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Abstract
Automatic modulation classification (AMC)
serves as a foundational pillar for cognitive radio
systems, enabling critical functionalities includ-
ing dynamic spectrum allocation, non-cooperative
signal surveillance, and adaptive waveform op-
timization. However, practical deployment of
AMC faces a fundamental challenge: prediction
ambiguity arising from intrinsic similarity among
modulation schemes and exacerbated under low
signal-to-noise ratio (SNR) conditions. This phe-
nomenon manifests as near-identical probability
distributions across confusable modulation types,
significantly degrading classification reliability.
To address this, we propose Fuzzy Regularization-
enhanced AMC (FR-AMC), a novel framework
that integrates uncertainty quantification into the
classification pipeline. The proposed FR has three
features: (1) Explicitly model prediction ambigu-
ity during backpropagation, (2) dynamic sample
reweighting through adaptive loss scaling, (3) en-
courage margin maximization between confus-
able modulation clusters. Experimental results
on benchmark datasets demonstrate that the FR
achieves superior classification accuracy and ro-
bustness compared to compared methods, making
it a promising solution for real-world spectrum
management and communication applications.

1. Introduction
Automatic modulation classification (AMC) plays a critical
role in various fields, including electromagnetic spectrum
management (Peng et al., 2021), radar systems (Li, 2020),
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Figure 1. The blue line in (a) illustrates the prediction ambiguity,
and the red line is the ideal case. (b) The sample proportion of
prediction ambiguity in different models under different data sets is
calculated, indicating that prediction ambiguity is not an accidental
phenomenon.

unmanned aerial vehicle regulation (Guo et al., 2024), and
biomedical signal processing (Gao et al., 2023). The goal
of signal classification is to identify the target category of
digital signals collected by physical sensing devices. Al-
though data acquisition technology has advanced rapidly,
the unique characteristics of signals make them highly sus-
ceptible to interference from various noise sources during
the collection process. Consequently, effectively recogniz-
ing noisy data has become a prominent and widely discussed
challenge today.

Deep learning has achieved remarkable success in various
fields such as natural language processing (Zini & Awad,
2022), image processing (Qian & Fouhey, 2023) and multi-
modal learning (Liang et al., 2025). In recent years, it
has also been introduced into signal classification tasks,
significantly improving classification accuracy (Yuan et al.,
2025; Zeng et al., 2024). However, with the continuous
evolution of signal modulation methods, some modulation
methods in the signal modulation category are only different
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in the code bits. We plot the IQ of some modulation classes
(see A.1) and find that there is little difference between these
modulation modes with only different coding bits, such as
8PSK and QPSK. Models often exhibit low accuracy when
recognizing such categories.

To investigate the classification challenges of these fine-
grained modulation types, we analyze the Softmax values
of the model’s final layer, and observe an interesting phe-
nomenon: the model’s predictions for fine-grained samples
are uncertain. For instance, in a nine-class classification
task, when one model takes signal samples as input, and it
outputs nine values representing the probabilities of the sam-
ple belonging to each of the nine categories. Among these
probabilities, the difference between the top two rankings is
very small. For example, the highest predicted probability is
0.45, while the second-highest is 0.42, as shown by the blue
curve in Fig. 1(a). This phenomenon is referred to in this
paper as the model prediction ambiguity phenomenon. We
believe that the essential reason for this phenomenon is that
the model has not learned effective features between similar
classes. So, the model is easily confused when predicting
such samples, and the prediction results are uncertain. Ide-
ally, the distribution should resemble the red curve in Fig.
1(a), where category predictions are more definitive.

Unfortunately, prediction ambiguity phenomenon com-
monly exists in AMC. To illustrate the fact, we conducted
classification tasks on the Data2016a and Data2018 datasets
using five methods. These samples are characterized with
IQ features with lengths of 128 and 1024, respectively. Dur-
ing the experiments, we counted the number of samples in
the final training batch where the difference between the
highest and second-highest probabilities was less than 0.3.
Such samples were considered to exhibit prediction ambi-
guity. We also calculated the proportion of these samples
relative to the entire training set. From the bar chart in Fig.
1(b), it is evident that approximately 25% of samples in each
of the ten tasks exhibited prediction ambiguity, indicating
that prediction ambiguity phenomenon is not a coincidence.

In this paper, we conducted a modeling analysis of this
phenomenon, quantified the degree of prediction ambigu-
ity in the model, and examined the relationship between
prediction ambiguity and regularization gradients during
training. When prediction ambiguity is pronounced, the
regularization should return a larger gradient update to sup-
press the phenomenon. As prediction ambiguity diminishes,
the regularization gradient should decrease correspondingly
to ensure stable model training. Ultimately, we proposed a
Fuzzy Regularization with an adaptive gradient mechanism
to mitigate prediction ambiguity and guide the model toward
learning more robust parameters in noisy environments.

In summary, ours main contributions are as follows:

1) We identify the prediction ambiguity phenomenon in
automatic modulation classification and demonstrate
that the model has the potential to achieve more optimal
parameters by reducing ambiguity in its predictions.

2) We quantify the degree of prediction ambiguity and pro-
posed Fuzzy Regularization (FR) with an adaptive gra-
dient update mechanism. By penalizing model’s pre-
diction ambiguity, the model can be effectively guided
toward learning more robust and optimal parameters.

