
CycleTrans: a transformer-based clinical foundation model for safer prescription
Yuhan Zheng2, 3, Xiaotao Lin2, 4, Kexuan Chen1, 2, Shengxin Zhu1, 2

1Research Centers for Mathematics, Advanced Institute of Natural Science,
Beijing Normal University, Zhuhai 519087, P.R.China

2Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science,
BNU-HKBU United International College, Zhuhai 519087, P.R. China

3School of Informatics, The University of Edinburgh
4Department of Mathematics, The University of Hong Kong

Shengxin.Zhu@bnu.edu.cn

Abstract

Deep learning techniques are extensively utilized in prescrib-
ing drug combinations, drawing on extensive electronic med-
ical records (EMRs). A prescription assistant may be able to
provide immediate guidance on drug combinations for some
urgent clinical situations. A well-controlled drug-drug inter-
action (DDI) rate and high recommendation precision are of
great importance for a safe prescription. A lower DDI of-
ten implies the set of drug combinations should be as small
as possible, which is challenging because EMR prescrip-
tions for certain symptom(s) are often highly noised due
to the diversity side symptoms of individuals. We propose
a model comprised of cycle transformers (CycleTrans) to
handle these challenges. CycleTrans employs cross-attention
and transformers, integrates patients’ longitudinal EMRs,
enhances knowledge representations through the so-called
cycle-embedding module, and thus predicts safer and better
essential drug combinations for new-coming cases. The new
model achieves the state-of-the-art in three dimensions: high
precision (89%), low DDI rate (0.34%), and small drug set
size (3.02) on the MIMIC-III benchmark dataset, surpassing
previous bests of 73%, 5%, and 17 in each dimension, respec-
tively. Such a significant advancement makes a much safer
clinic prescription possible. The idea of the cycle transformer
we proposed has considerable potential for other domains be-
sides clinics, such as set recommendations, translation, and
unsupervised representation learning in knowledge graphs.

Introduction
Foundation models (FMs), a recent innovation in machine
learning, are trained on vast datasets across multiple do-
mains. They exhibit impressive performance in address-
ing various real-world AI challenges (Bommasani et al.
2022; Moor et al. 2023). Among the most notable mod-
els is OpenAI’s ChatGPT, a predominantly text-based large
language model (LLM) that has extended its capabilities
to include image processing and data analysis (Eysenbach
2023). Remarkably, ChatGPT has demonstrated the capabil-
ity to achieve passing scores in the United States Medical
Licensing Examinations (OpenAI 2023). This accomplish-
ment hints at its readiness in diverse fields such as clini-
cal environments (Thirunavukarasu et al. 2023a; Kung et al.
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2023; Thirunavukarasu et al. 2023b) and clinical foundation
models (Zhang et al. 2023a; Steinberg et al. 2023).

LLMs like ChatGPT, though trained on general datasets,
have proven effective in medical examinations (Robert
2023). However, success in passing written examinations
does not necessarily imply clinical competence (Ayers et al.
2023). The clinical requirements for experience, timeliness,
accuracy, and supervision pose significant challenges for the
application of medical foundation models. There is currently
no paradigm that adequately addresses the application of
these models in the medical field, making their practical de-
ployment contentious. Multiple articles have pointed out that
these foundation models should be utilized as tools under su-
pervision (Wornow et al. 2023). Our study is predicated on
developing a clinical foundation model that matches patients
with appropriate medications based on their specific symp-
tom information. This approach aims to achieve precision,
safety and expedited healing for patients.

Existing models, such as GatorTron and the Biomed-
CLIP model, offer valuable insights for our research (Zhang
et al. 2023b; Yang et al. 2022). Meanwhile, a plethora of
studies utilizing the MIMIC-III dataset provide extensive
analysis and benchmarks (Shang et al. 2019; Wang et al.
2019). Currently, an overemphasis on better predictive per-
formance in many articles neglects a broader set of crucial
factors. These include less labeled data, simplified model
deployment, emergent clinical applications, multimodality,
and novel human-AI interfaces (Wornow et al. 2023).

Not only do the results and model factors play a crucial
role, but the dataset also significantly impacts the overall
framework. To address the limitations of general LLMs in
clinical practicality and the existing gaps in a comprehen-
sive analysis of dataset and evaluation standards in MIMIC-
III, a more nuanced approach is required. MIMIC-III is par-
ticularly noteworthy as it encompasses a vast collection of
nearly 2 million patient notes from 2001 to 2012, docu-
mented in the ICU of the Beth Israel Deaconess Medical
Center (Johnson et al. 2016). In the fast-paced environment
of the ICU, quick decision-making is as essential as preci-
sion. In such settings, a minor oversight can lead to severe
consequences, making manual evaluation crucial. This as-
pect of urgency and precision in real-world decision-making
is often overlooked in many high-accuracy applications of
the MIMIC-III model (Wornow et al. 2023).



