
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

FASTER ALGORITHMS FOR STRUCTURED LINEAR AND
KERNEL SUPPORT VECTOR MACHINES

Anonymous authors
Paper under double-blind review

ABSTRACT

Quadratic programming is a ubiquitous prototype in convex programming. Many
machine learning problems can be formulated as quadratic programming, including
the famous Support Vector Machines (SVMs). Linear and kernel SVMs have been
among the most popular models in machine learning over the past three decades,
prior to the deep learning era.
Generally, a quadratic program has an input size of Θ(n2), where n is the number of
variables. Assuming the Strong Exponential Time Hypothesis (SETH), it is known
that no O(n2−o(1)) time algorithm exists when the quadratic objective matrix
is positive semidefinite (Backurs, Indyk, and Schmidt, NeurIPS’17). However,
problems such as SVMs usually admit much smaller input sizes: one is given n data
points, each of dimension d, and d is oftentimes much smaller than n. Furthermore,
the SVM program has only O(1) equality linear constraints. This suggests that
faster algorithms are feasible, provided the program exhibits certain structures.
In this work, we design the first nearly-linear time algorithm for solving quadratic
programs whenever the quadratic objective admits a low-rank factorization, and the
number of linear constraints is small. Consequently, we obtain results for SVMs:

• For linear SVM when the input data is d-dimensional, our algorithm runs in
time Õ(nd(ω+1)/2 log(1/ϵ)) where ω ≈ 2.37 is the fast matrix multiplication
exponent;

• For Gaussian kernel SVM, when the data dimension d = O(log n) and the
squared dataset radius is sub-logarithmic in n, our algorithm runs in time
O(n1+o(1) log(1/ϵ)). We also prove that when the squared dataset radius is
at least Ω(log2 n), then Ω(n2−o(1)) time is required. This improves upon the
prior best lower bound in both the dimension d and the squared dataset radius.

1 INTRODUCTION

Quadratic programming (QP) represents a class of convex optimization problems that optimize a
quadratic objective over the intersection of an affine subspace and the non-negative orthant1. QPs
naturally extend linear programming by incorporating a quadratic objective, and they find extensive
applications in operational research, theoretical computer science, and machine learning (Kozlov
et al., 1979; Wright, 1999; Gould & Toint, 2000; Gould et al., 2001; Propato & Uber, 2004; Cor-
nuejols & Tütüncü, 2006). The quadratic objective introduces challenges: QPs with a general (not
necessarily positive semidefinite) symmetric quadratic objective matrix are NP-hard to solve (Sahni,
1974; Pardalos & Vavasis, 1991). When the quadratic objective matrix is positive semidefinite, the
problem becomes weakly polynomial-time solvable, as it can be reduced to convex empirical risk
minimization (Lee et al., 2019) (refer to Section C for further discussion).

Formally, the QP problem is defined as follows:

Definition 1.1 (Quadratic Programming). Given an n× n symmetric, positive semidefinite objective
matrix Q, a vector c ∈ Rn, and a polytope described by a pair (A ∈ Rm×n, b ∈ Rm), the linearly

1There are classes of QPs with quadratic constraints as well. However, in this paper, we focus on cases where
the constraints are linear.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

constrained quadratic programming (LCQP) or simply quadratic programming (QP) problem seeks
to solve the following optimization problem:

min
x∈Rn

1

2
x⊤Qx+ c⊤x (1)

s.t. Ax = b

x ≥ 0.

A classic application of QP is the Support Vector Machine (SVM) problem (Boser et al., 1992;
Cortes & Vapnik, 1995). In SVMs, a dataset x1, . . . , xn ∈ Rd is provided, along with corresponding
labels y1, . . . , yn ∈ {±1}. The objective is to identify a hyperplane that separates the two groups of
points with opposite labels, while maintaining a large margin from both. Remarkably, this popular
machine learning problem can be formulated as a QP and subsequently solved using specialized QP
solvers (Muller et al., 2001). Thus, advancements in QP algorithms could potentially lead to runtime
improvements for SVMs.

Despite its practical and theoretical significance, algorithmic quadratic programming has garnered
relatively less attention compared to its close relatives in convex programming, such as linear
programming (Cohen et al., 2019; Jiang et al., 2021; Brand, 2020; Song & Yu, 2021), convex
empirical risk minimization (Lee et al., 2019; Qin et al., 2023), and semidefinite programming (Jiang
et al., 2020; Huang et al., 2022; Gu & Song, 2022). In this work, we take a pioneering step in
developing fast and robust interior point-type algorithms for solving QPs. We particularly focus
on improving the runtime for high-precision hard- and soft-margin SVMs. For the purposes of
this discussion, we will concentrate on hard-margin SVMs, with the understanding that our results
naturally extend to soft-margin variants. We begin by introducing the hard-margin linear SVMs:
Definition 1.2 (Linear SVM). Given a dataset X ∈ Rn×d and a collection of labels y1, . . . , yn each
in ±1, the linear SVM problem requires solving the following quadratic program:

max
α∈Rn

1⊤
nα−

1

2
α⊤(yy⊤ ◦XX⊤)α, (2)

s.t. α⊤y = 0,

α ≥ 0.

where ◦ denotes the Hadamard product.

It should be noted that this formulation is actually the dual of the SVM optimization problem. The
primal program seeks a vector w ∈ Rd such that

min
w∈Rd

1

2
∥w∥22,

s.t. yi(w⊤xi − b) ≥ 1, ∀i ∈ [n],

where b ∈ R is the bias term. Given the solution α ∈ Rn, one can conveniently convert it to a primal
solution: w∗ =

∑n
i=1 α

∗
i yixi. At first glance, one might be inclined to solve the primal problem

directly, especially in cases where d≪ n, as it presents a lower-dimensional optimization problem
compared to the dual. The dual formulation becomes particularly advantageous when solving the
kernel SVM, which maps features to a high or potentially infinite-dimensional space.
Definition 1.3 (Kernel SVM). Given a dataset X ∈ Rn×d and a positive definite kernel function
K : Rd × Rd → R, let K ∈ Rn×n denote the kernel matrix, where Ki,j = K(xi, xj). With a
collection of labels y1, . . . , yn each in {±1}, the kernel SVM problem requires solving the following
quadratic program:

max
α∈Rn

1⊤
nα−

1

2
α⊤(yy⊤ ◦K)α, (3)

s.t. α⊤y = 0,

α ≥ 0.

The positive definite kernel function K corresponds to a feature mapping, implying that K(xi, xj) =
ϕ(xi)

⊤ϕ(xj) for some ϕ : Rd → Rs. Thus, solving the primal SVM can be viewed as solving the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

optimization problem on the transformed dataset. However, the primal program’s dimension depends
on the (transformed) data’s dimension s, which can be infinite. Conversely, the dual program, with
dimension n, is typically easier to solve. Throughout this paper, when discussing the SVM program,
we implicitly refer to the dual quadratic program, not the primal.

One key aspect of the SVM program is its minimal equality constraints. Specifically, for both linear
and kernel SVMs, there is only a single equality constraint of the form α⊤y = 0. This constraint
arises naturally from the bias term in the primal SVM formulation and its Lagrangian. The limited
number of constraints enables us to design QP solvers with favorable dependence on the number of
data points n, albeit with a higher dependence on the number of constraints m, thus offering effective
end-to-end guarantees for SVMs.

Previous efforts to solve the SVM program typically involve breaking down the large QP into smaller,
constant-sized QPs. These algorithms, while easy to implement and well-suited to modern hardware
architectures, oftentimes lack tight theoretical analysis and the estimation of iteration count is usually
pessimistic (Chang & Lin, 2011). Theoretically, Joachims (2006) systematically analyzed this class
of algorithms, demonstrating that to achieve an ϵ-approximation solution, Õ(ϵ−2B · nnz(A)) time is
sufficient, where B is the squared-radius of the dataset and nnz(·) denotes the number of nonzero
entries. This is subsequently improved in Shalev-Shwartz et al. (2011) with a subgradient-based
method that runs in Õ(ϵ−1d) time. Unfortunately, the polynomial dependence on the precision ϵ−1

makes them hard to be adapted for even moderately small ϵ. For example, when ϵ is set to be 10−3 to
account for the usual machine precision errors, these algorithms would require at least 103 iterations
to converge.

To develop a high-precision algorithm with poly log(ϵ−1) dependence instead of poly(ϵ−1), we
focus on second-order methods for QPs. A variety of approaches have been explored in previous
works, including the interior point method (Karmarkar, 1984), active set methods (Murty, 1988),
augmented Lagrangian techniques (Delbos & Gilbert, 2003), conjugate gradient, gradient projection,
and extensions of the simplex algorithm (Dantzig, 1955; Wolfe, 1959; Murty, 1988). Our interest is
particularly piqued by the interior point method (IPM). Recent advances in the robust IPM framework
have led to significant successes for convex programming problems (Cohen et al., 2019; Lee et al.,
2019; Brand, 2020; Jiang et al., 2020; Brand et al., 2020; Jiang et al., 2021; Song & Yu, 2021; Jiang
et al., 2022; Huang et al., 2022; Gu & Song, 2022; Qin et al., 2023). These successes are a result of
combining robust analysis of IPM with dedicated data structure design.

Applying IPM to solve QPs with a constant number of constraints is not entirely novel; existing
work (Ferris & Munson, 2002) has already adapted IPM to solve the linear SVM problem. However,
the runtime of their algorithm is sub-optimal. Each iteration of their algorithm requires multiplying a
d×n matrix with an n×d matrix in O(ndω−1) time, where ω ≈ 2.37 is the fast matrix multiplication
exponent (Duan et al., 2023; Williams et al., 2024; Gall, 2024). Moreover, the IPM requires
O(
√
n log(1/ϵ)) iterations to converge. This ends up with an overall runtime O(n1.5dω−1 log(1/ϵ)),

which is super-linear in the dataset size even when the dimension d is small. In practical scenarios
where n is usually large, the n1.5 dependence becomes prohibitive. Therefore, it is crucial to develop
an algorithm with almost- or nearly-linear dependence on n and logarithmic dependence on ϵ−1.

For linear SVM, we propose a nearly-linear time algorithm with high-precision guarantees, applicable
when the dimension of the dataset is smaller than the number of points:

Theorem 1.4 (Low-rank QP and Linear SVM, informal version of Theorem E.1). Given a quadratic
program as defined in Definition 1.1, and assuming a low-rank factorization of the quadratic objective
matrix Q = UV ⊤, where U, V ∈ Rn×k, there exists an algorithm that can solve the program (1) up
to ϵ-error2 in Õ(n(k +m)(ω+1)/2 log(n/ϵ)) time.

Specifically, for linear SVM (as per Definition 1.2) with d ≤ n, one can solve program (2) up to
ϵ-error in Õ(nd(ω+1)/2 log(n/ϵ)) time.

While a nearly-linear time algorithm for linear SVMs is appealing, most applications look at kernel
SVMs as they provide more expressive power to the linear classifier. This poses significant challenge
in algorithm design, as forming the kernel matrix exactly would require Ω(n2) time. Moreover, the

2We say an algorithm that solves the program up to ϵ-error if it returns an approximate solution vector α̃
whose objective value is at most ϵ more than the optimal objective value.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

kernel matrix could be full-rank without any structural assumptions, rendering our low-rank QP
solver inapplicable. In fact, it has been shown that for data dimension d = ω(log n), no algorithm can
approximately solve kernel SVM within an error exp(−ω(log2 n)) in time O(n2−o(1)), assuming
the famous Strong Exponential Time Hypothesis (SETH)3 (Backurs et al., 2017).

Conversely, a long line of works aim to speed up computation with the kernel matrix faster than
quadratic, especially when the kernel has certain smooth and Lipschitz properties (Alman et al.,
2020; Aggarwal & Alman, 2022; Bakshi et al., 2023; Charikar et al., 2024). For instance, when
kernel functions are sufficiently smooth, efficient approximation using low-degree polynomials is
feasible, leading to an approximate low-rank factorization. A prime example is the Gaussian RBF
kernel, where Aggarwal & Alman (2022) showed that for dimension d = Θ(log n) and squared
dataset radius (defined as maxi,j∈[n] ∥xi − xj∥22) B = o(log n), there exists low-rank matrices
U, V ∈ Rn×no(1)

such that for any vector x ∈ Rn, ∥(K − UV ⊤)x∥∞ ≤ ϵ∥x∥1. They subsequently
develop an algorithm to solve the Batch Gaussian KDE problem in O(n1+o(1)) time.

Based on this dichotomy in fast kernel matrix algebra, we establish two results: 1) Solving Gaussian
kernel SVM in O(n1+o(1) log(1/ϵ)) time is feasible when B = o(logn

log logn), and 2) Assuming SETH,
no sub-quadratic time algorithm exists for B = Ω(log2 n) in SVMs without bias and B = Ω(log6 n)
in SVMs with bias. This improves the lower bound established by Backurs et al. (2017) in terms of
dimension d.
Theorem 1.5 (Gaussian Kernel SVM, informal version of Theorem G.7 and G.12). Given a dataset
X ∈ Rn×d with dimension d and squared radius denoted by B, let K(xi, xj) = exp(−∥xi − xj∥22)
be the Gaussian kernel function. Then, for the kernel SVM problem defined in Definition 1.3,

• If d = O(log n), B = o(logn
log logn), there exists an algorithm that solves the Gaussian kernel

SVM up to ϵ-error in time O(n1+o(1) log(1/ϵ));

• If d = Ω(log n), B = Ω(log2 n), then assuming SETH, any algorithm that solves the
Gaussian kernel SVM without a bias term up to exp(−ω(log2 n)) error would require
Ω(n2−o(1)) time;

• If d = Ω(log n), B = Ω(log6 n), then assuming SETH, any algorithm that solves the Gaus-
sian kernel SVM with a bias term up to exp(−ω(log2 n)) error would require Ω(n2−o(1))
time.

To our knowledge, this is the first almost-linear time algorithm for Gaussian kernel SVM even when
d = log n and the radius is small. Our algorithm effectively utilizes the rank-no(1) factorization of
the Gaussian kernel matrix alongside our low-rank QP solver.

1.1 RELATED WORK

Support Vector Machines. SVM, one of the most prominent machine learning models before
the rise of deep learning, has a rich literature dedicated to its algorithmic speedup. For linear
SVM, Joachims (2006) offers a first-order algorithm that solves its QP in nearly-linear time, but
with a runtime dependence of ϵ−2, limiting its use in high precision settings. This runtime is later
significantly improved by Shalev-Shwartz et al. (2011) to Õ(ϵ−1d) via a stochastic subgradient
descent algorithm. For SVM classification, existing algorithms such as SVM-Light (Joachims, 1999),
SMO (Platt, 1998), LIBSVM (Chang & Lin, 2011), and SVM-Torch (Collobert & Bengio, 2001)
perform well in high-dimensional data settings. However, their runtime scales super-linearly with
n, making them less viable for large datasets. Previous investigations into solving linear SVM via
interior point methods (Ferris & Munson, 2002) have been somewhat basic, leading to an overall
runtime of O(n1.5dω−1 log(1/ϵ)). For a more comprehensive survey on efficient algorithms for
SVM, refer to Cervantes et al. (2020). On the hardness side, Backurs et al. (2017) provides an
efficient reduction from the Bichromatic Closest Pair problem to Gaussian kernel SVM, establishing
an almost-quadratic lower bound assuming SETH.

3SETH is a standard complexity theoretical assumption (Impagliazzo et al., 1998; Impagliazzo & Paturi,
2001). Informally, it states that for a Conjunctive Normal Form (CNF) formula with m clauses and n variables,
there is no algorithm for checking its feasibility in time less than O(cn · poly(m)) for c < 2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Interior Point Method. The interior point method, a well-established approach for solving convex
programs under constraints, was first proposed by Karmarkar (1984) as a (weakly) polynomial-time
algorithm for linear programs, later improved by Vaidya (1989) in terms of runtime. Recent work
by Cohen et al. (2019) has shown how to solve linear programs with interior point methods in the
current matrix multiplication time, utilizing a robust IPM framework. Subsequent studies (Lee et al.,
2019; Brand, 2020; Jiang et al., 2021; Song & Yu, 2021; Huang et al., 2022; Jiang et al., 2022; Qin
et al., 2023) have further refined their algorithm or applied it to different optimization problems.

Kernel Matrix Algebra. Kernel methods, fundamental in machine learning, enable feature map-
pings to potentially infinite dimensions for n data points in d dimensions. The kernel matrix, a
crucial component of kernel methods, often has a prohibitive quadratic size for explicit formation.
Recent active research focuses on computing and approximating kernel matrices and related tasks in
sub-quadratic time, such as kernel matrix-vector multiplication, spectral sparsification, and Laplacian
system solving. The study by Alman et al. (2020) introduces a comprehensive toolkit for solving
these problems in almost-linear time for small dimensions, leveraging techniques like polynomial
methods and ultra Johnson-Lindenstrauss transforms. Alternatively, Backurs et al. (2021); Bakshi
et al. (2023) reduce various kernel matrix algebra tasks to kernel density estimation (KDE), which
recent advancements in KDE data structures (Charikar & Siminelakis, 2017; Backurs et al., 2018;
Charikar et al., 2020) have made more efficient. A recent contribution by Aggarwal & Alman (2022)
provides a tighter characterization of the low-degree polynomial approximation for the e−x function,
leading to more efficient algorithms for the Batch Gaussian KDE problem.

2 TECHNIQUE OVERVIEW

In this section, we provide an overview of the techniques employed in our development of two
nearly-linear time algorithms for structured QPs. In Section 2.1, we detail the robust IPM framework,
which forms the foundation of our algorithms. Subsequent section, namely Section 2.2 and 2.3,
delves into dedicated data structures designed for efficiently solving low-treewidth and low-rank QPs,
respectively. Finally, in Section 2.4, we discuss the adaptation of these advanced QP solvers for both
linear and kernel SVMs.

