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ABSTRACT

Quadratic programming is a ubiquitous prototype in convex programming. Many
machine learning problems can be formulated as quadratic programming, including
the famous Support Vector Machines (SVMs). Linear and kernel SVMs have been
among the most popular models in machine learning over the past three decades,
prior to the deep learning era.
Generally, a quadratic program has an input size of Θ(n2), where n is the number of
variables. Assuming the Strong Exponential Time Hypothesis (SETH), it is known
that no O(n2−o(1)) time algorithm exists when the quadratic objective matrix
is positive semidefinite (Backurs, Indyk, and Schmidt, NeurIPS’17). However,
problems such as SVMs usually admit much smaller input sizes: one is given n data
points, each of dimension d, and d is oftentimes much smaller than n. Furthermore,
the SVM program has only O(1) equality linear constraints. This suggests that
faster algorithms are feasible, provided the program exhibits certain structures.
In this work, we design the first nearly-linear time algorithm for solving quadratic
programs whenever the quadratic objective admits a low-rank factorization, and the
number of linear constraints is small. Consequently, we obtain results for SVMs:

• For linear SVM when the input data is d-dimensional, our algorithm runs in
time Õ(nd(ω+1)/2 log(1/ϵ)) where ω ≈ 2.37 is the fast matrix multiplication
exponent;

• For Gaussian kernel SVM, when the data dimension d = O(log n) and the
squared dataset radius is sub-logarithmic in n, our algorithm runs in time
O(n1+o(1) log(1/ϵ)). We also prove that when the squared dataset radius is
at least Ω(log2 n), then Ω(n2−o(1)) time is required. This improves upon the
prior best lower bound in both the dimension d and the squared dataset radius.

1 INTRODUCTION

Quadratic programming (QP) represents a class of convex optimization problems that optimize a
quadratic objective over the intersection of an affine subspace and the non-negative orthant1. QPs
naturally extend linear programming by incorporating a quadratic objective, and they find extensive
applications in operational research, theoretical computer science, and machine learning (Kozlov
et al., 1979; Wright, 1999; Gould & Toint, 2000; Gould et al., 2001; Propato & Uber, 2004; Cor-
nuejols & Tütüncü, 2006). The quadratic objective introduces challenges: QPs with a general (not
necessarily positive semidefinite) symmetric quadratic objective matrix are NP-hard to solve (Sahni,
1974; Pardalos & Vavasis, 1991). When the quadratic objective matrix is positive semidefinite, the
problem becomes weakly polynomial-time solvable, as it can be reduced to convex empirical risk
minimization (Lee et al., 2019) (refer to Section C for further discussion).

Formally, the QP problem is defined as follows:

Definition 1.1 (Quadratic Programming). Given an n× n symmetric, positive semidefinite objective
matrix Q, a vector c ∈ Rn, and a polytope described by a pair (A ∈ Rm×n, b ∈ Rm), the linearly

1There are classes of QPs with quadratic constraints as well. However, in this paper, we focus on cases where
the constraints are linear.
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constrained quadratic programming (LCQP) or simply quadratic programming (QP) problem seeks
to solve the following optimization problem:

min
x∈Rn

1

2
x⊤Qx+ c⊤x (1)

s.t. Ax = b

x ≥ 0.

A classic application of QP is the Support Vector Machine (SVM) problem (Boser et al., 1992;
Cortes & Vapnik, 1995). In SVMs, a dataset x1, . . . , xn ∈ Rd is provided, along with corresponding
labels y1, . . . , yn ∈ {±1}. The objective is to identify a hyperplane that separates the two groups of
points with opposite labels, while maintaining a large margin from both. Remarkably, this popular
machine learning problem can be formulated as a QP and subsequently solved using specialized QP
solvers (Muller et al., 2001). Thus, advancements in QP algorithms could potentially lead to runtime
improvements for SVMs.

Despite its practical and theoretical significance, algorithmic quadratic programming has garnered
relatively less attention compared to its close relatives in convex programming, such as linear
programming (Cohen et al., 2019; Jiang et al., 2021; Brand, 2020; Song & Yu, 2021), convex
empirical risk minimization (Lee et al., 2019; Qin et al., 2023), and semidefinite programming (Jiang
et al., 2020; Huang et al., 2022; Gu & Song, 2022). In this work, we take a pioneering step in
developing fast and robust interior point-type algorithms for solving QPs. We particularly focus
on improving the runtime for high-precision hard- and soft-margin SVMs. For the purposes of
this discussion, we will concentrate on hard-margin SVMs, with the understanding that our results
naturally extend to soft-margin variants. We begin by introducing the hard-margin linear SVMs:
Definition 1.2 (Linear SVM). Given a dataset X ∈ Rn×d and a collection of labels y1, . . . , yn each
in ±1, the linear SVM problem requires solving the following quadratic program:

max
α∈Rn

1⊤
nα−

1

2
α⊤(yy⊤ ◦XX⊤)α, (2)

s.t. α⊤y = 0,

α ≥ 0.

where ◦ denotes the Hadamard product.

It should be noted that this formulation is actually the dual of the SVM optimization problem. The
primal program seeks a vector w ∈ Rd such that

min
w∈Rd

1

2
∥w∥22,

s.t. yi(w⊤xi − b) ≥ 1, ∀i ∈ [n],

where b ∈ R is the bias term. Given the solution α ∈ Rn, one can conveniently convert it to a primal
solution: w∗ =

∑n
i=1 α

∗
i yixi. At first glance, one might be inclined to solve the primal problem

directly, especially in cases where d≪ n, as it presents a lower-dimensional optimization problem
compared to the dual. The dual formulation becomes particularly advantageous when solving the
kernel SVM, which maps features to a high or potentially infinite-dimensional space.
Definition 1.3 (Kernel SVM). Given a dataset X ∈ Rn×d and a positive definite kernel function
K : Rd × Rd → R, let K ∈ Rn×n denote the kernel matrix, where Ki,j = K(xi, xj). With a
collection of labels y1, . . . , yn each in {±1}, the kernel SVM problem requires solving the following
quadratic program:

max
α∈Rn

1⊤
nα−

1

2
α⊤(yy⊤ ◦K)α, (3)

s.t. α⊤y = 0,

α ≥ 0.

The positive definite kernel function K corresponds to a feature mapping, implying that K(xi, xj) =
ϕ(xi)

⊤ϕ(xj) for some ϕ : Rd → Rs. Thus, solving the primal SVM can be viewed as solving the
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optimization problem on the transformed dataset. However, the primal program’s dimension depends
on the (transformed) data’s dimension s, which can be infinite. Conversely, the dual program, with
dimension n, is typically easier to solve. Throughout this paper, when discussing the SVM program,
we implicitly refer to the dual quadratic program, not the primal.

One key aspect of the SVM program is its minimal equality constraints. Specifically, for both linear
and kernel SVMs, there is only a single equality constraint of the form α⊤y = 0. This constraint
arises naturally from the bias term in the primal SVM formulation and its Lagrangian. The limited
number of constraints enables us to design QP solvers with favorable dependence on the number of
data points n, albeit with a higher dependence on the number of constraints m, thus offering effective
end-to-end guarantees for SVMs.

Previous efforts to solve the SVM program typically involve breaking down the large QP into smaller,
constant-sized QPs. These algorithms, while easy to implement and well-suited to modern hardware
architectures, oftentimes lack tight theoretical analysis and the estimation of iteration count is usually
pessimistic (Chang & Lin, 2011). Theoretically, Joachims (2006) systematically analyzed this class
of algorithms, demonstrating that to achieve an ϵ-approximation solution, Õ(ϵ−2B · nnz(A)) time is
sufficient, where B is the squared-radius of the dataset and nnz(·) denotes the number of nonzero
entries. This is subsequently improved in Shalev-Shwartz et al. (2011) with a subgradient-based
method that runs in Õ(ϵ−1d) time. Unfortunately, the polynomial dependence on the precision ϵ−1

makes them hard to be adapted for even moderately small ϵ. For example, when ϵ is set to be 10−3 to
account for the usual machine precision errors, these algorithms would require at least 103 iterations
to converge.

To develop a high-precision algorithm with poly log(ϵ−1) dependence instead of poly(ϵ−1), we
focus on second-order methods for QPs. A variety of approaches have been explored in previous
works, including the interior point method (Karmarkar, 1984), active set methods (Murty, 1988),
augmented Lagrangian techniques (Delbos & Gilbert, 2003), conjugate gradient, gradient projection,
and extensions of the simplex algorithm (Dantzig, 1955; Wolfe, 1959; Murty, 1988). Our interest is
particularly piqued by the interior point method (IPM). Recent advances in the robust IPM framework
have led to significant successes for convex programming problems (Cohen et al., 2019; Lee et al.,
2019; Brand, 2020; Jiang et al., 2020; Brand et al., 2020; Jiang et al., 2021; Song & Yu, 2021; Jiang
et al., 2022; Huang et al., 2022; Gu & Song, 2022; Qin et al., 2023). These successes are a result of
combining robust analysis of IPM with dedicated data structure design.

Applying IPM to solve QPs with a constant number of constraints is not entirely novel; existing
work (Ferris & Munson, 2002) has already adapted IPM to solve the linear SVM problem. However,
the runtime of their algorithm is sub-optimal. Each iteration of their algorithm requires multiplying a
d×n matrix with an n×d matrix in O(ndω−1) time, where ω ≈ 2.37 is the fast matrix multiplication
exponent (Duan et al., 2023; Williams et al., 2024; Gall, 2024). Moreover, the IPM requires
O(
√
n log(1/ϵ)) iterations to converge. This ends up with an overall runtime O(n1.5dω−1 log(1/ϵ)),

which is super-linear in the dataset size even when the dimension d is small. In practical scenarios
where n is usually large, the n1.5 dependence becomes prohibitive. Therefore, it is crucial to develop
an algorithm with almost- or nearly-linear dependence on n and logarithmic dependence on ϵ−1.

For linear SVM, we propose a nearly-linear time algorithm with high-precision guarantees, applicable
when the dimension of the dataset is smaller than the number of points:

Theorem 1.4 (Low-rank QP and Linear SVM, informal version of Theorem E.1). Given a quadratic
program as defined in Definition 1.1, and assuming a low-rank factorization of the quadratic objective
matrix Q = UV ⊤, where U, V ∈ Rn×k, there exists an algorithm that can solve the program (1) up
to ϵ-error2 in Õ(n(k +m)(ω+1)/2 log(n/ϵ)) time.

Specifically, for linear SVM (as per Definition 1.2) with d ≤ n, one can solve program (2) up to
ϵ-error in Õ(nd(ω+1)/2 log(n/ϵ)) time.

While a nearly-linear time algorithm for linear SVMs is appealing, most applications look at kernel
SVMs as they provide more expressive power to the linear classifier. This poses significant challenge
in algorithm design, as forming the kernel matrix exactly would require Ω(n2) time. Moreover, the

2We say an algorithm that solves the program up to ϵ-error if it returns an approximate solution vector α̃
whose objective value is at most ϵ more than the optimal objective value.
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kernel matrix could be full-rank without any structural assumptions, rendering our low-rank QP
solver inapplicable. In fact, it has been shown that for data dimension d = ω(log n), no algorithm can
approximately solve kernel SVM within an error exp(−ω(log2 n)) in time O(n2−o(1)), assuming
the famous Strong Exponential Time Hypothesis (SETH)3 (Backurs et al., 2017).

Conversely, a long line of works aim to speed up computation with the kernel matrix faster than
quadratic, especially when the kernel has certain smooth and Lipschitz properties (Alman et al.,
2020; Aggarwal & Alman, 2022; Bakshi et al., 2023; Charikar et al., 2024). For instance, when
kernel functions are sufficiently smooth, efficient approximation using low-degree polynomials is
feasible, leading to an approximate low-rank factorization. A prime example is the Gaussian RBF
kernel, where Aggarwal & Alman (2022) showed that for dimension d = Θ(log n) and squared
dataset radius (defined as maxi,j∈[n] ∥xi − xj∥22) B = o(log n), there exists low-rank matrices
U, V ∈ Rn×no(1)

such that for any vector x ∈ Rn, ∥(K − UV ⊤)x∥∞ ≤ ϵ∥x∥1. They subsequently
develop an algorithm to solve the Batch Gaussian KDE problem in O(n1+o(1)) time.

Based on this dichotomy in fast kernel matrix algebra, we establish two results: 1) Solving Gaussian
kernel SVM in O(n1+o(1) log(1/ϵ)) time is feasible when B = o( logn

log logn ), and 2) Assuming SETH,
no sub-quadratic time algorithm exists for B = Ω(log2 n) in SVMs without bias and B = Ω(log6 n)
in SVMs with bias. This improves the lower bound established by Backurs et al. (2017) in terms of
dimension d.
Theorem 1.5 (Gaussian Kernel SVM, informal version of Theorem G.7 and G.12). Given a dataset
X ∈ Rn×d with dimension d and squared radius denoted by B, let K(xi, xj) = exp(−∥xi − xj∥22)
be the Gaussian kernel function. Then, for the kernel SVM problem defined in Definition 1.3,

• If d = O(log n), B = o( logn
log logn ), there exists an algorithm that solves the Gaussian kernel

SVM up to ϵ-error in time O(n1+o(1) log(1/ϵ));

• If d = Ω(log n), B = Ω(log2 n), then assuming SETH, any algorithm that solves the
Gaussian kernel SVM without a bias term up to exp(−ω(log2 n)) error would require
Ω(n2−o(1)) time;

• If d = Ω(log n), B = Ω(log6 n), then assuming SETH, any algorithm that solves the Gaus-
sian kernel SVM with a bias term up to exp(−ω(log2 n)) error would require Ω(n2−o(1))
time.

To our knowledge, this is the first almost-linear time algorithm for Gaussian kernel SVM even when
d = log n and the radius is small. Our algorithm effectively utilizes the rank-no(1) factorization of
the Gaussian kernel matrix alongside our low-rank QP solver.

1.1 RELATED WORK

Support Vector Machines. SVM, one of the most prominent machine learning models before
the rise of deep learning, has a rich literature dedicated to its algorithmic speedup. For linear
SVM, Joachims (2006) offers a first-order algorithm that solves its QP in nearly-linear time, but
with a runtime dependence of ϵ−2, limiting its use in high precision settings. This runtime is later
significantly improved by Shalev-Shwartz et al. (2011) to Õ(ϵ−1d) via a stochastic subgradient
descent algorithm. For SVM classification, existing algorithms such as SVM-Light (Joachims, 1999),
SMO (Platt, 1998), LIBSVM (Chang & Lin, 2011), and SVM-Torch (Collobert & Bengio, 2001)
perform well in high-dimensional data settings. However, their runtime scales super-linearly with
n, making them less viable for large datasets. Previous investigations into solving linear SVM via
interior point methods (Ferris & Munson, 2002) have been somewhat basic, leading to an overall
runtime of O(n1.5dω−1 log(1/ϵ)). For a more comprehensive survey on efficient algorithms for
SVM, refer to Cervantes et al. (2020). On the hardness side, Backurs et al. (2017) provides an
efficient reduction from the Bichromatic Closest Pair problem to Gaussian kernel SVM, establishing
an almost-quadratic lower bound assuming SETH.

3SETH is a standard complexity theoretical assumption (Impagliazzo et al., 1998; Impagliazzo & Paturi,
2001). Informally, it states that for a Conjunctive Normal Form (CNF) formula with m clauses and n variables,
there is no algorithm for checking its feasibility in time less than O(cn · poly(m)) for c < 2.
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Interior Point Method. The interior point method, a well-established approach for solving convex
programs under constraints, was first proposed by Karmarkar (1984) as a (weakly) polynomial-time
algorithm for linear programs, later improved by Vaidya (1989) in terms of runtime. Recent work
by Cohen et al. (2019) has shown how to solve linear programs with interior point methods in the
current matrix multiplication time, utilizing a robust IPM framework. Subsequent studies (Lee et al.,
2019; Brand, 2020; Jiang et al., 2021; Song & Yu, 2021; Huang et al., 2022; Jiang et al., 2022; Qin
et al., 2023) have further refined their algorithm or applied it to different optimization problems.

Kernel Matrix Algebra. Kernel methods, fundamental in machine learning, enable feature map-
pings to potentially infinite dimensions for n data points in d dimensions. The kernel matrix, a
crucial component of kernel methods, often has a prohibitive quadratic size for explicit formation.
Recent active research focuses on computing and approximating kernel matrices and related tasks in
sub-quadratic time, such as kernel matrix-vector multiplication, spectral sparsification, and Laplacian
system solving. The study by Alman et al. (2020) introduces a comprehensive toolkit for solving
these problems in almost-linear time for small dimensions, leveraging techniques like polynomial
methods and ultra Johnson-Lindenstrauss transforms. Alternatively, Backurs et al. (2021); Bakshi
et al. (2023) reduce various kernel matrix algebra tasks to kernel density estimation (KDE), which
recent advancements in KDE data structures (Charikar & Siminelakis, 2017; Backurs et al., 2018;
Charikar et al., 2020) have made more efficient. A recent contribution by Aggarwal & Alman (2022)
provides a tighter characterization of the low-degree polynomial approximation for the e−x function,
leading to more efficient algorithms for the Batch Gaussian KDE problem.

2 TECHNIQUE OVERVIEW

In this section, we provide an overview of the techniques employed in our development of two
nearly-linear time algorithms for structured QPs. In Section 2.1, we detail the robust IPM framework,
which forms the foundation of our algorithms. Subsequent section, namely Section 2.2 and 2.3,
delves into dedicated data structures designed for efficiently solving low-treewidth and low-rank QPs,
respectively. Finally, in Section 2.4, we discuss the adaptation of these advanced QP solvers for both
linear and kernel SVMs.

Due to the heavily-technical nature, we recommend that in the first read, the audience can skip
Section 2.2 and 2.3.

2.1 GENERAL STRATEGY

Our algorithm is built upon the robust IPM framework, an efficient variant of the primal-dual central
path method (Renegar, 1988). This framework maintains a primal-dual solution pair (x, s) ∈ Rn×Rn.
To understand the central path for QPs, we first consider the central path equations for linear
programming (see Cohen et al. (2019); Lee et al. (2019) for reference):

s/t+∇ϕ(x) = µ,

Ax = b,

A⊤y + s = c,

where x is the primal variable, s is the slack variable, y is the dual variable, ϕ(x) is a self-concordant
barrier function, and µ denotes the error. The central path is defined by the trajectory of (x, s) as t
approaches 0.

In quadratic programming, we modify these equations:

s/t+∇ϕ(x) = µ,

Ax = b,

−Qx+A⊤y + s = c,

where Q is the positive semidefinite objective matrix. The key difference in the central path equations
for LP and QP is the inclusion of the−Qx term in the third equation, significantly affecting algorithm
design.

5
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Fundamentally, IPM is a Newton’s method in which we update the variables x, y and s through the
second-order information from the self-concordant barrier function. We derive the update rules for
QP (detailed derivation in Section F.2):

δx = tM−1/2(I − P )M−1/2δµ,

δy = −t(AM−1A⊤)−1AM−1δµ,

δs = tδµ − t2HM−1/2(I − P )M−1/2δµ,

where H = ∇2ϕ(x), M = Q+ tH,

P = M−1/2A⊤(AM−1A⊤)−1AM−1/2,

where δx, δy , δs, and δµ are the incremental steps for x, y, s, and µ, respectively.

The robust IPM approximates these updates rather than computing them exactly. It maintains
an approximate primal-dual solution pair (x, s) ∈ Rn × Rn and computes the steps using this
approximation. Provided the approximation is sufficiently accurate, it can be shown (see Section F
for more details) that the algorithm converges efficiently to the optimal solution along the robust
central path.

Therefore, the critical challenge lies in efficiently maintaining (x, s), an approximation to (x, s),
when (x, s) evolves following the robust central path steps. The primary difficulty is that explicitly
managing the primal-dual solution pair (x, s) is inefficient due to potential dense changes. Such
changes can lead to dense updates in H , slowing down the computation of steps. The innovative
aspect of robust IPM is recognizing that (x, s) are only required at the algorithm’s conclusion,
not during its execution. Instead, we can identify entries with significant changes and update the
approximation (x, s) correspondingly. With IPM’s lazy updates, only a nearly-linear number of
entries are adjusted throughout the algorithm:

T∑
t=1

∥x(t) − x(t−1)∥0 + ∥s(t) − s(t−1)∥0 = Õ(n log(1/ϵ))

where T = Õ(
√
n log(1/ϵ)) is the number of iterations for IPM convergence. This indicates that, on

average, each entry of x and s is updated log(1/ϵ) times, facilitating rapid updates to these quantities
and, consequently, to H .

In the special case where Q = 0, the path reverts to the LP case, with M = tH being a diagonal ma-
trix, allowing for efficient computation and updates of M−1. This simplifies maintaining AM−1A⊤,
as updates to M−1 correspond to row and column scaling of A. However, in the QP scenario, where
M is symmetric positive semidefinite, maintaining the term AM−1A⊤ becomes more complex.
Nevertheless, when the number of constraints is small, as in SVMs, this issue is less problematic.
Yet, even with this simplification, the challenge is far from trivial, given the presence of terms like
M−1/2 in the robust central path steps. While the matrix Woodbury identity could be considered, it
falls short when maintaining a square root term. Despite these hurdles, we construct efficient data
structures for M−1/2 maintenance when Q possesses succinct representations, such as low-rank.

Before diving into the particular techniques for low-rank QPs, we start by exploring the low-treewidth
QPs, which could be viewed as a structured sparsity condition. It provides valuable insights for the
low-rank scenario.

2.2 LOW-TREEWIDTH SETTING: HOW TO LEVERAGE SPARSITY

Treewidth is parameter for graphs that captures the sparsity pattern. Given a graph G = (V,E) with
n vertices and m edges, a tree decomposition of G arranges its vertices into bags, which collectively
form a tree structure. For any two bags Xi, Xj , if a vertex v is present in both, it must also be
included in all bags along the path between Xi and Xj . Additionally, each pair of adjacent vertices
in the graph must be present together in at least one bag. The treewidth τ is defined as the maximum
size of a bag minus one. Intuitively, a graph G with a small treewidth τ implies a structure akin to
a tree. For a formal definition, see Definition A.1. When relating this combinatorial structure to
linear algebra, we could treat the quadratic objective matrix Q as a generalized adjacency matrix,
where we put a vertex vi on i-th row of Q, and put an edge {vi, vj} whenever the entry Qi,j is

6
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nonzero. The low-treewidth structure of the graph corresponds to a sparsity pattern that allows one to
compute a column-sparse Cholesky factorization of Q. Since M = Q+ tH and H is diagonal, we
can decompose M = LL⊤ into sparse Cholesky factors4.

Under any coordinate update to x, M is updated on only one diagonal entry, enabling efficient updates
to L. The remaining task is to use this Cholesky decomposition to maintain the central path step.

By expanding the central path equations and substituting M = LL⊤, we derive
δx = tM−1/2(I − P )M−1/2δµ

= tM−1δµ − tM−1A⊤(AM−1A⊤)−1AM−1δµ

= tL−⊤L−1δµ − tL−⊤L−1A⊤(AL−⊤L−1A⊤)−1AL−⊤L−1δµ,

δs = tδµ − t2HM−1/2(I − P )M−1/2δµ

= tδµ − t2L−⊤L−1δµ + t2L−⊤L−1A⊤(AL−⊤L−1A⊤)−1AL−⊤L−1δµ.

Updates to the diagonal of M do not change L’s nonzero pattern, allowing for efficient utiliza-
tion of the sparse factor and maintenance of L−1A⊤ ∈ Rn×m and L−1δµ ∈ Rn. Terms like
(AL−⊤L−1A⊤)−1AL−⊤L−1δµ ∈ Rm can also be explicitly maintained.

With this approach, we propose the following implicit representation for maintaining (x, s):

x = x̂+H−1/2W⊤(hβx − h̃β̃x + ϵx), (4)

s = ŝ+H1/2csβcs −H1/2W⊤(hβs − h̃β̃s + ϵs), (5)

where x̂, ŝ ∈ Rn,W = L−1H1/2 ∈ Rn×n, h = L−1δµ ∈ Rn, cs = H−1/2δµ ∈ Rn, βx, βs, βcs ∈
R, h̃ = L−1A⊤ ∈ Rn×m, β̃x, β̃s ∈ Rm, ϵx, ϵs ∈ Rn. All quantities except forW can be explicitly
maintained. For linear programming, the implicit representation is as follows:

x = x̂+H−1/2βxcx −H−1/2W⊤(βxh+ ϵx)

s = ŝ+H1/2W⊤(βsh+ ϵs),

withW = L−1AH−1/2 maintained implicitly and the other terms explicitly.

The representation in (4) and (5) enables us to maintain the central path step using a combination of
“coefficients” h+h̃β̃x and “basis”W⊤. We need to detect entries of x that deviate significantly from x

and capture these changes with ∥H1/2(x− x)∥2. We maintain this vector using x0 +W⊤(h+ h̃β̃x).
Here, W⊤ acts as a wavelet basis and the vector h + h̃β̃x as its multiscale coefficients. While
computing and maintainingW⊤h seems challenging, leveraging column-sparsity of L−1 is possible
through contraction with a vector v:

v⊤W⊤ = (Wv)⊤

= (L−1H1/2v)⊤.

By applying the Johnson-Lindenstrauss transform (JL) in place of v, we can quickly approximate
∥W⊤h∥2 by maintaining ΦW⊤ for a JL matrix Φ. Similarly, we handle W⊤h̃β̃x by explicitly
computing A⊤β̃x and using the sparsity of L−1 for h̃β̃x.

We focus on entries significantly deviating from x0, the heavy entries ofW⊤(h+ h̃β̃x). Here, the
treewidth-τ decomposition enables quick computation of an elimination tree based on L−1’s sparsity,
facilitating efficient estimation of ∥(W⊤(h+ h̃β̃x))χ(v)∥2 for any subtree χ(v)5. With an elimination
tree of height Õ(τ), we can employ heavy-light decomposition (Sleator & Tarjan, 1981) for an
O(log n)-height tree.