To more effectively address the challenges previously out-
lined, we introduce the CycleTrans model. The principal
contributions of this work are as follows:

1. This work has developed the CycleTrans model to pre-
dict specific medications for patients, according to their dis-
ease diagnoses. The model introduces a cycle-embedding
module that enhances symptom and drug embeddings,
which can be developed as a foundational model for many
downstream tasks, such as “Clinical Trial Matching” and
“Treatment Recommendation”.

2. Cross-attention and transformers are employed to inte-
grate patients’ longitudinal data, alongside a drug attention
mapping matrix for effectively mapping drug interactions.

3. The model achieves a state-of-the-art precision of
89.26%, a low DDI rate of 0.34%, and a minimum main
drug set size of 3.02.

Related Works
Among deep learning approaches to drug recommendation,
the most classical implementation is the instance-based ap-
proach, which focuses solely on the current health state in-
formation. Representative models include SMR (Gong et al.
2021) and LEAP (Zhang et al. 2017). For example, LEAP
deals with label dependency and label instance mapping
by combining a recursive decoder and content-based atten-
tion. However, such an approach does not incorporate well
the information contained in the patient’s historical health
records (Wu et al. 2022). On the other hand, longitudinal
drug recommendation methods can utilize the time depen-
dency implicitly with longitudinal patient records (Le, Tran,
and Venkatesh 2018; Yang et al. 2023). Based on this idea,
many models have also begun to consider the effect of DDIs
on the outcome of drug recommendations, thus making drug
recommendation models more reliable (Wang et al. 2021b;
Kim et al. 2023; Wang et al. 2021a; Yang et al. 2021). For
example, GAMENet (Shang et al. 2019) is building graph
models based on the co-occurrence of drugs in EMR through
memory networks and graph neural networks. COGNet (Wu
et al. 2022) is determining whether predictive medications
require a new drug or merely follow the medical history
based on the patient’s historical health records and the DDI
matrix. MEGACare (Wu et al. 2023) discerns complex rela-
tionships in the data by constructing an EMR hypergraph.
Most of the existing longitudinal models conform to the
encoder-decoder architecture, where first the encoder gener-
ates patient-level representations of known medical and pa-
tient data, and the decoder performs drug recommendation
based on the embedding of the information(Wu et al. 2022).
For more references, the reader can refer to (Ali et al. 2023).

Methodology
In clinical trials, drug recommending requires accurate diag-
nosis, comprehensive knowledge of drug effects and inter-
actions, and consideration of patient preferences and char-
acteristics. Our model consists of two key components as
shown in Figure 1, and a new fusion loss in (6) to capture all
the information, enhancing the precision and reducing the
DDI rate. The whole framework is shown in Figure 1.

In this model, Symptom and drug sets are treated akin
to words and thus ideas for translation such as cycleGAN
(Zhu et al. 2017) can be borrowed. However, for a clinic
emergency, drug combination recommendation should be as
safe as possible and higher precision is desired. Therefore,
we design a new loss such that high precision and low DDI
can be achieved.

Symptoms and Historical Diagnosis Fusion Module
This module is referred to as the “Drug Transformer” in Fig-
ure 1. Considering that the procedure recommendation must
account for patient preferences and characteristics, including
historical data, a fusion module employing a multi-head at-
tention mechanism has been designed (Vaswani et al. 2017):
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trices for the ith query, key, and value within the D dimen-
sional embedding space of the multi-head attention mecha-
nism.

Finally, we concatenate and transform h heads to form the
representation of diagnosis zd by
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where Wo ∈ RD×D denotes the weight matrix that inte-
grates the final output, while Concat(z1

d, . . . ,z
h
d ) ∈ RN×D

represents the concatenated outputs of the h attention heads.
Subsequently, a cross-attention mechanism is applied, uti-
lizing historical diagnoses as the “key” and current symp-
toms as the “query”, to merge this information for a certain
patient. This approach enables the model to assimilate com-
prehensive data, encompassing both the doctors’ current di-
agnosis and historical patient information.