3) We evaluate FR on the RADIOML 2016.10a, RA-
DIOML 2016.10b, and RADIOML 2018.01A datasets.
The results demonstrate that Fuzzy Regularization not
only enhances the model’s robustness but also im-
proves its convergence speed to a certain extent.

2. Related Work
2.1. Automatic Modulation Classification

Automatic modulation recognition, as a key technology
for managing the electromagnetic spectrum, has attracted
increasing attention in recent years. Compared to previ-
ous methods based on hypothesis testing (Panagiotou et al.,
2000; Wang & Wang, 2010; Xu et al., 2010) or feature en-
gineering (Boutte & Santhanam, 2009; Su, 2013; Wu et al.,
2008), deep learning-based automatic modulation methods
show superior performance and can automatically construct
effective discriminative features. Li et al. proposed a deep
convolutional neural network based on AN-SF-CNN for
very high frequency (VHF) radio signals (Li et al., 2018).
Zhang et al. (Zhang et al., 2020) proposed a CNN-LSTM
dual-stream architecture that effectively explores the inter-
action between time and spatial features. Xiao et al. (Xiao
et al., 2023) designed a complex-valued network that di-
rectly models the complex relationships between complex-
valued features. Zhang et al. (Zhang et al., 2023) intro-
duced an automatic modulation classification method based
on a multispectral attention mechanism from a frequency
perspective. Peng et al. (Peng et al., 2018) transformed
signal data into image representations for modulation clas-
sification. In summary, existing methods mainly focus on
model architecture and model input. In contrast, we propose
Fuzzy Regularization—a universally applicable regulariza-
tion strategy that operates in the prediction space of auto-
matic modulation recognition (AMR). This paradigm shift
from architecture/input-centric to prediction-centric regu-
larization establishes a new framework for building robust
AMR systems in open-world scenarios.

2.2. Regularization

Regularization technique is frequently employed to better
guide parameter optimization, ultimately reducing valida-
tion errors. Many strategies have been proposed typically
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targeting domain-specific challenges. In the field of image
recognition, to defend against adversarial attacks, Lee et
al. (Lee et al., 2022) proposed a gradient diversity regu-
larization to constrain and reduce gradient concentration,
thereby building robust neural networks. Zhao et al. (Zhao
et al., 2024) enhanced model performance by imposing
penalties that encourage deterministic overall likelihood pre-
dictions. In multi-modal tasks, Ghahremani et al. (Ghahre-
mani Boozandani & Wachinger, 2024) used the Frobenius
norm to build a regularization-based batch normalization
technique to reduce confounding effects and achieve in-
dependence between different modalities. For the open-
set problem in automatic modulation recognition, Li et al.
(Li et al., 2023) designed a margin prototype constraint to
reduce the open space size by restricting the sample dis-
tribution range, thereby reducing the risk of open space.
Additionally, Szegedy et al. (Szegedy et al., 2016) proposed
a label smoothing regularization to alleviate the overfitting
problem of the model. Compared with the aforementioned
regularization methods, the fuzzy regularization proposed in
this paper considers the impact of the regularization gradient
during the model training process and design an adaptive
gradient update mechanism.

3. The Proposed Method
This section primarily introduces the construction of the
Fuzzy Regularization (FR) mechanism1. Subsection 3.1
presents a modeling analysis of the prediction ambiguity
phenomenon, demonstrating that the model has the opportu-
nity to learn better parameters by suppressing the ambiguity.
Subsection 3.2 introduces how entropy and variance func-
tions can be used to quantitatively measure the prediction
ambiguity. Subsection 3.3 explains the implementation of
the adaptive gradient mechanism and final definition of FR.

3.1. Problem Modeling

As mentioned in the introduction, when prediction ambi-
guity occurs in signal classification tasks, it indicates that
the model has the potential to learn more robust parameters.
This is because, for the cross-entropy loss function, when
the model classifies correctly, the larger the maximum pre-
dicted probability for the correct class and the smaller the
predicted probabilities for other classes, the lower the cross-
entropy loss. So why does not the model further optimize
this part of the loss?

We attempt to model and analyze this issue from a prob-
abilistic statistics perspective. To simplify the modeling,
we assume this is a binary classification problem with a
single target. For a training batch X = {x1, x2, . . . , xk}

1The code is available at https://github.com/
ruijiesang/FR-AMC.
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Define pi is an independent and identically distributed
random variable, represents the highest probability value
predicted by the model for each category of the ith sam-
ple (pi = Max(ŷ

(i)
1 , ŷ

(i)
2 )). For a batch of k samples in

which m samples are misclassified, the corresponding cross-
entropy loss (L(m)

batch) can be expressed as:

L(m)
batch(pi) = −1

k
(

m∑
i=1

log(1− pi) +

k∑
i=m+1

log(pi)). (2)

If the probability of the model classifying a single sample
correctly is α, then the probability of classification error is
1− α. In a binary classification task involving k samples,
the probability that the model misclassifies m samples is:

P
(m)
batch(α) = Cm

k (1− α)m(α)k−m. (3)

Combining Eqs. (2) and (3), we construct the following
expected loss model:

E(Lbatch) =

k∑
m=0

P
(m)
batch(α)L

(m)
batch(pi). (4)