Using these data structures, convergence is established using the robust IPM framework (Ye, 2020;
Lee & Vempala, 2021). While the framework is generally applicable to QPs, computing an initial
point remains a challenge. We propose a simpler objective x0 = argminx∈Rn

∑n
i=1 ϕi(xi) with ϕi

as the log-barrier function, resembling the initial point reduction in Lee et al. (2019). This initial
point enables us to solve an augmented quadratic program that increases dimension by 1.

4Note that adding a non-negative diagonal matrix to Q does not change its sparsity pattern, hence M also
retains the treewidth τ .

5Given any tree node v, we use χ(v) to denote the subtree rooted at v.
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2.3 LOW-RANK SETTING: HOW TO UTILIZE SMALL FACTORIZATION

The low-treewidth structure can be considered a form of sparsity, allowing for a sparse factorization
M = LL⊤. Another significant structure arises when the matrix Q admits a low-rank factorization.
Let Q = UV ⊤ where U, V ∈ Rn×k and k ≪ n, then M = Q + tH = UV ⊤ + tH . Although Q
has a low-rank structure, M may not be low-rank due to the diagonal matrix being dense. However,
in the central path equations, we need only handle M−1, which can be efficiently maintained using
the matrix Woodbury identity:

M−1 = t−1H−1 − t−2H−1U(I + t−1V ⊤H−1U)−1V ⊤H−1,

Given that H is diagonal, the complex term (I + t−1V ⊤H−1U)−1 can be quickly updated under
sparse changes to H−1 by simply scaling rows of U and V . With only a nearly-linear number of
updates to H−1, the total update time across Õ(

√
n log(1/ϵ)) iterations is bounded by Õ(nkω−1 +

kω). We modify the (x, s) implicit representation as follows:

x = x̂+H−1/2hβx +H−1/2ĥβ̂x +H−1/2h̃β̃x, (6)

s = ŝ+H1/2hβs +H1/2ĥβ̂s +H1/2h̃β̃s, (7)

where x, s ∈ Rn, h = H−1/2δµ ∈ Rn, ĥ = H−1/2U ∈ Rn×k, and h̃ = H−1/2A⊤ ∈ Rn×m, with
β̃x, β̃s ∈ Rm and βx, βs ∈ R. The nontrivial terms to maintain are ĥ and h̃, but both can be managed
straightforwardly: updates to H−1/2 correspond to scaling rows of U and A⊤, and can be performed
in total Õ(nk) and Õ(nm) time, respectively. The key observation is that we never explicitly form
M−1/2, hence matrix Woodbury identity suffices for fast updates.

The remaining task is to design a data structure for detecting heavy entries. Instead of starting with an
elimination tree and re-balancing it through heavy-light decomposition, we construct a balanced tree
on n nodes, hierarchically dividing length-n vectors by their indices. Sampling is then performed by
traversing down to the tree’s leaves. While a heavy-hitter data structure could lead to improvements
in poly-logarithmic and sub-logarithmic factors, we primarily focus on polynomial dependencies on
various parameters and leave this enhancement for future exploration.

2.4 GAUSSIAN KERNEL SVM: ALGORITHM AND HARDNESS

Our specialized QP solvers provide fast implementations for linear SVMs when the data dimension
d is much smaller than n. However, for kernel SVM, forming the kernel matrix exactly would
take Θ(n2) time. Fortunately, advancements in kernel matrix algebra (Alman et al., 2020; Backurs
et al., 2021; Aggarwal & Alman, 2022; Bakshi et al., 2023) have enabled sub-quadratic algorithms
when the data dimension d is small or the kernel matrix has a relatively large minimum entry.
Both Alman et al. (2020) and Bakshi et al. (2023) introduce algorithms for spectral sparsification,
generating an approximate matrix K̃ ∈ Rn×n such that (1 − ϵ) ·K ⪯ K̃ ⪯ (1 + ϵ) ·K, with K̃
having only O(ϵ−2n log n) nonzero entries. Alman et al. (2020) achieves this in O(n1+o(1)) time
for multiplicatively Lipschitz kernels when d = O(log n), while Bakshi et al. (2023) overcomes
limitations for Gaussian kernels by basing their algorithm on KDE and the magnitude of the minimum
entry of the kernel matrix, parameterized by τ . Their algorithm for Gaussian kernels runs in time
Õ(nd/τ3.173+o(1)). Unfortunately, spectral sparsifiers do not aid our primitives since a sparsifier
only reduces the number of nonzero entries, but not the rank of the kernel matrix.

Besides spectral sparsification, Alman et al. (2020); Aggarwal & Alman (2022) also demonstrate that
with d = d = O(log n) and suitable kernels, there exists an O(n1+o(1)) time algorithm to multiply
the kernel matrix with an arbitrary vector v ∈ Rn. This operation is crucial in Batch KDE as shown
in Aggarwal & Alman (2022). Moreover, Aggarwal & Alman (2022) establishes an almost-quadratic
lower bound for this operation when the squared dataset radius B = ω(log n), assuming SETH.
These results rely on computing a rank-no(1) factorization for the Gaussian kernel matrix. The
function e−x can be approximated by a low-degree polynomial of degree

q := Θ(max{
√
B log(1/ϵ),

log(1/ϵ)

log(log(1/ϵ)/B)
})
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for x ∈ [0, B]. Using this polynomial, one can create matrices U, V with rank
(
2d+2q

2q

)
= no(1) in

time O(n1+o(1)). Given this factorization, multiplying it with a vector v as U(V ⊤v) takes O(n1+o(1))

time. Let K̃ = UV ⊤ where K̃i,j = f(∥xi − xj∥22), we have for any (i, j) ∈ [n]× [n],

|f(∥xi − xj∥22)− exp(−∥xi − xj∥22)| ≤ ϵ,

and for any row i ∈ [n],

|(K̃v)i − (Kv)i| = |
n∑

j=1

vj(f(∥xi − xj∥22)− exp(−∥xi − xj∥22))|

≤ (max
j∈[n]

|f(∥xi − xj∥22)− exp(−∥xi − xj∥22)|)∥v∥1

≤ ϵ∥v∥1,

using Hölder’s inequality. This provides an ℓ∞-guarantee of the error vector (K̃ −K)v, useful for
Batch Gaussian KDE. Transforming this ℓ∞-guarantee into a spectral approximator yields

(1− ϵn) ·K ⪯ K̃ ⪯ (1 + ϵn) ·K.

Setting ϵ = 1/n2, the low-rank factorization offers an adequate spectral approximation to the exact
kernel matrix K.

Given K̃ = UV ⊤ for U, V ∈ Rn×no(1)

, we can solve program (3) with K̃ using our low-rank QP
algorithm in time O(n1+o(1) log(1/ϵ)).6 This is the first almost-linear time algorithm for Gaussian
kernel SVM, even in low-precision settings, as prior works either lack machinery to approximately
form the kernel matrix efficiently, or do not possess faster convex optimization solvers for solving a
structured quadratic program associated with a kernel SVM.

The requirements d = O(log n) and B = o( logn
log logn ) may seem restrictive, but they are necessary, as

no sub-quadratic time algorithm exists for Gaussian kernel SVM without bias when d = Ω(log n) and
B = Ω(log2 n), and with bias when B = Ω(log6 n), assuming SETH. This is based on a reduction
from Bichromatic Closet Pair to Gaussian kernel SVM, as established by Backurs et al. (2017). Our
assumptions on d and B are therefore justified for seeking almost-linear time algorithms.

We note that in other variants of definitions for Gaussian kernels, one requires an additional parameter
called the kernel width, and the kernel function is defined as exp(−∥xi−xj∥2

2

2σ2 ). In commonly used
heuristics (Ramdas et al., 2015), σ = O(

√
d), hence we could without loss of generality assuming

σ = 1 by requiring the squared radius to be B/d.

3 CONCLUSION

On the algorithmic front, we introduce the first nearly-linear time algorithms for low-rank convex
quadratic programming, leading to nearly-linear time algorithms for linear SVMs. For Gaussian kernel
SVMs, we utilize a low-rank approximation from Aggarwal & Alman (2022) when d = O(log n) and
the squared dataset radius is small, enabling an almost-linear time algorithm. On the hardness aspect,
we establish that when d = Ω(log n), if the squared dataset radius is sufficiently large (Ω(log2 n)
without bias and Ω(log6 n) with bias), then assuming SETH, no sub-quadratic algorithm exists. As
our work is theoretical in nature, we do not foresee any potential negative societal impact. Several
open problems arise from our work:

Better dependence on k for low-rank QPs. Our low-rank QP solver exhibits a dependence of
k(ω+1)/2 on the rank k. Given the precomputed factorization, can we improve the exponents on k?
Ideally, an algorithm with nearly-linear dependence on k would align more closely with input size.

6Additional requirement: B = o( logn
log logn

). See Section G for further discussion.
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Better dependence on m for general QPs. Focusing on SVMs with a few equality constraints,
our QP solvers do not exhibit strong dependence on the number of equality constraints m. Without
structural assumptions on the constraint matrix A, this is expected. However, many QPs, particularly
in graph contexts, involve large m. Is there a pathway to an algorithm with better dependence on m?
More broadly, can we achieve a result akin to that of Lee & Sidford (2019), where the number of
iterations depends on the square root of the rank of A, with minimal per iteration cost?

Stronger lower bound in terms of B for Gaussian kernel SVMs. We establish hardness results
for Gaussian kernel SVM when B = Ω(log2 n) without bias and B = Ω(log6 n) with bias. This
contrasts with our algorithm, which requires B to have sub-logarithmic dependence on n. For
Batch Gaussian KDE, Aggarwal & Alman (2022) demonstrated that fast algorithms are feasible for
B = o(log n), with no sub-quadratic time algorithms for B = ω(log n) assuming SETH. Can a
stronger lower bound be shown for SVM programs with a bias term, reflecting a more natural setting?
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Roadmap. In Section A, we present some basic definitions and tools that will be used in the
reminder of the paper. In Section B, we introduce a few more SVM formulations, including classi-
fication and distribution estimation. In Section C, we show convex quadratic programming can be
reduced to convex empirical risk minimization, and therefore can be solved in the current matrix
multiplication time owing to Lee et al. (2019). In Section D and E, we prove results on low-treewidth
and low-rank QPs, respectively. In Section F, we present a robust IPM framework for QPs, generalize
beyond LPs and convex ERMs with linear objective. In Section G, we present our algorithms for
Gaussian kernel SVMs, with complementary lower bound.

A PRELIMINARY

A.1 NOTATIONS

For a positive integer n, we use [n] to denote the set {1, 2, · · · , n}. For a matrix A, we use A⊤ to
denote its transpose. For a matrix A, we define ∥A∥p→q := supx ∥Ax∥q/∥x∥p. When p = q = 2,
we recover the spectral norm.

We define the entrywise ℓp-norm of a matrix A as ∥A∥p := (
∑

i,j |Ai,j |p)1/p.

For any function f : N→ N and n ∈ N, we use Õ(f(n)) to denote O(f(n) poly log f(n)). We use
1{E} to denote the indicator for event E, i.e., if E happens, 1{E} = 1 and otherwise it’s 0.

A.2 TREEWIDTH

Treewidth captures the sparsity and tree-like structures of a graph.

Definition A.1 (Tree Decomposition and Treewidth). Let G = (V,E) be a graph, a tree decomposi-
tion of G is a tree T with b vertices, and b sets J1, . . . , Jb ⊆ V (called bags), satisfying the following
properties:

• For every edge (u, v) ∈ E, there exists j ∈ [b] such that u, v ∈ Jj;

• For every vertex v ∈ V , {j ∈ [b] : v ∈ Jj} is a non-empty subtree of T .

The treewidth of G is defined as the minimum value of max{|Jj | : j ∈ [b]} − 1 over all tree
decompositions.

A near-optimal tree decomposition of a graph can be computed in almost linear time.

Theorem A.2 (Bernstein et al. (2022)). Given a graph G, there is an O(m1+o(1)) time algorithm
that produces a tree decomposition of G of maximum bag size O(τ log3 n), where τ is the actual
(unknown) treewidth of G.

Therefore, when τ = mΘ(1), we can compute an Õ(τ)-size tree decomposition in time O(mτo(1)),
which is negligible in the final running time of Theorem D.1.

A.3 SPARSE CHOLESKY DECOMPOSITION

In this section we state a few results on sparse Cholesky decomposition. Fast sparse Cholesky
decomposition algorithms are based on the concept of elimination tree, introduced in Schreiber
(1982).

Definition A.3 (Elimination tree). Let G be an undirected graph on n vertices. An elimination tree T
is a rooted tree on V (G) together with an ordering π of V (G) such that for any vertex v, its parent is
the smallest (under π) element u such that there exists a path P from v to u, such that π(w) ≤ π(v)
for all w ∈ P − u.

The following lemma relates the elimination tree and the structure of Cholesky factors.

Lemma A.4 (Schreiber (1982)). Let M be a PSD matrix and T be an elimination tree of the
adjacency graph of M (i.e., (i, j) ∈ E(G) iff Mi,j ̸= 0) together with an elimination ordering π.
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Let P be the permutation matrix Pi,v = 1{v = π(i)}. Then the Cholesky factor L of PMP⊤ (i.e.,
PMP⊤ = LL⊤) satisfies Li,j ̸= 0 only if π(i) is an ancestor of π(j).

The following result is the current best result for computing a sparse Cholesky decomposition.
Lemma A.5 ((Gu & Song, 2022, Lemma 8.4)). Let M ∈ Rn×n be a PSD matrix whose adjacency
graph has treewidth τ . Then we can compute the Cholesky factorization M = LL⊤ in Õ(nτω−1)
time.

The following result is the current best result for updating a sparse Cholesky decomposition.
Lemma A.6 (Davis & Hager (1999)). Let M ∈ Rn×n be a PSD matrix whose adjacency graph
has treewidth τ . Assume that we are given the Cholseky factorization M = LL⊤. Let w ∈ Rn be a
vector such that M +ww⊤ has the same adjacency graph as M . Then we can compute ∆L ∈ Rn×n

such that L+∆L is the Cholesky factor of M + ww⊤ in O(τ2) time.

Throughout our algorithm, we need to compute matrix-vector multiplications involving Cholesky
factors. We use the following results from Gu & Song (2022).
Lemma A.7 ((Gu & Song, 2022, Lemma 4.7)). Let M ∈ Rn×n be a PSD matrix whose adjacency
graph has treewidth τ . Assume that we are given the Cholseky factorization M = LL⊤. Then we
have the following running time for matrix-vector multiplications.

(i) For v ∈ Rn, computing Lv, L⊤v, L−1v, L−⊤v takes O(nτ) time.

(ii) For v ∈ Rn, computing Lv takes O(∥v∥0τ) time.

(iii) For v ∈ Rn, computing L−1v takes O(∥L−1v∥0τ) time.

(iv) For v ∈ Rn, if v is supported on a path in the elimination tree, then computing L−1v takes
O(τ2) time.

(v) For v ∈ Rn, computingW⊤v takes O(nτ) time, whereW = L−1H1/2 with H ∈ Rn×n is
a non-negative diagonal matrix.

Lemma A.8 ((Gu & Song, 2022, Lemma 4.8)). Let M ∈ Rn×n be a PSD matrix whose adjacency
graph has treewidth τ . Assume that we are given the Cholseky factorization M = LL⊤. Then we
have the following running time for matrix-vector multiplications, when we only need result for a
subset of coordinates.

(i) Let S be a path in the elimination tree whose one endpoint is the root. For v ∈ Rn,
computing (L−⊤v)S takes O(τ2) time.

(ii) For v ∈ Rn, for i ∈ [n], computing (W⊤v)i takes O(τ2) time, whereW = L−1H1/2 with
H ∈ Rn×n be a non-negative diagonal matrix.

A.4 JOHNSON-LINDENTRAUSS LEMMA

We recall the Johnson-Lindenstrauss lemma, a powerful algorithmic primitive that reduces dimension
while preserving ℓ2 norms.
Lemma A.9 (Johnson & Lindenstrauss (1984)). Let ϵ ∈ (0, 1) be the precision parameter. Let
δ ∈ (0, 1) be the failure probability. Let A ∈ Rm×n be a real matrix. Let r = ϵ−2 log(mn/δ). For
R ∈ Rr×n whose entries are i.i.d N (0, 1

r ), the following holds with probability at least 1− δ:

(1− ϵ)∥ai∥2 ≤ ∥Rai∥2 ≤ (1 + ϵ)∥ai∥2, ∀i ∈ [m],

where for a matrix A, a⊤i denotes the i-th row of matrix A ∈ Rm×n.

A.5 HEAVY-LIGHT DECOMPOSITION

Heavy-light decomposition is useful when one wants to re-balance a binary tree with height O(log n).
Lemma A.10 (Sleator & Tarjan (1981)). Given a rooted tree T with n vertices, we can construct
in O(n) time an ordering π of the vertices such that (1) every path in T can be decomposed into
O(log n) contiguous subseqeuences under π, and (2) every subtree in T is a single contiguous
subsequence under π.
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B SVM FORMULATIONS

In this section, we review a list of formulations of SVM. These formulations have been implemented
in the LIBSVM library Chang & Lin (2011).

Throughout this section, we use ϕ : Rd → Rs to denote the feature mapping, K to denote the
associated kernel function and K ∈ Rn×n to denote the kernel matrix. For linear SVM, ϕ is just
the identity mapping. We will focus on the dual quadratic program formulation as usual. We will
also assume for each problem, a dataset X ∈ Rn×d is given together with binary labels y ∈ Rn. Let
Q := (yy⊤) ◦K.

B.1 C-SUPPORT VECTOR CLASSIFICATION

This formulation is also referred as the soft-margin SVM. It can be viewed as imposing a regularization
on the primal program to allow mis-classification.
Definition B.1 (C-Support Vector Classification). Given a parameter C > 0, the C-support vector
classification (C-SVC) is defined as

max
α∈Rn

1⊤
nα−

1

2
α⊤Qα

s.t. α⊤y = 0,

0 ≤ α ≤ C · 1n.

B.2 ν-SUPPORT VECTOR CLASSIFICATION

The C-SVC (Definition B.1) penalizes large values of α by limiting the magnitude of it. The ν-SVC
(Definition B.2) turns 1⊤

nα from an objective into a constraint on ℓ1 norm.
Definition B.2 (ν-Support Vector Classification). Given a parameter ν > 0, the ν-support vector
classification (ν-SVC) is defined as

min
α∈Rn

1

2
α⊤Qα

s.t. α⊤y = 0,

1⊤
nα = ν,

0 ≤ α ≤ 1

n
· 1n.

One can interpret this formulation as to find a vector that lives in the orthogonal complement of y
that is non-negative, each entry is at most 1

n and its ℓ1 norm is ν. Clearly, we must have ν ∈ (0, 1].
More specifically, let k+ be the number of positive labels and k− be the number of negative labels. It
is shown by Chang & Lin (2001) that the above problem is feasible if and only if

ν ≤ 2min{k−, k+}
n

.

B.3 DISTRIBUTION ESTIMATION

SVM is widely-used for predicting binary labels. It can also be used to estimate the support of a
high-dimensional distribution. The formulation is similar to ν-SVC, except the PSD matrix Q is
label-less.
Definition B.3 (Distribution Estimation). Given a parameter ν > 0, the ν-distribution estimation
problem is defined as

min
α∈Rn

1

2
α⊤Kα

s.t. 0 ≤ α ≤ 1

n
· 1n,

1⊤
nα = ν.
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B.4 ϵ-SUPPORT VECTOR REGRESSION

In addition to classification, support vector framework can also be adapted for regression.
Definition B.4 (ϵ-Support Vector Regression). Given parameters ϵ, C > 0, the ϵ-support vector
regression (ϵ-SVR) is defined as

min
α,α∗∈Rn

1

2
(α− α∗)⊤K(α− α∗) + ϵ1⊤

n (α+ α∗) + y⊤(α− α∗)

s.t. 1⊤
n (α− α∗) = 0,

0 ≤ α ≤ C · 1n,

0 ≤ α∗ ≤ C · 1n.

B.5 ν-SUPPORT VECTOR REGRESSION

One can similar adapt the parameter ν to control the ℓ1 norm of the regression.
Definition B.5 (ν-Support Vector Regression). Given parameters ν, C > 0, the ν-support vector
regression (ν-SVR) is defined as

min
α,α∗∈Rn

1

2
(α− α∗)⊤K(α− α∗) + y⊤(α− α∗)

s.t. 1⊤
n (α− α∗) = 0,

1⊤
n (α+ α∗) = Cν,

0 ≤ α ≤ C

n
· 1n,

0 ≤ α∗ ≤ C

n
· 1n.

B.6 ONE EQUALITY CONSTRAINT

We classify C-SVC (Definition B.1), ϵ-SVR (Definition B.4) and ν-distribution estimation (Defini-
tion B.3) into the following generic form:

min
α∈Rn

1

2
α⊤Qα+ p⊤α

s.t. α⊤y = ∆

0 ≤ α ≤ C · 1n.

Note that C-SVC (Definition B.1) and distribution estimation (Definition B.3) are readily in this form.
For ϵ-SVR (Definition B.4), we need to perform a simple transformation:

Set α̂ =

[
α
α∗

]
∈ R2n, then it can be written as

min
α̂∈R2n

1

2
α̂⊤

[
Q −Q
−Q Q

]
α̂+

[
ϵ1n + y
ϵ1n − y

]⊤
α̂

s.t.
[
1n

−1n

]⊤
α̂ = 0

0 ≤ α̂ ≤ C · 12n.

B.7 TWO EQUALITY CONSTRAINTS

Both ν-SVC (Definition B.2) and ν-SVR (Definition B.5) require one extra constraint. They can be
formulated as follows:

min
α∈Rn

1

2
α⊤Qα+ p⊤α
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s.t. 1⊤
nα = ∆1,

y⊤α = ∆2,

0 ≤ α ≤ C · 1n.

For ν-SVR (Definition B.5), one can leverage a similar transformation as ϵ-SVR (Definition B.4).
Remark B.6. All variants of SVM-related quadratic programs can all be solved using our QP solvers
for three cases:

• Linear SVM with n≫ d, we can solve it in Õ(nd(ω+1)/2 log(1/ϵ)) time;

• Linear SVM with a small treewidth decomposition with width τ on XX⊤, we can solve it in
Õ(nτ (ω+1)/2 log(1/ϵ)) time;

• Gaussian kernel SVM with d = Θ(log n) and B = o( logn
log logn ), we can solve it in

O(n1+o(1) log(1/ϵ)) time.

Even though our solvers have relatively bad dependence on the number of equality constraints, for
all these SVM formulations, at most 2 equality constraints are presented and thus can be solved very
fast.

C ALGORITHMS FOR GENERAL QP

In this section, we discuss algorithms for general (convex) quadratic programming. We show that
they can be solved in the current matrix multiplication time via reduction to linear programming with
convex constraints Lee et al. (2019).

C.1 LCQP IN THE CURRENT MATRIX MULTIPLICATION TIME

Proposition C.1. There is an algorithm that solves LCQP (Definition 1.1) up to ϵ error in Õ((nω +
n2.5−α/2 + n2+1/6) log(1/ϵ)) time, where ω ≤ 2.373 is the matrix multiplication constant and
α ≥ 0.32 is the dual matrix multiplication constant.

Proof. Let Q = PDP⊤ be an eigen-decomposition of Q where D is diagonal and P is orthogonal.
Let x̃ := P−1x. Then it suffices to solve

min
1

2
x̃⊤Dx̃+ c⊤Px̃

s.t. AP x̃ = b

P x̃ ≥ 0.

By adding n non-negative variables and n constraints x = Px̃ we can make all constraints equality
constraints. There are n non-negative variables and n unconstrained variables. If we want to ensure
all variables are non-negative, we need to split every coordinate of x̃ into two. In this way the
coefficient matrix Q will be block diagonal with block size 2.

We perform the above reduction, and assume that we have a program of form (1) where Q is diagonal.
Let qi := Qi,i be the i-th element on the diagonal. Then the QP is equivalent to the following
program

min c⊤x+ q⊤t

s.t. Ax = b

ti ≥
1

2
x2
i ∀i ∈ [n]

x ≥ 0

Note that the set {(xi, ti) ∈ R2 : ti ≥ 1
2x

2
i } is a convex set. So we can apply Lee et al. (2019) here

with n variables, each in the convex set {(a, b) ∈ R2 : a ≥ 0, b ≥ 1
2a

2}.
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C.2 ALGORITHM FOR QCQP

Our algorithm for LCQP in the previous section can be generalized to quadratically constrained
quadratic programs (QCQP). QCQP is defined as follows.
Definition C.2 (QCQP). Let Q0, . . . , Qm ∈ Rn×n be PSD matrices. Let q0, . . . , qm ∈ Rn. Let
r ∈ Rm. Let A ∈ Rd×n, b ∈ Rd. The quadratically constrained quadratic programming (QCQP)
problem asks the solve the following program.

min
x∈Rn

1

2
x⊤Q0x+ q⊤0 x

s.t.
1

2
x⊤Qix+ q⊤i x+ ri ≤ 0 ∀i ∈ [m]

Ax = b

x ≥ 0

Proposition C.3. There is an algorithm that solves QCQP (Definition C.2) up to ϵ error in
Õ(((mn)ω + (mn)2.5−α/2 + (mn)2+1/6) log(1/ϵ)) time, where ω ≤ 2.373 is the matrix multi-
plication constant and α ≥ 0.32 is the dual matrix multiplication constant.

Proof. We first rewrite the program as following.

min − r0

s.t.
1

2
x⊤Qix+ q⊤i x+ ri ≤ 0 ∀0 ≤ i ≤ m

Ax = b

x ≥ 0

Write Qi = PiDiP
⊤
i be an eigen-decomposition of Qi where Di is diagonal and Pi is orthogonal.

