation too early fails to take full advantage of
the fast convergence of small models. While allocating too many computing budgets after

ON EFFICIENT PRE-TRAINING VIA MODEL GROWTH

24 —— GPT-Neo-1.38 -> 2.58 —— GPT-Neo-1.38 -> 2.58

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Step Step

Figure 5: The two pictures on the left and right respectively show the loss curves on the
training set and the validation set after expanding GPT-Neo-1.3B to GPT-Neo-
2.5B. Note that we perform model growth operation in the first step. The loss at
the Oth step indicates the loss of the original model.

Method ‘ Ksteps ‘ FLOPs ‘ Speed-up ‘ Eval.
GPT-Neo-774Mf 26 4.64e19 %x1.00 17.98
Ours 72+6 3.07e19 x1.51 17.98

Table 4: Results of the scaling study. ”{”: Pre-trained model from scratch. Qurs expand
GPT-Neo-125M to GPT-Neo-774M at the 72nd kstep and continue pre-training
for 6 ksteps. We select the checkpoint of GPT-Neo-774M at the 26th kstep as the
baseline according to the same perplexity on the validation set.

the small model converges leads to some ineffective training processes. See Appendix A for
more details about the effect conversion rate.

5.2. Scaling Study

To further verify the effectiveness of our method and study the impact of different amplifica-
tion factors on the staged training effect, we also expand GPT-Neo-125M to GPT-Neo-774M
at the 72nd kstep. The experimental results are shown in Figure 1 and Table 4. The loss
curve in Figure 1 demonstrates that the small model converges faster than the large model
in the early stage of training with the same amount of calculations. For GPT-Neo-125M
at the 72nd kstep, expanding to 355M and expanding to 774M both speed up about the
pre-training 1.5 times when the perplexity on the verification set is the same. This illus-
trates that our method is still effective even if a larger expansion is performed at one time.
Although some further training is required for the expanded GPT-Neo-774M to make it
adequately trained, it is still worthwhile to adopt the staged pre-training method. In addi-
tion, compared to expanded to 355M, there is an apparent mutation in loss when expanded
to 774M. This indicates that too much amplification at one time may have a greater im-
pact on training dynamics. Therefore, it is suggested that a smoother growth schedule be

WanNG L1 Zuang L1 X1iA DuaN WANG, Huat

adopted. When a large model requires pre-training, multi-stage progressive pre-training
can be applied to achieve a higher speed-up ratio and training stability.

Additionally, we consider expanding an existing pre-trained model. We adopt GPT-
Neo-1.3B! and enlarge it to 2.5B. The experimental results are shown in Figure 5. We
observe that loss dropped significantly in subsequent training after expansion. This means
that we can also reuse existing pre-trained models through our model expansion approach
to save pre-training overhead.

6. Conclusion

In this work, we discussed two crucial issues in staged pre-training methods: when and how
to scale up the model. We formally estimated the optimal growth point and empirically
provided suggestions for formulating a growth schedule. We proposed a novel and effective
growth operation with progressive dimensionality growth in width expansion and redundant
layer in depth expansion. It is strict loss preserving and brings good training dynamics.
Experimental results show that our approach outperforms other methods and accelerates
pre-training by about 1.5 times when achieving the same effect. We would like to explore
a multi-staged pre-training practice in a larger-scale language model pre-training in the
future.

Acknowledgments

We want to thank all the anonymous reviewers for their valuable comments. This work
was supported by the National Science Foundation of China (NSFC No. 62206194), the
Priority Academic Program Development of Jiangsu Higher Education Institutions, the
Natural Science Foundation of Jiangsu Province, China (Grant No. BK20220488), and
Young Elite Scientists Sponsorship Program by CAST (2023QNRC001).

References

Sidney Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Gold-
ing, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An
open-source autoregressive language model. In Proceedings of BigScience Episode# 5—
Workshop on Challenges & Perspectives in Creating Large Language Models, pages 95—
136, 2022.