Due to the model’s poor discriminative ability between these
two classes, the classification accuracy α can be assumed to
fluctuate around 0.5. According to the law of large numbers,
as the number of trials increases, the sample mean of the
random variable will converge to its theoretical expectation,
thus α = 0.5. Moreover, during the same training batch,
the model’s performance is unlikely to change significantly.
This implies that the highest value of the predicted probabil-
ity tend to stabilize and can be approximated by a constant
u (0 < u < 1). Consequently, it can further be assumed
that pi = u. Based on these assumptions, Eq. (4) can be
simplified as follows:

E(Lbatch) =
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P
(m)
batch(
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2
)L(m)

batch(u), (5)
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where L(m)
batch(u) = − 1

k (m log(1− u) + (k −m) log(u)),
P
(m)
batch(

1
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By reorganizing and combining Eq. (5), Eq. (4) can be
further expanded as:
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= Q∗(log(u) + log(1− u)))
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k (
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k(
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i=0 C
i
k(k − i)).

During the training process, the model adjusts its parameters
by optimizing the objective function argminu E(Lbatch).
We observe that when u = 0.5, the expected loss E(Lbatch)
reaches its minimum. We believe this result occurs because
the model’s discriminative ability is weak when dealing with
similar classes. Even after multiple iterations, the model
fails to effectively extract the critical discriminative features
of these similar classes. As a result, the model exhibits a
“lazy” behavior, tending to smooth the predicted probability
distribution, which leads to prediction fuzziness. As seen in
the above formula, by fuzzifying the prediction distribution,
the model can effectively control the growth of the loss. To
alleviate this issue, we propose Fuzzy Regularization (FR).
When the model exhibits weak discriminative power for sim-
ilar classes and shows prediction fuzziness, FR introduces
an additional penalty term. This term forces the model to
learn the relationships between the top k predicted classes,
thereby encouraging the model to learn better parameters
and improve its robustness.

3.2. Quantifying Ambiguity Degree of Predict Results

To optimize the prediction fuzziness issue, we first need to
quantify and define the degree of fuzziness in the model’s
predictions. The degree of fuzziness essentially reflects
the level of disorder in the model’s predictive distribu-
tion, which represents the degree of informational disorder.
Therefore, one can naturally think of entropy functions and
L2 norms, both of which can describe the degree of disorder
in the information. Thus, we can use entropy functions and
L2 norms to quantify the degree of prediction fuzziness.

Specifically, for the entropy function, when the prediction
is fuzzy, meaning the information is more disordered, it
returns a larger value. When the prediction distribution
is more certain, meaning the information is more definite,
the entropy function returns a smaller value. For the L2
norm, when the prediction is fuzzy, meaning the predicted
probability distribution is more spread out, the L2 norm
returns a smaller value. When the prediction fuzziness is
not significant, meaning the predicted probability values are
more concentrated, the L2 norm returns a larger value.

Let M denote the prediction fuzzy loss for a c-class classifi-
cation problem, where higher values of M indicate greater
ambiguity in the model’s predictions. We can quantify it
using either the entropy function or the L2 norm. The two
formulations are given as follows:

M =−
c∑

j=1

ŷj log(ŷj), (7)

M =−
c∑

j=1

(ŷj −
1

c
)2, (8)

where ŷj represents the model’s prediction probability value
that the sample may belong to each class.

3.3. Adaptive Adjustment of the Update Gradient

After constructing the quantitative representation of the pre-
diction ambiguity, we attempt to directly add Eq. (7) or
Eq. (8) from Section 3.2 as a regularization term to the
loss function, aiming to impose an additional penalty when
prediction ambiguity occurs, in order to suppress this phe-
nomenon. However, the experimental results were not as
expected. Upon analysis, we found that this issue might be
due to the gradient update strength of the entropy function or
L2 norm. See A.2 for detailed analysis. The final definition
of fuzzy regularization (FR) is as follows:

• When the prediction is ambiguous, the loss function
should return a larger value; when the prediction ambi-
guity is not significant, the loss function should return
a smaller value.

• When the prediction is ambiguous, the gradient of the
loss function should correspond to a larger value; when
the prediction ambiguity is not significant, the gradient
of loss function should correspond to a smaller value.

Under the binary classification problem, we assume that the
probability value of the first category is p, then the probabil-
ity value of the second category is 1− p, and the coordinate
system is established with the prediction probability value
of the first category p as the horizontal coordinate and the
degree of prediction ambiguity as the vertical coordinate.
The red dot indicates the most serious prediction ambiguity.

That is, we expect the gradient of the regularization term to
have a shape similar to y = − 1

x , as shown in Fig. 2(a). By
integrating y = − 1

x , we obtain y = − log(|x| − 0.5). To
reduce the computational complexity, we use the L2 norm
as the quantitative measure of model prediction ambiguity.
Meanwhile, to eliminate the influence of the model’s pre-
dicted distribution on M (for example, when the two largest
prediction probabilities are [0.3, 0.3] or [0.4, 0.4], both indi-
cating significant prediction ambiguity, but the resulting M
values are different), we focus solely on the distribution state
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Figure 2. Ideal curve and its derivative are shown in black and red,
respectively, in (a); FR curve and its derivative in (b). x and y
axises denote the category probability value and fuzziness degree.

and normalize M . Based on this, the prediction ambiguity
loss for a single sample is given as follows:

Loss = log(
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k )2
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2 − k × (

∑k
j=1 ŷj
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Here, ŷj represents the model’s predicted probability for
each class, Σk

j=1ŷj
2 represents the L2 norm of the sample,

k× (
∑k

j=1 ŷj

k )2 represents the minimum L2 norm when con-
sidering the top k values. For instance, when k=3, if the

predicted distribution is (
∑3
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3 ,
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j=1 ŷj
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j=1 ŷj

3 ), the pre-
diction ambiguity is most severe. (

∑k
j=1 ŷj)

2 represents the
maximum L2 norm when considering the top k values. For
example, when k=3, if the predicted distribution is (Σk

j=1ŷj ,
0, 0), there is no prediction ambiguity. log(∗) ensures the
adaptive adjustment of the regularization gradient.