Let x̃i ∈ Rn be defined as x̃i := P−1
i x. Then we can rewrite the program as

min − r0

s.t.
1

2
x̃⊤
i Dix̃i + q⊤i Pix̃i + ri ≤ 0 ∀0 ≤ i ≤ m

Ax = b

x̃i = P−1
i x

x ≥ 0

For 0 ≤ i ≤ m and j ∈ [n], define variable ti,j ∈ R. Then we can rewrite the program as

min − r0

s.t.
∑
j∈[n]

Di,(j,j)ti,j + q⊤i Pix̃i + ri ≤ 0 ∀0 ≤ i ≤ m

Ax = b

x̃i = P−1
i x

ti,j ≥ x̃2
i,j

x ≥ 0

We can consider (x̃i,j , ti,j)0≤i≤m,j∈[n] as (m+ 1)n variables in the convex set {(a, b) : b ≥ 1
2a

2}.
Then we can apply Lee et al. (2019).

D ALGORITHM FOR LOW-TREEWIDTH QP

In this section we present a nearly-linear time algorithm for solving low-treewidth QP with small
number of linear constraints. We briefly describe the outline of this section.
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• In Section D.1, we present the main statement of Section D.
• In Section D.2, we present the main data structure CENTRALPATHMAINTENANCE.
• In Section D.3, we present several data structures used in CENTRALPATHMAINTENANCE,

including EXACTDS (Section D.3.1), APPROXDS (Section D.3.2), BATCHSKETCH (Sec-
tion D.3.3), VECTORSKETCH (Section D.3.4), BALANCEDSKETCH (Section D.3.5).

• In Section D.4, we prove correctness and running time of CENTRALPATHMAINTENANCE
data structure.

• In Section D.5, we prove the main result (Theorem D.1).

D.1 MAIN STATEMENT

We consider programs of the form (16), i.e.,

min
x∈Rn

1

2
x⊤Qx+ c⊤x

s.t. Ax = b

xi ∈ Ki ∀i ∈ [n]

where Q ∈ Sntot , c ∈ Rntot , A ∈ Rm×ntot , b ∈ Rm, Ki ⊂ Rni is a convex set. For simplicity, we
assume that ni = O(1) for all i ∈ [n].
Theorem D.1. Consider the convex program (16). Let ϕi : Ki → R be a νi-self-concordant barrier
for all i ∈ [n]. Suppose the program satisfies the following properties:

• Inner radius r: There exists z ∈ Rntot such that Az = b and B(z, r) ∈ K.

• Outer radius R: K ⊆ B(0, R) where 0 ∈ Rntot .

• Lipschitz constant L: ∥Q∥2→2 ≤ L, ∥c∥2 ≤ L.

• Treewidth τ : Treewidth (Definition A.1) of the adjacency graph of Q is at most τ .

Let (wi)i∈[n] ∈ Rn
≥1 and κ =

∑
i∈[n] wiνi. Given any 0 < ϵ ≤ 1

2 , we can find an approximate
solution x ∈ K satisfiying

1

2
x⊤Qx+ c⊤x ≤ min

Ax=b,x∈K

(
1

2
x⊤Qx+ c⊤x

)
+ ϵLR(R+ 1),

∥Ax− b∥1 ≤ 3ϵ(R∥A∥1 + ∥b∥1),

in expected time

Õ((
√
κn−1/2 + log(R/(rϵ))) · n(τ2m+ τm2)1/2(τω−1 + τm+mω−1)1/2).

When maxi∈[n] νi = Õ(1), wi = 1, m = Õ(τω−2), the running time simplifies to

Õ(nτ (ω+1)/2m1/2 log(R/(rϵ))).

D.2 ALGORITHM STRUCTURE AND CENTRAL PATH MAINTENANCE

Our algorithm is based on the robust Interior Point Method (robust IPM). Details of the robust
IPM will be given in Section F. During the algorithm, we maintain a primal-dual solution pair
(x, s) ∈ Rntot × Rntot on the robust central path. In addition, we maintain a sparsely-changing
approximation (x, s) ∈ Rntot × Rntot to (x, s). In each iteration, we implicitly perform update

x← x+ tB
−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ

s← s+ tδµ − t
2
Hw,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ

where

Hw,x = ∇2ϕw(x) (see Eq. (24))
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Bw,x,t = Q+ tHw,x (see Eq. (25))

Pw,x,t = B
−1/2

w,x,t
A⊤(AB−1

w,x,t
A⊤)−1AB

−1/2

w,x,t
(see Eq. (26))

and explicitly maintain (x, s) such that they remain close to (x, s) in ℓ∞-distance.

This task is handled by the CENTRALPATHMAINTENANCE data structure, which is our main data
structure. The robust IPM algorithm (Algorithm 19, 20) directly calls it in every iteration.

The CENTRALPATHMAINTENANCE data structure (Algorithm 1) has two main sub data structures,
EXACTDS (Algorithm 2, 3) and APPROXDS (Algorithm 4, 5). EXACTDS is used to maintain (x, s),
and APPROXDS is used to maintain (x, s).

Algorithm 1 Our main data structure for low-treewidth QP solver.

1: data structure CENTRALPATHMAINTENANCE ▷ Theorem D.2
2: private : member
3: EXACTDS exact ▷ Algorithm 2, 3
4: APPROXDS approx ▷ Algorithm 4
5: ℓ ∈ N
6: end members
7: procedure INITIALIZE(x, s ∈ Rntot , t ∈ R+, ϵ ∈ (0, 1))
8: exact.INITIALIZE(x, s, x, s, t) ▷ Algorithm 2
9: ℓ← 0

10: w ← νmax, N ←
√
κ log n log nκR

ϵr

11: q ← n1/2(τ2m+ τm2)−1/2(τω−1 + τm+mω−1)1/2

12: ϵapx,x ← ϵ, ζx ← 2α, δapx ← 1
N

13: ϵapx,s ← ϵ · t, ζs ← 3αt
14:

approx.INITIALIZE(x, s, h, h̃, ϵx, ϵs, H
1/2
w,xx̂, H

−1/2
w,x ŝ, cs, βx, βs, βcs ,

β̃x, β̃s, q,&exact, ϵapx,x, ϵapx,s, δapx)

15: ▷ Algorithm 4.Parameters from x to β̃s come from exact. &exact is pointer to exact
16: end procedure
17: procedure MULTIPLYANDMOVE(t ∈ R+)
18: ℓ← ℓ+ 1
19: if |t− t| > t · ϵt or ℓ > q then
20: x, s← exact.OUTPUT() ▷ Algorithm 2
21: INITIALIZE(x, s, t, ϵ)
22: end if
23: βx, βs, βcs , β̃x, β̃s ← exact.MOVE() ▷ Algorithm 2
24: δx, δs ← approx.MOVEANDQUERY(βx, βs, βcs , β̃x, β̃s) ▷ Algorithm 4
25: δh, δh̃, δϵx , δϵs , δH1/2

w,xx̂
, δ

H
−1/2
w,x ŝ

, δcs ← exact.UPDATE(δx, δs) ▷ Algorithm 3

26: approx.UPDATE(δx, δh, δh̃, δϵx , δϵs , δH1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

, δcs) ▷ Algorithm 4
27: end procedure
28: procedure OUTPUT()
29: return exact.OUTPUT() ▷ Algorithm 2
30: end procedure
31: end data structure

Theorem D.2. Data structure CENTRALPATHMAINTENANCE (Algorithm 1) implicitly maintains
the central path primal-dual solution pair (x, s) ∈ Rntot × Rntot and explicitly maintains its
approximation (x, s) ∈ Rntot × Rntot using the following functions:

• INITIALIZE(x ∈ Rntot , s ∈ Rntot , t0 ∈ R>0, ϵ ∈ (0, 1)): Initializes the data structure
with initial primal-dual solution pair (x, s) ∈ Rntot × Rntot , initial central path timestamp
t0 ∈ R>0 in Õ(n(τω−1 + τm+mω−1)) time.
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• MULTIPLYANDMOVE(t ∈ R>0): It implicitly maintains

x← x+ tB
−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ(x, s, t)

s← s+ tδµ − t
2
Hw,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ(x, s, t)

where Hw,x, Bw,x,t, Pw,x,t are defined in Eq. (24)(25)(26) respectively, and t is some
timestamp satisfying |t− t| ≤ ϵt · t.
It also explicitly maintains (x, s) ∈ Rntot×ntot such that ∥xi−xi∥xi

≤ ϵ and ∥si−si∥∗xi
≤

tϵwi for all i ∈ [n] with probability at least 0.9.

Assuming the function is called at most N times and t decreases from tmax to tmin, the total
running time is

Õ((Nn−1/2 + log(tmax/tmin)) · n(τ2m+ τm2)1/2(τω−1 + τm+mω−1)1/2).

• OUTPUT: Computes (x, s) ∈ Rntot × Rntot exactly and outputs them in Õ(nτm) time.

D.3 DATA STRUCTURES USED IN CENTRALPATHMAINTENANCE

In this section we present several data structures used in CENTRALPATHMAINTENANCE, including:

• EXACTDS (Section D.3.1): This data structure maintains an implicit representation of the
primal-dual solution pair (x, s). This is directly used by CENTRALPATHMAINTENANCE.

• APPROXDS (Section D.3.2): This data structure explicitly maintains an approximation
(x, s) of (x, s). This data structure is directly used by CENTRALPATHMAINTENANCE.

• BATCHSKETCH (Section D.3.3): This data structure maintains a sketch of (x, s). This data
structure is used by APPROXDS.

• VECTORSKETCH (Section D.3.4): This data structure maintains a sketch of sparsely-
changing vectors. This data structure is used by BATCHSKETCH.

• BALANCEDSKETCH (Section D.3.5): This data structure maintains a sketch of vectors of
formW⊤v, where v is sparsely-changing. This data structure is used by BATCHSKETCH.

Notation: In this section, for simplicity, we write Bx for Bw,x,t, and Lx for the Cholesky factor of
Bx, i.e., Bx = LxL

⊤
x .

D.3.1 EXACTDS

In this section we present the data structure EXACTDS. It maintains an implicit representation of the
primal-dual solution pair (x, s) by maintaining several sparsely-changing vectors (see Eq. (8)(9)).
This data structure has a similar spirit as EXACTDS in Gu & Song (2022), but we have a different
representation from the previous works because we are working with quadratic programming rather
than linear programming.
Theorem D.3. Data structure EXACTDS (Algorithm 2, 3) implicitly maintains the primal-dual pair
(x, s) ∈ Rntot × Rntot , computable via the expression

x = x̂+H
−1/2
w,x W

⊤(hβx − h̃β̃x + ϵx), (8)

s = ŝ+H
1/2
w,xcsβcs −H

1/2
w,xW

⊤(hβs − h̃β̃s + ϵs), (9)

where x̂, ŝ ∈ Rntot , W = L−1
x H

1/2
w,x ∈ Rntot×ntot , h = L−1

x δµ ∈ Rntot , cs = H
−1/2
w,x δµ ∈ Rntot

βx, βs, βcs ∈ R, h̃ = L−1
x A⊤ ∈ Rntot×m, β̃x, β̃s ∈ Rm, ϵx, ϵs ∈ Rntot .

The data structure supports the following functions:

• INITIALIZE(x, s, x, s ∈ Rntot , t ∈ R>0): Initializes the data structure in Õ(nτω−1+nτm+
nmω−1) time, with initial value of the primal-dual pair (x, s), its initial approximation
(x, s), and initial approximate timestamp t.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

• MOVE(): Performs robust central path step

x← x+ tB−1
x δµ − tB−1

x A⊤(AB−1
x A⊤)−1AB−1

x δµ, (10)

s← s+ tδµ − t
2
B−1

x δµ + t
2
B−1

x A⊤(AB−1
x A⊤)−1AB−1

x δµ (11)

in O(mω) time by updating its implicit representation.

• UPDATE(δx, δs ∈ Rntot): Updates the approximation pair (x, s) to (xnew = x + δx ∈
Rntot , snew = s+ δs ∈ Rntot) in Õ((τ2m+ τm2)(∥δx∥0 + ∥δs∥0)) time, and output the
changes in variables δ

H
1/2
w,xx̂

, δh, δβx
, δh̃, δβ̃x

, δϵx , δ
H

−1/2
w,x ŝ

, δβs
, δβ̃s

, δϵs .

Furthermore, h, ϵx, ϵs change in O(τ(∥δx∥0 + ∥δs∥0)) coordinates, h̃ changes in
Õ(τm(∥δx∥0 + ∥δs∥0)) coordinates, and H

1/2
x x̂, H

−1/2
x ŝ, cs change in O(∥δx∥0 + ∥δs∥0)

coordinates.

• OUTPUT(): Output x and s in Õ(nτm) time.

• QUERYx(i ∈ [n]): Output xi in Õ(τ2m) time. This function is used by APPROXDS.

• QUERYs(i ∈ [n]): Output si in Õ(τ2m) time. This function is used by APPROXDS.

Proof of Theorem D.3. By combining Lemma D.4 and D.5.

Lemma D.4. EXACTDS correctly maintains an implicit representation of (x, s), i.e., invariant

x = x̂+H
−1/2
w,x W

⊤(hβx − h̃β̃x + ϵx),

s = ŝ+H
1/2
w,xcsβcs −H

1/2
w,xW

⊤(hβs − h̃β̃s + ϵs),

h = L−1
x δµ, cs = H

−1/2
w,x δµ, h̃ = L−1

x A⊤,

ũ = h̃⊤h̃, u = h̃⊤h,

α =
∑
i∈[n]

w−1
i cosh2(

λ

wi
γi(x, s, t)),

δµ = α1/2δµ(x, s, t)

always holds after every external call, and return values of the queries are correct.

Proof. INITIALIZE: By checking the definitions we see that all invariants are satisfied after INITIAL-
IZE.

MOVE: By comparing the implicit representation (8)(9) and the robust central path step (10)(11), we
see that MOVE updates (x, s) correctly.

UPDATE: We would like to prove that UPDATE correctly updates the values of h, cs, h̃, ũ, u, α, δµ,
while preserving the values of (x, s).

First note that Hw,x, Bx, Lx are updated correctly. The remaining updates are separated into two
steps: UPDATEh and UPDATEh.

Step UPDATEh: The first few lines of UPDATEh updates α and δµ correctly.

We define Hnew
w,x := Hw,x +∆Hw,x

, Bnew
x := Bx +∆Bx

, Lnew
x := Lx +∆Lx

, δ
new

µ := δµ + δδµ ,
and so on. Immediately after Algorithm 3, Line 26, we have

h+ δh = L−1
x δµ + L−1

x δδµ − (Lx +∆Lx
)−1∆Lx

(L−1
x δµ + L−1

x δδµ)

= (L−1
x − (Lx +∆Lx)

−1∆LxL
−1
x )δ

new

µ

= Lnew
x δ

new

µ ,

cs + δcs = H
−1/2
w,x δµ +∆

H
−1/2
w,x

(δµ + δδµ +H
−1/2
w,x δδµ
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Algorithm 2 The EXACTDS data structure used in Algorithm 1.

1: data structure EXACTDS ▷ Theorem D.3
2: members
3: x, s ∈ Rntot , t ∈ R+, Hw,x, Bx, Lx ∈ Rntot×ntot

4: x̂, ŝ, h, ϵx, ϵs, cs ∈ Rntot , h̃ ∈ Rntot×m, βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm

5: ũ ∈ Rm×m, u ∈ Rm, α ∈ R, δµ ∈ Rn

6: k ∈ N
7: end members
8: procedure INITIALIZE(x, s, x, s ∈ Rntot , t ∈ R+)
9: x← x, x← s, t← t

10: x̂← x, ŝ← s, ϵx ← 0, ϵs ← 0, βx ← 0, βs ← 0, β̃x ← 0, β̃s ← 0, βcs ← 0
11: Hw,x ← ∇2ϕw(x), Bx ← Q+ tHw,x

12: Compute lower Cholesky factor Lx where LxL
⊤
x = Bx

13: INITIALIZEh(x, s,Hw,x, Lx)
14: end procedure
15: procedure INITIALIZEh(x, s ∈ Rntot , Hw,x, Lx ∈ Rntot×ntot )
16: for i ∈ [n] do

17: (δµ)i ← −
α sinh( λ

wi
γi(x,s,t))

γi(x,s,t)
· µi(x, s, t)

18: α← α+ w−1
i cosh2( λ

wi
γi(x, s, t))

19: end for
20: h← L−1

x δµ, h̃← L−1
x A⊤, cs ← H

−1/2
w,x δµ

21: ũ← h̃⊤h̃, u← h̃⊤h
22: end procedure
23: procedure MOVE()
24: βx ← βx + t · (α)−1/2

25: β̃x ← β̃x + t · (α)−1/2 · ũ−1u
26: βcs ← βs + t · (α)−1/2

27: βs ← βs + t
2 · (α)−1/2

28: β̃s ← β̃s + t
2 · (α)−1/2 · ũ−1u

29: return βx, βs, βcs , β̃x, β̃s

30: end procedure
31: procedure OUTPUT()
32: return x̂+H

−1/2
w,x W⊤(hβx − h̃β̃x + ϵx), ŝ+H

1/2
w,xcsβcs −H

1/2
w,xW⊤(hβs − h̃β̃s + ϵs)

33: end procedure
34: procedure QUERYx(i ∈ [n])
35: return x̂i +H

−1/2
w,x,(i,i)(W

⊤(hβx − h̃β̃x + ϵx))i
36: end procedure
37: procedure QUERYs(i ∈ [n])
38: return ŝi +H

1/2
w,x,(i,i)cs,iβcs +H

1/2
w,x,(i,i)(W

⊤(hβs − h̃β̃s + ϵs))i
39: end procedure
40: end data structure

= (Hnew
w,x )

−1/2δ
new

µ ,

h̃+ δh̃ = L−1
x A⊤ − (Lx +∆Lx)

−1∆LxA
⊤

= (L−1
x − (Lx +∆Lx

)−1∆Lx
L−1
x )A⊤

= Lnew
x A⊤.

So h, cs, h̃ are updated correctly. Also

ũ+ δũ = h̃⊤h̃+ δ⊤
h̃
(h̃+ δh̃) + h̃⊤δh̃ = (h̃+ δh̃)

⊤(h̃+ δh̃),

u+ δu = h̃⊤h+ δ⊤
h̃
(h+ δh) + h̃⊤δh = (h̃+ δh̃)

⊤(h+ δh).
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Algorithm 3 Algorithm 2 continued.

1: data structure EXACTDS ▷ Theorem D.3
2: procedure UPDATE(δx, δs ∈ Rntot )
3: ∆Hw,x ← ∇2ϕw(x+ δx)−Hw,x ▷ ∆Hw,x is non-zero only for diagonal blocks (i, i) for

which δx,i ̸= 0
4: Compute ∆Lx

where (Lx +∆Lx
)(Lx +∆Lx

)⊤ = Bx + t∆Hw,x

5: UPDATEh(δx, δs,∆Hw,x
,∆Lx

)
6: UPDATEW(∆Hw,x

,∆Lx
)

7: x← x+ δx, s← s+ δs
8: Hw,x ← Hw,x +∆Hw,x

, Bx ← Bx + t∆Hw,x
, Lx ← Lx +∆Lx

9: return δh, δh̃, δϵx , δϵs , δH1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

, δcs
10: end procedure
11: procedure UPDATEh(δx, δs ∈ Rntot , ∆Hw,x , ∆Lx ∈ Rntot×ntot )
12: S ← {i ∈ [n] | δx,i ̸= 0 or δs,i ̸= 0}
13: δδµ ← 0

14: for i ∈ S do
15: Let γi = γi(x, s, t), γnew

i = γi(x+ δx, s+ δs, t), µnew
i = µi(x+ δx, s+ δs, t)

16: α← α− w−1
i cosh2( λ

wi
γi) + w−1

i cosh2( λ
wi

γnew
i )

17: δδµ,i ← −α sinh( λ
wi

γnew
i ) · 1

γnew
i
· µnew

i − δµ,i
18: end for
19: δh ← L−1

x δδµ − (Lx +∆Lx
)−1∆Lx

(h+ L−1
x δδµ)

20: δcs ← ∆
H

−1/2
w,x

(δµ + δδµ) +H
−1/2
w,x δδµ

21: δh̃ ← −(Lx +∆Lx
)−1∆Lx

h̃
22: δŝ ← −δδµβcs

23: δϵx ← −δhβx + δh̃β̃x

24: δϵs ← −δhβs + δh̃β̃s

25: δũ ← δ⊤
h̃
(h̃+ δh̃) + h̃⊤δh̃

26: δu ← δ⊤
h̃
(h+ δh) + h̃⊤δh

27: δµ ← δµ + δδµ , h ← h + δh, h̃ ← h̃ + δh̃, ϵx ← ϵx + δϵx , ϵs ← ϵs + δϵs , ũ ← ũ + δũ,
u← u+ δu

28: end procedure
29: procedure UPDATEW(∆Hw,x ,∆Lx ∈ Rntot )
30: δϵx ← ∆⊤

Lx
L−⊤
x (hβx − h̃β̃x + ϵx)

31: δϵs ← ∆⊤
Lx

L−⊤
x (hβs − h̃β̃s + ϵs)

32: ϵx ← ϵx + δϵx , ϵs ← ϵs + δϵs
33: end procedure
34: end data structure

So ũ and u are maintained correctly. Furthermore, immediately after Algorithm 3, Line 26, we have

(x̂+ L−⊤
x (hnewβx − h̃newβ̃x + ϵnewx ))− (x̂+ L−⊤

x (hβx − h̃β̃x + ϵx))

= L−⊤
x (δhβx − δh̃β̃s + δϵx)

= 0.

Therefore, after UPDATEh finishes, we have

x = x̂+ L−⊤
x (hβx − h̃β̃x + ϵx).

For s, we have

(ŝnew + (Hnew
w,x )

1/2cnews βcs − L−⊤
x (hnewβs − h̃newβ̃s + ϵnews ))

− (ŝ+H
1/2
w,xcsβcs − L−⊤

x (hβs − h̃β̃s + ϵs))
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= δŝ + δδβcs − L−⊤
x (δhβs − δh̃β̃s + δϵs)

= 0.

Therefore, after UPDATEh finishes, we have

s = ŝ+ (Hnew
w,x )

1/2csβcs − L−⊤
x (hβs − h̃β̃s + ϵs).

So x and s are both updated correctly. This proves the correctness of UPDATEh.

Step UPDATEW : Define ϵnewx := ϵx+δϵx , ϵnews := ϵs+δϵs . Immediately after Algorithm 3, Line 31,
we have

(x̂+ (Lnew
x )−⊤(hβx − h̃β̃x + ϵnewx ))− (x̂+ L−⊤

x (hβx − h̃β̃x + ϵx))

= ((Lnew
x )−⊤ − L−⊤

x )(hβx − h̃β̃x + ϵx) + (Lnew
x )−⊤δϵx

= 0,

(ŝ+ (Hnew
w,x )

1/2csβcs − (Lnew
x )−⊤(hβs − h̃β̃s + ϵnews ))

− (ŝ+ (Hnew
w,x )

1/2csβcs − L−⊤
x (hβs − h̃β̃s + ϵs))

= (−(Lnew
x )−⊤ + L−⊤

x )(hβs − h̃β̃s + ϵs)− (Lnew
x )−⊤δϵs

= 0.

Therefore, after UPDATEW finishes, we have

x = x̂+ (Lnew
x )−⊤(hβx − h̃β̃x + ϵx),

s = ŝ+ (Hnew
w,x )

1/2csβcs − (Lnew
x )−⊤(hβs − h̃β̃s + ϵs).

So x and s are both updated correctly. This proves the correctness of UPDATEW .

Lemma D.5. We bound the running time of EXACTDS as following.

(i) EXACTDS.INITIALIZE (Algorithm 2) runs in Õ(nτω−1 + nτm+ nmω−1) time.

(ii) EXACTDS.MOVE (Algorithm 2) runs in Õ(mω) time.

(iii) EXACTDS.OUTPUT (Algorithm 2) runs in Õ(nτm) time and correctly outputs (x, s).

(iv) EXACTDS.QUERYx and EXACTDS.QUERYs (Algorithm 2) runs in Õ(τ2m) time and
returns the correct answer.

(v) EXACTDS.UPDATE (Algorithm 2) runs in Õ((τ2m+ τm2)(∥δx∥0+∥δs∥0)) time. Further-
more, h, ϵx, ϵs change in O(τ(∥δx∥0 + ∥δs∥0)) coordinates, h̃ changes in Õ(τm(∥δx∥0 +
∥δs∥0)) coordinates, and H

1/2
x x̂, H

−1/2
x ŝ, cs change in O(∥δx∥0 + ∥δs∥0) coordinates.

Proof. (i) Computing Lx takes Õ(nτω−1) time by Lemma A.5. Computing h and h̃ takes
Õ(nτm) by Lemma A.7(i).7 Computing ũ and u takes Tmat(m,n,m) = Õ(nmω−1) time.
All other operations are cheap.

(ii) Computing ũ−1 takes Õ(mω) time. All other operations take O(m2) time.

(iii) Running time is by Lemma A.7(v). Correctness is by Lemma D.4.

(iv) Running time is by Lemma A.8(ii). Correctness is by Lemma D.4.

(v) Computing ∆Lx
takes Õ(τ2∥δx∥0) time by Lemma A.6. It is easy to see that nnz(∆Hw,x

) =

O(∥δx∥0) and nnz(∆Lx
) = Õ(τ2∥δx∥0). It remains to analyze UPDATEh and UPDATEW .

For simplicity, we write k = δx∥0 + ∥δs∥0 in this proof only.

7Here we compute h̃ by computing h̃∗,i = L−1
x (Ai,∗)

⊤ for i ∈ [m] independently. Using fast rectangular
matrix multiplication is possible to improve this running time and other similar places. We keep the current
bounds for simplicity.
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• UPDATEh: Updating α and computing δδµ takes O(k) time. Also, ∥δδµ∥0 = O(k).

Computing δh takes Õ(τ2k) time by Lemma A.7(i). Also, δh is supported on O(k)

paths in the elimination tree, so ∥δh∥0 = Õ(τk). Similarly we see that computing δh̃
take Õ(τ2mk) time and nnz(δh̃) = Õ(τmk).
Computing δcs and δŝ takes O(τ2k) time and ∥δcs∥0, ∥δŝ∥0 = O(k).
Computing δϵx and δϵs takes O(τmk) time after computing δh and δh̃. Furthermore,
∥δϵx∥0, ∥δϵs∥0 = O(τk).
Computing δũ takes Tmat(m, τk,m) = Õ(τm2k) time. Computing δu takes Õ(τmk)
time.