Due to the heavily-technical nature, we recommend that in the first read, the audience can skip
Section 2.2 and 2.3.

2.1 GENERAL STRATEGY

Our algorithm is built upon the robust IPM framework, an efficient variant of the primal-dual central
path method (Renegar, 1988). This framework maintains a primal-dual solution pair (x, s) ∈ Rn×Rn.
To understand the central path for QPs, we first consider the central path equations for linear
programming (see Cohen et al. (2019); Lee et al. (2019) for reference):

s/t+∇ϕ(x) = µ,

Ax = b,

A⊤y + s = c,

where x is the primal variable, s is the slack variable, y is the dual variable, ϕ(x) is a self-concordant
barrier function, and µ denotes the error. The central path is defined by the trajectory of (x, s) as t
approaches 0.

In quadratic programming, we modify these equations:

s/t+∇ϕ(x) = µ,

Ax = b,

−Qx+A⊤y + s = c,

where Q is the positive semidefinite objective matrix. The key difference in the central path equations
for LP and QP is the inclusion of the−Qx term in the third equation, significantly affecting algorithm
design.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Fundamentally, IPM is a Newton’s method in which we update the variables x, y and s through the
second-order information from the self-concordant barrier function. We derive the update rules for
QP (detailed derivation in Section F.2):

δx = tM−1/2(I − P)M−1/2δµ,

δy = −t(AM−1A⊤)−1AM−1δµ,

δs = tδµ − t2HM−1/2(I − P)M−1/2δµ,

where H = ∇2ϕ(x), M = Q+ tH,

P = M−1/2A⊤(AM−1A⊤)−1AM−1/2,

where δx, δy , δs, and δµ are the incremental steps for x, y, s, and µ, respectively.

The robust IPM approximates these updates rather than computing them exactly. It maintains
an approximate primal-dual solution pair (x, s) ∈ Rn × Rn and computes the steps using this
approximation. Provided the approximation is sufficiently accurate, it can be shown (see Section F
for more details) that the algorithm converges efficiently to the optimal solution along the robust
central path.

Therefore, the critical challenge lies in efficiently maintaining (x, s), an approximation to (x, s),
when (x, s) evolves following the robust central path steps. The primary difficulty is that explicitly
managing the primal-dual solution pair (x, s) is inefficient due to potential dense changes. Such
changes can lead to dense updates in H , slowing down the computation of steps. The innovative
aspect of robust IPM is recognizing that (x, s) are only required at the algorithm’s conclusion,
not during its execution. Instead, we can identify entries with significant changes and update the
approximation (x, s) correspondingly. With IPM’s lazy updates, only a nearly-linear number of
entries are adjusted throughout the algorithm:

T∑
t=1

∥x(t) − x(t−1)∥0 + ∥s(t) − s(t−1)∥0 = Õ(n log(1/ϵ))

where T = Õ(
√
n log(1/ϵ)) is the number of iterations for IPM convergence. This indicates that, on

average, each entry of x and s is updated log(1/ϵ) times, facilitating rapid updates to these quantities
and, consequently, to H .

In the special case where Q = 0, the path reverts to the LP case, with M = tH being a diagonal ma-
trix, allowing for efficient computation and updates of M−1. This simplifies maintaining AM−1A⊤,
as updates to M−1 correspond to row and column scaling of A. However, in the QP scenario, where
M is symmetric positive semidefinite, maintaining the term AM−1A⊤ becomes more complex.
Nevertheless, when the number of constraints is small, as in SVMs, this issue is less problematic.
Yet, even with this simplification, the challenge is far from trivial, given the presence of terms like
M−1/2 in the robust central path steps. While the matrix Woodbury identity could be considered, it
falls short when maintaining a square root term. Despite these hurdles, we construct efficient data
structures for M−1/2 maintenance when Q possesses succinct representations, such as low-rank.

Before diving into the particular techniques for low-rank QPs, we start by exploring the low-treewidth
QPs, which could be viewed as a structured sparsity condition. It provides valuable insights for the
low-rank scenario.

2.2 LOW-TREEWIDTH SETTING: HOW TO LEVERAGE SPARSITY

Treewidth is parameter for graphs that captures the sparsity pattern. Given a graph G = (V,E) with
n vertices and m edges, a tree decomposition of G arranges its vertices into bags, which collectively
form a tree structure. For any two bags Xi, Xj , if a vertex v is present in both, it must also be
included in all bags along the path between Xi and Xj . Additionally, each pair of adjacent vertices
in the graph must be present together in at least one bag. The treewidth τ is defined as the maximum
size of a bag minus one. Intuitively, a graph G with a small treewidth τ implies a structure akin to
a tree. For a formal definition, see Definition A.1. When relating this combinatorial structure to
linear algebra, we could treat the quadratic objective matrix Q as a generalized adjacency matrix,
where we put a vertex vi on i-th row of Q, and put an edge {vi, vj} whenever the entry Qi,j is

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

nonzero. The low-treewidth structure of the graph corresponds to a sparsity pattern that allows one to
compute a column-sparse Cholesky factorization of Q. Since M = Q+ tH and H is diagonal, we
can decompose M = LL⊤ into sparse Cholesky factors4.

Under any coordinate update to x, M is updated on only one diagonal entry, enabling efficient updates
to L. The remaining task is to use this Cholesky decomposition to maintain the central path step.

By expanding the central path equations and substituting M = LL⊤, we derive
δx = tM−1/2(I − P)M−1/2δµ

= tM−1δµ − tM−1A⊤(AM−1A⊤)−1AM−1δµ

= tL−⊤L−1δµ − tL−⊤L−1A⊤(AL−⊤L−1A⊤)−1AL−⊤L−1δµ,

δs = tδµ − t2HM−1/2(I − P)M−1/2δµ

= tδµ − t2L−⊤L−1δµ + t2L−⊤L−1A⊤(AL−⊤L−1A⊤)−1AL−⊤L−1δµ.

Updates to the diagonal of M do not change L’s nonzero pattern, allowing for efficient utiliza-
tion of the sparse factor and maintenance of L−1A⊤ ∈ Rn×m and L−1δµ ∈ Rn. Terms like
(AL−⊤L−1A⊤)−1AL−⊤L−1δµ ∈ Rm can also be explicitly maintained.

With this approach, we propose the following implicit representation for maintaining (x, s):

x = x̂+H−1/2W⊤(hβx − h̃β̃x + ϵx), (4)

s = ŝ+H1/2csβcs −H1/2W⊤(hβs − h̃β̃s + ϵs), (5)

where x̂, ŝ ∈ Rn,W = L−1H1/2 ∈ Rn×n, h = L−1δµ ∈ Rn, cs = H−1/2δµ ∈ Rn, βx, βs, βcs ∈
R, h̃ = L−1A⊤ ∈ Rn×m, β̃x, β̃s ∈ Rm, ϵx, ϵs ∈ Rn. All quantities except forW can be explicitly
maintained. For linear programming, the implicit representation is as follows:

x = x̂+H−1/2βxcx −H−1/2W⊤(βxh+ ϵx)

s = ŝ+H1/2W⊤(βsh+ ϵs),

withW = L−1AH−1/2 maintained implicitly and the other terms explicitly.

The representation in (4) and (5) enables us to maintain the central path step using a combination of
“coefficients” h+h̃β̃x and “basis”W⊤. We need to detect entries of x that deviate significantly from x

and capture these changes with ∥H1/2(x− x)∥2. We maintain this vector using x0 +W⊤(h+ h̃β̃x).
Here, W⊤ acts as a wavelet basis and the vector h + h̃β̃x as its multiscale coefficients. While
computing and maintainingW⊤h seems challenging, leveraging column-sparsity of L−1 is possible
through contraction with a vector v:

v⊤W⊤ = (Wv)⊤

= (L−1H1/2v)⊤.

By applying the Johnson-Lindenstrauss transform (JL) in place of v, we can quickly approximate
∥W⊤h∥2 by maintaining ΦW⊤ for a JL matrix Φ. Similarly, we handle W⊤h̃β̃x by explicitly
computing A⊤β̃x and using the sparsity of L−1 for h̃β̃x.

We focus on entries significantly deviating from x0, the heavy entries ofW⊤(h+ h̃β̃x). Here, the
treewidth-τ decomposition enables quick computation of an elimination tree based on L−1’s sparsity,
facilitating efficient estimation of ∥(W⊤(h+ h̃β̃x))χ(v)∥2 for any subtree χ(v)5. With an elimination
tree of height Õ(τ), we can employ heavy-light decomposition (Sleator & Tarjan, 1981) for an
O(log n)-height tree.

Using these data structures, convergence is established using the robust IPM framework (Ye, 2020;
Lee & Vempala, 2021). While the framework is generally applicable to QPs, computing an initial
point remains a challenge. We propose a simpler objective x0 = argminx∈Rn

∑n
i=1 ϕi(xi) with ϕi

as the log-barrier function, resembling the initial point reduction in Lee et al. (2019). This initial
point enables us to solve an augmented quadratic program that increases dimension by 1.

4Note that adding a non-negative diagonal matrix to Q does not change its sparsity pattern, hence M also
retains the treewidth τ .

5Given any tree node v, we use χ(v) to denote the subtree rooted at v.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

2.3 LOW-RANK SETTING: HOW TO UTILIZE SMALL FACTORIZATION

The low-treewidth structure can be considered a form of sparsity, allowing for a sparse factorization
M = LL⊤. Another significant structure arises when the matrix Q admits a low-rank factorization.
Let Q = UV ⊤ where U, V ∈ Rn×k and k ≪ n, then M = Q + tH = UV ⊤ + tH . Although Q
has a low-rank structure, M may not be low-rank due to the diagonal matrix being dense. However,
in the central path equations, we need only handle M−1, which can be efficiently maintained using
the matrix Woodbury identity:

M−1 = t−1H−1 − t−2H−1U(I + t−1V ⊤H−1U)−1V ⊤H−1,

Given that H is diagonal, the complex term (I + t−1V ⊤H−1U)−1 can be quickly updated under
sparse changes to H−1 by simply scaling rows of U and V . With only a nearly-linear number of
updates to H−1, the total update time across Õ(

√
n log(1/ϵ)) iterations is bounded by Õ(nkω−1 +

kω). We modify the (x, s) implicit representation as follows:

x = x̂+H−1/2hβx +H−1/2ĥβ̂x +H−1/2h̃β̃x, (6)

s = ŝ+H1/2hβs +H1/2ĥβ̂s +H1/2h̃β̃s, (7)

where x, s ∈ Rn, h = H−1/2δµ ∈ Rn, ĥ = H−1/2U ∈ Rn×k, and h̃ = H−1/2A⊤ ∈ Rn×m, with
β̃x, β̃s ∈ Rm and βx, βs ∈ R. The nontrivial terms to maintain are ĥ and h̃, but both can be managed
straightforwardly: updates to H−1/2 correspond to scaling rows of U and A⊤, and can be performed
in total Õ(nk) and Õ(nm) time, respectively. The key observation is that we never explicitly form
M−1/2, hence matrix Woodbury identity suffices for fast updates.

The remaining task is to design a data structure for detecting heavy entries. Instead of starting with an
elimination tree and re-balancing it through heavy-light decomposition, we construct a balanced tree
on n nodes, hierarchically dividing length-n vectors by their indices. Sampling is then performed by
traversing down to the tree’s leaves. While a heavy-hitter data structure could lead to improvements
in poly-logarithmic and sub-logarithmic factors, we primarily focus on polynomial dependencies on
various parameters and leave this enhancement for future exploration.

2.4 GAUSSIAN KERNEL SVM: ALGORITHM AND HARDNESS

Our specialized QP solvers provide fast implementations for linear SVMs when the data dimension
d is much smaller than n. However, for kernel SVM, forming the kernel matrix exactly would
take Θ(n2) time. Fortunately, advancements in kernel matrix algebra (Alman et al., 2020; Backurs
et al., 2021; Aggarwal & Alman, 2022; Bakshi et al., 2023) have enabled sub-quadratic algorithms
when the data dimension d is small or the kernel matrix has a relatively large minimum entry.
Both Alman et al. (2020) and Bakshi et al. (2023) introduce algorithms for spectral sparsification,
generating an approximate matrix K̃ ∈ Rn×n such that (1 − ϵ) ·K ⪯ K̃ ⪯ (1 + ϵ) ·K, with K̃
having only O(ϵ−2n log n) nonzero entries. Alman et al. (2020) achieves this in O(n1+o(1)) time
for multiplicatively Lipschitz kernels when d = O(log n), while Bakshi et al. (2023) overcomes
limitations for Gaussian kernels by basing their algorithm on KDE and the magnitude of the minimum
entry of the kernel matrix, parameterized by τ . Their algorithm for Gaussian kernels runs in time
Õ(nd/τ3.173+o(1)). Unfortunately, spectral sparsifiers do not aid our primitives since a sparsifier
only reduces the number of nonzero entries, but not the rank of the kernel matrix.

Besides spectral sparsification, Alman et al. (2020); Aggarwal & Alman (2022) also demonstrate that
with d = d = O(log n) and suitable kernels, there exists an O(n1+o(1)) time algorithm to multiply
the kernel matrix with an arbitrary vector v ∈ Rn. This operation is crucial in Batch KDE as shown
in Aggarwal & Alman (2022). Moreover, Aggarwal & Alman (2022) establishes an almost-quadratic
lower bound for this operation when the squared dataset radius B = ω(log n), assuming SETH.
These results rely on computing a rank-no(1) factorization for the Gaussian kernel matrix. The
function e−x can be approximated by a low-degree polynomial of degree

q := Θ(max{
√
B log(1/ϵ),

log(1/ϵ)

log(log(1/ϵ)/B)
})

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

for x ∈ [0, B]. Using this polynomial, one can create matrices U, V with rank
(
2d+2q

2q

)
= no(1) in

time O(n1+o(1)). Given this factorization, multiplying it with a vector v as U(V ⊤v) takes O(n1+o(1))

time. Let K̃ = UV ⊤ where K̃i,j = f(∥xi − xj∥22), we have for any (i, j) ∈ [n]× [n],

|f(∥xi − xj∥22)− exp(−∥xi − xj∥22)| ≤ ϵ,

and for any row i ∈ [n],

|(K̃v)i − (Kv)i| = |
n∑

j=1

vj(f(∥xi − xj∥22)− exp(−∥xi − xj∥22))|

≤ (max
j∈[n]

|f(∥xi − xj∥22)− exp(−∥xi − xj∥22)|)∥v∥1

≤ ϵ∥v∥1,

using Hölder’s inequality. This provides an ℓ∞-guarantee of the error vector (K̃ −K)v, useful for
Batch Gaussian KDE. Transforming this ℓ∞-guarantee into a spectral approximator yields

(1− ϵn) ·K ⪯ K̃ ⪯ (1 + ϵn) ·K.

Setting ϵ = 1/n2, the low-rank factorization offers an adequate spectral approximation to the exact
kernel matrix K.

Given K̃ = UV ⊤ for U, V ∈ Rn×no(1)

, we can solve program (3) with K̃ using our low-rank QP
algorithm in time O(n1+o(1) log(1/ϵ)).6 This is the first almost-linear time algorithm for Gaussian
kernel SVM, even in low-precision settings, as prior works either lack machinery to approximately
form the kernel matrix efficiently, or do not possess faster convex optimization solvers for solving a
structured quadratic program associated with a kernel SVM.

The requirements d = O(log n) and B = o(logn
log logn) may seem restrictive, but they are necessary, as

no sub-quadratic time algorithm exists for Gaussian kernel SVM without bias when d = Ω(log n) and
B = Ω(log2 n), and with bias when B = Ω(log6 n), assuming SETH. This is based on a reduction
from Bichromatic Closet Pair to Gaussian kernel SVM, as established by Backurs et al. (2017). Our
assumptions on d and B are therefore justified for seeking almost-linear time algorithms.

We note that in other variants of definitions for Gaussian kernels, one requires an additional parameter
called the kernel width, and the kernel function is defined as exp(−∥xi−xj∥2

2

2σ2). In commonly used
heuristics (Ramdas et al., 2015), σ = O(

√
d), hence we could without loss of generality assuming

σ = 1 by requiring the squared radius to be B/d.

3 CONCLUSION

On the algorithmic front, we introduce the first nearly-linear time algorithms for low-rank convex
quadratic programming, leading to nearly-linear time algorithms for linear SVMs. For Gaussian kernel
SVMs, we utilize a low-rank approximation from Aggarwal & Alman (2022) when d = O(log n) and
the squared dataset radius is small, enabling an almost-linear time algorithm. On the hardness aspect,
we establish that when d = Ω(log n), if the squared dataset radius is sufficiently large (Ω(log2 n)
without bias and Ω(log6 n) with bias), then assuming SETH, no sub-quadratic algorithm exists. As
our work is theoretical in nature, we do not foresee any potential negative societal impact. Several
open problems arise from our work:

Better dependence on k for low-rank QPs. Our low-rank QP solver exhibits a dependence of
k(ω+1)/2 on the rank k. Given the precomputed factorization, can we improve the exponents on k?
Ideally, an algorithm with nearly-linear dependence on k would align more closely with input size.

6Additional requirement: B = o(logn
log logn

). See Section G for further discussion.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Better dependence on m for general QPs. Focusing on SVMs with a few equality constraints,
our QP solvers do not exhibit strong dependence on the number of equality constraints m. Without
structural assumptions on the constraint matrix A, this is expected. However, many QPs, particularly
in graph contexts, involve large m. Is there a pathway to an algorithm with better dependence on m?
More broadly, can we achieve a result akin to that of Lee & Sidford (2019), where the number of
iterations depends on the square root of the rank of A, with minimal per iteration cost?