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang, Yujia Qin, Fengyu Wang, Zhi Wang,
Xiao Chen, Zhiyuan Liu, and Qun Liu. bert2BERT: Towards reusable pretrained lan-
guage models. In Proceedings of the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 2134-2148, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.151.
URL https://aclanthology.org/2022.acl-long.151.

Tiangi Chen, Ian J. Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via
knowledge transfer. In 4th International Conference on Learning Representations, ICLR

1. https://huggingface.co/Eleuther Al/gpt-neo-1.3B

https://aclanthology.org/2022.acl-long.151

ON EFFICIENT PRE-TRAINING VIA MODEL GROWTH

2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1511.05641.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-
finetuned language models. arXiv preprint arXiv:2210.11416, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguis-
tics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

Chengyu Dong, Liyuan Liu, Zichao Li, and Jingbo Shang. Towards adaptive residual
network training: A neural-ode perspective. In International conference on machine
learning, pages 2616-2626. PMLR, 2020a.

Chengyu Dong, Liyuan Liu, Zichao Li, and Jingbo Shang. Towards adaptive residual net-
work training: A neural-ODE perspective. In Proceedings of the 87th International Con-
ference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 2616-2626. PMLR, 13-18 Jul 2020b. URL https://proceedings.mlr.press/
v119/dong20c.html.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster,
Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb
dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient training
of BERT by progressively stacking. In Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 2337—
2346. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.press/v97/gongloa.
html.

Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen Chen, and Jiawei Han. On the
transformer growth for progressive BERT training. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 5174-5180, Online, June 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.406. URL
https://aclanthology.org/2021.naacl-main.406.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Larous-
silhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for NLP. In Proceedings of the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning Research, pages 2790-2799. PMLR,
09-15 Jun 2019. URL https://proceedings.mlr.press/v97/houlsbyl9a.html.

http://arxiv.org/abs/1511.05641
https://aclanthology.org/N19-1423
https://proceedings.mlr.press/v119/dong20c.html
https://proceedings.mlr.press/v119/dong20c.html
https://proceedings.mlr.press/v97/gong19a.html
https://proceedings.mlr.press/v97/gong19a.html
https://aclanthology.org/2021.naacl-main.406
https://proceedings.mlr.press/v97/houlsby19a.html

WanNG L1 Zuang L1 X1iA DuaN WANG, Huat

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language mod-
els. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=nZeVKeeFYf9.

Arlind Kadra, Maciej Janowski, Martin Wistuba, and Josif Grabocka. Scaling laws for
hyperparameter optimization. In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiw:2001.08361, 2020.

Juntao Li, Zecheng Tang, Yuyang Ding, Pinzheng Wang, Pei Guo, Wangjie You, Dan
Qiao, Wenliang Chen, Guohong Fu, Qiaoming Zhu, et al. Openba: An open-sourced
15b bilingual asymmetric seq2seq model pre-trained from scratch. arXiv preprint
arXiw:2309.10706, 2023.

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé, Kyunghyun Cho, and Iryna Gurevych.
AdapterFusion: Non-destructive task composition for transfer learning. In Proceedings
of the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, pages 487-503, Online, April 2021. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2021.eacl-main.39. URL https://aclanthology.
org/2021.eacl-main.39.

Dan Qiao, Yi Su, Pinzheng Wang, Jing Ye, Wenjing Xie, Yuechi Zhou, Yuyang Ding,
Zecheng Tang, Jikai Wang, Yixin Ji, et al. Openba-v2: Reaching 77.3% high compression
ratio with fast multi-stage pruning. arXiv preprint arXiv:2405.05957, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAlI blog, 1(8):9, 2019.

Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge, Matthew Peters, and Iz Beltagy.
Staged training for transformer language models. In International Conference on Machine
Learning, pages 19893-19908. PMLR, 2022.