• UPDATEW: To compute δϵx and δϵs , we first compute L−⊤
x (hβx − h̃β̃x + ϵx) and

L−⊤
x (hβs − h̃β̃s + ϵs), where S ⊆ [ntot] is the row support of ∆Lx

, which can
be decomposed into at most O(∥δx∥0) paths. This takes Õ(τ2m∥δx∥0) time by
Lemma A.8(i) (the extra m factor is due to h̃).

Combining everything we finish the proof of running time of EXACTDS.UPDATE.

D.3.2 APPROXDS

In this section we present the data structure APPROXDS. Given BATCHSKETCH, a data structure
maintaining a sketch of the primal-dual pair (x, s) ∈ Rntot×Rntot , APPROXDS maintains a sparsely-
changing ℓ∞-approximation of (x, s). This data structure is a slight variation of APPROXDS in Gu &
Song (2022).

Algorithm 4 The APPROXDS data structure used in Algorithm 1.
1: data structure APPROXDS ▷ Theorem D.6
2: private : members
3: ϵapx,x, ϵapx,s ∈ R
4: ℓ ∈ N
5: BATCHSKETCH bs ▷ This maintains a sketch of H1/2

w,xx and H
−1/2
w,x s. See Algorithm 6, 7, 8.

6: EXACTDS* exact ▷ This is a pointer to the EXACTDS (Algorithm 2, 3) we maintain in parallel to
APPROXDS.

7: x̃, s̃ ∈ Rntot ▷ (x̃, s̃) is a sparsely-changing approximation of (x, s). They have the same value as
(x, s), but for these local variables we use (x̃, s̃) to avoid confusion.

8: end members
9: procedure INITIALIZE(x, s ∈ Rntot , h ∈ Rntot , h̃ ∈ Rntot×m, ϵx, ϵs, H

1/2
w,xx̂, H

−1/2
w,x ŝ, cs ∈

Rntot , βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm, q ∈ N, EXACTDS* exact, ϵapx,x, ϵapx,s, δapx ∈ R)
10: ℓ← 0, q ← q
11: ϵapx,x ← ϵapx,x, ϵapx,s ← ϵapx,s

12: bs.INITIALIZE(x, h, h̃, ϵx, ϵs, H
1/2
w,xx̂, H

−1/2
w,x ŝ, cs, βx, βs, βcs , β̃x, β̃s, δapx/q) ▷ Algorithm 6

13: x̃← x, s̃← s
14: exact← exact
15: end procedure
16: procedure UPDATE(δx ∈ Rntot , δh ∈ Rntot , δh̃ ∈ Rntot×m, δϵx , δϵs , δH1/2

w,xx̂
, δ

H
−1/2
w,x ŝ

, δcs ∈ Rntot )

17: bs.UPDATE(δx, δh, δh̃, δϵx , δϵs , δH1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

, δcs) ▷ Algorithm 7

18: ℓ← ℓ+ 1
19: end procedure
20: procedure MOVEANDQUERY(βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm)
21: bs.MOVE(βx, βs, βcs , β̃x, β̃s) ▷ Algorithm 7. Do not update ℓ yet
22: δx̃ ← QUERYx(ϵapx,x/(2 log q + 1)) ▷ Algorithm 5
23: δs̃ ← QUERYs(ϵapx,s/(2 log q + 1)) ▷ Algorithm 5
24: x̃← x̃+ δx̃, s̃← s̃+ δs̃
25: return (δx̃, δs̃)
26: end procedure
27: end data structure

Theorem D.6. Given parameters ϵapx,x, ϵapx,s ∈ (0, 1), δapx ∈ (0, 1), ζx, ζs ∈ R such that

∥H1/2

w,x(ℓ)x
(ℓ) −H

1/2

w,x(ℓ)x
(ℓ+1)∥2 ≤ ζx, ∥H−1/2

w,x(ℓ)s
(ℓ) −H

−1/2

w,x(ℓ)s
(ℓ+1)∥2 ≤ ζs
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Algorithm 5 APPROXDS Algorithm 4 continued.

1: data structure APPROXDS ▷ Theorem D.6
2: private:
3: procedure QUERYx(ϵ ∈ R)
4: I ← 0
5: for j = 0→ ⌊log2 ℓ⌋ do
6: if ℓ mod 2j = 0 then
7: I ← I ∪ bs.QUERYx(ℓ− 2j + 1, ϵ) ▷ Algorithm 8
8: end if
9: end for

10: δx̃ ← 0
11: for all i ∈ I do
12: xi ← exact.QUERYx(i) ▷ Algorithm 2
13: if ∥x̃i − xi∥x̃i

> ϵ then
14: δx̃,i ← xi − x̃i

15: end if
16: end for
17: return δx̃
18: end procedure
19: procedure QUERYs(ϵ ∈ R)
20: Same as QUERYx, except for replacing x, x̃, · · · with s, s̃, · · · , and replacing “∥x̃i − xi∥x̃i

”
in Line 13 with “∥s̃i − si∥∗x̃i

”.
21: end procedure
22: end data structure

for all ℓ ∈ {0, . . . , q − 1}, data structure APPROXDS (Algorithm 4 and Algorithm 5) supports the
following operations:

• INITIALIZE(x, s ∈ Rntot , h ∈ Rntot , h̃ ∈ Rntot×m, ϵx, ϵs, H
1/2
w,xx̂, H

−1/2
w,x ŝ, cs ∈

Rntot , βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm, q ∈ N, EXACTDS* exact, ϵapx,x, ϵapx,s, δapx ∈ R):
Initialize the data structure in Õ(nτω−1 + nτm) time.

• MOVEANDQUERY(βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm): Update values of βx, βs, βcs , β̃x, β̃s

by calling BATCHSKETCH.MOVE. This effectively moves (x(ℓ), s(ℓ)) to (x(ℓ+1), s(ℓ+1))

while keeping x(ℓ) unchanged.

Then return two sets L(ℓ)
x , L

(ℓ)
s ⊂ [n] where

L(ℓ)
x ⊇ {i ∈ [n] : ∥H1/2

w,x(ℓ)x
(ℓ)
i −H

1/2

w,x(ℓ)x
(ℓ+1)
i ∥2 ≥ ϵapx,x},

L(ℓ)
s ⊇ {i ∈ [n] : ∥H−1/2

w,x(ℓ)s
(ℓ)
i −H

−1/2

w,x(ℓ)s
(ℓ+1)
i ∥2 ≥ ϵapx,s},

satisfying ∑
0≤ℓ≤q−1

|L(ℓ)
x | = Õ(ϵ−2

apx,xζ
2
xq

2),

∑
0≤ℓ≤q−1

|L(ℓ)
s | = Õ(ϵ−2

apx,sζ
2
s q

2).

For every query, with probability at least 1− δapx/q, the return values are correct.

Furthermore, total time cost over all queries is at most

Õ
(
(ϵ−2

apx,xζ
2
x + ϵ−2

apx,sζ
2
s )q

2τ2m
)
.

• UPDATE(δx ∈ Rntot , δh ∈ Rntot , δh̃ ∈ Rntot×m, δϵx , δϵs , δH1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

, δcs ∈ Rntot):

Update sketches of H1/2

w,x(ℓ)x
(ℓ+1) and H

−1/2

w,x(ℓ)s
(ℓ+1) by calling BATCHSKETCH.UPDATE.
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This effectively moves x(ℓ) to x(ℓ+1) while keeping (x(ℓ+1), s(ℓ+1)) unchanged. Then ad-
vance timestamp ℓ.

Each update costs

Õ(τ2(∥δx∥0 + ∥δh∥0 + ∥δh̃∥0 + ∥δϵx∥0 + ∥δϵs∥0) + ∥δH1/2
w,xx̂
∥0 + ∥δH−1/2

w,x ŝ
∥0 + ∥δcs∥0)

time.

Proof. The proof is essentially the same as proof of (Gu & Song, 2022, Theorem 4.18). For the
running time claims, we plug in Theorem D.8 when necessary.

D.3.3 BATCHSKETCH

In this section we present the data structure BATCHSKETCH. It maintains a sketch of H1/2
x x and

H
−1/2
x s. It is a variation of BATCHSKETCH in Gu & Song (2022).

We recall the following definition from Gu & Song (2022).
Definition D.7 (Partition tree). A partition tree (S, χ) of Rn is a constant degree rooted tree
S = (V,E) and a labeling of the vertices χ : V → 2[n], such that

• χ(root) = [n];

• if v is a leaf of S, then |χ(v)| = 1;

• for any non-leaf node v ∈ V , the set {χ(c) : c is a child of v} is a partition of χ(v).

Algorithm 6 The BATCHSKETCH data structure used by Algorithm 4 and 5.

1: data structure BATCHSKETCH ▷ Theorem D.8
2: members
3: Φ ∈ Rr×ntot ▷ All sketches need to share the same sketching matrix
4: S, χ partition tree
5: ℓ ∈ N ▷ Current timestamp
6: BALANCEDSKETCH sketchW⊤h, sketchW⊤h̃, sketchW⊤ϵx, sketchW⊤ϵs ▷ Algorithm 10
7: VECTORSKETCH sketchH

1/2
w,xx̂, sketchH−1/2

w,x ŝ, sketchcs ▷ Algorithm 9

8: βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm

9: (history[t])t≥0 ▷ Snapshot of data at timestamp t. See Remark D.9.
10: end members
11: procedure INITIALIZE(x ∈ Rntot , h ∈ Rntot , h̃ ∈ Rntot×m, ϵx, ϵs, H

1/2
w,xx̂, H

−1/2
w,x ŝ, cs ∈

Rntot , βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm, δapx ∈ R)
12: Construct partition tree (S, χ) as in Definition D.11
13: r ← Θ(log3(ntot) log(1/δapx))
14: Initialize Φ ∈ Rr×ntot with iid N (0, 1

r )

15: βx ← βx, βs ← βs, βcs ← βcs , β̃x ← β̃x, β̃s ← β̃s

16: sketchW⊤h.INITIALIZE(S, χ,Φ, x, h) ▷ Algorithm 10
17: sketchW⊤h̃.INITIALIZE(S, χ,Φ, x, h̃) ▷ Algorithm 10
18: sketchW⊤ϵx.INITIALIZE(S, χ,Φ, x, ϵx) ▷ Algorithm 10
19: sketchW⊤ϵs.INITIALIZE(S, χ,Φ, x, ϵs) ▷ Algorithm 10
20: sketchH

1/2
w,xx̂.INITIALIZE(S, χ,Φ, H1/2

w,xx̂) ▷ Algorithm 9

21: sketchH
−1/2
w,x ŝ.INITIALIZE(S, χ,Φ, H−1/2

w,x ŝ) ▷ Algorithm 9
22: sketchcs.INITIALIZE(S, χ,Φ, cs) ▷ Algorithm 9
23: ℓ← 0. Make snapshot history[ℓ] ▷ Remark D.9
24: end procedure
25: end data structure

Theorem D.8. Data structure BATCHSKETCH (Algorithm 6, 8) supports the following operations:
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Algorithm 7 BATCHSKETCH Algorithm 6 continued.

1: data structure BATCHSKETCH ▷ Theorem D.8
2: procedure MOVE(βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm)
3: βx ← βx, βs ← βs, βcs ← βcs , β̃x ← β̃x, β̃s ← β̃s ▷ Do not update ℓ yet
4: end procedure
5: procedure UPDATE(δx ∈ Rntot , δh ∈ Rntot , δh̃ ∈ Rntot×m, δϵx , δϵs , δH1/2

w,xx̂
, δ

H
−1/2
w,x ŝ

, δcs ∈
Rntot)

6: sketchW⊤h.UPDATE(δx, δh) ▷ Algorithm 11
7: sketchW⊤h̃.UPDATE(δx, δh̃) ▷ Algorithm 11
8: sketchW⊤ϵx.UPDATE(δx, δϵx) ▷ Algorithm 11
9: sketchW⊤ϵs.UPDATE(δx, δϵs) ▷ Algorithm 11

10: sketchH
1/2
w,xx̂.UPDATE(δ

H
1/2
w,xx̂

) ▷ Algorithm 9

11: sketchH
−1/2
w,x ŝ.UPDATE(δ

H
−1/2
w,x ŝ

) ▷ Algorithm 9

12: sketchcs.UPDATE(δcs) ▷ Algorithm 9
13: ℓ← ℓ+ 1
14: Make snapshot history[ℓ] ▷ Remark D.9
15: end procedure
16: end data structure

• INITIALIZE(x ∈ Rntot , h ∈ Rntot , h̃ ∈ Rntot×m, ϵx, ϵs, H
1/2
w,xx̂, H

−1/2
w,x ŝ, cs ∈

Rntot , βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm, δapx ∈ R): Initialize the data structure in
Õ(nτω−1 + nτm) time.

• MOVE(βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm): Update values of βx, βs, βcs , β̃x, β̃s in O(m) time.
This effectively moves (x(ℓ), s(ℓ)) to (x(ℓ+1), s(ℓ+1)) while keeping x(ℓ) unchanged.

• UPDATE(δx ∈ Rntot , δh ∈ Rntot , δh̃ ∈ Rntot×m, δϵx , δϵs , δH1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

, δcs ∈ Rntot):

Update sketches of H1/2

w,x(ℓ)x
(ℓ+1) and H

−1/2

w,x(ℓ)s
(ℓ+1). This effectively moves x(ℓ) to x(ℓ+1)

while keeping (x(ℓ+1), s(ℓ+1)) unchanged. Then advance timestamp ℓ.

Each update costs

Õ(τ2(∥δx∥0 + ∥δh∥0 + ∥δh̃∥0 + ∥δϵx∥0 + ∥δϵs∥0) + ∥δH1/2
w,xx̂
∥0 + ∥δH−1/2

w,x ŝ
∥0 + ∥δcs∥0)

time.

• QUERYx(ℓ′ ∈ N, ϵ ∈ R): Given timestamp ℓ′, return a set S ⊆ [n] where

S ⊇ {i ∈ [n] : ∥H1/2

w,x(ℓ′)x
(ℓ′)
i −H

1/2

w,x(ℓ)x
(ℓ+1)
i ∥2 ≥ ϵ},

and

|S| = O(ϵ−2(ℓ− ℓ′ + 1)
∑

ℓ′≤t≤ℓ

∥H1/2

w,x(t)x
(t) −H

1/2

w,x(t)x
(t+1)∥22 +

∑
ℓ′≤t≤ℓ−1

∥x(t) − x(t+1)∥2,0)

where ℓ is the current timestamp.

For every query, with probability at least 1− δ, the return values are correct, and costs at
most

Õ(τ2 · (ϵ−2(ℓ− ℓ′ + 1)
∑

ℓ′≤t≤ℓ

∥H1/2

x(t)x
(t) −H

1/2

x(t)x
(t+1)∥22 +

∑
ℓ′≤t≤ℓ−1

∥x(t) − x(t+1)∥2,0))

running time.

• QUERYs(ℓ′ ∈ N, ϵ ∈ R): Given timestamp ℓ′, return a set S ⊆ [n] where

S ⊇ {i ∈ [n] : ∥H−1/2

w,x(ℓ′)s
(ℓ′)
i −H

−1/2

w,x(ℓ)s
(ℓ+1)
i ∥2 ≥ ϵ}
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Algorithm 8 BATCHSKETCH Algorithm 6, 7 continued.

1: data structure BATCHSKETCH ▷ Theorem D.8
2: private:
3: procedure QUERYxSKETCH(v ∈ S) ▷ Return the value of Φχ(v)(H

1/2
w,xx)χ(v)

4: return sketchH
1/2
w,xx̂.QUERY(v) + sketchW⊤h.QUERY(v) · βx− sketchW⊤h̃.QUERY(v) ·

β̃x + sketchW⊤ϵx.QUERY(v) ▷ Algorithm 9, 10
5: end procedure
6: procedure QUERYsSKETCH(v ∈ S) ▷ Return the value of Φχ(v)(H

−1/2
w,x s)χ(v)

7: return sketchH
−1/2
w,x ŝ.QUERY(v) + sketchcs.QUERY(v) · βcs − sketchW⊤h.QUERY(v) ·

βs + sketchW⊤h̃.QUERY(v) · β̃s − sketchW⊤ϵs.QUERY(v) ▷ Algorithm 9, 10
8: end procedure
9: public:

10: procedure QUERYx(ℓ′ ∈ N, ϵ ∈ R)
11: L0 = {root(S)}
12: S ← ∅
13: for d = 0→∞ do
14: if Ld = ∅ then
15: return S
16: end if
17: Ld+1 ← ∅
18: for v ∈ Ld do
19: if v is a leaf node then
20: S ← S ∪ {v}
21: else
22: for u child of v do
23: if ∥QUERYxSKETCH(u)− history[ℓ′].QUERYxSKETCH(u)∥2 > 0.9ϵ then
24: Ld+1 ← Ld+1 ∪ {u}
25: end if
26: end for
27: end if
28: end for
29: end for
30: end procedure
31: procedure QUERYs(ℓ′ ∈ N, ϵ ∈ R)
32: Same as QUERYx, except for replacing QUERYxSKETCH in Line 23 with QUERYsSKETCH.
33: end procedure
34: end structure

and

|S| = O(ϵ−2(ℓ− ℓ′ + 1)
∑

ℓ′≤t≤ℓ

∥H−1/2

w,x(t)s
(t) −H

−1/2

w,x(t)s
(t+1)∥22 +

∑
ℓ′≤t≤ℓ−1

∥x(t) − x(t+1)∥2,0)

where ℓ is the current timestamp.

For every query, with probability at least 1− δ, the return values are correct, and costs at
most

Õ(τ2 · (ϵ−2(ℓ− ℓ′ + 1)
∑

ℓ′≤t≤ℓ

∥H1/2

x(t)s
(t) −H

1/2

x(t)x
(t+1)∥22 +

∑
ℓ′≤t≤ℓ−1

∥x(t) − x(t+1)∥2,0))

running time.

Proof. The proof is essentially the same as proof of (Gu & Song, 2022, Theorem 4.21). For the
running time claims, we plug in Lemma D.10 and D.12 when necessary.

Remark D.9 (Snapshot). As in previous works, we use persistent data structures (e.g., Driscoll et al.
(1989)) to keep a snapshot of the data structure after every update. This allows us to support query to
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historical data. This incurs an O(log ntot) = Õ(1) multiplicative factor in all running times, which
we ignore in our analysis.

D.3.4 VECTORSKETCH

VECTORSKETCH is a data structure used to maintain sketches of sparsely-changing vectors. It is a
direct application of segment trees. For completeness, we include code (Algorithm 9) from (Gu &
Song, 2022, Algorithm 10).

Algorithm 9 (Gu & Song, 2022, Algorithm 10). Used in Algorithm 6, 7, 8.

1: data structure VECTORSKETCH ▷ Lemma D.10
2: private: members
3: Φ ∈ Rr×ntot

4: Partition tree (S, χ)
5: x ∈ Rntot

6: Segment tree T on [n] with values in Rr

7: end members
8: procedure INITIALIZE(S, χ : partition tree,Φ ∈ Rr×ntot , x ∈ Rntot )
9: (S, χ)← (S, χ), Φ← Φ

10: x← x
11: Order leaves of S (variable blocks) such that every node χ(v) corresponds to a contiguous

interval ⊆ [n].
12: Build a segment tree T on [n] such that each segment tree interval I ⊆ [n] maintains

ΦIxI ∈ Rr.
13: end procedure
14: procedure UPDATE(δx ∈ Rntot )
15: for all i ∈ [ntot] such that δx,i ̸= 0 do
16: Let j ∈ [n] be such that i is in j-th block
17: Update T at j-th coordinate Φjxj ← Φjxj +Φi · δx,i.
18: xi ← xi + δx,i
19: end for
20: end procedure
21: procedure QUERY(v ∈ V (S))
22: Find interval I corresponding to χ(v)
23: return range sum of T on interval I
24: end procedure
25: end data structure

Lemma D.10 ((Gu & Song, 2022, Lemma 4.23)). Given a partition tree (S, χ) of Rn, and a
JL sketching matrix Φ ∈ Rr×ntot , the data structure VECTORSKETCH (Algorithm 9) maintains
Φχ(v)xχ(v) for all nodes v in the partition tree implicitly through the following functions:

• INITIALIZE(S, χ,Φ): Initializes the data structure in O(rntot) time.

• UPDATE(δx ∈ Rntot): Maintains the data structure for x ← x + δx in O(r∥δx∥0 log n)
time.

• QUERY(v ∈ V (S)): Outputs Φχ(v)xχ(v) in O(r log n) time.

D.3.5 BALANCEDSKETCH

In this section, we present data structure BALANCEDSKETCH. It is a data structure for maintaining a
sketch of a vector of formW⊤h, whereW = L−1

x H
1/2
w,x and h ∈ Rntot is a sparsely-changing vector.

This is a variation of BLOCKBALANCEDSKETCH in Gu & Song (2022).

We use the following construction of a partition tree.
Definition D.11 (Construction of Partition Tree). We fix an ordering π of [n] using the heavy-light
decomposition (Lemma A.10). Let S be a complete binary tree with leaf set [n] and ordering π. Let χ
map a node to the set of leaves in its subtree. Then (S, χ) is a valid partition tree.
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Algorithm 10 The BALANCEDSKETCH data structure is used in Algorithm 6, 7, 8.

1: data structure BALANCEDSKETCH ▷ Lemma D.12
2: private: members
3: Φ ∈ Rr×ntot

4: Partition tree (S, χ) with balanced binary tree B
5: t ∈ N
6: h ∈ Rntot , x ∈ Rntot , Hw,x ∈ Rntot×ntot

7: {L[t] ∈ Rntot×ntot}t≥0

8: {Jv ∈ Rr×ntot}v∈S
9: {Zv ∈ Rr×ntot}v∈B

10: {y▽v ∈ Rr}v∈B
11: {tv ∈ N}v∈B
12: end members
13: procedure INITIALIZE(S, χ : partition tree,Φ ∈ Rr×ntot , x ∈ Rntot , h ∈ Rntot×k)
14: (S, χ)← (S, χ), Φ← Φ
15: t← 0, h← h
16: Hw,x ← ∇2ϕ(x), Bx ← Q+ tHw,x

17: Compute lower Cholesky factor Lx[t] of Bx

18: for all v ∈ S do
19: Jv ← Φχ(v)H

1/2
w,x

20: end for
21: for all v ∈ B do
22: Zv ← JvLx[t]

−⊤

23: y▽v ← Zv(I − IΛ(v))h
24: tv ← t
25: end for
26: end procedure
27: procedure QUERY(v ∈ S)
28: if v ∈ S\B then
29: return Jv · Lx[t]

−⊤h
30: end if
31: ∆Lx

← (Lx[t]− Lx[tv]) · IΛ(v)

32: δZv
← −(Lx[t]

−1 ·∆Lx
· Z⊤

v )⊤

33: Zv ← Zv + δZv

34: δy▽
v
← δZv · (I − IΛ(v))h

35: y▽v ← y▽v + δy▽
v

36: tv ← t
37: y△v ← Zv · IΛ(v) · h
38: return y△v + y▽v
39: end procedure
40: end data structure

Lemma D.12. Given an elimination tree T with height η, a JL matrix Φ ∈ Rr×ntot , and a partition
tree (S, χ) constructed as in Definition D.11 with height Õ(1), the data structure BALANCEDSKETCH
(Algorithm 10, 11, 12), maintains Φχ(v)(W⊤h)χ(v) for each v ∈ V (S) through the following
operations

• INITIALIZE((S, χ) : partition tree,Φ ∈ Rntot , x ∈ Rntot , h ∈ Rntot×k): Initializes the
data structure in Õ(r(nτω−1 + nτk)) time.

• UPDATE(δx ∈ Rntot , δh ∈ Rntot×k): Updates all sketches in S implicitly to reflect (W, h)

updating to (Wnew, hnew) in Õ(rτ2k) time.

• QUERY(v ∈ S): Outputs Φχ(v)(W⊤h)χ(v) in Õ(rτ2k) time.

Proof. The proof is almost same as the proof of (Gu & Song, 2022, Lemma 4.24). (In fact, ourW is
simpler than the one used in Gu & Song (2022).)
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Algorithm 11 BALANCEDSKETCH Algorithm 10 continued. This is used in Algorithm 6, 7, 8.

1: data structure BALANCEDSKETCH
2: procedure UPDATE(δx ∈ Rntot , δh ∈ Rntot×k)
3: for i ∈ [n] where δx,i ̸= 0 do
4: UPDATEx(δx,i)
5: end for
6: for all δh,i ̸= 0 do
7: v ← Λ◦(i)
8: for all u ∈ PB(v) do
9: y▽u ← y▽v + Zu · I{i} · δh

10: end for
11: end for
12: h← h+ δh
13: end procedure
14: procedure UPDATEx(δx,i ∈ Rni )
15: t← t+ 1
16: xi ← xi + δx,i
17: ∆Hw,x,(i,i) ← ∇2ϕi(xi)−Hw,x,(i,i)

18: Compute ∆Lx such that Lx[t]← Lx[t− 1]+∆Lx is the lower Cholesky factor of A(Hw,x +
∆Hw,x)

−1A⊤

19: S ← PB(Λ◦(lowT (i)))
20: UPDATEL(S,∆Lx

)
21: UPDATEH(i,∆Hw,x,(i,i))
22: end procedure
23: end data structure

For INITIALIZE running time, we note that computing Zv for all v ∈ B takes Õ(rnτω−1) time by
(Gu & Song, 2022, Lemma 8.3). Because Zv is supported on the path from v to the root in T , we
know that nnz(Z) = O(rnτ). Therefore computing y▽v for all v ∈ B takes Õ(rnτk) time.

Remaining claims follow from combining proof of (Gu & Song, 2022, Lemma 4.24) and (Gu & Song,
2022, Lemma 8.3).