Stronger lower bound in terms of B for Gaussian kernel SVMs. We establish hardness results
for Gaussian kernel SVM when B = Ω(log2 n) without bias and B = Ω(log6 n) with bias. This
contrasts with our algorithm, which requires B to have sub-logarithmic dependence on n. For
Batch Gaussian KDE, Aggarwal & Alman (2022) demonstrated that fast algorithms are feasible for
B = o(log n), with no sub-quadratic time algorithms for B = ω(log n) assuming SETH. Can a
stronger lower bound be shown for SVM programs with a bias term, reflecting a more natural setting?

REFERENCES

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials
and gaussian kernel density estimation. In Proceedings of the 37th Computational Complexity
Conference, CCC ’22, Dagstuhl, DEU, 2022. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for linear algebra
on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), 2020.

Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. On the fine-grained complexity of empirical risk
minimization: Kernel methods and neural networks. Advances in Neural Information Processing
Systems, 30, 2017.

Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation
for smooth kernels. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), 2018.

Arturs Backurs, Piotr Indyk, Cameron Musco, and Tal Wagner. Faster kernel matrix algebra via
density estimation. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, Proceedings of Machine Learning Research. PMLR, 2021.

Ainesh Bakshi, Piotr Indyk, Praneeth Kacham, Sandeep Silwal, and Samson Zhou. Sub-quadratic
algorithms for kernel matrices via kernel density estimation. In International Conference on
Learning Representation, ICLR’23, 2023.

Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic decre-
mental sssp and approximate min-cost flow in almost-linear time. In 2021 IEEE 62nd Annual
Symposium on Foundations of Computer Science (FOCS), pp. 1000–1008. IEEE, 2022.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, COLT ’92, 1992.

Jan van den Brand. A deterministic linear program solver in current matrix multiplication time. In
Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’20, 2020.

Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear programs
in nearly linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 775–788, 2020.

Jair Cervantes, Farid Garcia Lamont, Lisbeth Rodriguez Mazahua, and Asdrubal Lopez. A com-
prehensive survey on support vector machine classification: Applications, challenges and trends.
Neurocomputing, 408:189–215, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Chih-Chung Chang and Chih-Jen Lin. Training ν-support vector classifiers: Theory and algorithms.
Neural Comput., sep 2001.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM Trans.
Intell. Syst. Technol., may 2011.

Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high dimen-
sions. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS),
2017.

Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density estimation
through density constrained near neighbor search. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS). IEEE Computer Society, 2020.

Moses Charikar, Michael Kapralov, and Erik Waingarten. A Quasi-Monte Carlo Data Structure for
Smooth Kernel Evaluations, pp. 5118–5144. 2024.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. STOC, 2019.

Ronan Collobert and Samy Bengio. Svmtorch: Support vector machines for large-scale regression
problems. Journal of machine learning research, 1(Feb):143–160, 2001.

Gerard Cornuejols and Reha Tütüncü. Optimization methods in finance, volume 5. Cambridge
University Press, 2006.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn., 1995.

George B Dantzig. Linear programming under uncertainty. Management science, 1(3-4):197–206,
1955.

Timothy A Davis and William W Hager. Modifying a sparse cholesky factorization. SIAM Journal
on Matrix Analysis and Applications, 20(3):606–627, 1999.

Frédéric Delbos and Jean Charles Gilbert. Global linear convergence of an augmented Lagrangian
algorithm for solving convex quadratic optimization problems. PhD thesis, INRIA, 2003.

James R Driscoll, Neil Sarnak, Daniel D Sleator, and Robert E Tarjan. Making data structures
persistent. Journal of computer and system sciences, 38(1):86–124, 1989.

Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric hashing. In
FOCS, 2023.

Michael C Ferris and Todd S Munson. Interior-point methods for massive support vector machines.
SIAM Journal on Optimization, 13(3):783–804, 2002.

Francois Le Gall. Faster rectangular matrix multiplication by combination loss analysis. In Pro-
ceedings of the Thirty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’24,
2024.

Nicholas IM Gould and Philippe L Toint. A quadratic programming bibliography. Numerical Analysis
Group Internal Report, 1:32, 2000.

Nicholas IM Gould, Mary E Hribar, and Jorge Nocedal. On the solution of equality constrained
quadratic programming problems arising in optimization. SIAM Journal on Scientific Computing,
23(4):1376–1395, 2001.

Yuzhou Gu and Zhao Song. A faster small treewidth sdp solver. arXiv preprint arXiv:2211.06033,
2022.

Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving sdp faster: A
robust ipm framework and efficient implementation. In FOCS, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity? In
Proceedings 39th Annual Symposium on Foundations of Computer Science, 1998.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62:
367–375, mar 2001.

Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A faster interior
point method for semidefinite programming. In 2020 IEEE 61st annual symposium on foundations
of computer science (FOCS), pp. 910–918. IEEE, 2020.

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. A faster algorithm for solving
general lps. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pp. 823–832, 2021.

Shunhua Jiang, Bento Natura, and Omri Weinstein. A faster interior-point method for sum-of-
squares optimization. In 49th EATCS International Conference on Automata, Languages, and
Programming, LIPIcs. Leibniz Int. Proc. Inform., 2022.

Thorsten Joachims. Making large-scale support vector machine learning practical. In Advances in
kernel methods: support vector learning, pp. 169. MIT press, 1999.

Thorsten Joachims. Training linear svms in linear time. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 217–226, 2006.

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1, 1984.

Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of
the sixteenth annual ACM symposium on Theory of computing, pp. 302–311, 1984.

Mikhail K Kozlov, Sergei Pavlovich Tarasov, and Leonid Genrikhovich Khachiyan. Polynomial
solvability of convex quadratic programming. In Doklady Akademii Nauk, pp. 1049–1051. Russian
Academy of Sciences, 1979.

Yin Tat Lee and Aaron Sidford. Solving linear programs with sqrt (rank) linear system solves. arXiv
preprint arXiv:1910.08033, 2019.

Yin Tat Lee and Santosh S. Vempala. Tutorial on the robust interior point method, 2021.

Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current matrix
multiplication time. In Conference on Learning Theory, pp. 2140–2157. PMLR, 2019.

K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf. An introduction to kernel-based
learning algorithms. IEEE Transactions on Neural Networks, 12, 2001.

Katta G Murty. Linear complementarity, linear and nonlinear programming, volume 3. Citeseer,
1988.

Yurii Nesterov. Introductory lectures on convex programming volume i: Basic course. Lecture notes,
3(4):5, 1998.

Panos M Pardalos and Stephen A Vavasis. Quadratic programming with one negative eigenvalue is
np-hard. Journal of Global optimization, 1(1):15–22, 1991.

John Platt. Sequential minimal optimization: A fast algorithm for training support vector machines.
MSR-TR-98-14, 1998.

Marco Propato and James G Uber. Booster system design using mixed-integer quadratic programming.
Journal of Water Resources Planning and Management, 130(4):348–352, 2004.

Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo. An online and unified algorithm
for projection matrix vector multiplication with application to empirical risk minimization. In
AISTATS, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Aaditya Ramdas, Sashank J. Reddi, Barnabás Póczos, Aarti Singh, and Larry Wasserman. On the
decreasing power of kernel and distance based nonparametric hypothesis tests in high dimensions.
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, pp.
3571–3577. AAAI Press, 2015. ISBN 0262511290.

James Renegar. A polynomial-time algorithm, based on newton’s method, for linear programming.
Math. Program., 40(1–3):59–93, jan 1988.

Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pp. 1260–1268, New
York, NY, USA, 2018. Association for Computing Machinery.

Sartaj Sahni. Computationally related problems. SIAM Journal on computing, 3(4):262–279, 1974.

Robert Schreiber. A new implementation of sparse gaussian elimination. ACM Transactions on
Mathematical Software (TOMS), 8(3):256–276, 1982.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: primal estimated
sub-gradient solver for svm. Math. Program., 127, 2011.

Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees. In Proceedings of the
thirteenth annual ACM symposium on Theory of computing, pp. 114–122, 1981.

Zhao Song and Zheng Yu. Oblivious sketching-based central path method for linear programming.
In International Conference on Machine Learning, pp. 9835–9847. PMLR, 2021.

Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication. In 30th Annual
Symposium on Foundations of Computer Science, pp. 332–337. IEEE, 1989.

Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for matrix
multiplication: from alpha to omega. In Proceedings of the Thirty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA’24, 2024.

Philip Wolfe. The simplex method for quadratic programming. Econometrica: Journal of the
Econometric Society, pp. 382–398, 1959.

Stephen J Wright. Continuous optimization (nonlinear and linear programming). Foundations of
Computer-Aided Process Design, 1999.

Guanghao Ye. Fast algorithm for solving structured convex programs. The University of Washington,
Master Thesis, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Roadmap. In Section A, we present some basic definitions and tools that will be used in the
reminder of the paper. In Section B, we introduce a few more SVM formulations, including classi-
fication and distribution estimation. In Section C, we show convex quadratic programming can be
reduced to convex empirical risk minimization, and therefore can be solved in the current matrix
multiplication time owing to Lee et al. (2019). In Section D and E, we prove results on low-treewidth
and low-rank QPs, respectively. In Section F, we present a robust IPM framework for QPs, generalize
beyond LPs and convex ERMs with linear objective. In Section G, we present our algorithms for
Gaussian kernel SVMs, with complementary lower bound.

A PRELIMINARY

A.1 NOTATIONS

For a positive integer n, we use [n] to denote the set {1, 2, · · · , n}. For a matrix A, we use A⊤ to
denote its transpose. For a matrix A, we define ∥A∥p→q := supx ∥Ax∥q/∥x∥p. When p = q = 2,
we recover the spectral norm.

We define the entrywise ℓp-norm of a matrix A as ∥A∥p := (
∑

i,j |Ai,j |p)1/p.

For any function f : N→ N and n ∈ N, we use Õ(f(n)) to denote O(f(n) poly log f(n)). We use
1{E} to denote the indicator for event E, i.e., if E happens, 1{E} = 1 and otherwise it’s 0.

A.2 TREEWIDTH

Treewidth captures the sparsity and tree-like structures of a graph.

Definition A.1 (Tree Decomposition and Treewidth). Let G = (V,E) be a graph, a tree decomposi-
tion of G is a tree T with b vertices, and b sets J1, . . . , Jb ⊆ V (called bags), satisfying the following
properties:

• For every edge (u, v) ∈ E, there exists j ∈ [b] such that u, v ∈ Jj;

• For every vertex v ∈ V , {j ∈ [b] : v ∈ Jj} is a non-empty subtree of T .

The treewidth of G is defined as the minimum value of max{|Jj | : j ∈ [b]} − 1 over all tree
decompositions.

A near-optimal tree decomposition of a graph can be computed in almost linear time.

Theorem A.2 (Bernstein et al. (2022)). Given a graph G, there is an O(m1+o(1)) time algorithm
that produces a tree decomposition of G of maximum bag size O(τ log3 n), where τ is the actual
(unknown) treewidth of G.

Therefore, when τ = mΘ(1), we can compute an Õ(τ)-size tree decomposition in time O(mτo(1)),
which is negligible in the final running time of Theorem D.1.

A.3 SPARSE CHOLESKY DECOMPOSITION

In this section we state a few results on sparse Cholesky decomposition. Fast sparse Cholesky
decomposition algorithms are based on the concept of elimination tree, introduced in Schreiber
(1982).

Definition A.3 (Elimination tree). Let G be an undirected graph on n vertices. An elimination tree T
is a rooted tree on V (G) together with an ordering π of V (G) such that for any vertex v, its parent is
the smallest (under π) element u such that there exists a path P from v to u, such that π(w) ≤ π(v)
for all w ∈ P − u.

The following lemma relates the elimination tree and the structure of Cholesky factors.

Lemma A.4 (Schreiber (1982)). Let M be a PSD matrix and T be an elimination tree of the
adjacency graph of M (i.e., (i, j) ∈ E(G) iff Mi,j ̸= 0) together with an elimination ordering π.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Let P be the permutation matrix Pi,v = 1{v = π(i)}. Then the Cholesky factor L of PMP⊤ (i.e.,
PMP⊤ = LL⊤) satisfies Li,j ̸= 0 only if π(i) is an ancestor of π(j).

The following result is the current best result for computing a sparse Cholesky decomposition.
Lemma A.5 ((Gu & Song, 2022, Lemma 8.4)). Let M ∈ Rn×n be a PSD matrix whose adjacency
graph has treewidth τ . Then we can compute the Cholesky factorization M = LL⊤ in Õ(nτω−1)
time.

The following result is the current best result for updating a sparse Cholesky decomposition.
Lemma A.6 (Davis & Hager (1999)). Let M ∈ Rn×n be a PSD matrix whose adjacency graph
has treewidth τ . Assume that we are given the Cholseky factorization M = LL⊤. Let w ∈ Rn be a
vector such that M +ww⊤ has the same adjacency graph as M . Then we can compute ∆L ∈ Rn×n

such that L+∆L is the Cholesky factor of M + ww⊤ in O(τ2) time.

Throughout our algorithm, we need to compute matrix-vector multiplications involving Cholesky
factors. We use the following results from Gu & Song (2022).
Lemma A.7 ((Gu & Song, 2022, Lemma 4.7)). Let M ∈ Rn×n be a PSD matrix whose adjacency
graph has treewidth τ . Assume that we are given the Cholseky factorization M = LL⊤. Then we
have the following running time for matrix-vector multiplications.

(i) For v ∈ Rn, computing Lv, L⊤v, L−1v, L−⊤v takes O(nτ) time.

(ii) For v ∈ Rn, computing Lv takes O(∥v∥0τ) time.

(iii) For v ∈ Rn, computing L−1v takes O(∥L−1v∥0τ) time.

(iv) For v ∈ Rn, if v is supported on a path in the elimination tree, then computing L−1v takes
O(τ2) time.

(v) For v ∈ Rn, computingW⊤v takes O(nτ) time, whereW = L−1H1/2 with H ∈ Rn×n is
a non-negative diagonal matrix.

Lemma A.8 ((Gu & Song, 2022, Lemma 4.8)). Let M ∈ Rn×n be a PSD matrix whose adjacency
graph has treewidth τ . Assume that we are given the Cholseky factorization M = LL⊤. Then we
have the following running time for matrix-vector multiplications, when we only need result for a
subset of coordinates.

(i) Let S be a path in the elimination tree whose one endpoint is the root. For v ∈ Rn,
computing (L−⊤v)S takes O(τ2) time.

(ii) For v ∈ Rn, for i ∈ [n], computing (W⊤v)i takes O(τ2) time, whereW = L−1H1/2 with
H ∈ Rn×n be a non-negative diagonal matrix.

A.4 JOHNSON-LINDENTRAUSS LEMMA

We recall the Johnson-Lindenstrauss lemma, a powerful algorithmic primitive that reduces dimension
while preserving ℓ2 norms.
Lemma A.9 (Johnson & Lindenstrauss (1984)). Let ϵ ∈ (0, 1) be the precision parameter. Let
δ ∈ (0, 1) be the failure probability. Let A ∈ Rm×n be a real matrix. Let r = ϵ−2 log(mn/δ). For
R ∈ Rr×n whose entries are i.i.d N (0, 1

r), the following holds with probability at least 1− δ:

(1− ϵ)∥ai∥2 ≤ ∥Rai∥2 ≤ (1 + ϵ)∥ai∥2, ∀i ∈ [m],

where for a matrix A, a⊤i denotes the i-th row of matrix A ∈ Rm×n.

A.5 HEAVY-LIGHT DECOMPOSITION

Heavy-light decomposition is useful when one wants to re-balance a binary tree with height O(log n).
Lemma A.10 (Sleator & Tarjan (1981)). Given a rooted tree T with n vertices, we can construct
in O(n) time an ordering π of the vertices such that (1) every path in T can be decomposed into
O(log n) contiguous subseqeuences under π, and (2) every subtree in T is a single contiguous
subsequence under π.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

B SVM FORMULATIONS

In this section, we review a list of formulations of SVM. These formulations have been implemented
in the LIBSVM library Chang & Lin (2011).

Throughout this section, we use ϕ : Rd → Rs to denote the feature mapping, K to denote the
associated kernel function and K ∈ Rn×n to denote the kernel matrix. For linear SVM, ϕ is just
the identity mapping. We will focus on the dual quadratic program formulation as usual. We will
also assume for each problem, a dataset X ∈ Rn×d is given together with binary labels y ∈ Rn. Let
Q := (yy⊤) ◦K.

B.1 C-SUPPORT VECTOR CLASSIFICATION

This formulation is also referred as the soft-margin SVM. It can be viewed as imposing a regularization
on the primal program to allow mis-classification.
Definition B.1 (C-Support Vector Classification). Given a parameter C > 0, the C-support vector
classification (C-SVC) is defined as

max
α∈Rn

1⊤
nα−

1

2
α⊤Qα

s.t. α⊤y = 0,

0 ≤ α ≤ C · 1n.

B.2 ν-SUPPORT VECTOR CLASSIFICATION

The C-SVC (Definition B.1) penalizes large values of α by limiting the magnitude of it. The ν-SVC
(Definition B.2) turns 1⊤

nα from an objective into a constraint on ℓ1 norm.
Definition B.2 (ν-Support Vector Classification). Given a parameter ν > 0, the ν-support vector
classification (ν-SVC) is defined as

min
α∈Rn

1

2
α⊤Qα

s.t. α⊤y = 0,

1⊤
nα = ν,

0 ≤ α ≤ 1

n
· 1n.

One can interpret this formulation as to find a vector that lives in the orthogonal complement of y
that is non-negative, each entry is at most 1

n and its ℓ1 norm is ν. Clearly, we must have ν ∈ (0, 1].
More specifically, let k+ be the number of positive labels and k− be the number of negative labels. It
is shown by Chang & Lin (2001) that the above problem is feasible if and only if

ν ≤ 2min{k−, k+}
n

.