In the training process, batch training is typically used,
where each batch consists of multiple samples, and a sin-
gle loss value is returned for the batch. The loss function
described above only reflects the prediction distribution of
an individual sample, without fully utilizing the informa-
tion between samples to guide the model. To address this,
we integrate both individual sample information and the
overall information of the entire batch using a log-normal
distribution function. Our final FR is defined as follows:

F(ŷ) =
σ

T
√
2π

exp[−σ2

2
log(T)2], (10)
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ŷ
(i)
j

)2
−k

(∑k
j=1 ŷ
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where ŷ denotes the output of the model, ŷ(i)j denotes the
probability that the ith sample belongs to class j, N denotes
the sample size of the batch, τ denotes the τ classification
task and k denotes the selection of the first k values.

Table 1. Performance comparison with best-performing methods.

Datasets Methods F1-Score ACC H ACC

Data2016a

DAELSTM 0.7766 78.55% 80.84%
FEAT 0.7544 76.67% 78.31%

MCLDNN 0.6772 69.66% 70.98%
ThreeStream 0.7683 78.11% 80.35%

Resnet 0.7347 74.48% 77.29%
Ours 0.8091 81.68% 84.90%

Data2016b

DAELSTM 0.9139 91.63% 93.02%
FEAT 0.8186 83.10% 83.66%

MCLDNN 0.9065 91.16% 92.02%
ThreeStream 0.9035 90.76% 92.34%

Resnet 0.8919 89.52% 90.69%
Ours 0.9210 92.62% 93.58%

Data2018

DAELSTM 0.7535 75.81% 89.33%
FEAT 0.7129 72.33% 79.52%

MCLDNN 0.7895 80.28% 91.62%
ThreeStream 0.8197 82.08% 93.74%

Resnet 0.7267 73.67% 86.46%
Ours 0.8666 86.75% 96.62%

As illustrated in Fig. 2(b), the black curve represents the
Fuzzy Regularization (FR) function, while its derivative is
shown in red. The derivative of FR does not fully satisfy the
second part of the definition, but it does not contradict our
intention. Because the prediction ambiguity will gradually
weaken under the supervision of FR, we only hope that
the gradient of FR will decrease with the weakening of the
fuzziness in the case that the prediction ambiguity is not
very serious (the red shaded part).

4. Experiments
In this section, we show the advantages of the Fuzzy Regu-
larization (FR) from effectiveness, generalizability, robust-
ness, training behaviour, and parameter sensitivity.

4.1. Experiments Settings

Our datasets are primarily derived from publicly available
wireless modulation type recognition datasets. We evalu-
ated the effectiveness of Fuzzy Regularization (FR) in sup-
pressing prediction ambiguity using five models2: ResNet
(O’Shea et al., 2018), DAELSTM (Ke & Vikalo, 2021),
MCLDNN (Xu et al., 2020), Three-Stream (Liang et al.,
2021), and FEAT (Chen et al., 2023) on the RadioML
2016.10a (Data2016a) (O’shea & West, 2016), RadioML
2016.10b (Data2016b) (A.3), and RadioML 2018.01A
(Data2018) (O’Shea et al., 2018) signal datasets. The eval-
uation was based on three metrics: F1-Score, ACC, and
H-ACC. Detailed descriptions of datasets (A.3), the meth-
ods (A.4) and evaluation metrics (A.5) can be found in the
appendix.

2The code can be found https://github.com/
DTMB-DL/TransGroupNet.
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Table 2. Comparison of methods across datasets.