D.4 ANALYSIS OF CENTRALPATHMAINTENANCE

Lemma D.13 (Correctness of CENTRALPATHMAINTENANCE). Algorithm 1 implicitly maintains
the primal-dual solution pair (x, s) via representation Eq. (8)(9). It also explicitly maintains (x, s) ∈
Rntot × Rntot such that ∥xi − xi∥xi

≤ ϵ and ∥si − si∥∗xi
≤ tϵwi for all i ∈ [n] with probability at

least 0.9.

Proof. We correctly maintain the implicit representation because of correctness of exact.UPDATE
(Theorem D.3).

We show that ∥xi − xi∥xi
≤ ϵ and ∥si − si∥∗xi

≤ tϵwi for all i ∈ [n] (c.f. Algorithm 20, Line 16).

approx maintains an ℓ∞ approximation of H1/2
w,xx. For ℓ ≤ q, we have

∥H1/2
w,xx

(ℓ+1) −H
1/2
w,xx

(ℓ)∥2 = ∥δx∥w,x ≤
9

8
α ≤ ζx

where the first step from definition of ∥ · ∥w,x, the second step follows from Lemma F.11, the third
step follows from definition of ζx.

By Theorem D.6, with probability at least 1− δapx, approx correctly maintains x such that ∥H1/2
w,xx−

H
1/2
w,xx∥∞ ≤ ϵapx,x ≤ ϵ. Then

∥xi − xi∥xi
≤ w

−1/2
i ∥H1/2

w,xx−H
1/2
w,xx∥∞ ≤ w

−1/2
i ϵ ≤ ϵ.
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Algorithm 12 BALANCEDSKETCH Algorithm 10, 11 continued. This is used in Algorithm 6, 7, 8.

1: data structure BALANCEDSKETCH ▷ Lemma D.12
2: private:
3: procedure UPDATEL(S ⊂ B, ∆Lx ∈ Rntot×ntot)
4: for all v ∈ S do
5: δZv

← −(Lx[t− 1]−1(Lx[t− 1]− Lx[tv]) · IΛ(v) · Z⊤
v )⊤

6: δ′Zv
← −(Lx[t]

−1 ·∆Lx
· (Zv + δZv

)⊤)⊤

7: Zv ← Zv + δZv + δ′Zv

8: δy▽
v
← (δZv

+ δ′Zv
)(I − IΛ(v))h

9: y▽v ← y▽v + δy▽
v

10: tv ← t
11: end for
12: end procedure
13: private:
14: procedure UPDATEH(i ∈ [n],∆Hw,x,(i,i) ∈ Rni×ni )
15: Find u such that χ(u) = {i}
16: ∆

H
1/2
w,x,(i,i)

← (Hw,x,(i,i) +∆Hw,x,(i,i))
1/2 −H

1/2
w,x,(i,i)

17: δJu
← Φi ·∆H

1/2
w,x,(i,i)

18: for all v ∈ PS(u) do
19: Jv ← Jv + δJu

20: if v ∈ B then
21: δZv ← δJv · Lx[tv]

−⊤

22: Zv ← Zv + δZv

23: δy▽
v
← δZv · (I − IΛ(v)) · h

24: y▽v ← y▽v + δy▽
v

25: end if
26: end for
27: Hw,x ← Hw,x +∆Hw,x,(i,i)

28: end procedure
29: end data structure

Note that the last step is loose by a factor of w1/2
i . When wis are large, we could improve running

time by using a tighter choice of ϵapx,x, as did in Gu & Song (2022). Here we use a loose bound for
simplicity of presentation. Same remark applies to s.

The proof for s is similar. We have

∥H−1/2
w,x δs∥2 = ∥δs∥∗w,x ≤

17

8
α · t ≤ ζs

and

∥si − si∥∗xi
≤ w

1/2
i ∥H

−1/2
w,x s−H

−1/2
w,x s∥∞ ≤ w

1/2
i ϵapx,s ≤ ϵ · t · wi.

Lemma D.14. We bound the running time of CENTRALPATHMAINTENANCE as following.

• CENTRALPATHMAINTENANCE.INITIALIZE takes Õ(nτω−1 + nτm+ nmω−1) time.

• If CENTRALPATHMAINTENANCE.MULTIPLYANDMOVE is called N times, then it has
total running time

Õ((Nn−1/2 + log(tmax/tmin)) · n(τ2m+ τm2)1/2(τω−1 + τm+mω−1)1/2).

• CENTRALPATHMAINTENANCE.OUTPUT takes Õ(nτm) time.

Proof. INITIALIZE part: By Theorem D.3 and D.6.

OUTPUT part: By Theorem D.3.
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MULTIPLYANDMOVE part: Between two restarts, the total size of |Lx| returned by approx.QUERY

is bounded by Õ(q2ζ2x/ϵ
2
apx,x) by Theorem D.6. By plugging in ζx = 2α, ϵapx,x = ϵ, we have∑

ℓ∈[q] |L
(ℓ)
x | = Õ(q2). Similarly, for s we have

∑
ℓ∈[q] |L

(ℓ)
s | = Õ(q2).

Update time: By Theorem D.3 and D.6, in a sequence of q updates, total cost for update is
Õ(q2(τ2m + τm2)). So the amortized update cost per iteration is Õ(q(τ2m + τm2)). The total
update cost is

number of iterations · time per iteration = Õ(Nq(τ2m+ τm2)).

Init/restart time: We restart the data structure whenever k > q or |t − t| > tϵt, so there are
O(N/q + log(tmax/tmin)ϵ

−1
t ) restarts in total. By Theorem D.3 and D.6, time cost per restart is

Õ(n(τω−1 + τm+mω−1)). So the total initialization time is

number of restarts · time per restart = Õ((N/q + log(tmax/tmin)ϵ
−1
t ) · n(τω−1 + τm+mω−1)).

Combine everything: Overall running time is

Õ(Nq(τ2m+ τm2) + (N/q + log(tmax/tmin)ϵ
−1
t ) · n(τω−1 + τm+mω−1)).

Taking ϵt =
1
2ϵ, the optimal choice for q is

q = n1/2(τ2m+ τm2)−1/2(τω−1 + τm+mω−1)1/2,

achieving overall running time

Õ((Nn−1/2 + log(tmax/tmin)) · n(τ2m+ τm2)1/2(τω−1 + τm+mω−1)1/2).

Proof of Theorem D.2. Combining Lemma D.13 and D.14.

D.5 PROOF OF MAIN STATEMENT

Proof of Theorem D.1. Use CENTRALPATHMAINTENANCE (Algorithm 1) as the maintenance data
structure in Algorithm 20. Combining Theorem D.2 and Theorem F.1 finishes the proof.

E ALGORITHM FOR LOW-RANK QP

In this section we present a nearly-linear time algorithm for solving low-rank QP with small number
of linear constraints. We briefly describe the outline of this section.

• In Section E.1, we present the main statement of Section E.
• In Section E.2, we present the main data structure CENTRALPATHMAINTENANCE.
• In Section E.3, we present several data structures used in CENTRALPATHMAINTENANCE,

including EXACTDS (Section E.3.1), APPROXDS (Section E.3.2), BATCHSKETCH (Sec-
tion E.3.3).

• In Section E.4, we prove correctness and running time of CENTRALPATHMAINTENANCE
data structure.

• In Section E.5, we prove the main result (Theorem E.1).

E.1 MAIN STATEMENT

We consider programs of the form (16), i.e.,

min
x∈Rn

1

2
x⊤Qx+ c⊤x
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s.t. Ax = b

xi ∈ Ki ∀i ∈ [n]

where Q ∈ Sntot , c ∈ Rntot , A ∈ Rm×ntot , b ∈ Rm, Ki ⊂ Rni is a convex set. For simplicity, we
assume that ni = O(1) for all i ∈ [n].
Theorem E.1. Consider the convex program (16). Let ϕi : Ki → R be a νi-self-concordant barrier
for all i ∈ [n]. Suppose the program satisfies the following properties:

• Inner radius r: There exists z ∈ Rntot such that Az = b and B(z, r) ∈ K.

• Outer radius R: K ⊆ B(0, R) where 0 ∈ Rntot .

• Lipschitz constant L: ∥Q∥2→2 ≤ L, ∥c∥2 ≤ L.

• Low rank: We are given a factorization Q = UV ⊤ where U, V ∈ Rntot×k.

Let (wi)i∈[n] ∈ Rn
≥1 and κ =

∑
i∈[n] wiνi. Given any 0 < ϵ ≤ 1

2 , we can find an approximate
solution x ∈ K satisfiying

1

2
x⊤Qx+ c⊤x ≤ min

Ax=b,x∈K

(
1

2
x⊤Qx+ c⊤x

)
+ ϵLR(R+ 1),

∥Ax− b∥1 ≤ 3ϵ(R∥A∥1 + ∥b∥1),
in expected time

Õ((
√
κn−1/2 + log(R/(rϵ))) · n(k +m)(ω+1)/2).

When maxi∈[n] νi = Õ(1), wi = 1, the running time simplifies to

Õ(n(k +m)(ω+1)/2) log(R/(rϵ))).

E.2 ALGORITHM STRUCTURE AND CENTRAL PATH MAINTENANCE

Similar to the low-treewidth case, our algorithm is based on the robust IPM. Details of the robust
IPM will be given in Section F. During the algorithm, we maintain a primal-dual solution pair
(x, s) ∈ Rntot × Rntot on the robust central path. In addition, we maintain a sparsely-changing
approximation (x, s) ∈ Rntot × Rntot to (x, s). In each iteration, we implicitly perform update

x← x+ tB
−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ

s← s+ tδµ − t
2
Hw,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ

where

Hw,x = ∇2ϕw(x) (see Eq. (24))

Bw,x,t = Q+ tHw,x (see Eq. (25))

Pw,x,t = B
−1/2

w,x,t
A⊤(AB−1

w,x,t
A⊤)−1AB

−1/2

w,x,t
(see Eq. (26))

and explicitly maintain (x, s) such that they remain close to (x, s) in ℓ∞-distance.

This task is handled by the CENTRALPATHMAINTENANCE data structure, which is our main data
structure. The robust IPM algorithm (Algorithm 19, 20) directly calls it in every iteration.

The CENTRALPATHMAINTENANCE data structure (Algorithm 13) has two main sub data structures,
EXACTDS (Algorithm 14, 15) and APPROXDS (Algorithm 16). EXACTDS is used to maintain (x, s),
and APPROXDS is used to maintain (x, s).
Theorem E.2. Data structure CENTRALPATHMAINTENANCE (Algorithm 13) implicitly maintains
the central path primal-dual solution pair (x, s) ∈ Rntot × Rntot and explicitly maintains its
approximation (x, s) ∈ Rntot × Rntot using the following functions:

• INITIALIZE(x ∈ Rntot , s ∈ Rntot , t0 ∈ R>0, ϵ ∈ (0, 1)): Initializes the data structure
with initial primal-dual solution pair (x, s) ∈ Rntot × Rntot , initial central path timestamp
t0 ∈ R>0 in Õ(n(kω−1 +mω−1)) time.
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Algorithm 13 Main algorithm for low-rank QP.

1: data structure CENTRALPATHMAINTENANCE ▷ Theorem E.2
2: private : members
3: EXACTDS exact ▷ Algorithm 14, 15
4: APPROXDS approx ▷ Algorithm 16
5: ℓ ∈ N
6: end members
7: procedure INITIALIZE(x, s ∈ Rntot , t ∈ R+, ϵ ∈ (0, 1))
8: exact.INITIALIZE(x, s, x, s, t) ▷ Algorithm 14
9: ℓ← 0

10: w ← νmax, N ←
√
κ log n log nκR

ϵr

11: q ← n1/2(k2 +m2)−1/2(dω−1 +mω−1)1/2

12: ϵapx,x ← ϵ, ζx ← 2α, δapx ← 1
N

13: ϵapx,s ← ϵ · t, ζs ← 3αt
14:

approx.INITIALIZE(x, s, h, ĥ, h̃,H
1/2
w,xx̂, H

−1/2
w,x ŝ, βx, βs, β̂x, β̂s, β̃x, β̃s, q,&exact,

ϵapx,x, ϵapx,s, δapx)

15: ▷ Algorithm 16.Parameters from x to β̃s come from exact. &exact is pointer to exact
16: end procedure
17: procedure MULTIPLYANDMOVE(t ∈ R+)
18: ℓ← ℓ+ 1
19: if |t− t| > t · ϵt or ℓ > q then
20: x, s← exact.OUTPUT() ▷ Algorithm 15
21: INITIALIZE(x, s, t, ϵ)
22: end if
23: βx, βs, β̂x, β̂s, β̃x, β̃s ← exact.MOVE() ▷ Algorithm 14
24: δx, δs ← approx.MOVEANDQUERY(βx, βs, β̂x, β̂s, β̃x, β̃s) ▷ Algorithm 16
25: δh, δĥ, δh̃, δH1/2

w,xx̂
, δ

H
−1/2
w,x ŝ

← exact.UPDATE(δx, δs) ▷ Algorithm 15

26: approx.UPDATE(δx, δh, δĥ, δh̃, δH1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

) ▷ Algorithm 16
27: end procedure
28: procedure OUTPUT()
29: return exact.OUTPUT() ▷ Algorithm 15
30: end procedure
31: end data structure

• MULTIPLYANDMOVE(t ∈ R>0): It implicitly maintains

x← x+ tB
−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ(x, s, t)

s← s+ tδµ − t
2
Hw,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ(x, s, t)

where Hw,x, Bw,x,t, Pw,x,t are defined in Eq. (24)(25)(26) respectively, and t is some
timestamp satisfying |t− t| ≤ ϵt · t.
It also explicitly maintains (x, s) ∈ Rntot×ntot such that ∥xi−xi∥xi

≤ ϵ and ∥si−si∥∗xi
≤

tϵwi for all i ∈ [n] with probability at least 0.9.

Assuming the function is called at most N times and t decreases from tmax to tmin, the total
running time is

Õ((Nn−1/2 + log(tmax/tmin)) · n(k(ω+1)/2 +m(ω+1)/2)).

• OUTPUT: Computes (x, s) ∈ Rntot ×Rntot exactly and outputs them in Õ(n(k+m)) time.
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E.3 DATA STRUCTURES USED IN CENTRALPATHMAINTENANCE

In this section we present several data structures used in CENTRALPATHMAINTENANCE, including:

• EXACTDS (Section E.3.1): This data structure maintains an implicit representation of the
primal-dual solution pair (x, s). This is directly used by CENTRALPATHMAINTENANCE.

• APPROXDS (Section E.3.2): This data structure explicitly maintains an approximation (x, s)
of (x, s). This data structure is directly used by CENTRALPATHMAINTENANCE.

• BATCHSKETCH (Section E.3.3): This data structure maintains a sketch of (x, s). This data
structure is used by APPROXDS.

E.3.1 EXACTDS

In this section we present the data structure EXACTDS. It maintains an implicit representation of the
primal-dual solution pair (x, s) by maintaining several sparsely-changing vectors (see Eq. (12)(13)).
Theorem E.3. Data structure EXACTDS (Algorithm 14, 15) implicitly maintains the primal-dual
pair (x, s) ∈ Rntot × Rntot , computable via the expression

x = x̂+H
−1/2
w,x hβx +H

−1/2
w,x ĥβ̂x +H

−1/2
w,x h̃β̃x, (12)

s = ŝ+H
1/2
w,xhβs +H

1/2
w,xĥβ̂s +H

1/2
w,xh̃β̃s, (13)

where x̂, ŝ ∈ Rntot , h = H
−1/2
w,x δµ ∈ Rntot , ĥ = H

−1/2
w,x U⊤ ∈ Rntot×k, h̃ = H

−1/2
w,x A⊤ ∈ Rntot×m,

βx, βs ∈ R, β̂x, β̂s ∈ Rk, β̃x, β̃s ∈ Rm.

The data structure supports the following functions:

• INITIALIZE(x, s, x, s ∈ Rntot , t ∈ R>0): Initializes the data structure in Õ(n(kω +mω))
time, with initial value of the primal-dual pair (x, s), its initial approximation (x, s), and
initial approximate timestamp t.

• MOVE(): Performs robust central path step

x← x+ tB−1
x δµ − tB−1

x A⊤(AB−1
x A⊤)−1AB−1

x δµ, (14)

s← s+ tδµ − t
2
B−1

x δµ + t
2
B−1

x A⊤(AB−1
x A⊤)−1AB−1

x δµ (15)

in O(kω +mω) time by updating its implicit representation.

• UPDATE(δx, δs ∈ Rntot): Updates the approximation pair (x, s) to (xnew = x + δx ∈
Rntot , snew = s + δs ∈ Rntot) in Õ((k2 + m2)(∥δx∥0 + ∥δs∥0)) time, and output the
changes in variables h, ĥ, h̃,H1/2

w,xx̂, H
−1/2
w,x ŝ.

Furthermore, h,H1/2
w,xx̂, H

−1/2
w,x ŝ changes in O(∥δx∥0 + ∥δs∥0) coordinates, ĥ changes in

O(k(∥δx∥0 + ∥δs∥0)) coordinates, h̃ changes in O(m(∥δx∥0 + ∥δs∥0)) coordinates.

• OUTPUT(): Output x and s in Õ(n(k +m)) time.

• QUERYx(i ∈ [n]): Output xi in Õ(k +m) time. This function is used by APPROXDS.

• QUERYs(i ∈ [n]): Output si in Õ(k +m) time. This function is used by APPROXDS.

Proof of Theorem E.3. By combining Lemma E.4 and E.5.

Lemma E.4. EXACTDS correctly maintains an implicit representation of (x, s), i.e., invariant

x = x̂+H
−1/2
w,x hβx +H

−1/2
w,x ĥβ̂x +H

−1/2
w,x h̃β̃x,

s = ŝ+H
1/2
w,xhβs +H

1/2
w,xĥβ̂s +H

1/2
w,xh̃β̃s,

h = H
−1/2
w,x δµ ∈ Rntot , ĥ = H

−1/2
w,x U⊤ ∈ Rntot×d, h̃ = H

−1/2
w,x A⊤ ∈ Rntot×m,
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Algorithm 14 This is used in Algorithm 13.

1: data structure EXACTDS ▷ Theorem E.3
2: members
3: x, s ∈ Rntot , t ∈ R+, Hw,x ∈ Rntot×ntot

4: x̂, ŝ,∈ Rntot , ĥ ∈ Rntot×k, h̃ ∈ Rntot×m, βx, βs ∈ R, β̂x, β̂s ∈ Rd, β̃x, β̃s ∈ Rm

5: u1, u2 ∈ Rk×m, u3 ∈ Rm×m, u4 ∈ Rm, u5 ∈ Rd, u6 ∈ Rk×k

6: α ∈ R, δµ ∈ Rn

7: K ∈ N
8: end members
9: procedure INITIALIZE(x, s, x, s ∈ Rntot , t ∈ R+)

10: x← x, x← s, t← t
11: x̂← x, ŝ← s, βx ← 0, βs ← 0, β̂x ← 0, β̂s ← 0, β̃x ← 0, β̃s ← 0
12: Hw,x ← ∇2ϕw(x)
13: INITIALIZEh(x, s,Hw,x)
14: end procedure
15: procedure INITIALIZEh(x, s ∈ Rntot , Hw,x ∈ Rntot×ntot )
16: for i ∈ [n] do

17: (δµ)i ← −
α sinh( λ

wi
γi(x,s,t))

γi(x,s,t)
· µi(x, s, t)

18: α← α+ w−1
i cosh2( λ

wi
γi(x, s, t))

19: end for
20: h← H

−1/2
w,x δµ, ĥ← H

−1/2
w,x U⊤, h̃← H

−1/2
w,x A⊤

21: u1 ← UH−1
w,xA

⊤, u2 ← V H−1
w,xA

⊤, u3 ← AH−1
w,xA

⊤

22: u4 ← AH−1
w,xδµ, u5 ← V H−1

w,xδµ, u6 ← V H−1
w,xU

⊤

23: end procedure
24: procedure MOVE()
25: v0 ← I + t

−1
u6 ∈ Rk×k

26: v1 ← t
−1

u3 − t
−2

u⊤
1 v

−1
0 u2 ∈ Rm×m

27: v2 ← t
−1

u4 − t
−2

u⊤
1 v

−1
0 u5 ∈ Rm

28: βx ← βx + (α)−1/2

29: β̂x ← β̂x − (α)−1/2 · t−1
v−1
0 u5 + (α)−1/2 · t−1

v−1
0 u2v

−1
1 v2

30: β̃x ← β̃x − (α)−1/2 · v−1
1 v2

31: βs ← βs

32: β̂s ← β̂s + (α)−1/2 · v−1
0 u5 − (α)−1/2 · v−1

0 u2v
−1
1 v2

33: β̃s ← β̃s + (α)−1/2 · tv−1
1 v2

34: return βx, βs, β̂x, β̂s, β̃x, β̃s

35: end procedure
36: end data structure

u1 = UH−1
w,xA

⊤ ∈ Rd×m, u2 = V H−1
w,xA

⊤ ∈ Rd×m, u3 = AH−1
w,xA

⊤ ∈ Rm×m,

u4 = AH−1
w,xδµ ∈ Rm, u5 = V H−1

w,xδµ ∈ Rd, u6 = V H−1
w,xU

⊤ ∈ Rd×d,

α =
∑
i∈[n]

w−1
i cosh2(

λ

wi
γi(x, s, t)),

δµ = α1/2δµ(x, s, t)

always holds after every external call, and return values of the queries are correct.

Proof. INITIALIZE: By checking the definitions we see that all invariants are satisfied after INITIAL-
IZE.

MOVE: By the invariants, we have

v0 = I + t
−1

V H−1
w,xU

⊤,
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Algorithm 15 Algorithm 14 continued.

1: data structure EXACTDS ▷ Theorem E.3
2: procedure OUTPUT()
3: return x̂+H

−1/2
w,x hβx +H

−1/2
w,x ĥβ̂x +H

−1/2
w,x h̃β̃x, ŝ+H

1/2
w,xhβs +H

1/2
w,xĥβ̂s +H

1/2
w,xh̃β̃s

4: end procedure
5: procedure QUERYx(i ∈ [n])
6: return x̂i +H

−1/2
w,x hi,∗βx +H

−1/2
w,x ĥi,∗β̂x +H

−1/2
w,x h̃i,∗β̃x

7: end procedure
8: procedure QUERYs(i ∈ [n])
9: return ŝi +H

1/2
w,xhi,∗βs +H

1/2
w,xĥi,∗β̂s +H

1/2
w,xh̃i,∗β̃s

10: end procedure
11: procedure UPDATE(δx, δs ∈ Rntot )
12: ∆Hw,x ← ∇2ϕw(x+ δx)−Hw,x ▷ ∆Hw,x is non-zero only for diagonal blocks (i, i) for

which δx,i ̸= 0
13: S ← {i ∈ [n] | δx,i ̸= 0 or δs,i ̸= 0}
14: δδµ ← 0

15: for i ∈ S do
16: Let γi = γi(x, s, t), γnew

i = γi(x+ δx, s+ δs, t), µnew
i = µi(x+ δx, s+ δs, t)

17: α← α− w−1
i cosh2( λ

wi
γi) + w−1

i cosh2( λ
wi

γnew
i )

18: δδµ,i ← −α sinh( λ
wi

γnew
i ) · 1

γnew
i
· µnew

i − δµ,i
19: end for
20: δh ← ∆

H
−1/2
w,x

(δµ + δδµ) +H
−1/2
w,x δδµ

21: δĥ ← ∆
H

−1/2
w,x

U⊤

22: δh̃ ← ∆
H

−1/2
w,x

A⊤

23: δx̂ ← −(δhβx + δĥβ̂x + δh̃β̃x)

24: δŝ ← −(δhβs + δĥβ̂s + δh̃β̃s)

25: h← h+ δh, ĥ← ĥ+ δĥ, h̃← h̃+ δh̃, x̂← x̂+ δx̂, ŝ← ŝ+ δŝ
26: u1 ← u1 + U∆H−1

w,x
A⊤

27: u2 ← u2 + V∆H−1
w,x

A⊤

28: u3 ← u3 +A∆H−1
w,x

A⊤

29: u4 ← u4 +A(∆H−1
w,x

(δµ + δδµ) +H−1
w,xδδµ)

30: u5 ← u5 + V (∆H−1
w,x

(δµ + δδµ) +H−1
w,xδδµ)

31: u6 ← u6 + V∆H−1
w,x

U⊤

32: x← x+ δx, s← s+ δs
33: Hw,x ← Hw,x +∆Hw,x

34: return δh, δĥ, δh̃, δH1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

35: end procedure
36: end data structure

v1 = t
−1

AH−1
w,xA

⊤ − t
−1

AH−1
w,xU

⊤(I + t
−1

V H−1
w,xU

⊤)−1V Hw,xA
⊤

= AB−1
x A⊤

v2 = t
−1

AH−1
w,xδµ − t

−1
AH−1

w,xU
⊤(I + t

−1
V H−1

w,xU
⊤)−1V Hw,xδµ

= AB−1
x δµ.

By implicit representation (12),

δx = H
−1/2
w,x hδβx

+H
−1/2
w,x ĥδβ̂x

+H
−1/2
w,x h̃δβ̃x

= H−1
w,xδµ · (α)

−1/2
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+H−1
w,xU

⊤ · (α)−1/2t
−1

v−1
0 (−u5 + u2v

−1
1 v2)

−H−1
w,xA

⊤ · (α)−1/2v−1
1 v2

= H−1
w,xδµ

+H−1
w,xU

⊤t
−1

(I + t
−1

V H−1
w,xU

⊤)−1(−V H−1
w,xδµ + V H−1

w,xA
⊤(AB−1

x A⊤)−1AB−1
x δµ)

−H−1
w,xA

⊤(AB−1
x A⊤)−1AB−1

x δµ

= t · (t−1
H−1

w,x − t
−2

H−1
w,xU

⊤(I + t
−1

V H−1
w,xU

⊤)−1V H−1
w,x)δµ

− t(t
−1

H−1
w,x − t

−2
t
−2

H−1
w,xU

⊤(I + t
−1

V H−1
w,xU

⊤)−1V H−1
w,x)A

⊤(AB−1
x A⊤)−1AB−1

x δµ

= tB−1
x δµ − tB−1

x A⊤(AB−1
x A⊤)−1AB−1

x δµ.