B.3 DISTRIBUTION ESTIMATION

SVM is widely-used for predicting binary labels. It can also be used to estimate the support of a
high-dimensional distribution. The formulation is similar to ν-SVC, except the PSD matrix Q is
label-less.
Definition B.3 (Distribution Estimation). Given a parameter ν > 0, the ν-distribution estimation
problem is defined as

min
α∈Rn

1

2
α⊤Kα

s.t. 0 ≤ α ≤ 1

n
· 1n,

1⊤
nα = ν.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

B.4 ϵ-SUPPORT VECTOR REGRESSION

In addition to classification, support vector framework can also be adapted for regression.
Definition B.4 (ϵ-Support Vector Regression). Given parameters ϵ, C > 0, the ϵ-support vector
regression (ϵ-SVR) is defined as

min
α,α∗∈Rn

1

2
(α− α∗)⊤K(α− α∗) + ϵ1⊤

n (α+ α∗) + y⊤(α− α∗)

s.t. 1⊤
n (α− α∗) = 0,

0 ≤ α ≤ C · 1n,

0 ≤ α∗ ≤ C · 1n.

B.5 ν-SUPPORT VECTOR REGRESSION

One can similar adapt the parameter ν to control the ℓ1 norm of the regression.
Definition B.5 (ν-Support Vector Regression). Given parameters ν, C > 0, the ν-support vector
regression (ν-SVR) is defined as

min
α,α∗∈Rn

1

2
(α− α∗)⊤K(α− α∗) + y⊤(α− α∗)

s.t. 1⊤
n (α− α∗) = 0,

1⊤
n (α+ α∗) = Cν,

0 ≤ α ≤ C

n
· 1n,

0 ≤ α∗ ≤ C

n
· 1n.

B.6 ONE EQUALITY CONSTRAINT

We classify C-SVC (Definition B.1), ϵ-SVR (Definition B.4) and ν-distribution estimation (Defini-
tion B.3) into the following generic form:

min
α∈Rn

1

2
α⊤Qα+ p⊤α

s.t. α⊤y = ∆

0 ≤ α ≤ C · 1n.

Note that C-SVC (Definition B.1) and distribution estimation (Definition B.3) are readily in this form.
For ϵ-SVR (Definition B.4), we need to perform a simple transformation:

Set α̂ =

[
α
α∗

]
∈ R2n, then it can be written as

min
α̂∈R2n

1

2
α̂⊤

[
Q −Q
−Q Q

]
α̂+

[
ϵ1n + y
ϵ1n − y

]⊤
α̂

s.t.
[
1n

−1n

]⊤
α̂ = 0

0 ≤ α̂ ≤ C · 12n.

B.7 TWO EQUALITY CONSTRAINTS

Both ν-SVC (Definition B.2) and ν-SVR (Definition B.5) require one extra constraint. They can be
formulated as follows:

min
α∈Rn

1

2
α⊤Qα+ p⊤α

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

s.t. 1⊤
nα = ∆1,

y⊤α = ∆2,

0 ≤ α ≤ C · 1n.

For ν-SVR (Definition B.5), one can leverage a similar transformation as ϵ-SVR (Definition B.4).
Remark B.6. All variants of SVM-related quadratic programs can all be solved using our QP solvers
for three cases:

• Linear SVM with n≫ d, we can solve it in Õ(nd(ω+1)/2 log(1/ϵ)) time;

• Linear SVM with a small treewidth decomposition with width τ on XX⊤, we can solve it in
Õ(nτ (ω+1)/2 log(1/ϵ)) time;

• Gaussian kernel SVM with d = Θ(log n) and B = o(logn
log logn), we can solve it in

O(n1+o(1) log(1/ϵ)) time.

Even though our solvers have relatively bad dependence on the number of equality constraints, for
all these SVM formulations, at most 2 equality constraints are presented and thus can be solved very
fast.

C ALGORITHMS FOR GENERAL QP

In this section, we discuss algorithms for general (convex) quadratic programming. We show that
they can be solved in the current matrix multiplication time via reduction to linear programming with
convex constraints Lee et al. (2019).

C.1 LCQP IN THE CURRENT MATRIX MULTIPLICATION TIME

Proposition C.1. There is an algorithm that solves LCQP (Definition 1.1) up to ϵ error in Õ((nω +
n2.5−α/2 + n2+1/6) log(1/ϵ)) time, where ω ≤ 2.373 is the matrix multiplication constant and
α ≥ 0.32 is the dual matrix multiplication constant.

Proof. Let Q = PDP⊤ be an eigen-decomposition of Q where D is diagonal and P is orthogonal.
Let x̃ := P−1x. Then it suffices to solve

min
1

2
x̃⊤Dx̃+ c⊤Px̃

s.t. AP x̃ = b

P x̃ ≥ 0.

By adding n non-negative variables and n constraints x = Px̃ we can make all constraints equality
constraints. There are n non-negative variables and n unconstrained variables. If we want to ensure
all variables are non-negative, we need to split every coordinate of x̃ into two. In this way the
coefficient matrix Q will be block diagonal with block size 2.

We perform the above reduction, and assume that we have a program of form (1) where Q is diagonal.
Let qi := Qi,i be the i-th element on the diagonal. Then the QP is equivalent to the following
program

min c⊤x+ q⊤t

s.t. Ax = b

ti ≥
1

2
x2
i ∀i ∈ [n]

x ≥ 0

Note that the set {(xi, ti) ∈ R2 : ti ≥ 1
2x

2
i } is a convex set. So we can apply Lee et al. (2019) here

with n variables, each in the convex set {(a, b) ∈ R2 : a ≥ 0, b ≥ 1
2a

2}.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

C.2 ALGORITHM FOR QCQP

Our algorithm for LCQP in the previous section can be generalized to quadratically constrained
quadratic programs (QCQP). QCQP is defined as follows.
Definition C.2 (QCQP). Let Q0, . . . , Qm ∈ Rn×n be PSD matrices. Let q0, . . . , qm ∈ Rn. Let
r ∈ Rm. Let A ∈ Rd×n, b ∈ Rd. The quadratically constrained quadratic programming (QCQP)
problem asks the solve the following program.

min
x∈Rn

1

2
x⊤Q0x+ q⊤0 x

s.t.
1

2
x⊤Qix+ q⊤i x+ ri ≤ 0 ∀i ∈ [m]

Ax = b

x ≥ 0

Proposition C.3. There is an algorithm that solves QCQP (Definition C.2) up to ϵ error in
Õ(((mn)ω + (mn)2.5−α/2 + (mn)2+1/6) log(1/ϵ)) time, where ω ≤ 2.373 is the matrix multi-
plication constant and α ≥ 0.32 is the dual matrix multiplication constant.

Proof. We first rewrite the program as following.

min − r0

s.t.
1

2
x⊤Qix+ q⊤i x+ ri ≤ 0 ∀0 ≤ i ≤ m

Ax = b

x ≥ 0

Write Qi = PiDiP
⊤
i be an eigen-decomposition of Qi where Di is diagonal and Pi is orthogonal.

Let x̃i ∈ Rn be defined as x̃i := P−1
i x. Then we can rewrite the program as

min − r0

s.t.
1

2
x̃⊤
i Dix̃i + q⊤i Pix̃i + ri ≤ 0 ∀0 ≤ i ≤ m

Ax = b

x̃i = P−1
i x

x ≥ 0

For 0 ≤ i ≤ m and j ∈ [n], define variable ti,j ∈ R. Then we can rewrite the program as

min − r0

s.t.
∑
j∈[n]

Di,(j,j)ti,j + q⊤i Pix̃i + ri ≤ 0 ∀0 ≤ i ≤ m

Ax = b

x̃i = P−1
i x

ti,j ≥ x̃2
i,j

x ≥ 0

We can consider (x̃i,j , ti,j)0≤i≤m,j∈[n] as (m+ 1)n variables in the convex set {(a, b) : b ≥ 1
2a

2}.
Then we can apply Lee et al. (2019).

D ALGORITHM FOR LOW-TREEWIDTH QP

In this section we present a nearly-linear time algorithm for solving low-treewidth QP with small
number of linear constraints. We briefly describe the outline of this section.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

• In Section D.1, we present the main statement of Section D.
• In Section D.2, we present the main data structure CENTRALPATHMAINTENANCE.
• In Section D.3, we present several data structures used in CENTRALPATHMAINTENANCE,

including EXACTDS (Section D.3.1), APPROXDS (Section D.3.2), BATCHSKETCH (Sec-
tion D.3.3), VECTORSKETCH (Section D.3.4), BALANCEDSKETCH (Section D.3.5).

• In Section D.4, we prove correctness and running time of CENTRALPATHMAINTENANCE
data structure.

• In Section D.5, we prove the main result (Theorem D.1).

D.1 MAIN STATEMENT

We consider programs of the form (16), i.e.,

min
x∈Rn

1

2
x⊤Qx+ c⊤x

s.t. Ax = b

xi ∈ Ki ∀i ∈ [n]

where Q ∈ Sntot , c ∈ Rntot , A ∈ Rm×ntot , b ∈ Rm, Ki ⊂ Rni is a convex set. For simplicity, we
assume that ni = O(1) for all i ∈ [n].
Theorem D.1. Consider the convex program (16). Let ϕi : Ki → R be a νi-self-concordant barrier
for all i ∈ [n]. Suppose the program satisfies the following properties:

• Inner radius r: There exists z ∈ Rntot such that Az = b and B(z, r) ∈ K.

• Outer radius R: K ⊆ B(0, R) where 0 ∈ Rntot .

• Lipschitz constant L: ∥Q∥2→2 ≤ L, ∥c∥2 ≤ L.

• Treewidth τ : Treewidth (Definition A.1) of the adjacency graph of Q is at most τ .

Let (wi)i∈[n] ∈ Rn
≥1 and κ =

∑
i∈[n] wiνi. Given any 0 < ϵ ≤ 1

2 , we can find an approximate
solution x ∈ K satisfiying

1

2
x⊤Qx+ c⊤x ≤ min

Ax=b,x∈K

(
1

2
x⊤Qx+ c⊤x

)
+ ϵLR(R+ 1),

∥Ax− b∥1 ≤ 3ϵ(R∥A∥1 + ∥b∥1),

in expected time

Õ((
√
κn−1/2 + log(R/(rϵ))) · n(τ2m+ τm2)1/2(τω−1 + τm+mω−1)1/2).

When maxi∈[n] νi = Õ(1), wi = 1, m = Õ(τω−2), the running time simplifies to

Õ(nτ (ω+1)/2m1/2 log(R/(rϵ))).

D.2 ALGORITHM STRUCTURE AND CENTRAL PATH MAINTENANCE

Our algorithm is based on the robust Interior Point Method (robust IPM). Details of the robust
IPM will be given in Section F. During the algorithm, we maintain a primal-dual solution pair
(x, s) ∈ Rntot × Rntot on the robust central path. In addition, we maintain a sparsely-changing
approximation (x, s) ∈ Rntot × Rntot to (x, s). In each iteration, we implicitly perform update

x← x+ tB
−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ

s← s+ tδµ − t
2
Hw,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ

where

Hw,x = ∇2ϕw(x) (see Eq. (24))

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Bw,x,t = Q+ tHw,x (see Eq. (25))

Pw,x,t = B
−1/2

w,x,t
A⊤(AB−1

w,x,t
A⊤)−1AB

−1/2

w,x,t
(see Eq. (26))

and explicitly maintain (x, s) such that they remain close to (x, s) in ℓ∞-distance.

This task is handled by the CENTRALPATHMAINTENANCE data structure, which is our main data
structure. The robust IPM algorithm (Algorithm 19, 20) directly calls it in every iteration.

The CENTRALPATHMAINTENANCE data structure (Algorithm 1) has two main sub data structures,
EXACTDS (Algorithm 2, 3) and APPROXDS (Algorithm 4, 5). EXACTDS is used to maintain (x, s),
and APPROXDS is used to maintain (x, s).

Algorithm 1 Our main data structure for low-treewidth QP solver.

1: data structure CENTRALPATHMAINTENANCE ▷ Theorem D.2
2: private : member
3: EXACTDS exact ▷ Algorithm 2, 3
4: APPROXDS approx ▷ Algorithm 4
5: ℓ ∈ N
6: end members
7: procedure INITIALIZE(x, s ∈ Rntot , t ∈ R+, ϵ ∈ (0, 1))
8: exact.INITIALIZE(x, s, x, s, t) ▷ Algorithm 2
9: ℓ← 0

10: w ← νmax, N ←
√
κ log n log nκR

ϵr

11: q ← n1/2(τ2m+ τm2)−1/2(τω−1 + τm+mω−1)1/2

12: ϵapx,x ← ϵ, ζx ← 2α, δapx ← 1
N

13: ϵapx,s ← ϵ · t, ζs ← 3αt
14:

approx.INITIALIZE(x, s, h, h̃, ϵx, ϵs, H
1/2
w,xx̂, H

−1/2
w,x ŝ, cs, βx, βs, βcs ,

β̃x, β̃s, q,&exact, ϵapx,x, ϵapx,s, δapx)

15: ▷ Algorithm 4.Parameters from x to β̃s come from exact. &exact is pointer to exact
16: end procedure
17: procedure MULTIPLYANDMOVE(t ∈ R+)
18: ℓ← ℓ+ 1
19: if |t− t| > t · ϵt or ℓ > q then
20: x, s← exact.OUTPUT() ▷ Algorithm 2
21: INITIALIZE(x, s, t, ϵ)
22: end if
23: βx, βs, βcs , β̃x, β̃s ← exact.MOVE() ▷ Algorithm 2
24: δx, δs ← approx.MOVEANDQUERY(βx, βs, βcs , β̃x, β̃s) ▷ Algorithm 4
25: δh, δh̃, δϵx , δϵs , δH1/2

w,xx̂
, δ

H
−1/2
w,x ŝ

, δcs ← exact.UPDATE(δx, δs) ▷ Algorithm 3

26: approx.UPDATE(δx, δh, δh̃, δϵx , δϵs , δH1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

, δcs) ▷ Algorithm 4
27: end procedure
28: procedure OUTPUT()
29: return exact.OUTPUT() ▷ Algorithm 2
30: end procedure
31: end data structure

Theorem D.2. Data structure CENTRALPATHMAINTENANCE (Algorithm 1) implicitly maintains
the central path primal-dual solution pair (x, s) ∈ Rntot × Rntot and explicitly maintains its
approximation (x, s) ∈ Rntot × Rntot using the following functions:

• INITIALIZE(x ∈ Rntot , s ∈ Rntot , t0 ∈ R>0, ϵ ∈ (0, 1)): Initializes the data structure
with initial primal-dual solution pair (x, s) ∈ Rntot × Rntot , initial central path timestamp
t0 ∈ R>0 in Õ(n(τω−1 + τm+mω−1)) time.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

• MULTIPLYANDMOVE(t ∈ R>0): It implicitly maintains

x← x+ tB
−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ(x, s, t)

s← s+ tδµ − t
2
Hw,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ(x, s, t)

where Hw,x, Bw,x,t, Pw,x,t are defined in Eq. (24)(25)(26) respectively, and t is some
timestamp satisfying |t− t| ≤ ϵt · t.
It also explicitly maintains (x, s) ∈ Rntot×ntot such that ∥xi−xi∥xi

≤ ϵ and ∥si−si∥∗xi
≤

tϵwi for all i ∈ [n] with probability at least 0.9.

Assuming the function is called at most N times and t decreases from tmax to tmin, the total
running time is

Õ((Nn−1/2 + log(tmax/tmin)) · n(τ2m+ τm2)1/2(τω−1 + τm+mω−1)1/2).

• OUTPUT: Computes (x, s) ∈ Rntot × Rntot exactly and outputs them in Õ(nτm) time.

D.3 DATA STRUCTURES USED IN CENTRALPATHMAINTENANCE

In this section we present several data structures used in CENTRALPATHMAINTENANCE, including:

• EXACTDS (Section D.3.1): This data structure maintains an implicit representation of the
primal-dual solution pair (x, s). This is directly used by CENTRALPATHMAINTENANCE.

• APPROXDS (Section D.3.2): This data structure explicitly maintains an approximation
(x, s) of (x, s). This data structure is directly used by CENTRALPATHMAINTENANCE.

• BATCHSKETCH (Section D.3.3): This data structure maintains a sketch of (x, s). This data
structure is used by APPROXDS.

• VECTORSKETCH (Section D.3.4): This data structure maintains a sketch of sparsely-
changing vectors. This data structure is used by BATCHSKETCH.

• BALANCEDSKETCH (Section D.3.5): This data structure maintains a sketch of vectors of
formW⊤v, where v is sparsely-changing. This data structure is used by BATCHSKETCH.

Notation: In this section, for simplicity, we write Bx for Bw,x,t, and Lx for the Cholesky factor of
Bx, i.e., Bx = LxL

⊤
x .

D.3.1 EXACTDS

In this section we present the data structure EXACTDS. It maintains an implicit representation of the
primal-dual solution pair (x, s) by maintaining several sparsely-changing vectors (see Eq. (8)(9)).
This data structure has a similar spirit as EXACTDS in Gu & Song (2022), but we have a different
representation from the previous works because we are working with quadratic programming rather
than linear programming.
Theorem D.3. Data structure EXACTDS (Algorithm 2, 3) implicitly maintains the primal-dual pair
(x, s) ∈ Rntot × Rntot , computable via the expression

x = x̂+H
−1/2
w,x W

⊤(hβx − h̃β̃x + ϵx), (8)

s = ŝ+H
1/2
w,xcsβcs −H

1/2
w,xW

⊤(hβs − h̃β̃s + ϵs), (9)

where x̂, ŝ ∈ Rntot , W = L−1
x H

1/2
w,x ∈ Rntot×ntot , h = L−1

x δµ ∈ Rntot , cs = H
−1/2
w,x δµ ∈ Rntot

βx, βs, βcs ∈ R, h̃ = L−1
x A⊤ ∈ Rntot×m, β̃x, β̃s ∈ Rm, ϵx, ϵs ∈ Rntot .