Methods Data2018 Data2016a Data2016b

F1-Score ACC H ACC F1-Score ACC H ACC F1-Score ACC H ACC
DAELSTM 0.7535 75.81% 89.33% 0.7766 78.55% 80.84% 0.9139 91.63% 93.02%
DAELSTM+FR 0.7684 78.08% 92.02% 0.8091 81.68% 84.90% 0.9157 92.03% 93.22%
∆% +1.49% +2.27% +2.69% +3.25% +3.13% +4.06% +0.18% +0.40% +0.20%
FEAT 0.7129 72.33% 79.52% 0.7544 76.67% 78.31% 0.8186 83.10% 83.66%
FEAT+FR 0.7275 74.36% 81.89% 0.7713 78.25% 79.62% 0.8295 83.69% 84.45%
∆% +1.46% +2.03% +2.37% +1.69% +1.58% +1.31% +1.09% +0.59% +0.79%
MCLDNN 0.7895 80.28% 91.62% 0.6772 69.66% 70.98% 0.9065 91.16% 92.02%
MCLDNN+FR 0.8026 81.48% 92.29% 0.7237 73.79% 75.32% 0.9210 92.62% 93.58%
∆% +1.31% +1.20% +0.67% +4.65% +4.13% +4.34% +1.45% +1.46% +1.56%
ThreeStream 0.8197 82.08% 93.74% 0.7683 78.11% 80.35% 0.9035 90.76% 92.34%
ThreeStream+FR 0.8666 86.75% 96.62% 0.7938 80.37% 83.04% 0.9119 91.67% 92.65%
∆% +4.69% +4.67% +2.88% +2.55% +2.26% +2.69% +0.84% +0.91% +0.31%
Resnet 0.7267 73.67% 86.46% 0.7347 74.48% 77.29% 0.8919 89.52% 90.69%
Resnet+FR 0.7442 74.98% 87.39% 0.7500 75.81% 77.99% 0.8997 90.43% 91.44%
∆% +1.75% +1.31% +0.93% +1.53% +1.33% +0.70% +0.78% +0.91% +0.75%

4.2. Comparison with Other Methods

In this section, we respectively selected the best-performing
models on Data2016a, Data2016b and Data2018 datasets,
namely DAELSTM, DAELSTM and ThreeStream. Ver-
ify whether it is possible to further enhance the perfor-
mance of the best-performing models by adding FR. As
shown in Table 1, our method outperforms the current
best-performing models across all three datasets. On the
Data2016a, Data2016b, and Data2018 datasets, our method
shows a 1%-4% performance improvement over the best-
performing models in both ACC and H-ACC.

It is also found that the performance improvement brought
by the FR regularization varies across different datasets.
This phenomenon might be attributed to the fact that the
existing SOTA methods already achieve high performance
on the Data2016b dataset, with a peak average accuracy of
91.63%. In contrast, the highest average accuracy on the
Data2016a and Data2018 datasets is only about 80%. This
indicates that the SOTA models on the Data2016b dataset
have already identified a relatively optimal classification
plane, resulting in a smaller corrective effect when the FR
regularization is applied.

Across all three datasets, our method outperforms the com-
pared models in both average accuracy and peak accuracy,
demonstrating that the FR term can effectively refine the
classification plane, thereby improving model performance.

4.3. Generalizability of the Fuzzy Regularization (FR)

This section aims to validate the generalizability of the pro-
posed FR by integrating it into five state-of-the-art (SOTA)
methods. To ensure the fairness and reliability of the experi-
ments, all controllable parameters—including the learning
rate, random seeds, and model initialization—were kept

consistent before and after applying FR.

As demonstrated in Table 2, the methods enhanced with
FR consistently outperform their counterparts across all
datasets and performance metrics. Specifically, for the same
task (i.e., the same model and dataset), the maximum im-
provement in accuracy (ACC) is observed from 69.66% to
73.79%, while the harmonic accuracy (H-ACC) increases
from 70.98% to 75.32%, both achieving an approximate
4% enhancement. Conversely, the smallest improvement is
noted for ACC, which rises from 91.63% to 92.03%, and
H-ACC, which increases from 93.02% to 93.22%, with an
increment of only 0.3%.

To further analyze the variability in performance improve-
ments across tasks, we investigated the correlation between
the effectiveness of FR and the proportion of samples ex-
hibiting prediction ambiguity in tasks without FR. No-
tably, for the task with the highest performance improve-
ment, 35.2% of the samples exhibited prediction ambiguity,
whereas for the task with the lowest improvement, this pro-
portion was only 5.14%. This finding suggests that FR
provides greater performance gains for tasks with more se-
vere prediction ambiguity, highlighting its ability to address
such challenges effectively.

In summary, the experimental results comprehensively vali-
date the general applicability and effectiveness of FR across
diverse datasets, particularly in scenarios where prediction
ambiguity is prevalent.

4.4. Robustness of the Fuzzy Regularization (FR)

Post-deployment automatic modulation recognition models
inevitably encounter interference from the different envi-
ronment from the training data. Therefore, enhancing the
model’s robustness becomes a critical consideration. Theo-
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Table 3. Performance comparison on data sets with different noise factors.

Datasets Methods
Noisy Factor 20% Noisy Factor 40% Noisy Factor 60%

F1-Score ACC H ACC F1-Score ACC H ACC F1-Score ACC H ACC

Noise2016a

DAELSTM 0.7662 77.18% 79.66% 0.6918 71.41% 74.17% 0.5733 60.04% 63.50%
DAELSTM+FR 0.7754 79.61% 82.82% 0.7220 73.14% 75.64% 0.6322 63.51% 66.45%
FEAT 0.7558 76.66% 78.08% 0.5648 58.80% 59.90% 0.5398 56.38% 58.08%
FEAT+FR 0.7868 79.80% 80.87% 0.5675 59.27% 59.79% 0.5487 56.79% 58.08%
MCLDNN 0.6615 68.62% 70.09% 0.5518 57.85% 59.28% 0.5294 56.03% 58.20%
MCLDNN+FR 0.7027 71.44% 72.98% 0.5679 58.90% 60.41% 0.5408 56.67% 59.13%
ThreeStream 0.6749 70.76% 73.13% 0.6436 65.63% 69.08% 0.5315 53.13% 58.25%
ThreeStream+FR 0.7789 78.90% 81.36% 0.7140 72.12% 75.76% 0.6017 61.06% 64.80%
Resnet 0.7282 73.75% 76.28% 0.6838 68.94% 72.01% 0.5971 60.21% 63.28%
Resnet+FR 0.7393 74.70% 76.59% 0.6992 70.68% 72.60% 0.6326 64.24% 66.96%