Comparing with the robust central path step (14), we see that x is updated correctly.

For s, from implicit representation 13 we have

δs = H
1/2
w,xhδβx

+H
1/2
w,xĥδβ̂x

+H
1/2
w,xh̃δβ̃x

= − U⊤ · (α)−1/2 · v−1
0 (−u5 + u2v

−1
1 v2) +A⊤ · (α)−1/2 · tv−1

1 v2

= tδµ − t
2
B−1

x δµ + t
2
B−1

x A⊤(AB−1
x A⊤)−1AB−1

x δµ.

Comparing with robust central path step (15), we see that s is updated correctly.

UPDATE: We would like to prove that UPDATE correctly updates the values of x̂, ŝ, h, ĥ, h̃,
u1, u2, u3, u4, u5, u6, α, δµ, while preserving the values of (x, s). In fact, by checking the defi-
nitions, it is easy to see that h, ĥ, h̃, u1, u2, u3, u4, u5, u6, α, δµ are updated correctly. Furthermore

δx = δx̂ + δhβx + δĥβ̂x + δh̃β̃x = 0,

δs = δŝ + δhβs + δĥβ̂s + δh̃β̃s = 0.

So values of (x, s) are preserved.

Lemma E.5. We bound the running time of EXACTDS as following.

(i) EXACTDS.INITIALIZE (Algorithm 14) runs in Õ(n(kω−1 +mω−1)) time.

(ii) EXACTDS.MOVE (Algorithm 14) runs in Õ(kω +mω) time.

(iii) EXACTDS.OUTPUT (Algorithm 15) runs in Õ(n(k +m)) time and correctly outputs (x, s).

(iv) EXACTDS.QUERYx and EXACTDS.QUERYs (Algorithm 15) runs in Õ(k +m) time and
returns the correct answer.

(v) EXACTDS.UPDATE (Algorithm 15) runs in Õ((k2 + m2)(∥δx∥0 + ∥δs∥0)) time. Fur-
thermore, ∥δh∥0, ∥δx̂∥0, ∥δŝ∥0 = O(∥δx∥0 + ∥δs∥0), nnz(ĥ) = O(d(∥δx∥0 + ∥δs∥0)),
nnz(h̃) = O(m(∥δx∥0 + ∥δs∥0)).

Proof. (i) EXACTDS.INITIALIZE: Computing u1 and u2 takes Tmat(k, n,m) = Õ(n(kω−1 +

mω−1)) time. Computing u3 takes Tmat(m,n,m) = Õ(nmω−1) time. Computing u4

takes O(nm) time. Computing u5 takes O(nk) time. Computing u6 takes Tmat(k, n, k) =

Õ(nkω−1) time. All other computations are cheaper.

(ii) EXACTDS.MOVE: Computing v−1
0 takes Õ(kω) time. Computing v−1

1 takes Õ(mω) time.
All other computations are cheaper.

(iii) EXACTDS.OUTPUT: Takes Õ(n(k +m)) time.

(iv) EXACTDS.QUERYx and EXACTDS.QUERYs: Takes Õ(k +m) time.
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(v) EXACTDS.UPDATE: For simplicity, write t = ∥δx∥0 + ∥δx∥0. Computing δh takes Õ(t)

time. Computing δĥ takes Õ(tk) time. Computing δh̃ takes Õ(tm) time. Computing δx̂ and
δŝ takes Õ(t(k +m)) time. The sparsity statements follow directly. Computing u1 and u2

takes Õ(tkm) time. Computing u3 takes Õ(tm2) time. Computing u4 takes Õ(tm) time.
Computing u5 takes Õ(tk) time. Computing u6 takes Õ(tk2) time.

E.3.2 APPROXDS

In this section we present the data structure APPROXDS. Given BATCHSKETCH, a data structure
maintaining a sketch of the primal-dual pair (x, s) ∈ Rntot × Rntot , APPROXDS maintains a
sparsely-changing ℓ∞-approximation of (x, s).

Algorithm 16 This is used in Algorithm 13.
1: data structure APPROXDS ▷ Theorem E.6
2: private : members
3: ϵapx,x, ϵapx,s ∈ R
4: ℓ ∈ N
5: BATCHSKETCH bs ▷ This maintains a sketch of H1/2

w,xx and H
−1/2
w,x s. See Algorithm 17 and 18.

6: EXACTDS* exact ▷ This is a pointer to the EXACTDS (Algorithm 14, 15) we maintain in parallel to
APPROXDS.

7: x̃, s̃ ∈ Rntot ▷ (x̃, s̃) is a sparsely-changing approximation of (x, s). They have the same value as
(x, s), but for these local variables we use (x̃, s̃) to avoid confusion.

8: end members
9: procedure INITIALIZE(x, s ∈ Rntot , h ∈ Rntot , ĥ ∈ Rntot×k, h̃ ∈ Rntot×m, H

1/2
w,xx̂, H

−1/2
w,x ŝ ∈

Rntot , βx, βs ∈ R, β̂x, β̂s ∈ Rd, β̃x, β̃s ∈ Rm, q ∈ N, EXACTDS* exact, ϵapx,x, ϵapx,s, δapx ∈ R)
10: ℓ← 0, q ← q
11: ϵapx,x ← ϵapx,x, ϵapx,s ← ϵapx,s

12: bs.INITIALIZE(x, h, ĥ, h̃,H
1/2
w,xx̂, H

−1/2
w,x ŝ, βx, βs, β̂x, β̂s, β̃x, β̃s, δapx/q) ▷ Algorithm 17

13: x̃← x, s̃← s
14: exact← exact
15: end procedure
16: procedure UPDATE(δx ∈ Rntot , δh ∈ Rntot , δĥ ∈ Rntot×k, δh̃ ∈ Rntot×m, δ

H
1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

∈ Rntot )

17: bs.UPDATE(δx, δh, δĥ, δh̃, δH1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

) ▷ Algorithm 17

18: ℓ← ℓ+ 1
19: end procedure
20: procedure MOVEANDQUERY(βx, βs ∈ R, β̂x, β̂s ∈ Rd, β̃x, β̃s ∈ Rm)
21: bs.MOVE(βx, βs, β̂x, β̂s, β̃x, β̃s) ▷ Algorithm 17. Do not update ℓ yet
22: δx̃ ← QUERYx(ϵapx,x/(2 log q + 1)) ▷ Algorithm 16
23: δs̃ ← QUERYs(ϵapx,s/(2 log q + 1)) ▷ Algorithm 16
24: x̃← x̃+ δx̃, s̃← s̃+ δs̃
25: return (δx̃, δs̃)
26: end procedure
27: procedure QUERYx(ϵ ∈ R)
28: Same as Algorithm 5, QUERYx.
29: end procedure
30: procedure QUERYs(ϵ ∈ R)
31: Same as Algorithm 5, QUERYs.
32: end procedure
33: end data structure

Theorem E.6. Given parameters ϵapx,x, ϵapx,s ∈ (0, 1), δapx ∈ (0, 1), ζx, ζs ∈ R such that

∥H1/2

w,x(ℓ)x
(ℓ) −H

1/2

w,x(ℓ)x
(ℓ+1)∥2 ≤ ζx, ∥H−1/2

w,x(ℓ)s
(ℓ) −H

−1/2

w,x(ℓ)s
(ℓ+1)∥2 ≤ ζs

for all ℓ ∈ {0, . . . , q − 1}, data structure APPROXDS (Algorithm 16) supports the following
operations:

• INITIALIZE(x, s ∈ Rntot , h ∈ Rntot , ĥ ∈ Rntot×k, h̃ ∈
Rntot×m, H

1/2
w,xx̂, H

−1/2
w,x ŝ ∈ Rntot , βx, βs ∈ R, β̂x, β̂s ∈ Rk, β̃x, β̃s ∈ Rm, q ∈
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N, EXACTDS* exact, ϵapx,x, ϵapx,s, δapx ∈ R): Initialize the data structure in
Õ(n(k +m)) time.

• MOVEANDQUERY(βx, βs ∈ R, β̂x, β̂s ∈ Rd, β̃x, β̃s ∈ Rm): Update values of
βx, βs, β̂x, β̂s, β̃x, β̃s by calling BATCHSKETCH.MOVE. This effectively moves (x(ℓ), s(ℓ))

to (x(ℓ+1), s(ℓ+1)) while keeping x(ℓ) unchanged.

Then return two sets L(ℓ)
x , L

(ℓ)
s ⊂ [n] where

L(ℓ)
x ⊇ {i ∈ [n] : ∥H1/2

w,x(ℓ)x
(ℓ)
i −H

1/2

w,x(ℓ)x
(ℓ+1)
i ∥2 ≥ ϵapx,x},

L(ℓ)
s ⊇ {i ∈ [n] : ∥H−1/2

w,x(ℓ)s
(ℓ)
i −H

−1/2

w,x(ℓ)s
(ℓ+1)
i ∥2 ≥ ϵapx,s},

satisfying ∑
0≤ℓ≤q−1

|L(ℓ)
x | = Õ(ϵ−2

apx,xζ
2
xq

2),

∑
0≤ℓ≤q−1

|L(ℓ)
s | = Õ(ϵ−2

apx,sζ
2
s q

2).

For every query, with probability at least 1− δapx/q, the return values are correct.

Furthermore, total time cost over all queries is at most

Õ
(
(ϵ−2

apx,xζ
2
x + ϵ−2

apx,sζ
2
s )q

2(k +m)
)
.

• UPDATE(δx ∈ Rntot , δh ∈ Rntot , δĥ ∈ Rntot×d, δh̃ ∈ Rntot×m, δ
H

1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

∈ Rntot):

Update sketches of H1/2

w,x(ℓ)x
(ℓ+1) and H

−1/2

w,x(ℓ)s
(ℓ+1) by calling BATCHSKETCH.UPDATE.

This effectively moves x(ℓ) to x(ℓ+1) while keeping (x(ℓ+1), s(ℓ+1)) unchanged. Then ad-
vance timestamp ℓ.

Each update costs

Õ(∥δh∥0 + nnz(δĥ) + nnz(δh̃) + ∥H
1/2
w,xx̂∥0 + ∥H

−1/2
w,x ŝ∥0)

time.

Proof. The proof is essentially the same as proof of (Gu & Song, 2022, Theorem 4.18). For the
running time claims, we plug in Theorem E.7 when necessary.

E.3.3 BATCHSKETCH

In this section we present the data structure BATCHSKETCH. It maintains a sketch of H1/2
x x and

H
−1/2
x s. It is a variation of BATCHSKETCH in Gu & Song (2022).

Theorem E.7. Data structure BATCHSKETCH (Algorithm 17, 18) supports the following operations:

• INITIALIZE(x ∈ Rntot , h ∈ Rntot , ĥ ∈ Rntot×k, h̃ ∈ Rntot×m, H
1/2
w,xx̂, H

−1/2
w,x ŝ ∈

Rntot , βx, βs ∈ R, β̂x, β̂s ∈ Rk, β̃x, β̃s ∈ Rm, δapx ∈ R): Initialize the data structure
in Õ(n(k +m)) time.

• MOVE(βx, βs ∈ R, β̂x, β̂s ∈ Rk, β̃x, β̃s ∈ Rm): Update values of βx, βs, β̂x, β̂s, β̃x, β̃s in
O(k + m) time. This effectively moves (x(ℓ), s(ℓ)) to (x(ℓ+1), s(ℓ+1)) while keeping x(ℓ)

unchanged.

• UPDATE(δx ∈ Rntot , δh ∈ Rntot , δĥ ∈ Rntot×k, δh̃ ∈ Rntot×m, δ
H

1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

∈ Rntot):

Update sketches of H1/2

w,x(ℓ)x
(ℓ+1) and H

−1/2

w,x(ℓ)s
(ℓ+1). This effectively moves x(ℓ) to x(ℓ+1)

while keeping (x(ℓ+1), s(ℓ+1)) unchanged. Then advance timestamp ℓ.
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Algorithm 17 This is used by Algorithm 16.

1: data structure BATCHSKETCH ▷ Theorem E.7
2: members
3: Φ ∈ Rr×ntot ▷ All sketches need to share the same sketching matrix
4: S, χ partition tree
5: ℓ ∈ N ▷ Current timestamp
6: VECTORSKETCH sketchH

1/2
w,xx̂, sketchH−1/2

w,x ŝ, sketchh, sketchĥ, sketchh̃ ▷ Algorithm 9

7: βx, βs ∈ R, β̂x, β̂s ∈ Rd, β̃x, β̃s ∈ Rm

8: (history[t])t≥0 ▷ Snapshot of data at timestamp t. See Remark D.9.
9: end members

10: procedure INITIALIZE(x ∈ Rntot , h ∈ Rntot , ĥ ∈ Rntot×k, h̃ ∈ Rntot×m, H
1/2
w,xx̂, H

−1/2
w,x ŝ ∈

Rntot , βx, βs ∈ R, β̂x, β̂s ∈ Rd, β̃x, β̃s ∈ Rm, δapx ∈ R)
11: Construct any valid partition tree (S, χ)
12: r ← Θ(log3(ntot) log(1/δapx))
13: Initialize Φ ∈ Rr×ntot with iid N (0, 1

r )

14: βx ← βx, βs ← βs, β̂x ← β̂x, β̂s ← β̂s, β̃x ← β̃x, β̃s ← β̃s

15: sketchH
1/2
w,xx̂.INITIALIZE(S, χ,Φ, H1/2

w,xx̂) ▷ Algorithm 9

16: sketchH
−1/2
w,x ŝ.INITIALIZE(S, χ,Φ, H−1/2

w,x ŝ) ▷ Algorithm 9
17: sketchh.INITIALIZE(S, χ,Φ, h) ▷ Algorithm 9
18: sketchĥ.INITIALIZE(S, χ,Φ, ĥ) ▷ Algorithm 9. Here we construct one sketch for ĥ∗,i for

every i ∈ [k].
19: sketchh̃.INITIALIZE(S, χ,Φ, h̃) ▷ Algorithm 9. Here we construct one sketch for h̃∗,i for

every i ∈ [m].
20: ℓ← 0
21: Make snapshot history[ℓ] ▷ Remark D.9
22: end procedure
23: procedure MOVE(βx, βs ∈ R, β̂x, β̂s ∈ Rk, β̃x, β̃s ∈ Rm)
24: βx ← βx, βs ← βs, β̂x ← β̂x, β̂s ← β̂s, β̃x ← β̃x, β̃s ← β̃s ▷ Do not update ℓ yet
25: end procedure
26: procedure UPDATE(δx ∈ Rntot , δh ∈ Rntot , δĥ ∈ Rntot×k, δh̃ ∈ Rntot×m, δ

H
1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

∈
Rntot)

27: sketchH
1/2
w,xx̂.UPDATE(δ

H
1/2
w,xx̂

) ▷ Algorithm 9

28: sketchH
−1/2
w,x ŝ.UPDATE(δ

H
−1/2
w,x ŝ

) ▷ Algorithm 9

29: sketchh.UPDATE(δh) ▷ Algorithm 9
30: sketchĥ.UPDATE(δĥ) ▷ Algorithm 9
31: sketchh̃.UPDATE(δh̃) ▷ Algorithm 9
32: ℓ← ℓ+ 1
33: Make snapshot history[ℓ] ▷ Remark D.9
34: end procedure
35: end data structure

Each update costs

Õ(∥δh∥0 + nnz(δĥ) + nnz(δh̃) + ∥H
1/2
w,xx̂∥0 + ∥H

−1/2
w,x ŝ∥0).

• QUERYx(ℓ′ ∈ N, ϵ ∈ R): Given timestamp ℓ′, return a set S ⊆ [n] where

S ⊇ {i ∈ [n] : ∥H1/2

w,x(ℓ′)x
(ℓ′)
i −H

1/2

w,x(ℓ)x
(ℓ+1)
i ∥2 ≥ ϵ},

and

|S| = O(ϵ−2(ℓ− ℓ′ + 1)
∑

ℓ′≤t≤ℓ

∥H1/2

w,x(t)x
(t) −H

1/2

w,x(t)x
(t+1)∥22 +

∑
ℓ′≤t≤ℓ−1

∥x(t) − x(t+1)∥2,0)
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Algorithm 18 BATCHSKETCH Algorithm 17 continued. This is used by Algorithm 16.

1: data structure BATCHSKETCH ▷ Theorem E.7
2: private:
3: procedure QUERYxSKETCH(v ∈ S) ▷ Return the value of Φχ(v)(H

1/2
w,xx)χ(v)

4: return sketchH
1/2
w,xx̂.QUERY(v) + sketchh.QUERY(v) · βx + sketchĥ.QUERY(v) · β̂x +

sketchh̃.QUERY(v) · β̃x ▷ Algorithm 9
5: end procedure
6: procedure QUERYsSKETCH(v ∈ S) ▷ Return the value of Φχ(v)(H

−1/2
w,x s)χ(v)

7: return sketchH
−1/2
w,x ŝ.QUERY(v) + sketchh.QUERY(v) · βs + sketchĥ.QUERY(v) · β̂s +

sketchh̃.QUERY(v) · β̃s ▷ Algorithm 9
8: end procedure
9: public:

10: procedure QUERYx(ℓ′ ∈ N, ϵ ∈ R)
11: Same as Algorithm 7, QUERYx, using QUERYxSKETCH defined here instead of the one in

Algorithm 7.
12: end procedure
13: procedure QUERYs(ℓ′ ∈ N, ϵ ∈ R)
14: Same as Algorithm 7, QUERYs, using QUERYsSKETCH defined here instead of the one in

Algorithm 7.
15: end procedure
16: end structure

where ℓ is the current timestamp.

For every query, with probability at least 1− δ, the return values are correct, and costs at
most

Õ((k +m) · (ϵ−2(ℓ− ℓ′ + 1)
∑

ℓ′≤t≤ℓ

∥H1/2

x(t)x
(t) −H

1/2

x(t)x
(t+1)∥22 +

∑
ℓ′≤t≤ℓ−1

∥x(t) − x(t+1)∥2,0))

running time.

• QUERYs(ℓ′ ∈ N, ϵ ∈ R): Given timestamp ℓ′, return a set S ⊆ [n] where

S ⊇ {i ∈ [n] : ∥H−1/2

w,x(ℓ′)s
(ℓ′)
i −H

−1/2

w,x(ℓ)s
(ℓ+1)
i ∥2 ≥ ϵ}

and

|S| = O(ϵ−2(ℓ− ℓ′ + 1)
∑

ℓ′≤t≤ℓ

∥H−1/2

w,x(t)s
(t) −H

−1/2

w,x(t)s
(t+1)∥22 +

∑
ℓ′≤t≤ℓ−1

∥x(t) − x(t+1)∥2,0)

where ℓ is the current timestamp.

For every query, with probability at least 1− δ, the return values are correct, and costs at
most

Õ((k +m) · (ϵ−2(ℓ− ℓ′ + 1)
∑

ℓ′≤t≤ℓ

∥H1/2

x(t)s
(t) −H

1/2

x(t)x
(t+1)∥22 +

∑
ℓ′≤t≤ℓ−1

∥x(t) − x(t+1)∥2,0))

running time.

Proof. The proof is essentially the same as proof of (Gu & Song, 2022, Theorem 4.21).

E.4 ANALYSIS OF CENTRALPATHMAINTENANCE

Lemma E.8 (Correctness of CENTRALPATHMAINTENANCE). Algorithm 13 implicitly maintains
the primal-dual solution pair (x, s) via representation Eq. (12)(13). It also explicitly maintains
(x, s) ∈ Rntot × Rntot such that ∥xi − xi∥xi ≤ ϵ and ∥si − si∥∗xi

≤ tϵwi for all i ∈ [n] with
probability at least 0.9.
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Proof. Same as proof of Lemma D.13.

Lemma E.9. We bound the running time of CENTRALPATHMAINTENANCE as following.

• CENTRALPATHMAINTENANCE.INITIALIZE takes Õ(n(kω−1 +mω−1)) time.

• If CENTRALPATHMAINTENANCE.MULTIPLYANDMOVE is called N times, then it has
total running time

Õ((Nn−1/2 + log(tmax/tmin)) · n(k +m)(ω+1)/2).

• CENTRALPATHMAINTENANCE.OUTPUT takes Õ(n(k +m)) time.

Proof. INITIALIZE part: By Theorem E.3 and E.6.

OUTPUT part: By Theorem E.3.

MULTIPLYANDMOVE part: Between two restarts, the total size of |Lx| returned by approx.QUERY

is bounded by Õ(q2ζ2x/ϵ
2
apx,x) by Theorem E.6. By plugging in ζx = 2α, ϵapx,x = ϵ, we have∑

ℓ∈[q] |L
(ℓ)
x | = Õ(q2). Similarly, for s we have

∑
ℓ∈[q] |L

(ℓ)
s | = Õ(q2).

Update time: By Theorem E.3 and E.6, in a sequence of q updates, total cost for update is Õ(q2(k2+

m2)). So the amortized update cost per iteration is Õ(q(k2 +m2)). The total update cost is

number of iterations · time per iteration = Õ(Nq(k2 +m2)).

Init/restart time: We restart the data structure whenever K > q or |t − t| > tϵt, so there are
O(N/q + log(tmax/tmin)ϵ

−1
t ) restarts in total. By Theorem E.3 and E.6, time cost per restart is

Õ(n(kω−1 +mω−1)). So the total initialization time is

number of restarts · time per restart = Õ((N/q + log(tmax/tmin)ϵ
−1
t ) · n(kω−1 +mω−1)).

Combine everything: Overall running time is

Õ(Nq(k2 +m2) + (N/q + log(tmax/tmin)ϵ
−1
t ) · n(kω−1 +mω−1)).

Taking ϵt =
1
2ϵ, the optimal choice for q is

q = n1/2(k2 +m2)−1/2(kω−1 +mω−1)1/2,

achieving overall running time

Õ((Nn−1/2 + log(tmax/tmin)) · n(k2 +m2)1/2(kω−1 +mω−1)1/2)

= Õ((Nn−1/2 + log(tmax/tmin)) · n(k +m)(ω+1)/2).

Proof of Theorem E.2. Combining Lemma E.8 and E.9.

E.5 PROOF OF MAIN STATEMENT

Proof of Theorem E.1. Use CENTRALPATHMAINTENANCE (Algorithm 13) as the maintenance data
structure in Algorithm 20. Combining Theorem E.2 and Theorem F.1 finishes the proof.
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F ROBUST IPM ANALYSIS

In this section we present a robust IPM algorithm for quadratic programming. The algorithm is a
modification of previous robust IPM algorithms for linear programming Lee et al. (2019); Lee &
Vempala (2021).

Convention: Variables are in n blocks of dimension ni (i ∈ [n]). Total dimension is ntot =
∑

i∈[n] ni.
We write x = (x1, . . . , xn) ∈ Rntot where xi ∈ Rni . We consider programs of the following form:

min
x∈Rn

1

2
x⊤Qx+ c⊤x (16)

s.t. Ax = b

xi ∈ Ki ∀i ∈ [n]

where Q ∈ Sntot , c ∈ Rntot , A ∈ Rm×ntot , b ∈ Rm, Ki ⊂ Rni is a convex set. Let K =
∏

i∈[n]Ki.

Theorem F.1. Consider the convex program (16). Let ϕi : Ki → R be a νi-self-concordant barrier
for all i ∈ [n]. Suppose the program satisfies the following properties:

• Inner radius r: There exists z ∈ Rntot such that Az = b and B(z, r) ∈ K.

• Outer radius R: K ⊆ B(0, R) where 0 ∈ Rntot .

• Lipschitz constant L: ∥Q∥2→2 ≤ L, ∥c∥2 ≤ L.

Let (wi)i∈[n] ∈ Rn
≥1 and κ =

∑
i∈[n] wiνi. For any 0 < ϵ ≤ 1

2 , Algorithm 19 outputs an approximate
solution x in O(

√
κ log n log nκR

ϵr ) steps, satisfying

1

2
x⊤Qx+ c⊤x ≤ min

Ax=b,x∈K

(
1

2
x⊤Qx+ c⊤x

)
+ ϵLR(R+ 1),

∥Ax− b∥1 ≤ 3ϵ(R∥A∥1 + ∥b∥1),
x ∈ K.

Algorithm 19 Our main algorithm

1: procedure ROBUSTQPIPM(Q ∈ Sntot , c ∈ Rntot , A ∈ Rm×ntot , b ∈ Rm, (ϕi : Ki →
R)i∈[n], w ∈ Rn)

2: /* Initial point reduction */
3: ρ← LR(R+ 1), x(0) ← argminx

∑
i∈[n] wiϕi(xi), s(0) ← ϵρ(c+Qx(0))

4: x←
[
x(0)

1

]
, s←

[
s(0)

1

]
, Q←

[
ϵρQ 0
0 0

]
, A←

[
A | b−Ax(0)

]
5: w ←

[
w
1

]
, ϕi = ϕi∀i ∈ [n], ϕn+1(x) := − log x− log(2− x)

6: (x, s)← CENTERING(Q,A, (ϕi)i∈[n+1], w, x, s, tstart = 1, tend = ϵ2

4κ )
7: return (x1:n, s1:n)
8: end procedure

F.1 PRELIMINARIES

Previous works on linear programming (e.g. Lee et al. (2019), Lee & Vempala (2021)) use the
following path:

s/t+∇ϕw(x) = µ,

Ax = b,

A⊤y + s = c

where ϕw(x) :=
∑n

i=1 wiϕi(xi).
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Algorithm 20 Subroutine used by Algorithm 19

1: procedure CENTERING(Q ∈ Sntot , A ∈ Rm×ntot , (ϕi : Ki → R)i∈[n], w ∈ Rn, x ∈
Rntot , s ∈ Rntot , tstart ∈ R>0, tend ∈ R>0)

2: /* Parameters */
3: λ = 64 log(256n

∑
i∈[n] wi), ϵ = 1

1440λ, α = ϵ
2

4: ϵt =
ϵ
4 (mini∈[n]

wi

wi+νi
), h = α

64
√
κ

5: /* Definitions */
6: ϕw(x) :=

∑
i∈[n] wiϕi(xi)

7: µi(x, s, t) := s/t+ wi∇ϕi(xi), ∀i ∈ [n] ▷ Eq. (17)
8: γi(x, s, t)← ∥µt

i(x, s)∥∗xi
, ∀i ∈ [n] ▷ Eq. (18)

9: ci(x, s, t) :=
sinh( λ

wi
γi(x,s,t))

γi(x,s,t)
√∑

j∈[n] w
−1
j cosh2( λ

wj
γj(x,s,t))

, ∀i ∈ [n] ▷ Eq. (22)

10: Hw,x := ∇2ϕw(x) ▷ Eq. (24)
11: Bw,x,t := Q+ tHw,x ▷ Eq. (25)
12: Pw,x,t := B

−1/2
w,x,tA

⊤(AB−1
w,x,tA

⊤)−1AB
−1/2
w,x,t ▷ Eq. (26)

13: /* Main loop */
14: t← t← tstart, x← x, s← s
15: while t > tend do
16: Maintain x, s, t such that ∥xi − xi∥xi

≤ ϵ, ∥si − si∥∗xi
≤ tϵwi and |t− t| ≤ ϵtt

17: δµ,i ← −α · ci(x, s, t) · µi(x, s, t), ∀i ∈ [n] ▷ Eq. (21)
18: Pick δx and δs such that Aδx = 0, δs −Qδx ∈ Range(A⊤) and

∥δx − tB
−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ∥w,x ≤ ϵα,

∥t−1
δs − (δµ − tHw,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ)∥∗w,x ≤ ϵα.