The data structure supports the following functions:

• INITIALIZE(x, s, x, s ∈ Rntot , t ∈ R>0): Initializes the data structure in Õ(nτω−1+nτm+
nmω−1) time, with initial value of the primal-dual pair (x, s), its initial approximation
(x, s), and initial approximate timestamp t.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

• MOVE(): Performs robust central path step

x← x+ tB−1
x δµ − tB−1

x A⊤(AB−1
x A⊤)−1AB−1

x δµ, (10)

s← s+ tδµ − t
2
B−1

x δµ + t
2
B−1

x A⊤(AB−1
x A⊤)−1AB−1

x δµ (11)

in O(mω) time by updating its implicit representation.

• UPDATE(δx, δs ∈ Rntot): Updates the approximation pair (x, s) to (xnew = x + δx ∈
Rntot , snew = s+ δs ∈ Rntot) in Õ((τ2m+ τm2)(∥δx∥0 + ∥δs∥0)) time, and output the
changes in variables δ

H
1/2
w,xx̂

, δh, δβx
, δh̃, δβ̃x

, δϵx , δ
H

−1/2
w,x ŝ

, δβs
, δβ̃s

, δϵs .

Furthermore, h, ϵx, ϵs change in O(τ(∥δx∥0 + ∥δs∥0)) coordinates, h̃ changes in
Õ(τm(∥δx∥0 + ∥δs∥0)) coordinates, and H

1/2
x x̂, H

−1/2
x ŝ, cs change in O(∥δx∥0 + ∥δs∥0)

coordinates.

• OUTPUT(): Output x and s in Õ(nτm) time.

• QUERYx(i ∈ [n]): Output xi in Õ(τ2m) time. This function is used by APPROXDS.

• QUERYs(i ∈ [n]): Output si in Õ(τ2m) time. This function is used by APPROXDS.

Proof of Theorem D.3. By combining Lemma D.4 and D.5.

Lemma D.4. EXACTDS correctly maintains an implicit representation of (x, s), i.e., invariant

x = x̂+H
−1/2
w,x W

⊤(hβx − h̃β̃x + ϵx),

s = ŝ+H
1/2
w,xcsβcs −H

1/2
w,xW

⊤(hβs − h̃β̃s + ϵs),

h = L−1
x δµ, cs = H

−1/2
w,x δµ, h̃ = L−1

x A⊤,

ũ = h̃⊤h̃, u = h̃⊤h,

α =
∑
i∈[n]

w−1
i cosh2(

λ

wi
γi(x, s, t)),

δµ = α1/2δµ(x, s, t)

always holds after every external call, and return values of the queries are correct.

Proof. INITIALIZE: By checking the definitions we see that all invariants are satisfied after INITIAL-
IZE.

MOVE: By comparing the implicit representation (8)(9) and the robust central path step (10)(11), we
see that MOVE updates (x, s) correctly.

UPDATE: We would like to prove that UPDATE correctly updates the values of h, cs, h̃, ũ, u, α, δµ,
while preserving the values of (x, s).

First note that Hw,x, Bx, Lx are updated correctly. The remaining updates are separated into two
steps: UPDATEh and UPDATEh.

Step UPDATEh: The first few lines of UPDATEh updates α and δµ correctly.

We define Hnew
w,x := Hw,x +∆Hw,x

, Bnew
x := Bx +∆Bx

, Lnew
x := Lx +∆Lx

, δ
new

µ := δµ + δδµ ,
and so on. Immediately after Algorithm 3, Line 26, we have

h+ δh = L−1
x δµ + L−1

x δδµ − (Lx +∆Lx
)−1∆Lx

(L−1
x δµ + L−1

x δδµ)

= (L−1
x − (Lx +∆Lx)

−1∆LxL
−1
x)δ

new

µ

= Lnew
x δ

new

µ ,

cs + δcs = H
−1/2
w,x δµ +∆

H
−1/2
w,x

(δµ + δδµ +H
−1/2
w,x δδµ

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Algorithm 2 The EXACTDS data structure used in Algorithm 1.

1: data structure EXACTDS ▷ Theorem D.3
2: members
3: x, s ∈ Rntot , t ∈ R+, Hw,x, Bx, Lx ∈ Rntot×ntot

4: x̂, ŝ, h, ϵx, ϵs, cs ∈ Rntot , h̃ ∈ Rntot×m, βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm

5: ũ ∈ Rm×m, u ∈ Rm, α ∈ R, δµ ∈ Rn

6: k ∈ N
7: end members
8: procedure INITIALIZE(x, s, x, s ∈ Rntot , t ∈ R+)
9: x← x, x← s, t← t

10: x̂← x, ŝ← s, ϵx ← 0, ϵs ← 0, βx ← 0, βs ← 0, β̃x ← 0, β̃s ← 0, βcs ← 0
11: Hw,x ← ∇2ϕw(x), Bx ← Q+ tHw,x

12: Compute lower Cholesky factor Lx where LxL
⊤
x = Bx

13: INITIALIZEh(x, s,Hw,x, Lx)
14: end procedure
15: procedure INITIALIZEh(x, s ∈ Rntot , Hw,x, Lx ∈ Rntot×ntot)
16: for i ∈ [n] do

17: (δµ)i ← −
α sinh(λ

wi
γi(x,s,t))

γi(x,s,t)
· µi(x, s, t)

18: α← α+ w−1
i cosh2(λ

wi
γi(x, s, t))

19: end for
20: h← L−1

x δµ, h̃← L−1
x A⊤, cs ← H

−1/2
w,x δµ

21: ũ← h̃⊤h̃, u← h̃⊤h
22: end procedure
23: procedure MOVE()
24: βx ← βx + t · (α)−1/2

25: β̃x ← β̃x + t · (α)−1/2 · ũ−1u
26: βcs ← βs + t · (α)−1/2

27: βs ← βs + t
2 · (α)−1/2

28: β̃s ← β̃s + t
2 · (α)−1/2 · ũ−1u

29: return βx, βs, βcs , β̃x, β̃s

30: end procedure
31: procedure OUTPUT()
32: return x̂+H

−1/2
w,x W⊤(hβx − h̃β̃x + ϵx), ŝ+H

1/2
w,xcsβcs −H

1/2
w,xW⊤(hβs − h̃β̃s + ϵs)

33: end procedure
34: procedure QUERYx(i ∈ [n])
35: return x̂i +H

−1/2
w,x,(i,i)(W

⊤(hβx − h̃β̃x + ϵx))i
36: end procedure
37: procedure QUERYs(i ∈ [n])
38: return ŝi +H

1/2
w,x,(i,i)cs,iβcs +H

1/2
w,x,(i,i)(W

⊤(hβs − h̃β̃s + ϵs))i
39: end procedure
40: end data structure

= (Hnew
w,x)

−1/2δ
new

µ ,

h̃+ δh̃ = L−1
x A⊤ − (Lx +∆Lx)

−1∆LxA
⊤

= (L−1
x − (Lx +∆Lx

)−1∆Lx
L−1
x)A⊤

= Lnew
x A⊤.

So h, cs, h̃ are updated correctly. Also

ũ+ δũ = h̃⊤h̃+ δ⊤
h̃
(h̃+ δh̃) + h̃⊤δh̃ = (h̃+ δh̃)

⊤(h̃+ δh̃),

u+ δu = h̃⊤h+ δ⊤
h̃
(h+ δh) + h̃⊤δh = (h̃+ δh̃)

⊤(h+ δh).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Algorithm 3 Algorithm 2 continued.

1: data structure EXACTDS ▷ Theorem D.3
2: procedure UPDATE(δx, δs ∈ Rntot)
3: ∆Hw,x ← ∇2ϕw(x+ δx)−Hw,x ▷ ∆Hw,x is non-zero only for diagonal blocks (i, i) for

which δx,i ̸= 0
4: Compute ∆Lx

where (Lx +∆Lx
)(Lx +∆Lx

)⊤ = Bx + t∆Hw,x

5: UPDATEh(δx, δs,∆Hw,x
,∆Lx

)
6: UPDATEW(∆Hw,x

,∆Lx
)

7: x← x+ δx, s← s+ δs
8: Hw,x ← Hw,x +∆Hw,x

, Bx ← Bx + t∆Hw,x
, Lx ← Lx +∆Lx

9: return δh, δh̃, δϵx , δϵs , δH1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

, δcs
10: end procedure
11: procedure UPDATEh(δx, δs ∈ Rntot , ∆Hw,x , ∆Lx ∈ Rntot×ntot)
12: S ← {i ∈ [n] | δx,i ̸= 0 or δs,i ̸= 0}
13: δδµ ← 0

14: for i ∈ S do
15: Let γi = γi(x, s, t), γnew

i = γi(x+ δx, s+ δs, t), µnew
i = µi(x+ δx, s+ δs, t)

16: α← α− w−1
i cosh2(λ

wi
γi) + w−1

i cosh2(λ
wi

γnew
i)

17: δδµ,i ← −α sinh(λ
wi

γnew
i) · 1

γnew
i
· µnew

i − δµ,i
18: end for
19: δh ← L−1

x δδµ − (Lx +∆Lx
)−1∆Lx

(h+ L−1
x δδµ)

20: δcs ← ∆
H

−1/2
w,x

(δµ + δδµ) +H
−1/2
w,x δδµ

21: δh̃ ← −(Lx +∆Lx
)−1∆Lx

h̃
22: δŝ ← −δδµβcs

23: δϵx ← −δhβx + δh̃β̃x

24: δϵs ← −δhβs + δh̃β̃s

25: δũ ← δ⊤
h̃
(h̃+ δh̃) + h̃⊤δh̃

26: δu ← δ⊤
h̃
(h+ δh) + h̃⊤δh

27: δµ ← δµ + δδµ , h ← h + δh, h̃ ← h̃ + δh̃, ϵx ← ϵx + δϵx , ϵs ← ϵs + δϵs , ũ ← ũ + δũ,
u← u+ δu

28: end procedure
29: procedure UPDATEW(∆Hw,x ,∆Lx ∈ Rntot)
30: δϵx ← ∆⊤

Lx
L−⊤
x (hβx − h̃β̃x + ϵx)

31: δϵs ← ∆⊤
Lx

L−⊤
x (hβs − h̃β̃s + ϵs)

32: ϵx ← ϵx + δϵx , ϵs ← ϵs + δϵs
33: end procedure
34: end data structure

So ũ and u are maintained correctly. Furthermore, immediately after Algorithm 3, Line 26, we have

(x̂+ L−⊤
x (hnewβx − h̃newβ̃x + ϵnewx))− (x̂+ L−⊤

x (hβx − h̃β̃x + ϵx))

= L−⊤
x (δhβx − δh̃β̃s + δϵx)

= 0.

Therefore, after UPDATEh finishes, we have

x = x̂+ L−⊤
x (hβx − h̃β̃x + ϵx).

For s, we have

(ŝnew + (Hnew
w,x)

1/2cnews βcs − L−⊤
x (hnewβs − h̃newβ̃s + ϵnews))

− (ŝ+H
1/2
w,xcsβcs − L−⊤

x (hβs − h̃β̃s + ϵs))

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

= δŝ + δδβcs − L−⊤
x (δhβs − δh̃β̃s + δϵs)

= 0.

Therefore, after UPDATEh finishes, we have

s = ŝ+ (Hnew
w,x)

1/2csβcs − L−⊤
x (hβs − h̃β̃s + ϵs).

So x and s are both updated correctly. This proves the correctness of UPDATEh.

Step UPDATEW : Define ϵnewx := ϵx+δϵx , ϵnews := ϵs+δϵs . Immediately after Algorithm 3, Line 31,
we have

(x̂+ (Lnew
x)−⊤(hβx − h̃β̃x + ϵnewx))− (x̂+ L−⊤

x (hβx − h̃β̃x + ϵx))

= ((Lnew
x)−⊤ − L−⊤

x)(hβx − h̃β̃x + ϵx) + (Lnew
x)−⊤δϵx

= 0,

(ŝ+ (Hnew
w,x)

1/2csβcs − (Lnew
x)−⊤(hβs − h̃β̃s + ϵnews))

− (ŝ+ (Hnew
w,x)

1/2csβcs − L−⊤
x (hβs − h̃β̃s + ϵs))

= (−(Lnew
x)−⊤ + L−⊤

x)(hβs − h̃β̃s + ϵs)− (Lnew
x)−⊤δϵs

= 0.

Therefore, after UPDATEW finishes, we have

x = x̂+ (Lnew
x)−⊤(hβx − h̃β̃x + ϵx),

s = ŝ+ (Hnew
w,x)

1/2csβcs − (Lnew
x)−⊤(hβs − h̃β̃s + ϵs).

So x and s are both updated correctly. This proves the correctness of UPDATEW .

Lemma D.5. We bound the running time of EXACTDS as following.

(i) EXACTDS.INITIALIZE (Algorithm 2) runs in Õ(nτω−1 + nτm+ nmω−1) time.

(ii) EXACTDS.MOVE (Algorithm 2) runs in Õ(mω) time.

(iii) EXACTDS.OUTPUT (Algorithm 2) runs in Õ(nτm) time and correctly outputs (x, s).

(iv) EXACTDS.QUERYx and EXACTDS.QUERYs (Algorithm 2) runs in Õ(τ2m) time and
returns the correct answer.

(v) EXACTDS.UPDATE (Algorithm 2) runs in Õ((τ2m+ τm2)(∥δx∥0+∥δs∥0)) time. Further-
more, h, ϵx, ϵs change in O(τ(∥δx∥0 + ∥δs∥0)) coordinates, h̃ changes in Õ(τm(∥δx∥0 +
∥δs∥0)) coordinates, and H

1/2
x x̂, H

−1/2
x ŝ, cs change in O(∥δx∥0 + ∥δs∥0) coordinates.

Proof. (i) Computing Lx takes Õ(nτω−1) time by Lemma A.5. Computing h and h̃ takes
Õ(nτm) by Lemma A.7(i).7 Computing ũ and u takes Tmat(m,n,m) = Õ(nmω−1) time.
All other operations are cheap.

(ii) Computing ũ−1 takes Õ(mω) time. All other operations take O(m2) time.

(iii) Running time is by Lemma A.7(v). Correctness is by Lemma D.4.

(iv) Running time is by Lemma A.8(ii). Correctness is by Lemma D.4.

(v) Computing ∆Lx
takes Õ(τ2∥δx∥0) time by Lemma A.6. It is easy to see that nnz(∆Hw,x

) =

O(∥δx∥0) and nnz(∆Lx
) = Õ(τ2∥δx∥0). It remains to analyze UPDATEh and UPDATEW .

For simplicity, we write k = δx∥0 + ∥δs∥0 in this proof only.

7Here we compute h̃ by computing h̃∗,i = L−1
x (Ai,∗)

⊤ for i ∈ [m] independently. Using fast rectangular
matrix multiplication is possible to improve this running time and other similar places. We keep the current
bounds for simplicity.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

• UPDATEh: Updating α and computing δδµ takes O(k) time. Also, ∥δδµ∥0 = O(k).

Computing δh takes Õ(τ2k) time by Lemma A.7(i). Also, δh is supported on O(k)

paths in the elimination tree, so ∥δh∥0 = Õ(τk). Similarly we see that computing δh̃
take Õ(τ2mk) time and nnz(δh̃) = Õ(τmk).
Computing δcs and δŝ takes O(τ2k) time and ∥δcs∥0, ∥δŝ∥0 = O(k).
Computing δϵx and δϵs takes O(τmk) time after computing δh and δh̃. Furthermore,
∥δϵx∥0, ∥δϵs∥0 = O(τk).
Computing δũ takes Tmat(m, τk,m) = Õ(τm2k) time. Computing δu takes Õ(τmk)
time.

• UPDATEW: To compute δϵx and δϵs , we first compute L−⊤
x (hβx − h̃β̃x + ϵx) and

L−⊤
x (hβs − h̃β̃s + ϵs), where S ⊆ [ntot] is the row support of ∆Lx

, which can
be decomposed into at most O(∥δx∥0) paths. This takes Õ(τ2m∥δx∥0) time by
Lemma A.8(i) (the extra m factor is due to h̃).

Combining everything we finish the proof of running time of EXACTDS.UPDATE.

D.3.2 APPROXDS

In this section we present the data structure APPROXDS. Given BATCHSKETCH, a data structure
maintaining a sketch of the primal-dual pair (x, s) ∈ Rntot×Rntot , APPROXDS maintains a sparsely-
changing ℓ∞-approximation of (x, s). This data structure is a slight variation of APPROXDS in Gu &
Song (2022).

Algorithm 4 The APPROXDS data structure used in Algorithm 1.
1: data structure APPROXDS ▷ Theorem D.6
2: private : members
3: ϵapx,x, ϵapx,s ∈ R
4: ℓ ∈ N
5: BATCHSKETCH bs ▷ This maintains a sketch of H1/2

w,xx and H
−1/2
w,x s. See Algorithm 6, 7, 8.

6: EXACTDS* exact ▷ This is a pointer to the EXACTDS (Algorithm 2, 3) we maintain in parallel to
APPROXDS.

7: x̃, s̃ ∈ Rntot ▷ (x̃, s̃) is a sparsely-changing approximation of (x, s). They have the same value as
(x, s), but for these local variables we use (x̃, s̃) to avoid confusion.