Noise2016b

DAELSTM 0.8899 89.36% 90.95% 0.8147 81.81% 83.73% 0.6660 68.55% 70.92%
DAELSTM+FR 0.8932 89.86% 91.13% 0.8196 82.75% 84.56% 0.6890 69.79% 72.29%
FEAT 0.8177 82.65% 83.68% 0.7656 78.81% 79.79% 0.6839 71.72% 72.99%
FEAT+FR 0.8166 82.84% 83.75% 0.7941 80.36% 81.52% 0.7246 73.97% 75.49%
MCLDNN 0.8406 85.26% 86.47% 0.7164 76.21% 77.52% 0.5410 59.02% 60.95%
MCLDNN+FR 0.9028 90.73% 91.71% 0.8115 81.91% 83.30% 0.7245 74.31% 75.91%
ThreeStream 0.8500 85.91% 87.25% 0.7149 75.86% 78.06% 0.5270 57.13% 60.14%
ThreeStream+FR 0.8719 87.66% 88.78% 0.7605 78.70% 80.57% 0.6834 69.95% 72.20%
Resnet 0.8654 87.02% 88.17% 0.7887 80.15% 81.29% 0.6790 70.02% 71.98%
Resnet+FR 0.8665 87.24% 88.33% 0.8036 81.09% 82.57% 0.7038 72.09% 73.91%

Noise2018

DAELSTM 0.6846 70.11% 81.47% 0.5563 58.04% 66.50% 0.4407 46.98% 54.24%
DAELSTM+FR 0.7049 71.03% 81.75% 0.5826 59.40% 68.22% 0.4673 48.27% 55.71%
FEAT 0.6205 64.20% 70.48% 0.5341 56.53% 62.20% 0.4766 50.18% 55.85%
FEAT+FR 0.6369 65.99% 73.30% 0.5742 59.19% 65.32% 0.4847 51.03% 56.40%
MCLDNN 0.6826 70.12% 78.82% 0.4829 50.02% 56.14% 0.2193 27.25% 30.23%
MCLDNN+FR 0.7241 73.33% 82.71% 0.5043 53.43% 60.82% 0.2417 29.93% 33.06%
ThreeStream 0.7387 74.40% 84.12% 0.4475 46.28% 49.82% 0.0804 12.93% 14.46%
ThreeStream+FR 0.7600 76.38% 85.58% 0.4429 46.52% 50.24% 0.1613 19.90% 22.74%
Resnet 0.6330 64.75% 74.06% 0.5199 54.06% 60.49% 0.4222 44.16% 49.43%
Resnet+FR 0.6370 64.86% 74.30% 0.5359 54.89% 61.25% 0.4314 45.75% 51.42%

retically, FR improves robustness by suppressing ambiguity
through reducing intra-class distances and enlarging inter-
class distances, thereby enhancing the model’s performance.

To empirically validate whether FR enhances model robust-
ness, we conducted a series of experiments. When data are
perturbed, smaller intra-class distances and larger inter-class
distances ensure that the projections of perturbed samples on
the classification plane remain within a controllable range,
thereby reducing the likelihood of misclassification. To
this end, we designed experiments using the Data2016a,
Data2016b, and Data2018 datasets, generating correspond-
ing noisy datasets named Noise2016a, Noise2016b, and
Noise2018. The detailed noise generation process is de-
scribed in Appendix A.4.

As shown in Table 3, the robustness of models equipped
with FR modules is significantly improved across different
tasks. For instance, MCLDNN-FR achieves a performance
improvement of up to 15% (from 59.02% to 74.31%) on
Noise2016b under a 60% noisy factor, increasing accuracy.
For other tasks, performance gains of 1%-3% are consis-
tently observed. These results demonstrate that FR effec-

tively identifies classification planes with smaller intra-class
distances and larger inter-class distances, thereby enhancing
robustness against noisy data.

Without FR supervision FR supervision（Ours）

Noise
Factor
  0.2

Noise
Factor
  0.4

Figure 3. T-SNE intuitively shows that two similar modulation
classes can be effectively distinguished by adding FR regulariza-
tion. (Red dots represent 8PSK and blue dots represent QPSK)

Furthermore, to visually illustrate the impact of FR on the
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Figure 4. It presents the accuracy curves and loss curves on different noise datasets when there is FR and when there is NO FR(NF).

model’s classification hyperplane, we selected two simi-
lar modulation classes, QPSK and 8PSK, as discussed in
Section 1. The same baseline model was trained with and
without FR regularization, and the final layer outputs of
the two classes were visualized using t-SNE. As shown in
Fig. 3, the classification hyperplane under FR supervision
exhibits clearer separation between classes compared to the
one without FR regularization, confirming its effectiveness
in encouraging margin maximization between confusable
modulation clusters.

In summary, both quantitative metrics and visualization
results validate that FR significantly enhances the robustness
of automatic modulation recognition models for noisy data.