Cycle-embedding Module
As this system assists doctors in decision-making, it is im-

portant to improve the predicting precision of the key drugs,
and other minor drugs can be left to the doctors’ discretion
based on the possible drug interactions and the patients’ con-
ditions. Consequently, this approach allows the system to of-
fer more precise and tailored recommendations for optimal
treatment strategies.

The sets of symptoms and drugs are conceptualized as two
distinct distributions, with a Cycle-embedding module, in-
spired by CycleGAN (Zhu et al. 2017), facilitating the pri-
mary model’s training. Minor drugs are considered random
perturbations, while key drugs represent the primary distri-
bution. The objective is to transform one distribution into
another, akin to a translation task where an accurate transla-
tion between languages should be reversible.

The “Symptom Transformer”, as depicted in Figure 1,
represents the cycle assisting module. This module pro-
cesses the currently inferred drug as input, converting it back



Figure 1: The CycleTrans architecture comprises two key modules: the Drug Transformer Module, which suggests drugs, and
the Symptom Transformer Module, which converts predicted drugs back into symptoms for cycle checking, thereby improving
the embeddings’ quality for both symptoms and drugs.

into symptoms to enhance embedding quality. The associ-
ated loss is quantified by the distance between actual and
predicted symptoms:

Lcycle =
1

N

N∑
n=1

∥hn
s − ĥn

s ∥, (3)

where hn
s is the embedding of the nth patient’s symptoms.

N denotes the number of samples.

Safe Drug Loss Design
In light of the need for high precision and a low DDI rate,
the DDI loss has been restructured, drawing inspiration from
4SDrug (Tan et al. 2022), which also expedites the training
process.

Lddi =
1

N

N∑
n=1

pn ·MDDI , (4)

where MDDI is the adjacent matrix of DDI, and the p is the
prediction of drugs set for the nth patient. In addition to the
DDI loss, it also requires a set classification loss to enhance
the precision:

αLcls = α1LCrossEntropy + α2LEMD (5)

where the LEMD is the earth mover’s distance loss that
measures the difference that a set A transfers to a set B.

Combining the above three parts, the final loss is formu-
lated as follows:

L = αLcls + βLcycle + γLddi, (6)

where α, β, and γ are hyperparameters that control the rela-
tive importance of different objectives, such as reducing the
DDI rate or increasing the precision.

Datasets MIMIC III

Model (year) Precision(%) DDI rate Avg #

LEAP (17) 65.49±0.33 0.073±8e-4 18.71±0.07
GAMENet (19) 76.31±0.30 0.086±6e-4 27.21±0.11
SafeDrug (21) 76.47±0.25 0.059±5e-4 19.92±0.16
4SDrug (22) 76.04±0.16 0.054±4e-4 14.64± 0.07
SHAPE (23) 79.06± 0.09 0.068±3e-4 20.99±0.12
ACDNet (24) 79.04±0.21 0.086±1e-3 20.49±0.12

CycleTrans 89.24±2e-3 0.008±8e-3 2.81±0.80

Table 1: Experimental results. Bold and underlined texts in-
dicate the best and the second-best scores. Avg # refers to
the average number of drugs used in a case. Results of the
above models except CycleTrans are from the SHAPE and
ACDNet papers. (Liu et al. 2023a; Mi et al. 2024)

Results
The experiment utilized a composite loss function with
weights assigned as follows: cycle loss at 0.2, classification
losses at 0.3 and 0.02 (α1 = 0.3, α2 = 0.02), and DDI loss
at 0.1. The RAdam optimizer was employed with an initial



Figure 2: Attention matrix of drug-diagnosis correlations applied to visualization of predictions. The left side shows a three-
dimensional histogram of the attention matrix, with the height indicating the size of the weights, while the right side shows the
predicted sample (HADM ID: 167243).

learning rate of 5e-4, and training spanned 20 epochs with a
batch size of 50. The results are presented in Table 1.

In the results presented in Figure 2, we illustrate an exam-
ple of an attention (sub)matrix applied to model prediction,
where the 3d bar graph on the left represents the attention
weights, which indicate the relevance of certain diagnoses
and drugs. The right part represents a prediction example
where diagnoses are known inputs and drugs are model-
predicted outputs. For instance, the status of other artificial
openings of the gastrointestinal tract (V444), which involves
surgically-created openings in the digestive system, shows a
significant correlation with Acetaminophen in the model’s
predictions. This suggests that the model emphasizes the
management of post-surgical pain, a condition that can be
alleviated by Acetaminophen (U.S. Food and Drug Admin-
istration 2023). The CycleTrans not only shows a high ca-
pacity of capturing the relationships between diagnoses and
medical treatments, but also offers a view of the factors in-
fluencing its predictions.