8: end members
9: procedure INITIALIZE(x, s ∈ Rntot , h ∈ Rntot , h̃ ∈ Rntot×m, ϵx, ϵs, H

1/2
w,xx̂, H

−1/2
w,x ŝ, cs ∈

Rntot , βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm, q ∈ N, EXACTDS* exact, ϵapx,x, ϵapx,s, δapx ∈ R)
10: ℓ← 0, q ← q
11: ϵapx,x ← ϵapx,x, ϵapx,s ← ϵapx,s

12: bs.INITIALIZE(x, h, h̃, ϵx, ϵs, H
1/2
w,xx̂, H

−1/2
w,x ŝ, cs, βx, βs, βcs , β̃x, β̃s, δapx/q) ▷ Algorithm 6

13: x̃← x, s̃← s
14: exact← exact
15: end procedure
16: procedure UPDATE(δx ∈ Rntot , δh ∈ Rntot , δh̃ ∈ Rntot×m, δϵx , δϵs , δH1/2

w,xx̂
, δ

H
−1/2
w,x ŝ

, δcs ∈ Rntot)

17: bs.UPDATE(δx, δh, δh̃, δϵx , δϵs , δH1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

, δcs) ▷ Algorithm 7

18: ℓ← ℓ+ 1
19: end procedure
20: procedure MOVEANDQUERY(βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm)
21: bs.MOVE(βx, βs, βcs , β̃x, β̃s) ▷ Algorithm 7. Do not update ℓ yet
22: δx̃ ← QUERYx(ϵapx,x/(2 log q + 1)) ▷ Algorithm 5
23: δs̃ ← QUERYs(ϵapx,s/(2 log q + 1)) ▷ Algorithm 5
24: x̃← x̃+ δx̃, s̃← s̃+ δs̃
25: return (δx̃, δs̃)
26: end procedure
27: end data structure

Theorem D.6. Given parameters ϵapx,x, ϵapx,s ∈ (0, 1), δapx ∈ (0, 1), ζx, ζs ∈ R such that

∥H1/2

w,x(ℓ)x
(ℓ) −H

1/2

w,x(ℓ)x
(ℓ+1)∥2 ≤ ζx, ∥H−1/2

w,x(ℓ)s
(ℓ) −H

−1/2

w,x(ℓ)s
(ℓ+1)∥2 ≤ ζs

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Algorithm 5 APPROXDS Algorithm 4 continued.

1: data structure APPROXDS ▷ Theorem D.6
2: private:
3: procedure QUERYx(ϵ ∈ R)
4: I ← 0
5: for j = 0→ ⌊log2 ℓ⌋ do
6: if ℓ mod 2j = 0 then
7: I ← I ∪ bs.QUERYx(ℓ− 2j + 1, ϵ) ▷ Algorithm 8
8: end if
9: end for

10: δx̃ ← 0
11: for all i ∈ I do
12: xi ← exact.QUERYx(i) ▷ Algorithm 2
13: if ∥x̃i − xi∥x̃i

> ϵ then
14: δx̃,i ← xi − x̃i

15: end if
16: end for
17: return δx̃
18: end procedure
19: procedure QUERYs(ϵ ∈ R)
20: Same as QUERYx, except for replacing x, x̃, · · · with s, s̃, · · · , and replacing “∥x̃i − xi∥x̃i

”
in Line 13 with “∥s̃i − si∥∗x̃i

”.
21: end procedure
22: end data structure

for all ℓ ∈ {0, . . . , q − 1}, data structure APPROXDS (Algorithm 4 and Algorithm 5) supports the
following operations:

• INITIALIZE(x, s ∈ Rntot , h ∈ Rntot , h̃ ∈ Rntot×m, ϵx, ϵs, H
1/2
w,xx̂, H

−1/2
w,x ŝ, cs ∈

Rntot , βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm, q ∈ N, EXACTDS* exact, ϵapx,x, ϵapx,s, δapx ∈ R):
Initialize the data structure in Õ(nτω−1 + nτm) time.

• MOVEANDQUERY(βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm): Update values of βx, βs, βcs , β̃x, β̃s

by calling BATCHSKETCH.MOVE. This effectively moves (x(ℓ), s(ℓ)) to (x(ℓ+1), s(ℓ+1))

while keeping x(ℓ) unchanged.

Then return two sets L(ℓ)
x , L

(ℓ)
s ⊂ [n] where

L(ℓ)
x ⊇ {i ∈ [n] : ∥H1/2

w,x(ℓ)x
(ℓ)
i −H

1/2

w,x(ℓ)x
(ℓ+1)
i ∥2 ≥ ϵapx,x},

L(ℓ)
s ⊇ {i ∈ [n] : ∥H−1/2

w,x(ℓ)s
(ℓ)
i −H

−1/2

w,x(ℓ)s
(ℓ+1)
i ∥2 ≥ ϵapx,s},

satisfying ∑
0≤ℓ≤q−1

|L(ℓ)
x | = Õ(ϵ−2

apx,xζ
2
xq

2),

∑
0≤ℓ≤q−1

|L(ℓ)
s | = Õ(ϵ−2

apx,sζ
2
s q

2).

For every query, with probability at least 1− δapx/q, the return values are correct.

Furthermore, total time cost over all queries is at most

Õ
(
(ϵ−2

apx,xζ
2
x + ϵ−2

apx,sζ
2
s)q

2τ2m
)
.

• UPDATE(δx ∈ Rntot , δh ∈ Rntot , δh̃ ∈ Rntot×m, δϵx , δϵs , δH1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

, δcs ∈ Rntot):

Update sketches of H1/2

w,x(ℓ)x
(ℓ+1) and H

−1/2

w,x(ℓ)s
(ℓ+1) by calling BATCHSKETCH.UPDATE.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

This effectively moves x(ℓ) to x(ℓ+1) while keeping (x(ℓ+1), s(ℓ+1)) unchanged. Then ad-
vance timestamp ℓ.

Each update costs

Õ(τ2(∥δx∥0 + ∥δh∥0 + ∥δh̃∥0 + ∥δϵx∥0 + ∥δϵs∥0) + ∥δH1/2
w,xx̂
∥0 + ∥δH−1/2

w,x ŝ
∥0 + ∥δcs∥0)

time.

Proof. The proof is essentially the same as proof of (Gu & Song, 2022, Theorem 4.18). For the
running time claims, we plug in Theorem D.8 when necessary.

D.3.3 BATCHSKETCH

In this section we present the data structure BATCHSKETCH. It maintains a sketch of H1/2
x x and

H
−1/2
x s. It is a variation of BATCHSKETCH in Gu & Song (2022).

We recall the following definition from Gu & Song (2022).
Definition D.7 (Partition tree). A partition tree (S, χ) of Rn is a constant degree rooted tree
S = (V,E) and a labeling of the vertices χ : V → 2[n], such that

• χ(root) = [n];

• if v is a leaf of S, then |χ(v)| = 1;

• for any non-leaf node v ∈ V , the set {χ(c) : c is a child of v} is a partition of χ(v).

Algorithm 6 The BATCHSKETCH data structure used by Algorithm 4 and 5.

1: data structure BATCHSKETCH ▷ Theorem D.8
2: members
3: Φ ∈ Rr×ntot ▷ All sketches need to share the same sketching matrix
4: S, χ partition tree
5: ℓ ∈ N ▷ Current timestamp
6: BALANCEDSKETCH sketchW⊤h, sketchW⊤h̃, sketchW⊤ϵx, sketchW⊤ϵs ▷ Algorithm 10
7: VECTORSKETCH sketchH

1/2
w,xx̂, sketchH−1/2

w,x ŝ, sketchcs ▷ Algorithm 9

8: βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm

9: (history[t])t≥0 ▷ Snapshot of data at timestamp t. See Remark D.9.
10: end members
11: procedure INITIALIZE(x ∈ Rntot , h ∈ Rntot , h̃ ∈ Rntot×m, ϵx, ϵs, H

1/2
w,xx̂, H

−1/2
w,x ŝ, cs ∈

Rntot , βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm, δapx ∈ R)
12: Construct partition tree (S, χ) as in Definition D.11
13: r ← Θ(log3(ntot) log(1/δapx))
14: Initialize Φ ∈ Rr×ntot with iid N (0, 1

r)

15: βx ← βx, βs ← βs, βcs ← βcs , β̃x ← β̃x, β̃s ← β̃s

16: sketchW⊤h.INITIALIZE(S, χ,Φ, x, h) ▷ Algorithm 10
17: sketchW⊤h̃.INITIALIZE(S, χ,Φ, x, h̃) ▷ Algorithm 10
18: sketchW⊤ϵx.INITIALIZE(S, χ,Φ, x, ϵx) ▷ Algorithm 10
19: sketchW⊤ϵs.INITIALIZE(S, χ,Φ, x, ϵs) ▷ Algorithm 10
20: sketchH

1/2
w,xx̂.INITIALIZE(S, χ,Φ, H1/2

w,xx̂) ▷ Algorithm 9

21: sketchH
−1/2
w,x ŝ.INITIALIZE(S, χ,Φ, H−1/2

w,x ŝ) ▷ Algorithm 9
22: sketchcs.INITIALIZE(S, χ,Φ, cs) ▷ Algorithm 9
23: ℓ← 0. Make snapshot history[ℓ] ▷ Remark D.9
24: end procedure
25: end data structure

Theorem D.8. Data structure BATCHSKETCH (Algorithm 6, 8) supports the following operations:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Algorithm 7 BATCHSKETCH Algorithm 6 continued.

1: data structure BATCHSKETCH ▷ Theorem D.8
2: procedure MOVE(βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm)
3: βx ← βx, βs ← βs, βcs ← βcs , β̃x ← β̃x, β̃s ← β̃s ▷ Do not update ℓ yet
4: end procedure
5: procedure UPDATE(δx ∈ Rntot , δh ∈ Rntot , δh̃ ∈ Rntot×m, δϵx , δϵs , δH1/2

w,xx̂
, δ

H
−1/2
w,x ŝ

, δcs ∈
Rntot)

6: sketchW⊤h.UPDATE(δx, δh) ▷ Algorithm 11
7: sketchW⊤h̃.UPDATE(δx, δh̃) ▷ Algorithm 11
8: sketchW⊤ϵx.UPDATE(δx, δϵx) ▷ Algorithm 11
9: sketchW⊤ϵs.UPDATE(δx, δϵs) ▷ Algorithm 11

10: sketchH
1/2
w,xx̂.UPDATE(δ

H
1/2
w,xx̂

) ▷ Algorithm 9

11: sketchH
−1/2
w,x ŝ.UPDATE(δ

H
−1/2
w,x ŝ

) ▷ Algorithm 9

12: sketchcs.UPDATE(δcs) ▷ Algorithm 9
13: ℓ← ℓ+ 1
14: Make snapshot history[ℓ] ▷ Remark D.9
15: end procedure
16: end data structure

• INITIALIZE(x ∈ Rntot , h ∈ Rntot , h̃ ∈ Rntot×m, ϵx, ϵs, H
1/2
w,xx̂, H

−1/2
w,x ŝ, cs ∈

Rntot , βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm, δapx ∈ R): Initialize the data structure in
Õ(nτω−1 + nτm) time.

• MOVE(βx, βs, βcs ∈ R, β̃x, β̃s ∈ Rm): Update values of βx, βs, βcs , β̃x, β̃s in O(m) time.
This effectively moves (x(ℓ), s(ℓ)) to (x(ℓ+1), s(ℓ+1)) while keeping x(ℓ) unchanged.

• UPDATE(δx ∈ Rntot , δh ∈ Rntot , δh̃ ∈ Rntot×m, δϵx , δϵs , δH1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

, δcs ∈ Rntot):

Update sketches of H1/2

w,x(ℓ)x
(ℓ+1) and H

−1/2

w,x(ℓ)s
(ℓ+1). This effectively moves x(ℓ) to x(ℓ+1)

while keeping (x(ℓ+1), s(ℓ+1)) unchanged. Then advance timestamp ℓ.

Each update costs

Õ(τ2(∥δx∥0 + ∥δh∥0 + ∥δh̃∥0 + ∥δϵx∥0 + ∥δϵs∥0) + ∥δH1/2
w,xx̂
∥0 + ∥δH−1/2

w,x ŝ
∥0 + ∥δcs∥0)

time.

• QUERYx(ℓ′ ∈ N, ϵ ∈ R): Given timestamp ℓ′, return a set S ⊆ [n] where

S ⊇ {i ∈ [n] : ∥H1/2

w,x(ℓ′)x
(ℓ′)
i −H

1/2

w,x(ℓ)x
(ℓ+1)
i ∥2 ≥ ϵ},

and

|S| = O(ϵ−2(ℓ− ℓ′ + 1)
∑

ℓ′≤t≤ℓ

∥H1/2

w,x(t)x
(t) −H

1/2

w,x(t)x
(t+1)∥22 +

∑
ℓ′≤t≤ℓ−1

∥x(t) − x(t+1)∥2,0)

where ℓ is the current timestamp.

For every query, with probability at least 1− δ, the return values are correct, and costs at
most

Õ(τ2 · (ϵ−2(ℓ− ℓ′ + 1)
∑

ℓ′≤t≤ℓ

∥H1/2

x(t)x
(t) −H

1/2

x(t)x
(t+1)∥22 +

∑
ℓ′≤t≤ℓ−1

∥x(t) − x(t+1)∥2,0))

running time.

• QUERYs(ℓ′ ∈ N, ϵ ∈ R): Given timestamp ℓ′, return a set S ⊆ [n] where

S ⊇ {i ∈ [n] : ∥H−1/2

w,x(ℓ′)s
(ℓ′)
i −H

−1/2

w,x(ℓ)s
(ℓ+1)
i ∥2 ≥ ϵ}

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Algorithm 8 BATCHSKETCH Algorithm 6, 7 continued.

1: data structure BATCHSKETCH ▷ Theorem D.8
2: private:
3: procedure QUERYxSKETCH(v ∈ S) ▷ Return the value of Φχ(v)(H

1/2
w,xx)χ(v)

4: return sketchH
1/2
w,xx̂.QUERY(v) + sketchW⊤h.QUERY(v) · βx− sketchW⊤h̃.QUERY(v) ·

β̃x + sketchW⊤ϵx.QUERY(v) ▷ Algorithm 9, 10
5: end procedure
6: procedure QUERYsSKETCH(v ∈ S) ▷ Return the value of Φχ(v)(H

−1/2
w,x s)χ(v)

7: return sketchH
−1/2
w,x ŝ.QUERY(v) + sketchcs.QUERY(v) · βcs − sketchW⊤h.QUERY(v) ·

βs + sketchW⊤h̃.QUERY(v) · β̃s − sketchW⊤ϵs.QUERY(v) ▷ Algorithm 9, 10
8: end procedure
9: public:

10: procedure QUERYx(ℓ′ ∈ N, ϵ ∈ R)
11: L0 = {root(S)}
12: S ← ∅
13: for d = 0→∞ do
14: if Ld = ∅ then
15: return S
16: end if
17: Ld+1 ← ∅
18: for v ∈ Ld do
19: if v is a leaf node then
20: S ← S ∪ {v}
21: else
22: for u child of v do
23: if ∥QUERYxSKETCH(u)− history[ℓ′].QUERYxSKETCH(u)∥2 > 0.9ϵ then
24: Ld+1 ← Ld+1 ∪ {u}
25: end if
26: end for
27: end if
28: end for
29: end for
30: end procedure
31: procedure QUERYs(ℓ′ ∈ N, ϵ ∈ R)
32: Same as QUERYx, except for replacing QUERYxSKETCH in Line 23 with QUERYsSKETCH.
33: end procedure
34: end structure

and

|S| = O(ϵ−2(ℓ− ℓ′ + 1)
∑

ℓ′≤t≤ℓ

∥H−1/2

w,x(t)s
(t) −H

−1/2

w,x(t)s
(t+1)∥22 +

∑
ℓ′≤t≤ℓ−1

∥x(t) − x(t+1)∥2,0)

where ℓ is the current timestamp.

For every query, with probability at least 1− δ, the return values are correct, and costs at
most

Õ(τ2 · (ϵ−2(ℓ− ℓ′ + 1)
∑

ℓ′≤t≤ℓ

∥H1/2

x(t)s
(t) −H

1/2

x(t)x
(t+1)∥22 +

∑
ℓ′≤t≤ℓ−1

∥x(t) − x(t+1)∥2,0))

running time.

Proof. The proof is essentially the same as proof of (Gu & Song, 2022, Theorem 4.21). For the
running time claims, we plug in Lemma D.10 and D.12 when necessary.

Remark D.9 (Snapshot). As in previous works, we use persistent data structures (e.g., Driscoll et al.
(1989)) to keep a snapshot of the data structure after every update. This allows us to support query to

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

historical data. This incurs an O(log ntot) = Õ(1) multiplicative factor in all running times, which
we ignore in our analysis.

D.3.4 VECTORSKETCH

VECTORSKETCH is a data structure used to maintain sketches of sparsely-changing vectors. It is a
direct application of segment trees. For completeness, we include code (Algorithm 9) from (Gu &
Song, 2022, Algorithm 10).

Algorithm 9 (Gu & Song, 2022, Algorithm 10). Used in Algorithm 6, 7, 8.