19: t← max{(1− h)t, tend}, x← x+ δx, s← s+ δs
20: end while
21: return (x, s)
22: end procedure

For quadratic programming, we modify the above central path as following:

s/t+∇ϕw(x) = µ,

Ax = b,

−Qx+A⊤y + s = c.

We make the following definitions.

Definition F.2. For each i ∈ [n], we define the i-th coordinate error

µi(x, s, t) :=
si
t
+ wi∇ϕi(xi) (17)

We define µi’s norm as

γi(x, s, t) := ∥µi(x, s, t)∥∗xi
. (18)

We define the soft-max function by

Ψλ(r) :=

m∑
i=1

cosh(λ
ri
wi

) (19)

for some λ > 0 and the potential function is the soft-max of the norm of the error of each coordinate

Φ(x, s, t) = Ψλ(γ(x, s, t)) (20)
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We choose the step direction δµ as

δµ,i := −α · ci(x, s, t) · µi(x, s, t) (21)

where

ci(x, s, t) :=
sinh( λ

wi
γi(x, s, t))

γi(x, s, t)
√∑

j∈[n] w
−1
j cosh2( λ

wj
γj(x, s, t))

(22)

We define induced norms as following. Note that we include the weight vector w in the subscript to
avoid confusion.
Definition F.3. For each block Ki, we define

∥v∥xi := ∥v∥∇2ϕi(xi),

∥v∥∗xi
:= ∥v∥(∇2ϕi(xi))−1

for v ∈ Rni .

For the whole domain K =
∏n

i=1Ki, we define

∥v∥w,x := ∥v∥∇2ϕw(x) = (

n∑
i=1

wi∥vi∥2xi
)1/2,

∥v∥∗w,x := ∥v∥(∇2ϕw(x))−1 = (

n∑
i=1

w−1
i (∥vi∥∗xi

)2)1/2

for v ∈ Rntot .

The Hessian matrices of the barrier functions appear a lot in the computation.
Definition F.4. We define matrices Hx,i ∈ Rni×ni and Hw,x ∈ Rntot×ntot as

Hx,i := ∇2ϕi(xi), (23)

Hw,x := ∇2ϕw(x). (24)

From the definition, we see that

Hw,x,(i,i) = wiHx,i.

The following equations are immediate from definition.
Claim F.5. Let Hw,x ∈ Rntot×ntot be defined as Definition F.4. For v ∈ Rntot , we have

∥v∥w,x = ∥H1/2
w,xv∥2,

∥v∥∗w,x = ∥H−1/2
w,x v∥2.

Claim F.6. For each i ∈ [n], let Hx,i be defined as Definition F.4. For v ∈ Rni , i ∈ [n], we have

∥v∥xi
= ∥H1/2

x,i v∥2,

∥v∥∗xi
= ∥H−1/2

x,i v∥2.

We define matrices B and P used in the algorithm.
Definition F.7. Let A,Q denote two fixed matrices. Let Hw,x ∈ Rntot×ntot be defined as Defini-
tion F.4. We define matrix Bw,x,t ∈ Rntot×ntot as

Bw,x,t := Q+ t ·Hw,x (25)

We define projection matrix Pw,x,t ∈ Rntot×ntot as

Pw,x,t ← B
−1/2
w,x,tA

⊤(AB−1
w,x,tA

⊤)−1AB
−1/2
w,x,t . (26)
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F.2 DERIVING THE CENTRAL PATH STEP

In this section we explain how to derive the central path step.

We follow the central path

s/t+∇ϕw(x) = µ

Ax = b

−Qx+A⊤y + s = c

We perform gradient descent on µ with step δµ. Then Newton step gives

1

t
δs +∇2ϕw(x)δx = δµ (27)

Aδx = 0 (28)

−Qδx +A⊤δy + δs = 0 (29)

where δx (resp. δy , δs) is the step taken by x (resp. y, s).

For simplicity, we define H ∈ Rntot×ntot to represent∇2ϕw(x).8

From Eq. (27) we get

δs = tδµ − tHδx. (30)

Plug the above equation into Eq. (29) we get

−Qδx +A⊤δy + tδµ − tHδx = 0. (31)

Let B = Q+ tH , multiply by AB−1 we get

−Aδx +AB−1A⊤δy + tAB−1δµ = 0.

Using Eq. (28) we get

AB−1A⊤δy + tAB−1δµ = 0.

Solve for δy (assuming that AB−1A is invertible), we get

δy = −t(AB−1A⊤)−1AB−1δµ.

Plug into Eq. (31) we get

−Bδx − tA⊤(AB−1A⊤)−1AB−1δµ + tδµ = 0.

Solve for δx we get

δx = tB−1δµ − tB−1A⊤(AB−1A⊤)−1AB−1δµ

= tB−1/2(I − P )B−1/2δµ

where P = B−1/2A⊤(AB−1A⊤)−1AB−1/2 is the projection matrix. Solve for δs in Eq. (30) we
get

δs = tδµ − t2HB−1/2(I − P )B−1/2δµ.

In summary, we have

δx = tB−1/2(I − P )B−1/2δµ,

δy = −t(AB−1A⊤)−1AB−1δµ,

δs = tδµ − t2HB−1/2(I − P )B−1/2δµ,

P = B−1/2A⊤(AB−1A⊤)−1AB−1/2.

These equations will guide the design of our actual algorithm.
8In this section, and in this section only, we omit the subscript in H , B, P for simplicity.
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F.3 BOUNDING MOVEMENT OF POTENTIAL FUNCTION

The goal of this section is to bound the movement of potential function during the robust IPM
algorithm.

In robust IPM, we do not need to follow the ideal central path exactly over the entire algorithm.
Instead, we only use an approximate version. For convenience of analysis we state two assumptions
(see Algorithm 20, Line 18).
Assumption F.8. We make the following assumptions on δx ∈ Rntot and δs ∈ Rntot .

∥δx − tB
−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ∥w,x ≤ ϵα,

∥t−1
δs − (δµ − tHw,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ)∥∗w,x ≤ ϵα.

The following lemma bounds the movement of potential function Ψ assuming bound on δγ .
Lemma F.9 ((Ye, 2020, Lemma A.5)). For any r ∈ Rntot , and w ∈ Rntot

≥1 . Let α and λ denote the
parameters that are satisfying 0 ≤ α ≤ 1

8λ .

Let ϵr ∈ Rntot denote a vector satisfying

(

n∑
i=1

w−1
i ϵ2r,i)

1/2 ≤ α/8.

Suppose that vector r ∈ Rntot is satisfying the following property

|ri − ri| ≤
wi

8λ
, ∀i ∈ [n]

We define vector δr ∈ Rntot as follows:

δr,i :=
−α · sinh( λ

wi
ri)√∑n

j=1 w
−1
j cosh2( λ

wj
rj)

+ ϵr,i.

Then, we have that

Ψλ(r + δr) ≤ Ψλ(r)−
αλ

2
(

n∑
i=1

w−1
i cosh2(λ

ri
wi

))1/2 + αλ(

n∑
i=1

w−1
i )1/2

The following lemma bounds the norm of δµ.
Lemma F.10 (Bounding norm of δµ).

∥δµ(x, s, t)∥∗w,x ≤ α.

Proof.

(∥δµ(x, s, t)∥∗w,x)
2 =

n∑
i=1

w−1
i (∥δµ,i(x, s, t)∥∗xi

)2

= α2
∑
i∈[n]

w−1
i c2i (x, s, t) · ∥µi(x, s, t)∥2xi

= α2
∑
i∈[n]

w−1
i c2i (x, s, t) · ∥H

−1/2
x,i µi(x, s, t)∥22

= α2
∑
i∈[n]

w−1
i c2i (x, s, t) · γ2

i (x, s, t)

= α2
∑
i∈[n]

w−1
i sinh2( λ

wi
γi(x, s, t))

γ2
i (x, s, t) ·

∑
j∈[n] w

−1
j cosh2( λ

wj
γj(x, s, t))

· γ2
i (x, s, t)
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= α2

∑
j∈[n] w

−1
j sinh2( λ

wj
γj(x, s, t))∑

j∈[n] w
−1
j cosh2( λ

wj
γj(x, s, t))

≤ α2.

where the first step follows from Definition F.3, the second step follows from δµ,i(x, s, t) = −α ·
ci(x, s, t)·µi(x, s, t), the third step follows from norm of xi (see Definition F.3), the forth step follows
from γi(x, s, t) = ∥H−1/2

x,i µi(x, s, t)∥2 (see Eq. (18)), the fifth step follows from ci(x, s, t)
2 =

sinh2( λ
wi

γi(x,s,t))

γ2
i (x,s,t)

∑
j∈[n] w

−1
j cosh2( λ

wj
γj(x,s,t))

(see Eq. (22)), the sixth step follows from canceling the term

γ2
i (x, s, t), and the last step follows from cosh2(x) ≥ sinh2(x) for all x.

The following lemma bounds the norm of δx and δs.
Lemma F.11. For each i ∈ [n], we define αi := ∥δx,i∥xi . Then, we have

∥δx∥w,x = (
∑
i∈[n]

wiα
2
i )

1/2 ≤ 9

8
α. (32)

In particular, we have αi ≤ 9
8α. Similarly, for δs, we have

∥δs∥∗w,x =

√∑
i∈[n]

w−1
i (∥δs,i∥∗xi

)2 ≤ 17

8
α · t. (33)

Proof. For δx, we have

∥δx∥w,x ≤ ∥tH1/2
w,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ∥2 + ϵα

≤ ∥t1/2(I − Pw,x,t)B
−1/2

w,x,t
δµ∥2 + ϵα

≤ ∥t1/2B−1/2

w,x,t
δµ∥2 + ϵα

≤ ∥H−1/2
w,x δµ∥2 + ϵα

≤ α+ ϵα

≤ 9

8
α.

First step follows from Assumption F.8. Second step is because tHw,x ⪯ Bw,x,t. Third step is
because Pw,x,t is a projection matrix. Fourth step is because tHw,x ⪯ Bw,x,t. Fifth step is by
Lemma F.10. Sixth step is because ϵ ≤ 1

8 .

For δs, we have

∥δs∥∗w,x ≤ ∥tδµ∥∗w,x + ∥t2Hw,xB
−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ∥∗w,x + ϵαt

≤ αt+ αt+ ϵαt

≤ 17

8
α · t.

First step is by triangle inequality and the assumption that

δs ≈ tδµ − t
2
Hw,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ.

Second step is by same analysis as the analysis for δx. Third step is by t ≤ 33
32 t and ϵ ≤ 1

32 .

The following lemma shows that µnew is close to µ+ δµ under an approximate step.
Lemma F.12 (Variation of (Ye, 2020, Lemma A.9)). For each i ∈ [n], we define

βi := ∥ϵµ,i∥∗xi
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For each i ∈ [n], let
µi(x

new, snew, t) = µi(x, s, t) + δµ,i + ϵµ,i.

Then, we have

(

n∑
i=1

w−1
i β2

i )
1/2 ≤ 15ϵα.

Proof. The proof is similar as (Ye, 2020, Lemma A.9), except for changing the definitions of ϵ1 and
ϵ2:

ϵ1 := H
1/2
w,xδx − t ·H1/2

w,xB
−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ,

ϵ2 := t
−1

H
−1/2
w,x δs −H

−1/2
w,x (δµ − tHw,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ).

One key step in the proof of Ye (2020) is the following property:

δµ,i = t
−1 · δs,i +Hw,xδx,i −H

1/2
w,x(ϵ1 + ϵ2).

Under our new definition of ϵ1 and ϵ2, the above property still holds. Remaining parts of the proof
are similar and we omit the details here.

The following lemma shows that error µ(x, s, t) on the robust central path is close to error µ(x, s, t)
on the ideal central path. Furthermore, norms of errors γi(x, s, t) and γi(x, s, t) are also close to
each other.
Lemma F.13 ((Ye, 2020, Lemma A.10)). Assume that γi(x, s, t) ≤ wi for all i. For all i ∈ [n], we
have

∥µi(x, s, t)− µi(x, s, t)∥∗xi
≤ 3ϵwi.

Furthermore, we have that
|γi(x, s, t)− γi(x, s, t)| ≤ 5ϵwi.

Proof. Same as proof of (Ye, 2020, Lemma A.10).

The following lemma bounds the change of γ under one robust IPM step.
Lemma F.14 ((Ye, 2020, Lemma A.12)). Assume Φ(x, s, t) ≤ cosh(λ). For all i ∈ [n], we define

ϵr,i := γi(x
new, snew)− γi(x, s, t) + α · ci(x, s, t) · γi(x, s, t).

Then, we have

(

n∑
i=1

w−1
i ϵ2r,i)

1/2 ≤ 90 · ϵ · λα+ 4 ·max
i∈[n]

(w−1
i γi(x, s, t)) · α.

Proof. The proof is similar to the proof of (Ye, 2020, Lemma A.12). By replacing corresponding
references in Ye (2020) by our versions (Lemma F.11, F.12, F.13) we get proof of this lemma.

Finally, the following theorem bounds the movement of potential function Φ under one robust IPM
step.
Theorem F.15 (Variation of (Ye, 2020, Theorem A.15)). Assume Φ(x, s, t) ≤ cosh(λ/64). Then for
any 0 ≤ h ≤ α

64
√∑

i∈[n] wiνi
, we have

Φ(xnew, snew, tnew) ≤ (1− αλ√∑
i∈[n] wi

) · Φ(x, s, t) + αλ

√∑
i∈[n]

w−1
i .

In particular, for any cosh(λ/128) ≤ Φ(x, s, t) ≤ cosh(λ/64), we have that
Φ(xnew, snew, tnew) ≤ Φ(x, s, t).

Proof. Similar to the proof of (Ye, 2020, Theorem A.15), but replacing lemmas with the correspond-
ing QP versions.
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F.4 INITIAL POINT REDUCTION

In this section, we propose an initial point reduction scheme for quadratic programming. Our scheme
is closer to Lee et al. (2019) rather than Ye (2020); Lee & Vempala (2021). The reason is that Lee
& Vempala (2021)’s initial point reduction requires an efficient algorithm for finding the optimal
solution to an unconstrained program, which may be difficult in quadratic programming.
Lemma F.16 ((Nesterov, 1998, Theorem 4.1.7 and Lemma 4.2.4)). Let ϕ be a ν-self-concordant
barrier. Then for any x, y ∈ dom(ϕ), we have

⟨∇ϕ(x), y − x⟩ ≤ ν,

⟨∇ϕ(y)−∇ϕ(x), y − x⟩ ≥ ∥y − x∥2x
1 + ∥y − x∥x

.

Let x∗ = argminx ϕ(x). For any x ∈ Rn such that ∥x− x∗∥x∗ ≤ 1, we have that x ∈ dom(ϕ).
Lemma F.17 (QP version of (Lee et al., 2019, Lemma D.2)). Work under the setting of Theorem F.1.
Let x(0) = argminx

∑
i∈[n] wiϕi(xi). Let ρ = 1

LR(R+1) . For any 0 < ϵ ≤ 1
2 , the modified program

min
Ax=b,x∈K×R≥0

(
1

2
x⊤Qx+ c⊤x

)
with

Q =

[
ϵρQ 0
0 0

]
, A = [A | b−Ax(0)], b = b, c =

[
ϵρc
1

]
satisfies the following:

• x =

[
x(0)

1

]
, y = 0 ∈ Rm and s =

[
ϵρ(c+Qx(0))

1

]
are feasible primal dual vectors with

∥s+∇ϕw(x)∥∗x ≤ ϵ where ϕw(x) =
∑n

i=1 wiϕi(xi)− log(xn+1).

• For any x ∈ K × R≥0 satisfying Ax = b and

1

2
x⊤Qx+ c⊤x ≤ min

Ax=b,x∈K×R≥0

(
1

2
x⊤Qx+ c⊤x

)
+ ϵ2, (34)

the vector x1:n ( x1:n is the first n coordinates of x ) is an approximate solution to the
original convex program in the following sense:

1

2
x⊤
1:nQx1:n + c⊤x1:n ≤ min

Ax=b,x∈K

(
1

2
x⊤Qx+ c⊤x

)
+ ϵρ−1,

∥Ax1:n − b∥1 ≤ 3ϵ · (R∥A∥1 + ∥b∥1),
x1:n ∈ K.

Proof. First bullet point: Direct computation shows that (x, y, s) is feasible.

Let us compute ∥s+∇ϕw(x)∥∗x. We have

∥s+∇ϕw(x)∥∗x = ∥ϵρ(c+Qx(0))∥∇2ϕw(x(0))−1

Lemma F.16 says that for all x ∈ Rn with ∥x − x(0)∥w,x(0) ≤ 1, we have x ∈ K, because
x(0) = argminx ϕw(x). Therefore for any v such that v⊤∇2ϕw(x

(0))v ≤ 1, we have x(0) ± v ∈ K
and hence ∥x(0) ± v∥2 ≤ R. This implies ∥v∥2 ≤ R for any v⊤∇2ϕw(x

(0))v ≤ 1. Hence
(∇2ϕw(x

(0)))−1 ⪯ R2 · I . So we have

∥s+∇ϕw(x)∥∗x = ∥ϵρ(c+Qx(0))∥∇2ϕw(x(0))−1

≤ ϵρR∥c+Qx(0)∥2
≤ ϵρR(∥c∥2 + ∥Q∥2→2∥x(0)∥2)
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≤ ϵρR(L+ LR)

≤ ϵ.

Second bullet point: We define

OPT := min
Ax=b,x∈K

(
1

2
x⊤Qx+ c⊤x

)
, (35)

OPT := min
Ax=b,x∈K×R≥0

(
1

2
x⊤Qx+ c⊤x

)
. (36)

For any feasible x in the original problem (35), x =

[
x
0

]
is feasible in the modified problem (36).

Therefore we have

OPT ≤ ϵρ(
1

2
x⊤Qx+ c⊤x) = ϵρ ·OPT .

Given a feasible x satisfying (34), we write x =

[
x1:n

τ

]
for some τ ≥ 0. Then we have

ϵρ(
1

2
x⊤
1:nQx1:n + c⊤x1:n) + τ ≤ OPT+ ϵ2 ≤ ϵρ ·OPT+ϵ2.

Therefore
1

2
x⊤
1:nQx1:n + c⊤x1:n ≤ OPT+ϵρ−1.

We have

τ ≤ −ϵρ(1
2
x⊤
1:nQx1:n + c⊤x1:n) + ϵρ ·OPT+ϵ2 ≤ 3ϵ

because
∣∣ 1
2x

⊤Qx+ c⊤x
∣∣ ≤ LR(R+ 1) for all x ∈ K.

Note that x satisfies Ax1:n + (b−Ax(0))τ = b. So

∥Ax1:n − b∥1 ≤ ∥b−Ax(0)∥1 · τ.

This finishes the proof.

The following lemma is a generalization of (Lee et al., 2019, Lemma D.3) to quadratic program, and
with weight vector w.

Lemma F.18 (QP version of (Lee et al., 2019, Lemma D.3)). Work under the setting of Theorem F.1.
Suppose we have si

t + wi∇ϕi(xi) = µi for all i ∈ [n], −Qx + A⊤y + s = c and Ax = b. If
∥µi∥∗xi

≤ wi for all i ∈ [n], then we have

1

2
x⊤Qx+ c⊤x ≤ 1

2
x∗⊤Qx∗ + c⊤x∗ + 4tκ

where x∗ = argminAx=b,x∈K
(
1
2x

⊤Qx+ c⊤x
)
.

Proof. Let xα = (1−α)x+αx∗ for some α to be chosen. By Lemma F.16, we have ⟨∇ϕw(xα), x
∗−

xα⟩ ≤ κ. (Note that ϕw is a κ-self-concordant barrier for K.) Therefore we have

κα

1− α
≥ ⟨∇ϕw(xα), xα − x⟩

= ⟨∇ϕw(xα)−∇ϕw(x), xα − x⟩+ ⟨µ− s

t
, xα − x⟩

≥
∑
i∈[n]

wi

∥xα,i − xi∥2xi

1 + ∥xα,i − xi∥xi

+ ⟨µ, xα − x⟩ − 1

t
⟨c−A⊤y +Qx, xα − x⟩
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≥
∑
i∈[n]

wi

α2∥x∗
i − xi∥2xi

1 + α∥x∗
i − xi∥xi

− α
∑
i∈[n]

∥µi∥∗xi
∥x∗

i − xi∥xi
− α

t
⟨c+Qx, x∗ − x⟩.

First step is because ⟨∇ϕw(xα), x
∗−xα⟩ ≤ ν. Second step is because µ = s

t +∇ϕw(x). Third step
is by Lemma F.16 and c = −Qx+A⊤y + s. Fourth step is by Cauchy-Schwarz and Axα = Ax.

So we get
1

t
(x⊤Qx+ c⊤x)

≤ 1

t
(x⊤Qx∗ + c⊤x∗) +

κ

1− α
+

∑
i∈[n]

∥µi∥∗xi
∥x∗

i − xi∥xi
−

∑
i∈[n]

wi

α∥x∗
i − xi∥2xi

1 + α∥x∗
i − xi∥xi

≤ 1

t
(
1

2
x⊤Qx+

1

2
x∗⊤Qx∗ + c⊤x∗) +

κ

1− α
+

∑
i∈[n]

wi∥x∗
i − xi∥xi

−
∑
i∈[n]

wi

α∥x∗
i − xi∥2xi

1 + α∥x∗
i − xi∥xi

=
1

t
(
1

2
x⊤Qx+

1

2
x∗⊤Qx∗ + c⊤x∗) +

κ

1− α
+

∑
i∈[n]

wi
∥x∗

i − xi∥xi

1 + α∥x∗
i − xi∥xi

≤ 1

t
(
1

2
x⊤Qx+

1

2
x∗⊤Qx∗ + c⊤x∗) +

κ

1− α
+

∑
i∈[n]

wi

α

≤ 1

t
(
1

2
x⊤Qx+

1

2
x∗⊤Qx∗ + c⊤x∗) +

κ

α(1− α)
.

First step is by rearranging terms in the previous inequality. Second step is by AM-GM inequality
and ∥µi∥∗xi

≤ wi. Third step is by merging the last two terms. Fourth step is by bounding the last
term. Fifth step is by

∑
i∈[n] wi ≤

∑
i∈[n] wiνi = κ.

Finally,
1

2
x⊤Qx+ c⊤x ≤ 1

2
x∗⊤Qx∗ + c⊤x∗ +

κt

α(1− α)

≤ 1

2
x∗⊤Qx∗ + c⊤x∗ + 4κt.

First step is by rearranging terms in the previous inequality. Second step is by taking α = 1
2 . This

finishes the proof.

F.5 PROOF OF THEOREM F.1

In this section we combine everything and prove Theorem F.1.

Proof of Theorem F.1. Lemma F.17 shows that the initial x and s satisfies

∥µ∥∗w,x ≤ ϵ.

This implies w−1
i ∥µi∥∗xi

≤ ϵ because wi ≥ 1.

Because ϵ ≤ 1
λ , we have

Φ(x, s, t) =
∑
i∈[n]

cosh(λw−1
i ∥µi∥∗xi

) ≤ n cosh(1) ≤ cosh(λ/64)

for the initial x and s, by the choice of λ.

Using Theorem F.15, we see that

Φ(x, s, t) ≤ cosh(λ/64)

during the entire algorithm.

So at the end of the algorithm, we have w−1
i ∥µi∥∗xi

≤ 1
64 for all i ∈ [n]. In particular, ∥µi∥∗xi

≤ wi

for all i ∈ [n].
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Therefore, applying Lemma F.18 we get
1

2
x⊤Qx+ c⊤x ≤ 1

2
x∗⊤Qx∗ + c⊤x∗ + 4tκ

≤ 1

2
x∗⊤Qx∗ + c⊤x∗ + ϵ2

where we used the stop condition for t at the end.

So Lemma F.17 shows how to get an approximate solution for the original quadratic program with
error ϵLR(R+ 1).

The number of iterations is because we decrease t by a factor of 1− h every iteration, and the choice
h = α

64
√
κ

.

G GAUSSIAN KERNEL SVM: ALMOST-LINEAR TIME ALGORITHM AND
HARDNESS

In this section, we provide both algorithm and hardness for Gaussian kernel SVM problem. For the
algorithm, we utilize a result due to Aggarwal & Alman (2022) in conjunction with our low-rank
QP solver to obtain an O(n1+o(1) log(1/ϵ)) time algorithm. For the hardness, we build upon the
framework outlined in Backurs et al. (2017) and improve their results in terms of dependence on
dimension d.

We start by proving a simple lemma that shows that if K = UV ⊤ for low-rank U, V , then the
quadratic objective K ◦ (yy⊤) also admits such a factorization via a simple scaling.