Discussion
In this paper, we have developed CycleTrans for utilizing
the extensive MIMIC-III corpus. Our model excels in mul-
tiple dimensions, achieving a high clinical precision rating
of 89.26%, a low DDI rate of 0.34%, and a minimum main
drug set size of 3.02.

There are other standards that CycleTrans can improve,
such as evaluation by medical professionals. The traditional
NLP metrics have been shown to correlate poorly with hu-
man judgments (Reiter 2018; Hu et al. 2022; Liu et al.
2023b). Despite recognizing the need for diverse evalua-
tive standards, especially in terms of precision and rapid re-
sponse required in medical and clinical settings, we find that
larger, domain-specific pre-trained models (e.g. GatorTron)
excel in modeling longer phrases and identifying semantic
categories (Zhang et al. 2023b). However, for complex NLP
tasks like clinical reasoning judgments and specialized med-

ical questions, even LLMs like GatorTron struggle to dis-
cern key information from longer paragraphs. Similarly, our
model also necessitates additional data, particularly recent
clinical domain data, to substantiate and validate.

There are follow-up questions worth considering. Not just
for Clinical FMs, but across neural network models, still
lack clear AI explainability. Transferring these models to
the medical field for analysis and evaluation doesn’t suffice
to understand their true practical value. Additionally, ethi-
cal and moral concerns about AI-generated conclusions re-
main a critical topic. LLMs’ outputs are increasingly pre-
ferred for their quality and empathy, even when compared
to responses from real doctors on social media (Ayers et al.
2023). Furthermore, clinical foundation models like Clini-
calBERT, Med-PaLM 2, and GatorTron have even exceeded
the capabilities of these general LLMs (Singhal et al. 2023).
However, in all medical disciplines, interpersonal commu-
nication is a vital component of patient care. LLMs have
been proven to replicate existing biases and are prone to dis-
seminating incorrect information and perpetuating errors in
AI decision-making (Clusmann et al. 2023). How to inter-
pret Clinical FMs in a way that ensures they do not pro-
duce ethical biases remains an unresolved issue. Safety, ef-
ficacy, and ethical concerns remain unresolved. Enhancing
the transparency and explainability of models is impera-
tive in medicine to foster understanding, trust, and effective
management among users of these systems (Clusmann et al.
2023). Undoubtedly, both LLMs and Clinical FMs are trans-
forming the fields of medicine and clinical practice.

In the future, we will consider larger datasets, such as
the MIMIC-IV dataset, as well as more other diverse multi-
modal datasets, to further pretrain our model enhancing its
robustness.



Acknowledgement
The authors would like to thank support from the Interdisci-
plinary Intelligence Super Computer Center of Beijing Nor-
mal University at Zhuhai. This work was partially supported
by the Natural Science Foundation of China (12271047);
UIC research grant (R0400001-22; UICR0400008-21;
UICR04202405-21); Guangdong College Enhancement and
Innovation Program (2021ZDZX1046).

References
Ali, Z.; Huang, Y.; Ullah, I.; Feng, J.; Deng, C.; Thierry,
N.; Khan, A.; Jan, A. U.; Shen, X.; Rui, W.; et al. 2023.
Deep learning for medication recommendation: a systematic
survey. Data Intelligence, 5(2): 303–354.
Ayers, J. W.; et al. 2023. Comparing physician and artificial
intelligence chatbot responses to patient questions posted to
a public social media forum. JAMA Internal Medicine, 183:
589–596.
Bommasani, R.; et al. 2022. On the opportunities and risks
of foundation models. arXiv, 2108.07258.
Clusmann, J.; Kolbinger, F. R.; Muti, H. S.; et al. 2023.
The future landscape of large language models in medicine.
Communications Medicine, 3: 141.
Eysenbach, G. 2023. The role of ChatGPT, generative lan-
guage models, and artificial intelligence in medical educa-
tion: a conversation with ChatGPT and a call for papers.
JMIR Medical Education, 9: e46885.
Gong, F.; Wang, M.; Wang, H.; Wang, S.; and Liu, M.
2021. SMR: medical knowledge graph embedding for safe
medicine recommendation. Big Data Research, 23: 100174.
Hu, X.; et al. 2022. Correlating automated and human evalu-
ation of code documentation generation quality. ACM Trans-
actions on Software Engineering and Methodology, 31: 1–
28.
Johnson, A. E.; Pollard, T. J.; Shen, L.; Lehman, L.-w. H.;
Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi,
L. A.; and Mark, R. G. 2016. MIMIC-III, a freely acces-
sible critical care database. Scientific data, 3: 160035.
Kim, T.; Heo, J.; Kim, H.; Shin, K.; and Kim, S.-W.
2023. VITA:’Carefully Chosen and Weighted Less’ Is
Better in Medication Recommendation. arXiv preprint
arXiv:2312.12100.
Kung, T. H.; et al. 2023. Performance of ChatGPT on
USMLE: potential for AI-assisted medical education using
large language models. PLoS Digital Health, 2: e0000198.
Le, H.; Tran, T.; and Venkatesh, S. 2018. Dual memory neu-
ral computer for asynchronous two-view sequential learn-
ing. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, 1637–
1645.
Liu, S.; Wang, X.; Du, J.; Hou, Y.; Zhao, X.; Xu, H.; Wang,
H.; Xiang, Y.; and Tang, B. 2023a. SHAPE: A Sample-
Adaptive Hierarchical Prediction Network for Medication
Recommendation. IEEE Journal of Biomedical and Health
Informatics, 27(12): 6018–6028.