1: data structure VECTORSKETCH ▷ Lemma D.10
2: private: members
3: Φ ∈ Rr×ntot

4: Partition tree (S, χ)
5: x ∈ Rntot

6: Segment tree T on [n] with values in Rr

7: end members
8: procedure INITIALIZE(S, χ : partition tree,Φ ∈ Rr×ntot , x ∈ Rntot)
9: (S, χ)← (S, χ), Φ← Φ

10: x← x
11: Order leaves of S (variable blocks) such that every node χ(v) corresponds to a contiguous

interval ⊆ [n].
12: Build a segment tree T on [n] such that each segment tree interval I ⊆ [n] maintains

ΦIxI ∈ Rr.
13: end procedure
14: procedure UPDATE(δx ∈ Rntot)
15: for all i ∈ [ntot] such that δx,i ̸= 0 do
16: Let j ∈ [n] be such that i is in j-th block
17: Update T at j-th coordinate Φjxj ← Φjxj +Φi · δx,i.
18: xi ← xi + δx,i
19: end for
20: end procedure
21: procedure QUERY(v ∈ V (S))
22: Find interval I corresponding to χ(v)
23: return range sum of T on interval I
24: end procedure
25: end data structure

Lemma D.10 ((Gu & Song, 2022, Lemma 4.23)). Given a partition tree (S, χ) of Rn, and a
JL sketching matrix Φ ∈ Rr×ntot , the data structure VECTORSKETCH (Algorithm 9) maintains
Φχ(v)xχ(v) for all nodes v in the partition tree implicitly through the following functions:

• INITIALIZE(S, χ,Φ): Initializes the data structure in O(rntot) time.

• UPDATE(δx ∈ Rntot): Maintains the data structure for x ← x + δx in O(r∥δx∥0 log n)
time.

• QUERY(v ∈ V (S)): Outputs Φχ(v)xχ(v) in O(r log n) time.

D.3.5 BALANCEDSKETCH

In this section, we present data structure BALANCEDSKETCH. It is a data structure for maintaining a
sketch of a vector of formW⊤h, whereW = L−1

x H
1/2
w,x and h ∈ Rntot is a sparsely-changing vector.

This is a variation of BLOCKBALANCEDSKETCH in Gu & Song (2022).

We use the following construction of a partition tree.
Definition D.11 (Construction of Partition Tree). We fix an ordering π of [n] using the heavy-light
decomposition (Lemma A.10). Let S be a complete binary tree with leaf set [n] and ordering π. Let χ
map a node to the set of leaves in its subtree. Then (S, χ) is a valid partition tree.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Algorithm 10 The BALANCEDSKETCH data structure is used in Algorithm 6, 7, 8.

1: data structure BALANCEDSKETCH ▷ Lemma D.12
2: private: members
3: Φ ∈ Rr×ntot

4: Partition tree (S, χ) with balanced binary tree B
5: t ∈ N
6: h ∈ Rntot , x ∈ Rntot , Hw,x ∈ Rntot×ntot

7: {L[t] ∈ Rntot×ntot}t≥0

8: {Jv ∈ Rr×ntot}v∈S
9: {Zv ∈ Rr×ntot}v∈B

10: {y▽v ∈ Rr}v∈B
11: {tv ∈ N}v∈B
12: end members
13: procedure INITIALIZE(S, χ : partition tree,Φ ∈ Rr×ntot , x ∈ Rntot , h ∈ Rntot×k)
14: (S, χ)← (S, χ), Φ← Φ
15: t← 0, h← h
16: Hw,x ← ∇2ϕ(x), Bx ← Q+ tHw,x

17: Compute lower Cholesky factor Lx[t] of Bx

18: for all v ∈ S do
19: Jv ← Φχ(v)H

1/2
w,x

20: end for
21: for all v ∈ B do
22: Zv ← JvLx[t]

−⊤

23: y▽v ← Zv(I − IΛ(v))h
24: tv ← t
25: end for
26: end procedure
27: procedure QUERY(v ∈ S)
28: if v ∈ S\B then
29: return Jv · Lx[t]

−⊤h
30: end if
31: ∆Lx

← (Lx[t]− Lx[tv]) · IΛ(v)

32: δZv
← −(Lx[t]

−1 ·∆Lx
· Z⊤

v)⊤

33: Zv ← Zv + δZv

34: δy▽
v
← δZv · (I − IΛ(v))h

35: y▽v ← y▽v + δy▽
v

36: tv ← t
37: y△v ← Zv · IΛ(v) · h
38: return y△v + y▽v
39: end procedure
40: end data structure

Lemma D.12. Given an elimination tree T with height η, a JL matrix Φ ∈ Rr×ntot , and a partition
tree (S, χ) constructed as in Definition D.11 with height Õ(1), the data structure BALANCEDSKETCH
(Algorithm 10, 11, 12), maintains Φχ(v)(W⊤h)χ(v) for each v ∈ V (S) through the following
operations

• INITIALIZE((S, χ) : partition tree,Φ ∈ Rntot , x ∈ Rntot , h ∈ Rntot×k): Initializes the
data structure in Õ(r(nτω−1 + nτk)) time.

• UPDATE(δx ∈ Rntot , δh ∈ Rntot×k): Updates all sketches in S implicitly to reflect (W, h)

updating to (Wnew, hnew) in Õ(rτ2k) time.

• QUERY(v ∈ S): Outputs Φχ(v)(W⊤h)χ(v) in Õ(rτ2k) time.

Proof. The proof is almost same as the proof of (Gu & Song, 2022, Lemma 4.24). (In fact, ourW is
simpler than the one used in Gu & Song (2022).)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Algorithm 11 BALANCEDSKETCH Algorithm 10 continued. This is used in Algorithm 6, 7, 8.

1: data structure BALANCEDSKETCH
2: procedure UPDATE(δx ∈ Rntot , δh ∈ Rntot×k)
3: for i ∈ [n] where δx,i ̸= 0 do
4: UPDATEx(δx,i)
5: end for
6: for all δh,i ̸= 0 do
7: v ← Λ◦(i)
8: for all u ∈ PB(v) do
9: y▽u ← y▽v + Zu · I{i} · δh

10: end for
11: end for
12: h← h+ δh
13: end procedure
14: procedure UPDATEx(δx,i ∈ Rni)
15: t← t+ 1
16: xi ← xi + δx,i
17: ∆Hw,x,(i,i) ← ∇2ϕi(xi)−Hw,x,(i,i)

18: Compute ∆Lx such that Lx[t]← Lx[t− 1]+∆Lx is the lower Cholesky factor of A(Hw,x +
∆Hw,x)

−1A⊤

19: S ← PB(Λ◦(lowT (i)))
20: UPDATEL(S,∆Lx

)
21: UPDATEH(i,∆Hw,x,(i,i))
22: end procedure
23: end data structure

For INITIALIZE running time, we note that computing Zv for all v ∈ B takes Õ(rnτω−1) time by
(Gu & Song, 2022, Lemma 8.3). Because Zv is supported on the path from v to the root in T , we
know that nnz(Z) = O(rnτ). Therefore computing y▽v for all v ∈ B takes Õ(rnτk) time.

Remaining claims follow from combining proof of (Gu & Song, 2022, Lemma 4.24) and (Gu & Song,
2022, Lemma 8.3).

D.4 ANALYSIS OF CENTRALPATHMAINTENANCE

Lemma D.13 (Correctness of CENTRALPATHMAINTENANCE). Algorithm 1 implicitly maintains
the primal-dual solution pair (x, s) via representation Eq. (8)(9). It also explicitly maintains (x, s) ∈
Rntot × Rntot such that ∥xi − xi∥xi

≤ ϵ and ∥si − si∥∗xi
≤ tϵwi for all i ∈ [n] with probability at

least 0.9.

Proof. We correctly maintain the implicit representation because of correctness of exact.UPDATE
(Theorem D.3).

We show that ∥xi − xi∥xi
≤ ϵ and ∥si − si∥∗xi

≤ tϵwi for all i ∈ [n] (c.f. Algorithm 20, Line 16).

approx maintains an ℓ∞ approximation of H1/2
w,xx. For ℓ ≤ q, we have

∥H1/2
w,xx

(ℓ+1) −H
1/2
w,xx

(ℓ)∥2 = ∥δx∥w,x ≤
9

8
α ≤ ζx

where the first step from definition of ∥ · ∥w,x, the second step follows from Lemma F.11, the third
step follows from definition of ζx.

By Theorem D.6, with probability at least 1− δapx, approx correctly maintains x such that ∥H1/2
w,xx−

H
1/2
w,xx∥∞ ≤ ϵapx,x ≤ ϵ. Then

∥xi − xi∥xi
≤ w

−1/2
i ∥H1/2

w,xx−H
1/2
w,xx∥∞ ≤ w

−1/2
i ϵ ≤ ϵ.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Algorithm 12 BALANCEDSKETCH Algorithm 10, 11 continued. This is used in Algorithm 6, 7, 8.

1: data structure BALANCEDSKETCH ▷ Lemma D.12
2: private:
3: procedure UPDATEL(S ⊂ B, ∆Lx ∈ Rntot×ntot)
4: for all v ∈ S do
5: δZv

← −(Lx[t− 1]−1(Lx[t− 1]− Lx[tv]) · IΛ(v) · Z⊤
v)⊤

6: δ′Zv
← −(Lx[t]

−1 ·∆Lx
· (Zv + δZv

)⊤)⊤

7: Zv ← Zv + δZv + δ′Zv

8: δy▽
v
← (δZv

+ δ′Zv
)(I − IΛ(v))h

9: y▽v ← y▽v + δy▽
v

10: tv ← t
11: end for
12: end procedure
13: private:
14: procedure UPDATEH(i ∈ [n],∆Hw,x,(i,i) ∈ Rni×ni)
15: Find u such that χ(u) = {i}
16: ∆

H
1/2
w,x,(i,i)

← (Hw,x,(i,i) +∆Hw,x,(i,i))
1/2 −H

1/2
w,x,(i,i)

17: δJu
← Φi ·∆H

1/2
w,x,(i,i)

18: for all v ∈ PS(u) do
19: Jv ← Jv + δJu

20: if v ∈ B then
21: δZv ← δJv · Lx[tv]

−⊤

22: Zv ← Zv + δZv

23: δy▽
v
← δZv · (I − IΛ(v)) · h

24: y▽v ← y▽v + δy▽
v

25: end if
26: end for
27: Hw,x ← Hw,x +∆Hw,x,(i,i)

28: end procedure
29: end data structure

Note that the last step is loose by a factor of w1/2
i . When wis are large, we could improve running

time by using a tighter choice of ϵapx,x, as did in Gu & Song (2022). Here we use a loose bound for
simplicity of presentation. Same remark applies to s.

The proof for s is similar. We have

∥H−1/2
w,x δs∥2 = ∥δs∥∗w,x ≤

17

8
α · t ≤ ζs

and

∥si − si∥∗xi
≤ w

1/2
i ∥H

−1/2
w,x s−H

−1/2
w,x s∥∞ ≤ w

1/2
i ϵapx,s ≤ ϵ · t · wi.

Lemma D.14. We bound the running time of CENTRALPATHMAINTENANCE as following.

• CENTRALPATHMAINTENANCE.INITIALIZE takes Õ(nτω−1 + nτm+ nmω−1) time.

• If CENTRALPATHMAINTENANCE.MULTIPLYANDMOVE is called N times, then it has
total running time

Õ((Nn−1/2 + log(tmax/tmin)) · n(τ2m+ τm2)1/2(τω−1 + τm+mω−1)1/2).

• CENTRALPATHMAINTENANCE.OUTPUT takes Õ(nτm) time.

Proof. INITIALIZE part: By Theorem D.3 and D.6.

OUTPUT part: By Theorem D.3.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

MULTIPLYANDMOVE part: Between two restarts, the total size of |Lx| returned by approx.QUERY

is bounded by Õ(q2ζ2x/ϵ
2
apx,x) by Theorem D.6. By plugging in ζx = 2α, ϵapx,x = ϵ, we have∑

ℓ∈[q] |L
(ℓ)
x | = Õ(q2). Similarly, for s we have

∑
ℓ∈[q] |L

(ℓ)
s | = Õ(q2).

Update time: By Theorem D.3 and D.6, in a sequence of q updates, total cost for update is
Õ(q2(τ2m + τm2)). So the amortized update cost per iteration is Õ(q(τ2m + τm2)). The total
update cost is

number of iterations · time per iteration = Õ(Nq(τ2m+ τm2)).

Init/restart time: We restart the data structure whenever k > q or |t − t| > tϵt, so there are
O(N/q + log(tmax/tmin)ϵ

−1
t) restarts in total. By Theorem D.3 and D.6, time cost per restart is

Õ(n(τω−1 + τm+mω−1)). So the total initialization time is

number of restarts · time per restart = Õ((N/q + log(tmax/tmin)ϵ
−1
t) · n(τω−1 + τm+mω−1)).

Combine everything: Overall running time is

Õ(Nq(τ2m+ τm2) + (N/q + log(tmax/tmin)ϵ
−1
t) · n(τω−1 + τm+mω−1)).

Taking ϵt =
1
2ϵ, the optimal choice for q is

q = n1/2(τ2m+ τm2)−1/2(τω−1 + τm+mω−1)1/2,

achieving overall running time

Õ((Nn−1/2 + log(tmax/tmin)) · n(τ2m+ τm2)1/2(τω−1 + τm+mω−1)1/2).

Proof of Theorem D.2. Combining Lemma D.13 and D.14.

D.5 PROOF OF MAIN STATEMENT

Proof of Theorem D.1. Use CENTRALPATHMAINTENANCE (Algorithm 1) as the maintenance data
structure in Algorithm 20. Combining Theorem D.2 and Theorem F.1 finishes the proof.

E ALGORITHM FOR LOW-RANK QP

In this section we present a nearly-linear time algorithm for solving low-rank QP with small number
of linear constraints. We briefly describe the outline of this section.

• In Section E.1, we present the main statement of Section E.
• In Section E.2, we present the main data structure CENTRALPATHMAINTENANCE.
• In Section E.3, we present several data structures used in CENTRALPATHMAINTENANCE,

including EXACTDS (Section E.3.1), APPROXDS (Section E.3.2), BATCHSKETCH (Sec-
tion E.3.3).

• In Section E.4, we prove correctness and running time of CENTRALPATHMAINTENANCE
data structure.

• In Section E.5, we prove the main result (Theorem E.1).

E.1 MAIN STATEMENT

We consider programs of the form (16), i.e.,

min
x∈Rn

1

2
x⊤Qx+ c⊤x

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

s.t. Ax = b

xi ∈ Ki ∀i ∈ [n]

where Q ∈ Sntot , c ∈ Rntot , A ∈ Rm×ntot , b ∈ Rm, Ki ⊂ Rni is a convex set. For simplicity, we
assume that ni = O(1) for all i ∈ [n].
Theorem E.1. Consider the convex program (16). Let ϕi : Ki → R be a νi-self-concordant barrier
for all i ∈ [n]. Suppose the program satisfies the following properties:

• Inner radius r: There exists z ∈ Rntot such that Az = b and B(z, r) ∈ K.

• Outer radius R: K ⊆ B(0, R) where 0 ∈ Rntot .

• Lipschitz constant L: ∥Q∥2→2 ≤ L, ∥c∥2 ≤ L.

• Low rank: We are given a factorization Q = UV ⊤ where U, V ∈ Rntot×k.

Let (wi)i∈[n] ∈ Rn
≥1 and κ =

∑
i∈[n] wiνi. Given any 0 < ϵ ≤ 1

2 , we can find an approximate
solution x ∈ K satisfiying

1

2
x⊤Qx+ c⊤x ≤ min

Ax=b,x∈K

(
1

2
x⊤Qx+ c⊤x

)
+ ϵLR(R+ 1),

∥Ax− b∥1 ≤ 3ϵ(R∥A∥1 + ∥b∥1),
in expected time

Õ((
√
κn−1/2 + log(R/(rϵ))) · n(k +m)(ω+1)/2).

When maxi∈[n] νi = Õ(1), wi = 1, the running time simplifies to

Õ(n(k +m)(ω+1)/2) log(R/(rϵ))).

E.2 ALGORITHM STRUCTURE AND CENTRAL PATH MAINTENANCE

Similar to the low-treewidth case, our algorithm is based on the robust IPM. Details of the robust
IPM will be given in Section F. During the algorithm, we maintain a primal-dual solution pair
(x, s) ∈ Rntot × Rntot on the robust central path. In addition, we maintain a sparsely-changing
approximation (x, s) ∈ Rntot × Rntot to (x, s). In each iteration, we implicitly perform update

x← x+ tB
−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ

s← s+ tδµ − t
2
Hw,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ

where

Hw,x = ∇2ϕw(x) (see Eq. (24))

Bw,x,t = Q+ tHw,x (see Eq. (25))

Pw,x,t = B
−1/2

w,x,t
A⊤(AB−1

w,x,t
A⊤)−1AB

−1/2

w,x,t
(see Eq. (26))

and explicitly maintain (x, s) such that they remain close to (x, s) in ℓ∞-distance.

This task is handled by the CENTRALPATHMAINTENANCE data structure, which is our main data
structure. The robust IPM algorithm (Algorithm 19, 20) directly calls it in every iteration.

The CENTRALPATHMAINTENANCE data structure (Algorithm 13) has two main sub data structures,
EXACTDS (Algorithm 14, 15) and APPROXDS (Algorithm 16). EXACTDS is used to maintain (x, s),
and APPROXDS is used to maintain (x, s).
Theorem E.2. Data structure CENTRALPATHMAINTENANCE (Algorithm 13) implicitly maintains
the central path primal-dual solution pair (x, s) ∈ Rntot × Rntot and explicitly maintains its
approximation (x, s) ∈ Rntot × Rntot using the following functions:

• INITIALIZE(x ∈ Rntot , s ∈ Rntot , t0 ∈ R>0, ϵ ∈ (0, 1)): Initializes the data structure
with initial primal-dual solution pair (x, s) ∈ Rntot × Rntot , initial central path timestamp
t0 ∈ R>0 in Õ(n(kω−1 +mω−1)) time.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Algorithm 13 Main algorithm for low-rank QP.