4.5. Training Behaviour Analysis

This section elucidates the mechanisms behind the acceler-
ated convergence and stabilized training trajectories induced
by Fuzzy Regularization (FR).

As shown in Fig. 4, the FR-regularized model (red curve)
achieves both faster convergence and smoother training tra-
jectories compared to the baseline (blue curve). We attribute
this dual improvement to FR’s ambiguity-aware curriculum
learning mechanism: (1) Early-Stage Prediction Sharpen-
ing. FR induces rapid entropy reduction for high-confidence
predictions during initial training phases. Sharpening the
probability distribution of correctly classified samples leads
to their prediction distribution becoming more certain early,
reducing further optimization for those samples. This aligns
with curriculum learning principles (Bengio et al., 2009),
where easier patterns are mastered before complex ones.
(2) Dynamic Hard Sample Emphasis. Sharpening the pre-
diction distribution for incorrect samples makes the errors
more pronounced, causing the cross-entropy function to fo-

cus more on those incorrectly predicted samples, allowing
for quicker correction. Thus, under FR supervision, the
model converges faster. It can also be observed that the red
curve represents smoother overall training.

10 8 10 7 10 6 10 5

75%

80%

85%

90%

A_k = 3
B_k = 3

A_k = 4
B_k = 4

A_k = 5
B_k = 6

A_k = 6
B_k = 10

A_k = 8
B_k = 11

Figure 5. The horizontal coordinate is γ , which represents the
scaling factor before FR, A k represents the selection of parameter
k under the Data2016a dataset, and B k represents the selection of
parameter k under the Data2016b dataset.

4.6. Parameter Sensitivity Analysis

In this section, we will discuss how to quickly determine the
satisfying values for two hyperparameters when using FR
across different tasks. Fig. 5 illustrates the model accuracy
achieved by the ThreeStream+FR with various parameter
combinations on the Data2016a and Data2016b datasets.
Through comprehensive analysis, it is can be seen that the
optimal value of γ is related to the magnitude of the ini-
tial FR compared to the cross-entropy loss. Specifically,
when the initial FR is approximately two orders of magni-
tude smaller than the cross-entropy loss, the model tends to
achieve peak performance. Regarding the parameter k, our
analysis reveals that the parameter k is intrinsically linked
to the number of semantically similar classes associated
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with each category in the dataset. For instance, if a class
has m semantically related classes, the output activations
corresponding to these m + 1 classes tend to be the most
proximate. Consequently, setting k to the cardinality of
the semantically similar class set generally yields optimal
performance. These insights provide valuable guidance for
parameter tuning in FR applications.

5. Conclusion
In this paper, we start from the prediction ambiguity phe-
nomenon that arises in deep learning-based automatic mod-
ulation recognition tasks, providing a theoretical derivation
for this phenomenon. We then design the FR method to
suppress the occurrence of prediction ambiguity, thereby
guiding the model to find a better and more robust decision
boundary. When designing the FR regularization, we also
consider the impact of the gradient of the regularization
term on model training, so we introduce an adaptive gra-
dient mechanism. As the prediction ambiguity gradually
diminishes, the absolute value of the update gradient of the
FR decreases accordingly, ensuring that the model gradually
converges during training. Furthermore, the experimental
section demonstrates the effectiveness and generality of our
method, and verifies that the model under FR supervision
exhibits improved robustness when confronted with noisy
data. In the future, we will focus on exploring the more
effective fuzzy regularization forms.
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A. Appendix
In the supplemental material:

• A.1. Signal Visualization.

• A.2. Regular Gradient Problem.

• A.3. Datasets.

• A.4. Compared Methods.

• A.5. Evaluation Metrics.

A.1. Signal Visualization

AM-DSB-WC

30
dB

16
dB

8ASK

GMSKAM-SSB-SC OQPSK

30
dB

16
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AM-SSB-WC

64QAM

QPSK8PSK

Figure 6. An IQ map of partial automatic modulation recognition under 16dB and 30dB, with 8PSK and QPSK in the red dashed line
representing two more similar modulation classes.

A.2. Regular Gradient Problem

(a) Entropy Function (b) Variance Function

Figure 7. The horizontal coordinate represents the prediction probability value that the model considers the sample to belong to the first
category under the binary classification task, and the vertical coordinate represents the degree of prediction ambiguity. (a) means that
entropy function is used to measure the degree of prediction ambiguity; (b) means that variance function is used to measure the degree of
prediction ambiguity.
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As shown in the Fig.7, when the prediction ambiguity is not obvious, that is, when the model is more confident in the
prediction results, the update gradient of the entropy function or variance function still corresponds to a large value, which
leads to a large degree of change in the parameters of the model when the distribution of the predicted probability value of
the model reaches our ideal distribution, resulting in unstable model training and difficulty in finding the optimal solution.

A.3. Datasets

Our datasets mainly come from publicly available wireless modulation recognition datasets. We evaluated the effectiveness
of FR in suppressing prediction ambiguity on six signal datasets: RadioML2016.10a, RadioML2016.10b, RADIOML
2018.01 A and their corresponding noise versions including Noise2016a, Noise2016b and Noise2018.