Liu, Y.; Iter, D.; Xu, Y.; Wang, S.; Xu, R.; and Zhu, C.
2023b. Gpteval: NLG Evaluation Using GPT-4 with Better
Human Alignment. arXiv preprint arXiv:2303.16634.
Mi, J.; Zu, Y.; Wang, Z.; and He, J. 2024. ACDNet:
Attention-guided Collaborative Decision Network for effec-
tive medication recommendation. Journal of Biomedical In-
formatics, 149.
Moor, M.; Banerjee, O.; Abad, Z. S.; et al. 2023. Foundation
models for generalist medical artificial intelligence. Nature,
616: 259–265.
OpenAI. 2023. GPT-4 Technical Report. arXiv preprint
arXiv:2303.08774.
Reiter, E. 2018. A structured review of the validity of BLEU.
Computational Linguistics, 44: 393–401.
Robert, P. 2023. 5 Ways ChatGPT will change healthcare
forever, for better. Forbes Magazine.
Shang, J.; Xiao, C.; Ma, T.; Li, H.; and Sun, J. 2019.
GAMENet: Graph Augmented MEmory Networks for Rec-
ommending Medication Combination. In proceedings of the
AAAI Conference on Artificial Intelligence, 01, 1126–1133.
Singhal, K.; Tu, T.; Gottweis, J.; Sayres, R.; Wulczyn,
E.; Hou, L.; et al. 2023. Towards Expert-Level Medical
Question Answering with Large Language Models. arXiv
preprint arXiv:2305.09617.
Steinberg, E.; Xu, Y.; Fries, J.; and Shah, N. 2023. Self-
Supervised Time-to-Event Modeling with Structured Medi-
cal Records. arXiv preprint, arXiv:2301.03150.
Tan, Y.; Kong, C.; Yu, L.; Li, P.; Chen, C.; Zheng, X.;
Hertzberg, V. S.; and Yang, C. 2022. 4SDrug: Symptom-
Based Set-to-Set Small and Safe Drug Recommendation.
In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD ’22,
3970–3980. New York, NY, USA: Association for Comput-
ing Machinery. ISBN 9781450393850.
Thirunavukarasu, A. J.; Ting, D. S. J.; Elangovan, K.;
et al. 2023a. Large language models in medicine. Nature
Medicine, 29: 1930–1940.
Thirunavukarasu, A. J.; et al. 2023b. Trialling a large lan-
guage model (ChatGPT) in general practice with the applied
knowledge test: observational study demonstrating opportu-
nities and limitations in primary care. JMIR Medical Edu-
cation, 9: e46599.
U.S. Food and Drug Administration. 2023. Information on
Acetaminophen. https://www.fda.gov/drugs/information-
drug-class/acetaminophen. Accessed: 2024-01-24.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017.
Attention is All you Need. In Guyon, I.; Luxburg, U. V.;
Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; and
Garnett, R., eds., Advances in Neural Information Process-
ing Systems, volume 30. Curran Associates, Inc.
Wang, S.; Ren, P.; Chen, Z.; Ren, Z.; Ma, J.; and de Rijke,
M. 2019. Order-free medicine combination prediction with
graph convolutional reinforcement learning. In Proceedings
of the 28th ACM international conference on information
and knowledge management, 1623–1632.