Lemma G.1. Let U, V ∈ Rn×k and y ∈ Rn. Then, there exists a pair of matrices Ũ , Ṽ ∈ Rn×k

such that
Ũ Ṽ ⊤ = (UV ⊤) ◦ (yy⊤)

moreover, Ũ , Ṽ can be computed in time O(nk).

Proof. The proof relies on the following identity for Hadamard product: for any matrix A and
conforming vectors x, y (all real), one has

A ◦ (yx⊤) = DyADx

where Dy, Dx ∈ Rn×n are diagonal matrices that put y, x on their diagonals. Thus, we can simply
compute Ũ , Ṽ as follows:

Ũ = DyU,

Ṽ = DyV,

consequently,

Ũ Ṽ ⊤ = DyUV ⊤Dy

= (yy⊤) ◦ (UV ⊤)

= (UV ⊤) ◦ (yy⊤),
as desired. Moreover, the diagonal scaling of U, V can be indeed performed in O(nk) time, as
advertised.

Throughout this section, we will let B denote the squared radius of the dataset.

G.1 ALMOST-LINEAR TIME ALGORITHM FOR GAUSSIAN KERNEL SVM

We state a result due to Aggarwal & Alman (2022), in which they present an optimal-degree polyno-
mial approximation to the function e−x and consequentially, this produces an efficient approximate
scheme to the Batch Gaussian Kernel Density Estimation problem.

We start by introducing a notion that captures the minimum degree polynomial that well-approximates
e−x:
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Definition G.2. Let f : [0, B]→ R, we let qB;ϵ(f) ∈ N denote the minimum degree of a non-constant
polynomial p(x) such that

sup
x∈[0,B]

|p(x)− f(x)| ≤ ϵ

Utilizing the Chebyshev polynomial machinery together with the orthgonal polynomial families, Ag-
garwal & Alman (2022) provides the following characterization on qB;ϵ(f):
Theorem G.3 (Theorem 1.2 of Aggarwal & Alman (2022)). Let B ≥ 1 and ϵ ∈ (0, 1). Then

qB;ϵ(e
−x) = Θ(max{

√
B log(1/ϵ),

log(1/ϵ)

log(B−1 log(1/ϵ))
})

Theorem G.4 (Corollary 1.7 of Aggarwal & Alman (2022)). Let x1, . . . , xn ∈ Rd be a dataset with
squared radius B and ϵ ∈ (0, 1). Let q = qB;ϵ(e

−x). Let K ∈ Rn×n be the Gaussian kernel matrix
formed by x1, . . . , xn. Finally, let k =

(
2d+2q

2q

)
. Then, there exists a deterministic algorithm that

computes a pair of matrices U, V ∈ Rn×k such that for any vector v ∈ Rn,

∥Kv − UV ⊤v∥∞ ≤ ϵ∥v∥1.
Moreover, matrices U, V can be computed in time O(nkd).

Even though ℓ∞ error in terms of ℓ1 norm of vector v seems quite weak, it can be conveniently
translated into more standard guarantees, e.g., spectral norm error. The following lemma provides
a conversion of errors that come in handy later when integrating the kernel approximation to our
low-rank QP solver.

Lemma G.5. Let K ∈ Rn×n be a PSD kernel matrix and ϵ ∈ (0, 1) be a parameter. Let K̃ ∈ Rn×n

be an approximation to K with the guarantee that for any v ∈ Rn,

∥Kv − K̃v∥∞ ≤ ϵ∥v∥1,
then

|v⊤Kv − v⊤K̃v| ≤ ϵ∥v∥21 ≤ ϵn∥v∥22.

Proof. The proof is a simple application of Hölder’s inequality:

|v⊤(Kv − K̃v)| = |⟨v,Kv − K̃v⟩|
≤ ∥v∥1∥Kv − K̃v∥∞
≤ ϵ∥v∥21
≤ ϵn∥v∥22,

where the second step is by Hölder’s inequality, and the last step is by Cauchy-Schwarz. This
completes the proof.

We can now combine the Gaussian kernel low-rank decomposition with our low-rank QP solver
to provide an almost-linear time algorithm for Gaussian kernel SVM. We restate the kernel SVM
formulation here.
Definition G.6 (Restatement of Definition 1.3). Given a data matrix X ∈ Rn×d and labels y ∈ Rn.
Let Q ∈ Rn×n denote a matrix where Qi,j = K(xi, xj) · yiyj for i, j ∈ [n]. The hard-mragin kernel
SVM problem with bias asks to solve the following program.

max
α∈Rn

1⊤
nα−

1

2
α⊤Qα

s.t. α⊤y = 0

α ≥ 0.

Theorem G.7. Let Gaussian kernel SVM training problem be defined as above with kernel function
K(xi, xj) = exp(−∥xi − xj∥22). Suppose the dataset has squared radius B ≥ 1, and let ϵ ∈ (0, 1)
be the precision parameter. Suppose the program satisfies the following:
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• There exists a point z ∈ Rn such that there is an Euclidean ball with radius r centered at z
that is contained in the constraint set.

• The constraint set is enclosed by an Euclidean ball of radius R, centered at the origin.

Then, there exists a randomized algorithm that outputs an approximate solution α̂ ∈ Rn such that
α̂ ≥ 0, moreover,

1⊤
n α̂−

1

2
α̂⊤Qα̂ ≥ OPT− ϵ,

∥α̂⊤y∥1 ≤ 3ϵ,

where OPT denote the optimal cost of the objective function. Let q = qB;Θ(ϵ/nR2)(e
−x) and

k =
(
2d+2q

2q

)
. Then, the vector α̂ can be computed in expected time

Õ(nk(ω+1)/2 log(nR/(ϵr))).

Proof. Throughout the proof, we set ϵ1 = O(ϵ/(nR2)). We will craft an algorithm that first computes
an approximate Gaussian kernel together with a proper low-rank factorization, then use this proxy
kernel matrix to solve the quadratic program. We will use K to denote the exact Gaussian kernel
matrix, Q to denote the exact quadratic matrix.

Approximate the Gaussian kernel matrix with finer granularity. We start by invoking The-
orem G.4 using data matrix X with accuracy parameter ϵ1. We let K̃ = UV ⊤ to denote this
approximate kernel matrix, and we let Q̃ = DyUV ⊤Dy to denote the approximate quadratic matrix.
Owing to Lemma G.5, we know that for any vector x ∈ Rn,

|x⊤(Q− Q̃)x| = |(Dyx)
⊤(K − K̃)(Dyx)|

≤ ϵ1n∥Dyx∥22
= ϵ1n∥x∥22,

where we use the fact that y ∈ {±1}n. This also implies that

∥Q− Q̃∥ ≤ ϵ1n (37)

this simple bound will come in handy later.

Solving the approximate program to high precision. Given Q̃, we solve the following program:

max
α∈Rn

1⊤
nα−

1

2
α⊤Q̃α

s.t. α⊤y = 0

α ≥ 0

by invoking Theorem E.1. To do so, we need a bound on the Lipschitz constant of the program, i.e.,
the spectral norm of Q̃ and ℓ2 norm of 1. The latter is clearly

√
n, we shall show the first term is at

most (1 + ϵ1) · n.

Note that

∥Q∥ = ∥DyKDy∥
≤ tr[DyKDy]

= tr[K]

≤ n,

where we use K is PSD. Combining with Eq. (37) and triangle inequality, we have

∥Q̃∥ ≤ ∥Q∥+ ∥Q− Q̃∥
≤ (1 + ϵ1) · n.
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With these Lipschitz constants, we examine the error guarantee provided by Theorem E.1: it produces
a vector α̂ ∈ Rn such that

1⊤
n α̂−

1

2
α̂⊤Q̃α̂ ≥ max

α⊤y=0,x≥0
(1⊤

nα−
1

2
α⊤Q̃α)−O(ϵ1nR

2),

∥α̂⊤y∥1 ≤ O(ϵ1nR),

we mainly focus on the first error bound, as we need to understand the quality of x̂ when plug into
the program with Q.

We will follow a chain of triangle inequalities, so we first bound

|α̂⊤(Q̃−Q)α̂| ≤ ϵn∥α̂∥22
≤ ϵnR2.

Next, let

α′ := arg max
α⊤y=0,α≥0

1⊤
nα−

1

2
α⊤Q̃α,

α∗ := arg max
α⊤y=0,α≥0

1⊤
nα−

1

2
α⊤Qα,

then we have the following

1⊤
nα

′ − 1

2
α′⊤Q̃α′ ≥ 1⊤

nα
∗ − 1

2
(α∗)⊤Q̃α∗

≥ 1⊤
nα

∗ − 1

2
(α∗)⊤Qα∗ −O(ϵ1nR

2)

= OPT−O(ϵ1nR
2),

where the second step is by applying Lemma G.5 to α∗. Now we are ready to bound the final error:

1⊤
n α̂−

1

2
α̂⊤Qα̂ ≥ 1⊤

n α̂−
1

2
α̂⊤Q̃α̂−O(ϵ1nR

2)

≥ 1⊤
nα

′ − 1

2
α′⊤Q̃α′ −O(ϵ1nR

2)

≥ OPT−O(ϵ1nR
2).

The final error guarantee follows by the choice of ϵ1, and we indeed design an algorithm that outputs
a vector α̂ with

1⊤α̂− 1

2
α̂⊤Qα̂ ≥ OPT− ϵ,

∥α̂⊤y∥1 ≤ ϵ.

Runtime analysis. It remains to analyze the runtime of our proposed algorithm. We first compute an
approximate kernel K̃ with parameter ϵ1, owing to Theorem G.4, we have

qB;ϵ1(e
−x) = Θ(max{

√
B log(nR/ϵ),

log(nR/ϵ)

log(B−1 log(nR/ϵ))
})

then by setting k =
(
2d+2q

2q

)
, the matrix K̃ can be computed in time O(nkd). Given this rank-k

factorization, the program can then be solved with precision ϵ1 in time

Õ(nk(ω+1)/2 log(nR/(ϵr))),

as desired.

Remark G.8. To understand the value range of k, let us consider the set of parameters:

d = O(log n), ϵ = 1/ poly n,R = poly n,B = Θ(1),
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under this setting, O(log(nR/ϵ)) = O(log n) and the degree q is

q = Θ(
√
log n)

the rank k is then

k =

(
2d+ 2q

2q

)
≤ Θ((log n)

1
2

√
logn)

= Θ(2Θ(log logn
√
logn))

= no(1),

consequentially, our algorithm runs in almost-linear time in n:

Õ(n1+o(1) log n).

It is worth noting to achieve the almost-linear runtime, the data radius B can be further relaxed. In
fact, as long as

B = o

(
log n

log log n

)
,

we can ensure that k = no(1) and subsequently the almost-linear runtime.

The runtime we obtain can be viewed as a consequence of the “phase transition” phenomenon
observed in Aggarwal & Alman (2022), in which they prove that if B = ω(log n), then quadratic
time in n is essentially needed to approximate the Gaussian kernel assuming SETH.

G.2 HARDNESS OF GAUSSIAN KERNEL SVM WITH LARGE RADIUS

In this section, we show that for d = O(log n), any algorithm that solves the program associated to
hard-margin Gaussian kernel SVM would require Ω(n2−o(1)) time for B = ω(log n). This justifies
the choice of B in Remark G.8. To prove the hardness result, we need to introduce the approximate
Hamming nearest neighbor problem.
Definition G.9. For δ > 0 and n, d ∈ N, let {a1, . . . , an}, {b1, . . . , bn} ⊆ {0, 1}d be two sets
of vectors, and let t ∈ {0, 1, . . . , d} be a threshold. The (1 + δ)-Approximate Hamming Nearest
Neighbor problem asks to distinguish the following two cases:

• If there exists some ai and bj such that ∥ai − bj∥1 ≤ t, output “Yes”;

• If for any i, j ∈ [n], we have ∥ai − bj∥1 > (1 + δ) · t, output “No”.

Note that the algorithm can output any value if the datasets fall in neither of these two cases. We will
utilize the following hardness result due to Rubinstein.
Theorem G.10 (Rubinstein (2018)). Assuming SETH, for every q > 0, there exists δ > 0 and C > 0
such that (1 + δ)-Approximate Hamming Nearest Neighbor in dimension d = C log n requires time
Ω(n2−q).

A final ingredient is a rewriting of the dual SVM into its primal form, without resorting to optimize
over an infinite-dimensional hyperplane.
Lemma G.11. Consider the dual hard-margin kernel SVM defined as

max
α∈Rn

1⊤α− 1

2

∑
i,j∈[n]×[n]

αiαjyiyjK(wi, wj),

s.t. α⊤y = 0,

α ≥ 0.

The primal program can be written as

min
α∈Rn

1

2

∑
i,j∈[n]×[n]

αiαjyiyjK(wi, wj),
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s.t. yif(wi) ≥ 1,

α ≥ 0,

where f : Rd → R is defined as

f(w) =

n∑
j=1

αjyjK(wj , w)− b.

Moreover, the primal and dual program has no duality gap and the optimal solution α to both
programs are the same.

Proof. Recall that the primal hard-margin SVM is the following program:

min
v

1

2
∥v∥22,

s.t. yi(v⊤ϕ(wi)− b) ≥ 1,

where b ∈ R is the bias term and ϕ : Rd → RK is the feature mapping corresponding to the kernel in
the sense that K(wi, wj) = ϕ(wi)

⊤ϕ(wj). The optimal weight v =
∑n

i=1 αiyiϕ(wi) where α ∈ Rn

is the optimal solution to the dual program. Consequently,

∥v∥22 = (

n∑
i=1

αiyiϕ(wi))
2

=
∑

i,j∈[n]×[n]

αiαjyiyjϕ(wi)
⊤ϕ(wj)

=
∑

i,j∈[n]×[n]

αiαjyiyjK(wi, wj)

= α⊤Qα,

where the matrix Q is the usual

Q = (yy⊤) ◦K,

the constraint can be rewritten as

yi(v
⊤ϕ(wi)− b) = yi((

n∑
i=1

αiyiϕ(wi))
⊤ϕ(wi)− b)

= yi(

n∑
j=1

αjyjϕ(wj)
⊤ϕ(wi))− yib

= yi(

n∑
j=1

αjyjK(wi, wj))− yib

= yif(wi),

where f : Rd → R is defined as

f(w) =

n∑
j=1

αjyjK(wj , w)− b.

Thus, we can alternatively write the primal as

min
α∈Rn

1

2
α⊤Qα,

s.t. yif(wi) ≥ 1.

For the strong duality and optimal solution, see, e.g., Muller et al. (2001).
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We will now prove the almost-quadratic lower bound for Guassian kernel SVM. Our proof strategy is
similar to that of Backurs et al. (2017) with different set of parameters. It is also worth noting that
the Backurs et al. (2017) construction

• Requires the dimension d = Θ(log3 n);

• Requires the squared dataset radius B = Θ(log4 n).

We will improve both of these results.
Theorem G.12. Assuming SETH, for every q > 0, there exists a hard-margin Gaussian kernel SVM
without the bias term as defined in Definition 1.3 with d = Θ(log n) and error ϵ = exp(−Θ(log2 n))
for inputs whose squared radius is at most B = Θ(log2 n) requiring time Ω(n2−q) to solve.

Proof. Let l =
√
2(c′δ)−1 log n. We will provide a reduction from (1 + δ)-Approximate Hamming

Nearest Neighbor to Gaussian kernel SVM. Let A := {a1, . . . , an}, B := {b1, . . . , bn} ⊆ {0, 1}d be
the datasets, we assign label 1 to all vectors ai and label −1 to all vectors bj , moreover, we scale both
A and B by l, this results in two datasets with points in {0, l}d. The squared radius of this dataset is
then

B = max{max
i,j
∥lai − laj∥22,max

i,j
∥lbi − lbj∥22,max

i,j
∥lai − lbj∥22}

≤ l2d

= Θ(δ−1 log2 n).

To simplify the notation, we will implictly assume A and B are scaled by l without explicitly writing
out lai, lbj . Now consider the following three programs:

• Classifying A:

min
α∈Rn

≥0

1

2

∑
i,j∈[n]×[n]

αiαjK(ai, aj),

s.t.
n∑

j=1

αjK(ai, aj) ≥ 1, ∀i ∈ [n] (38)

• Classifying B:

min
β∈Rn

≥0

1

2

∑
i,j∈[n]×[n]

βiβjK(bi, bj),

s.t. −
n∑

j=1

βjK(bi, bj) ≤ −1, ∀i ∈ [n] (39)

• Classifying both A and B:

min
α,β∈Rn

≥0

1

2

∑
i,j∈[n]×[n]

αiαjK(ai, aj) +
1

2

∑
i,j∈[n]×[n]

βiβjK(bi, bj)−
∑

i,j∈[n]×[n]

αiβjK(ai, bj),

s.t.
n∑

j=1

αjK(ai, aj)−
n∑

j=1

βjK(ai, bj) ≥ 1, ∀i ∈ [n],

n∑
j=1

αjK(bi, aj)−
n∑

j=1

βjK(bi, bj) ≤ −1, ∀i ∈ [n] (40)

We will prove that the optimal solution α∗
i ’s and β∗

i ’s are both lower and upper bounded. Use
Val(A),Val(B) and Val(A,B) to denote the value of program (38), (39) and (40) respectively, then
note that

Val(A) ≤ n2

2
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by plugging in α = 1 and setting all vectors to be the same. On the other hand,

Val(A) ≥ 1

2

n∑
i=1

(α∗
i )

2K(ai, ai)

=
1

2

n∑
i=1

(α∗
i )

2.

Combining these two, we can conclude that for any α∗
i , it must be α∗

i ≤ n. For the lower bound,
consider the inequality constraint for the i-th point:

α∗
i +

∑
j ̸=i

α∗
jK(ai, aj) ≥ 1,

to estimate K(ai, aj), note that ∥ai − aj∥22 = ∥ai − aj∥1 ≥ 1 for j ̸= i,9 and

K(ai, aj) = exp(−l2∥ai − aj∥22)
= exp(−2(c′δ)−1 log n∥ai − aj∥1)
≤ exp(−2(c′δ)−1 log n)

≤ n−10/100,

combining with α∗
j ≤ n, we have

α∗
i ≥ 1−

∑
j ̸=i

α∗
jK(ai, aj)

≥ 1− n · n · n−10/100

≥ 1/2.

This lower bound on α∗
i is helpful when we attempt to lower bound Val(A,B) with Val(A)+Val(B).

Following the outline of Backurs et al. (2017), we consider the three dual programs:

• Dual of classifying A:

max
α∈Rn

≥0

n∑
i=1

αi −
1

2

∑
i,j

αiαjK(ai, aj) (41)

• Dual of classifying B:

max
β∈Rn

≥0

n∑
i=1

βi −
1

2

∑
i,j

βiβjK(bi, bj) (42)

• Dual of classifying A and B:

max
α,β∈Rn

≥0

n∑
i=1

αi +

n∑
i=1

βi −
1

2

∑
i,j

αiαjK(ai, aj)−
1

2

∑
i,j

βiβjK(bi, bj) +
∑
i,j

αiβjK(ai, bj)

(43)

as the SVM program exhibits strong duality, we know that the optimal value of the primal equals
to the dual, so we can alternatively bound Val(A,B) using the dual program. Plug in α∗, β∗ to
program (43), we have

Val(A,B) ≥
n∑

i=1

α∗
i +

n∑
i=1

β∗
i −

1

2

∑
i,j

α∗
iα

∗
jK(ai, aj)−

1

2

∑
i,j

β∗
i β

∗
jK(bi, bj) +

∑
i,j

α∗
i β

∗
jK(ai, bj)

= Val(A) + Val(B) +
∑
i,j

α∗
i β

∗
jK(ai, bj),

9We without loss of generality that during preprocess, we have remove duplicates in A and B.
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to bound the third term, we consider the pair (ai0 , bj0) such that ∥ai0 − bj0∥1 ≤ t− 1, and note that∑
i,j

α∗
i β

∗
jK(ai, bj) ≥ α∗

i0β
∗
j0K(ai0 , bj0)

≥ 1

4
exp(−2(c′δ)−1 log n · (t− 1)).

To wrap up, we have

Val(A,B) ≥ Val(A) + Val(B) +
1

4
exp(−2(c′δ)−1 log n · (t− 1))

We now prove the “No” case, where for any ai, bj , ∥ai − bj∥1 ≥ t. We have

K(ai, bj) = exp(−l2∥ai − bj∥22)
≤ exp(−2(c′δ)−1 log n · t),

we let m := exp(−2(c′δ)−1 log n · t), set α′ = α∗ + 10n2m and β′ = β∗ + 10n2m, we let V to
denote the value when evaluating program (40) with α′, β′. We will essentially show that

Val(A,B) ≤ V

and

V ≤ Val(A) + Val(B) + 400n6m

chaining these two gives us a certificate for the “No” case. To prove the first assertion, we show that
α′, β′ are feasible solution to program (40) since

n∑
j=1

α′
jK(ai, aj) =

n∑
j=1

(α∗
jK(ai, aj) + 10n2mK(ai, aj))

= α∗
i + 10n2m+

∑
j ̸=i

(α∗
j + 10n2m)K(ai, aj)

≥ α∗
i +

∑
j ̸=i

α∗
jK(ai, aj) + 10n2m

= 10n2m+

n∑
j=1

α∗
jK(ai, aj)

≥ 10n2m+ 1

where we use α∗
i satisfy the inequality constraint of program (38). We compute an upper bound on∑n

j=1 β
′
jK(ai, bj):

n∑
j=1

β′
jK(ai, bj) ≤

n∑
j=1

2nm

= 2n2m,

where we use the fact that m = exp(−2(c′δ)−1 log n · t) ≤ n−10/10 therefore β∗ + 10n2m ≤ 2n.
Thus, it must be the case that∑

j=1

α′
jK(ai, aj)−

n∑
j=1

β′
jK(ai, bj) ≥ 8n2m+ 1

≥ 1,

as desired. The other linear constraint follows by a symmetric argument. This indeed shows that
α′, β′ are feasible solutions to program (40) and Val(A,B) ≤ V .

To prove an upper bound on V , we note that

V =
1

2

∑
i,j

α′
iα

′
jK(ai, aj) +

1

2

∑
i,j

β′
iβ

′
jK(bi, bj)−

∑
i,j

α′β′
jK(ai, bj)
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≤ 1

2

∑
i,j

α′
iα

′
jK(ai, aj) +

1

2

∑
i,j

β′
iβ

′
jK(bi, bj),

we bound the first quantity, as the second follows similarly:

1

2

∑
i,j

α′
iα

′
jK(ai, aj) =

1

2

∑
i,j

(α∗
iα

∗
j + 10n2m(α∗

i + α∗
j ) + 100n4m2)K(ai, aj)

≤ Val(A) +
∑
i,j

10n3mK(ai, aj) +
∑
i,j

100n4m2K(ai, aj)

≤ Val(A) + 10n5m+ 100n6m2

≤ Val(A) + 200n6m,

we can thus conclude

V ≤ Val(A) + Val(B) + 400n6m.

Chaining these two, we obtain the following threshold for the “No” case:

Val(A,B) ≤ Val(A) + Val(B) + 400n6m.

Finally, we observe that

400n6 exp(−2(c′δ)−1 log n · t)≪ 1

4
exp(−2(c′δ)−1 log n · (t− 1)),

we can therefore distinguish these two cases.

Note that when one considers solving the program with additive error, we need to make sure that the
error is smaller than the distinguishing threshold, i.e.,

ϵ ≤ 1

4
exp(−2(c′δ)−1 log n · (t− 1))

≤ 1

4
exp(−2(c′δ)−1d log n)

= exp(−Θ(log2 n)),

where we use t ≤ d and d = Θ(log n). This concludes the proof.

Remark G.13. Our proof can be interpreted as using a stronger complexity theoretical tool in place
of the one used by Backurs et al. (2017), to obtain a better dependence on dimension d and B. We
also note that the construction due to Backurs et al. (2017) has the relation that B = Θ(d log n),
this is because in order to lower bound Val(A,B), one has to lower bound the optimal values of
α∗
i ’s and β∗

j ’s. To do so, one needs to further scale up ai’s and bj’s so that within datasets A and B,
the radius is at least Θ(log n). This is in contrast to the Batch Gaussian KDE studied in Aggarwal
& Alman (2022), where they show the almost-quadratic lower bound can be achieved for both
d,B = Θ(log n).

Similar to Backurs et al. (2017), we obtain hardness results for hard-margin kernel SVM with bias,
and soft-margin kernel SVM with bias.

Corollary G.14. Assuming SETH, for every q > 0, there exists a hard-margin Gaussian kernel SVM
with the bias term with d = Θ(log n) and error ϵ = exp(−Θ(log2 n)) for inputs whose squared
radius is at most B = Θ(log6 n) requiring time Ω(n2−q) to solve.

Proof. The proof is similar to Backurs et al. (2017). Given a hard instance of Theorem G.12, except
we append Θ(log n) entries with magnitude Θ(log2 n) instead of distributing the values across
Θ(log3 n) entries. Rest of the proof follows exactly the same as Backurs et al. (2017).

Corollary G.15. Assuming SETH, for every q > 0, there exists a soft-margin Gaussian kernel SVM
with the bias term with d = Θ(log n) and error ϵ = exp(−Θ(log2 n)) for inputs whose squared
radius is at most B = Θ(log6 n) requiring time Ω(n2−q) to solve.
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Remark G.16. Compared to the construction of Backurs et al. (2017) in which they distribute a
total mass of Θ(log3 n) across Θ(log3 n) entries so that they ensure after the reduction, the vectors
take values in {−1, 0, 1}, we instead distribute the mass across Θ(log n) entries so that each entry
has magnitude Θ(log2 n). To make the reduction work, the total mass of Θ(log3 n) is needed, and
for Backurs et al. (2017), it is fine to append an extra Θ(log3 n) entries as their hardness result for
hard-margin SVM without bias does require d = Θ(log3 n). For us, we need to restrict d = Θ(log n)
at the price of each entry has a larger magnitude of Θ(log2 n). This blows up the squared radius
from log2 n to log6 n. We note that the Backurs et al. (2017) construction has squared radius log4 n.
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