• RADIOML 2016.10a: This dataset contains 220,000 signal samples, consisting of 11 types of wireless modulation
(eight digital modulations and three analog modulations). The eight digital modulations are BPSK, QPSK, 8PSK,
16QAM, 64QAM, BFSK, CPFSK, and PAM4. The three analog modulations are WB-FM, AM-SSB, and AM-DSB.
The signal-to-noise ratio (SNR) ranges from -20dB to 18dB, with 20 different SNR levels. For each SNR and
modulation type, there are 1,000 signal samples, each with a sample length of 128.

• RADIOML 2016.10b: This dataset contains 1,200,000 signal samples, consisting of 10 wireless modulations. The
modulation classes are 8PSK, AM-DSB, BPSK, CPFSK, GFSK, PAM4, QAM16, QAM64, QPSK and WBFM. The
signal-to-noise ratio ranges from -20db to 18db, with 20 different signal-to-noise ratios. There are 6000 signal samples
with the same SNR and the same modulation category respectively, and the sampling length of each signal sample is
128.The dataset can be accessed for download from the following URL: https://www.deepsig.io/datasets.

• RADIOML 2018.01 A (O’Shea et al., 2018): This dataset consists of 2,555,904 signal samples, encompassing 24 types
of wireless modulation. The modulation types include OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK, 16PSK, 32APSK,
64APSK, 128APSK, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, AM-SSB-WC, AM-SSB-SC, AM-DSB-WC,
AM-DSB-SC, FM, GMSK, and OQPSK. The signal-to-noise ratio (SNR) ranges from -20dB to 30dB, with 26 different
SNR levels. For each SNR and modulation type, there are 4,096 signal samples, each with a sample length of 1,024.

• Noise2016a, Noise2016b, Noise2018: To validate the impact of FR on model robustness under noisy data conditions,
we generated signal data with different noise intensities based on the three datasets. Specifically, we first designed
an adjustable scaling factor to control the noise intensity. Then, we calculated the standard deviation of each sample
in the datasets and multiplied it by the scaling factor to determine the intensity of the white noise for each sample.
Subsequently, white noise was generated for each sample based on the calculated intensity. Finally, the generated white
noise was added to the original sample to obtain the final noisy data.

It is noted that adding noise to low-SNR data would significantly degrade data quality, making the model’s recognition
performance on such low-SNR noisy data extremely poor and thus lacking analytical significance. Therefore, in our
experiments, we only used data with an SNR of 0 or higher from the aforementioned three datasets.

A.4. Compared Methods

For the baseline models in our experiments, we selected five state-of-the-art models commonly used in deep learning and
signal classification tasks to evaluate the effectiveness of FR regularization. These models include ResNet, DAELSTM,
MCLDNN, Three-Stream, and FEAT. These five models encompass several critical neural network architectures, such as
convolutional neural networks, recurrent neural networks, multi-stream networks, and Transformer-based networks, ensuring
diversity across the selected models. Below is a brief introduction to each network:

• ResNet (O’Shea et al., 2018): The ResNet model is a convolutional neural network with multiple stacked residual
blocks. It efficiently extracts important features from time-series data through skip connections and convolution
operations, demonstrating strong representational capabilities.

• DAELSTM (Ke & Vikalo, 2021): DAELSTM is a model that combines an LSTM autoencoder and deep fully connected
layers, suitable for feature learning and classification of time-series data. It extracts temporal features using the LSTM
network, performs data reconstruction with the autoencoder, and classifies using the fully connected layers.
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• MCLDNN (Xu et al., 2020): The MCLDNN model integrates Convolutional Neural Networks (CNN) and Long Short-
Term Memory networks (LSTM). It extracts local features through convolution layers, captures temporal dependencies
with LSTM layers, and classifies using fully connected layers.

• Three-Stream (Liang et al., 2021): The Three-Stream model is designed to handle signal data with multiple input
channels. It consists of three main sub-networks (one for each input channel), each processing different input features
independently, and finally merging the extracted features for classification.

• FEAT (Chen et al., 2023): FEAT model effectively extracts information and classifies electromagnetic signals by
combining time-series data processing, feature extraction, and multi-head attention mechanisms.

A.5. Evaluation Metrics

We use three metrics to evaluate the model’s performance: F1-Score (F1), average model classification accuracy across all
signal-to-noise ratios (ACC), and highest model classification accuracy at a single signal-to-noise ratio (H-ACC). F1-score is
a commonly used metric in classification tasks as it balances precision and recall, providing a comprehensive assessment of
the model’s overall performance across different classes. Since a model’s classification performance varies across different
signal-to-noise ratios, we use ACC and H-ACC to explore the average effect of FR across all signal-to-noise ratios and its
effect on a single signal-to-noise ratio, respectively. Assume there are C signal-to-noise ratios in a K-class classification
task, where TPij represents the true positives (TP) for class j at signal-to-noise ratio i, the number of samples where the
actual class is j and it is predicted as j; FPij represents the false positives (FP) for class j at signal-to-noise ratio i, the
number of samples where the actual class is not j but predicted as j; FNij represents the false negatives (FN) for class j at
signal-to-noise ratio i, the number of samples where the actual class is j but predicted as a different class. The formulas for
the three metrics are as follows:


F1 = 1

K

∑C
i=1

∑K
j=1 2×

a×b
a+b ,

ACC =
∑C

i=1

∑K
j=1 b,

H−ACC = maxi∈C{
∑K

j=1 b}.
(12)

where a =
TPij

TPij+FPij
, b = TPij

TPij+FNij
.
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