Wang, Y.; Chen, W.; Pi, D.; Yue, L.; Wang, S.; and Xu, M.
2021a. Self-Supervised Adversarial Distribution Regular-
ization for Medication Recommendation. In IJCAI, 3134–
3140.
Wang, Y.; Chen, W.; Pi, D.; Yue, L.; Xu, M.; and Li, X.
2021b. Multi-hop reading on memory neural network with
selective coverage for medication recommendation. In Pro-
ceedings of the 30th ACM International Conference on In-
formation & Knowledge Management, 2020–2029.
Wornow, M.; et al. 2023. The shaky foundations of large lan-
guage models and foundation models for electronic health
records. npj Digital Medicine.
Wu, J.; He, K.; Mao, R.; Li, C.; and Cambria, E.
2023. MEGACare: Knowledge-guided multi-view hyper-
graph predictive framework for healthcare. Information Fu-
sion, 100: 101939.
Wu, R.; Qiu, Z.; Jiang, J.; Qi, G.; and Wu, X. 2022. Con-
ditional generation net for medication recommendation. In
Proceedings of the ACM Web Conference 2022, 935–945.
Yang, C.; Xiao, C.; Ma, F.; Glass, L.; and Sun, J. 2021. Safe-
Drug: Dual Molecular Graph Encoders for Recommending
Effective and Safe Drug Combinations. In Zhou, Z.-H.,
ed., Proceedings of the Thirtieth International Joint Confer-
ence on Artificial Intelligence, IJCAI-21, 3735–3741. Inter-
national Joint Conferences on Artificial Intelligence Organi-
zation. Main Track.
Yang, N.; Zeng, K.; Wu, Q.; and Yan, J. 2023. Molerec:
Combinatorial drug recommendation with substructure-
aware molecular representation learning. In Proceedings of
the ACM Web Conference 2023, 4075–4085.
Yang, X.; Chen, A.; PourNejatian, N.; et al. 2022. A large
language model for electronic health records. npj Digital
Medicine, 5: 194.
Zhang, S.; Xu, Y.; Usuyama, N.; Bagga, J.; Tinn, R.; Preston,
S.; ...; and Poon, H. 2023a. Large-scale domain-specific pre-
training for biomedical vision-language processing. arXiv
preprint, arXiv:2303.00915.
Zhang, S.; et al. 2023b. Large-Scale Domain-Specific Pre-
training for Biomedical Vision-Language Processing. arXiv,
2303.00915.
Zhang, Y.; Chen, R.; Tang, J.; Stewart, W. F.; and Sun, J.
2017. LEAP: learning to prescribe effective and safe treat-
ment combinations for multimorbidity. In proceedings of the
23rd ACM SIGKDD international conference on knowledge
Discovery and data Mining, 1315–1324.
Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017. Un-
paired image-to-image translation using cycle-consistent ad-
versarial networks. In Proceedings of the IEEE international
conference on computer vision, 2223–2232.

Appendix
Definitions
• Precision

Precision denotes the proportion of the intersection of
model-recommended drugs and real-labelled drugs to the
model-predicted drugs. the higher the value of precision,
the more accurate the model-recommended drugs are. In
this definition, we use the average Precision of all sam-
ples as a judgement criterion, so there exists a process of
finding the mean. The calculation method of Precision is
shown as follows:

1

N

N∑
i

|p(i) ∩D(i)|
|D(i)|

where p(i) denotes the predicted drug set of the model,
D(i) the number of drugs in the basic real drug set, and i
denotes the index of the test drug set.

• Drug-Drug-Interaction rate (DDI rate)
Drug-drug interactions (DDIs) refer to the phenomenon
where two or more drugs interact with each other and
negatively affect the way they work in the body. This can
lead to a variety of outcomes such as reduced efficacy, in-
creased side effects, or even toxicity of a particular drug.
In our work, we define the DDI rate as a measure that
implies the proportion of drug combinations provided by
the model that result in a DDI situation. The DDI rate
can be calculated by the following method:

1

N
∑

x,y 1

N∑
i

∣∣∣∣{(dx, dy) ∈
(
D(i) & Eddi

)}∣∣∣∣
In the formula above, each drug pair (dx, dy) will be
counted in the set if this pair exist in the drug knowledge
base, which represented as Eddi.

Source code
The source code can be found on the repository1.

1https://github.com/Undefeated-
man/Cycletrans/blob/main/README.md