R Sureshbabu, Cristiano Malossi, Costas Bekas, and Dimitrios S Nikolopoulos. Incremental
training of deep convolutional neural networks. In International Workshop on Automatic
Selection, Configuration and Composition of Machine Learning Algorithms, 2017.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International conference on machine learning, pages 6105-6114. PMLR,
2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien
Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.18971, 2023.

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2021.eacl-main.39
https://aclanthology.org/2021.eacl-main.39

ON EFFICIENT PRE-TRAINING VIA MODEL GROWTH

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and Yang Liu. Open-
chat: Advancing open-source language models with mixed-quality data. arXiv preprint
arXiw:2309.11235, 2023a.

Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Kar-
linsky, Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning
to grow pretrained models for efficient transformer training. In The FEleventh Interna-
tional Conference on Learning Representations, 2023b. URL https://openreview.net/
forum?id=cDYRS5iZ16f.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Dangi Chen. Sheared llama: Accelerating
language model pre-training via structured pruning. arXiv preprint arXiv:2310.06694,
2023.

Cheng Yang, Shengnan Wang, Chao Yang, Yuechuan Li, Ru He, and Jingqiao Zhang.
Progressively stacking 2.0: A multi-stage layerwise training method for bert training
speedup. arXiw preprint arXiv:2011.13635, 2020.

Yiqun Yao, Zheng Zhang, Jing Li, and Yequan Wang. Masked structural growth for 2x
faster language model pre-training. In The Twelfth International Conference on Learning
Representations, 2023.

Min Zhang and Juntao Li. A commentary of gpt-3 in mit technology review 2021. Funda-
mental Research, 1(6):831-833, 2021.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

Appendix A. Effect Conversion Rate

6.5 — 125M

3.0 —

0 10000 20000 30000 40000 50000 60000 70000 80000
Step

Figure 6: Loss curve of GPT-Neo-125M on the validation set during the pre-training.

https://openreview.net/forum?id=cDYRS5iZ16f
https://openreview.net/forum?id=cDYRS5iZ16f

WanNG L1 Zuang L1 X1iA DuaN WANG, Huat

0.8 1

0.7

0.6

0.5

w

0.4 4

0.3 1

0.2

e LT

0.1

10000 20000 30000 40000 50000 60000 70000 80000
Grow Point(Step)

Figure 7: "E — G}” curve for expanding GPT-Neo-125M to GPT-Neo-355M.

0.8

0.7 A

0.6

0.5 A

0.4 4

0.3 1

0.2 1

0.1

20000 30000 40000 50000 60000 70000 80000
Grow Point(Step)

Figure 8: "E — G}” curve for expanding GPT-Neo-125M to GPT-Neo-774M.

We select several growth points at intervals of 6000 steps for growth operations. Then,
we calculate the average effect conversion rate E between each two growth points based on
the experimental results.

Figure 7 and 8 show the conversion rate at different growth points. The horizontal
dashed lines represent the value of % The state above the curve indicates that the benefits
of continuing to train on the source model are greater at the current step. The vertical
dotted lines represent that we believe that GPT-Neo-125M enters the convergence stage at
the 70,000th step based on the loss curve in Figure 6, where the absolute value of the loss
slope is less than 3e-6. Since the growth points selected are relatively sparse, the curve in
the picture is not smooth. Generally, in both sets of experiments, the value of E dropped
below the dotted line after the model entered the convergence state.

Appendix B. Experiment Details

We use the Pile Gao et al. (2020) as the pre-training dataset. It is an open English
text corpus sampling from 22 diverse and high-quality datasets, including OpenWebText2
Radford et al. (2019), PubMed Central, Pile-CC, etc.

	Introduction
	Related Work
	Methods
	Definitions
	Optimal Growth Point
	Progressive Dimensionality Growth
	Redundant Layer
	Growth Operation

	Experiment
	Growth Strategies
	Model Variants
	Main Results

	Analysis
	Ablation Study
	Scaling Study

	Conclusion
	Effect Conversion Rate
	Experiment Details