1: data structure CENTRALPATHMAINTENANCE ▷ Theorem E.2
2: private : members
3: EXACTDS exact ▷ Algorithm 14, 15
4: APPROXDS approx ▷ Algorithm 16
5: ℓ ∈ N
6: end members
7: procedure INITIALIZE(x, s ∈ Rntot , t ∈ R+, ϵ ∈ (0, 1))
8: exact.INITIALIZE(x, s, x, s, t) ▷ Algorithm 14
9: ℓ← 0

10: w ← νmax, N ←
√
κ log n log nκR

ϵr

11: q ← n1/2(k2 +m2)−1/2(dω−1 +mω−1)1/2

12: ϵapx,x ← ϵ, ζx ← 2α, δapx ← 1
N

13: ϵapx,s ← ϵ · t, ζs ← 3αt
14:

approx.INITIALIZE(x, s, h, ĥ, h̃,H
1/2
w,xx̂, H

−1/2
w,x ŝ, βx, βs, β̂x, β̂s, β̃x, β̃s, q,&exact,

ϵapx,x, ϵapx,s, δapx)

15: ▷ Algorithm 16.Parameters from x to β̃s come from exact. &exact is pointer to exact
16: end procedure
17: procedure MULTIPLYANDMOVE(t ∈ R+)
18: ℓ← ℓ+ 1
19: if |t− t| > t · ϵt or ℓ > q then
20: x, s← exact.OUTPUT() ▷ Algorithm 15
21: INITIALIZE(x, s, t, ϵ)
22: end if
23: βx, βs, β̂x, β̂s, β̃x, β̃s ← exact.MOVE() ▷ Algorithm 14
24: δx, δs ← approx.MOVEANDQUERY(βx, βs, β̂x, β̂s, β̃x, β̃s) ▷ Algorithm 16
25: δh, δĥ, δh̃, δH1/2

w,xx̂
, δ

H
−1/2
w,x ŝ

← exact.UPDATE(δx, δs) ▷ Algorithm 15

26: approx.UPDATE(δx, δh, δĥ, δh̃, δH1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

) ▷ Algorithm 16
27: end procedure
28: procedure OUTPUT()
29: return exact.OUTPUT() ▷ Algorithm 15
30: end procedure
31: end data structure

• MULTIPLYANDMOVE(t ∈ R>0): It implicitly maintains

x← x+ tB
−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ(x, s, t)

s← s+ tδµ − t
2
Hw,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ(x, s, t)

where Hw,x, Bw,x,t, Pw,x,t are defined in Eq. (24)(25)(26) respectively, and t is some
timestamp satisfying |t− t| ≤ ϵt · t.
It also explicitly maintains (x, s) ∈ Rntot×ntot such that ∥xi−xi∥xi

≤ ϵ and ∥si−si∥∗xi
≤

tϵwi for all i ∈ [n] with probability at least 0.9.

Assuming the function is called at most N times and t decreases from tmax to tmin, the total
running time is

Õ((Nn−1/2 + log(tmax/tmin)) · n(k(ω+1)/2 +m(ω+1)/2)).

• OUTPUT: Computes (x, s) ∈ Rntot ×Rntot exactly and outputs them in Õ(n(k+m)) time.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

E.3 DATA STRUCTURES USED IN CENTRALPATHMAINTENANCE

In this section we present several data structures used in CENTRALPATHMAINTENANCE, including:

• EXACTDS (Section E.3.1): This data structure maintains an implicit representation of the
primal-dual solution pair (x, s). This is directly used by CENTRALPATHMAINTENANCE.

• APPROXDS (Section E.3.2): This data structure explicitly maintains an approximation (x, s)
of (x, s). This data structure is directly used by CENTRALPATHMAINTENANCE.

• BATCHSKETCH (Section E.3.3): This data structure maintains a sketch of (x, s). This data
structure is used by APPROXDS.

E.3.1 EXACTDS

In this section we present the data structure EXACTDS. It maintains an implicit representation of the
primal-dual solution pair (x, s) by maintaining several sparsely-changing vectors (see Eq. (12)(13)).
Theorem E.3. Data structure EXACTDS (Algorithm 14, 15) implicitly maintains the primal-dual
pair (x, s) ∈ Rntot × Rntot , computable via the expression

x = x̂+H
−1/2
w,x hβx +H

−1/2
w,x ĥβ̂x +H

−1/2
w,x h̃β̃x, (12)

s = ŝ+H
1/2
w,xhβs +H

1/2
w,xĥβ̂s +H

1/2
w,xh̃β̃s, (13)

where x̂, ŝ ∈ Rntot , h = H
−1/2
w,x δµ ∈ Rntot , ĥ = H

−1/2
w,x U⊤ ∈ Rntot×k, h̃ = H

−1/2
w,x A⊤ ∈ Rntot×m,

βx, βs ∈ R, β̂x, β̂s ∈ Rk, β̃x, β̃s ∈ Rm.

The data structure supports the following functions:

• INITIALIZE(x, s, x, s ∈ Rntot , t ∈ R>0): Initializes the data structure in Õ(n(kω +mω))
time, with initial value of the primal-dual pair (x, s), its initial approximation (x, s), and
initial approximate timestamp t.

• MOVE(): Performs robust central path step

x← x+ tB−1
x δµ − tB−1

x A⊤(AB−1
x A⊤)−1AB−1

x δµ, (14)

s← s+ tδµ − t
2
B−1

x δµ + t
2
B−1

x A⊤(AB−1
x A⊤)−1AB−1

x δµ (15)

in O(kω +mω) time by updating its implicit representation.

• UPDATE(δx, δs ∈ Rntot): Updates the approximation pair (x, s) to (xnew = x + δx ∈
Rntot , snew = s + δs ∈ Rntot) in Õ((k2 + m2)(∥δx∥0 + ∥δs∥0)) time, and output the
changes in variables h, ĥ, h̃,H1/2

w,xx̂, H
−1/2
w,x ŝ.

Furthermore, h,H1/2
w,xx̂, H

−1/2
w,x ŝ changes in O(∥δx∥0 + ∥δs∥0) coordinates, ĥ changes in

O(k(∥δx∥0 + ∥δs∥0)) coordinates, h̃ changes in O(m(∥δx∥0 + ∥δs∥0)) coordinates.

• OUTPUT(): Output x and s in Õ(n(k +m)) time.

• QUERYx(i ∈ [n]): Output xi in Õ(k +m) time. This function is used by APPROXDS.

• QUERYs(i ∈ [n]): Output si in Õ(k +m) time. This function is used by APPROXDS.

Proof of Theorem E.3. By combining Lemma E.4 and E.5.

Lemma E.4. EXACTDS correctly maintains an implicit representation of (x, s), i.e., invariant

x = x̂+H
−1/2
w,x hβx +H

−1/2
w,x ĥβ̂x +H

−1/2
w,x h̃β̃x,

s = ŝ+H
1/2
w,xhβs +H

1/2
w,xĥβ̂s +H

1/2
w,xh̃β̃s,

h = H
−1/2
w,x δµ ∈ Rntot , ĥ = H

−1/2
w,x U⊤ ∈ Rntot×d, h̃ = H

−1/2
w,x A⊤ ∈ Rntot×m,

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Algorithm 14 This is used in Algorithm 13.

1: data structure EXACTDS ▷ Theorem E.3
2: members
3: x, s ∈ Rntot , t ∈ R+, Hw,x ∈ Rntot×ntot

4: x̂, ŝ,∈ Rntot , ĥ ∈ Rntot×k, h̃ ∈ Rntot×m, βx, βs ∈ R, β̂x, β̂s ∈ Rd, β̃x, β̃s ∈ Rm

5: u1, u2 ∈ Rk×m, u3 ∈ Rm×m, u4 ∈ Rm, u5 ∈ Rd, u6 ∈ Rk×k

6: α ∈ R, δµ ∈ Rn

7: K ∈ N
8: end members
9: procedure INITIALIZE(x, s, x, s ∈ Rntot , t ∈ R+)

10: x← x, x← s, t← t
11: x̂← x, ŝ← s, βx ← 0, βs ← 0, β̂x ← 0, β̂s ← 0, β̃x ← 0, β̃s ← 0
12: Hw,x ← ∇2ϕw(x)
13: INITIALIZEh(x, s,Hw,x)
14: end procedure
15: procedure INITIALIZEh(x, s ∈ Rntot , Hw,x ∈ Rntot×ntot)
16: for i ∈ [n] do

17: (δµ)i ← −
α sinh(λ

wi
γi(x,s,t))

γi(x,s,t)
· µi(x, s, t)

18: α← α+ w−1
i cosh2(λ

wi
γi(x, s, t))

19: end for
20: h← H

−1/2
w,x δµ, ĥ← H

−1/2
w,x U⊤, h̃← H

−1/2
w,x A⊤

21: u1 ← UH−1
w,xA

⊤, u2 ← V H−1
w,xA

⊤, u3 ← AH−1
w,xA

⊤

22: u4 ← AH−1
w,xδµ, u5 ← V H−1

w,xδµ, u6 ← V H−1
w,xU

⊤

23: end procedure
24: procedure MOVE()
25: v0 ← I + t

−1
u6 ∈ Rk×k

26: v1 ← t
−1

u3 − t
−2

u⊤
1 v

−1
0 u2 ∈ Rm×m

27: v2 ← t
−1

u4 − t
−2

u⊤
1 v

−1
0 u5 ∈ Rm

28: βx ← βx + (α)−1/2

29: β̂x ← β̂x − (α)−1/2 · t−1
v−1
0 u5 + (α)−1/2 · t−1

v−1
0 u2v

−1
1 v2

30: β̃x ← β̃x − (α)−1/2 · v−1
1 v2

31: βs ← βs

32: β̂s ← β̂s + (α)−1/2 · v−1
0 u5 − (α)−1/2 · v−1

0 u2v
−1
1 v2

33: β̃s ← β̃s + (α)−1/2 · tv−1
1 v2

34: return βx, βs, β̂x, β̂s, β̃x, β̃s

35: end procedure
36: end data structure

u1 = UH−1
w,xA

⊤ ∈ Rd×m, u2 = V H−1
w,xA

⊤ ∈ Rd×m, u3 = AH−1
w,xA

⊤ ∈ Rm×m,

u4 = AH−1
w,xδµ ∈ Rm, u5 = V H−1

w,xδµ ∈ Rd, u6 = V H−1
w,xU

⊤ ∈ Rd×d,

α =
∑
i∈[n]

w−1
i cosh2(

λ

wi
γi(x, s, t)),

δµ = α1/2δµ(x, s, t)

always holds after every external call, and return values of the queries are correct.

Proof. INITIALIZE: By checking the definitions we see that all invariants are satisfied after INITIAL-
IZE.

MOVE: By the invariants, we have

v0 = I + t
−1

V H−1
w,xU

⊤,

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Algorithm 15 Algorithm 14 continued.

1: data structure EXACTDS ▷ Theorem E.3
2: procedure OUTPUT()
3: return x̂+H

−1/2
w,x hβx +H

−1/2
w,x ĥβ̂x +H

−1/2
w,x h̃β̃x, ŝ+H

1/2
w,xhβs +H

1/2
w,xĥβ̂s +H

1/2
w,xh̃β̃s

4: end procedure
5: procedure QUERYx(i ∈ [n])
6: return x̂i +H

−1/2
w,x hi,∗βx +H

−1/2
w,x ĥi,∗β̂x +H

−1/2
w,x h̃i,∗β̃x

7: end procedure
8: procedure QUERYs(i ∈ [n])
9: return ŝi +H

1/2
w,xhi,∗βs +H

1/2
w,xĥi,∗β̂s +H

1/2
w,xh̃i,∗β̃s

10: end procedure
11: procedure UPDATE(δx, δs ∈ Rntot)
12: ∆Hw,x ← ∇2ϕw(x+ δx)−Hw,x ▷ ∆Hw,x is non-zero only for diagonal blocks (i, i) for

which δx,i ̸= 0
13: S ← {i ∈ [n] | δx,i ̸= 0 or δs,i ̸= 0}
14: δδµ ← 0

15: for i ∈ S do
16: Let γi = γi(x, s, t), γnew

i = γi(x+ δx, s+ δs, t), µnew
i = µi(x+ δx, s+ δs, t)

17: α← α− w−1
i cosh2(λ

wi
γi) + w−1

i cosh2(λ
wi

γnew
i)

18: δδµ,i ← −α sinh(λ
wi

γnew
i) · 1

γnew
i
· µnew

i − δµ,i
19: end for
20: δh ← ∆

H
−1/2
w,x

(δµ + δδµ) +H
−1/2
w,x δδµ

21: δĥ ← ∆
H

−1/2
w,x

U⊤

22: δh̃ ← ∆
H

−1/2
w,x

A⊤

23: δx̂ ← −(δhβx + δĥβ̂x + δh̃β̃x)

24: δŝ ← −(δhβs + δĥβ̂s + δh̃β̃s)

25: h← h+ δh, ĥ← ĥ+ δĥ, h̃← h̃+ δh̃, x̂← x̂+ δx̂, ŝ← ŝ+ δŝ
26: u1 ← u1 + U∆H−1

w,x
A⊤

27: u2 ← u2 + V∆H−1
w,x

A⊤

28: u3 ← u3 +A∆H−1
w,x

A⊤

29: u4 ← u4 +A(∆H−1
w,x

(δµ + δδµ) +H−1
w,xδδµ)

30: u5 ← u5 + V (∆H−1
w,x

(δµ + δδµ) +H−1
w,xδδµ)

31: u6 ← u6 + V∆H−1
w,x

U⊤

32: x← x+ δx, s← s+ δs
33: Hw,x ← Hw,x +∆Hw,x

34: return δh, δĥ, δh̃, δH1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

35: end procedure
36: end data structure

v1 = t
−1

AH−1
w,xA

⊤ − t
−1

AH−1
w,xU

⊤(I + t
−1

V H−1
w,xU

⊤)−1V Hw,xA
⊤

= AB−1
x A⊤

v2 = t
−1

AH−1
w,xδµ − t

−1
AH−1

w,xU
⊤(I + t

−1
V H−1

w,xU
⊤)−1V Hw,xδµ

= AB−1
x δµ.

By implicit representation (12),

δx = H
−1/2
w,x hδβx

+H
−1/2
w,x ĥδβ̂x

+H
−1/2
w,x h̃δβ̃x

= H−1
w,xδµ · (α)

−1/2

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

+H−1
w,xU

⊤ · (α)−1/2t
−1

v−1
0 (−u5 + u2v

−1
1 v2)

−H−1
w,xA

⊤ · (α)−1/2v−1
1 v2

= H−1
w,xδµ

+H−1
w,xU

⊤t
−1

(I + t
−1

V H−1
w,xU

⊤)−1(−V H−1
w,xδµ + V H−1

w,xA
⊤(AB−1

x A⊤)−1AB−1
x δµ)

−H−1
w,xA

⊤(AB−1
x A⊤)−1AB−1

x δµ

= t · (t−1
H−1

w,x − t
−2

H−1
w,xU

⊤(I + t
−1

V H−1
w,xU

⊤)−1V H−1
w,x)δµ

− t(t
−1

H−1
w,x − t

−2
t
−2

H−1
w,xU

⊤(I + t
−1

V H−1
w,xU

⊤)−1V H−1
w,x)A

⊤(AB−1
x A⊤)−1AB−1

x δµ

= tB−1
x δµ − tB−1

x A⊤(AB−1
x A⊤)−1AB−1

x δµ.

Comparing with the robust central path step (14), we see that x is updated correctly.

For s, from implicit representation 13 we have

δs = H
1/2
w,xhδβx

+H
1/2
w,xĥδβ̂x

+H
1/2
w,xh̃δβ̃x

= − U⊤ · (α)−1/2 · v−1
0 (−u5 + u2v

−1
1 v2) +A⊤ · (α)−1/2 · tv−1

1 v2

= tδµ − t
2
B−1

x δµ + t
2
B−1

x A⊤(AB−1
x A⊤)−1AB−1

x δµ.

Comparing with robust central path step (15), we see that s is updated correctly.

UPDATE: We would like to prove that UPDATE correctly updates the values of x̂, ŝ, h, ĥ, h̃,
u1, u2, u3, u4, u5, u6, α, δµ, while preserving the values of (x, s). In fact, by checking the defi-
nitions, it is easy to see that h, ĥ, h̃, u1, u2, u3, u4, u5, u6, α, δµ are updated correctly. Furthermore

δx = δx̂ + δhβx + δĥβ̂x + δh̃β̃x = 0,

δs = δŝ + δhβs + δĥβ̂s + δh̃β̃s = 0.

So values of (x, s) are preserved.

Lemma E.5. We bound the running time of EXACTDS as following.

(i) EXACTDS.INITIALIZE (Algorithm 14) runs in Õ(n(kω−1 +mω−1)) time.

(ii) EXACTDS.MOVE (Algorithm 14) runs in Õ(kω +mω) time.

(iii) EXACTDS.OUTPUT (Algorithm 15) runs in Õ(n(k +m)) time and correctly outputs (x, s).

(iv) EXACTDS.QUERYx and EXACTDS.QUERYs (Algorithm 15) runs in Õ(k +m) time and
returns the correct answer.

(v) EXACTDS.UPDATE (Algorithm 15) runs in Õ((k2 + m2)(∥δx∥0 + ∥δs∥0)) time. Fur-
thermore, ∥δh∥0, ∥δx̂∥0, ∥δŝ∥0 = O(∥δx∥0 + ∥δs∥0), nnz(ĥ) = O(d(∥δx∥0 + ∥δs∥0)),
nnz(h̃) = O(m(∥δx∥0 + ∥δs∥0)).

Proof. (i) EXACTDS.INITIALIZE: Computing u1 and u2 takes Tmat(k, n,m) = Õ(n(kω−1 +

mω−1)) time. Computing u3 takes Tmat(m,n,m) = Õ(nmω−1) time. Computing u4

takes O(nm) time. Computing u5 takes O(nk) time. Computing u6 takes Tmat(k, n, k) =

Õ(nkω−1) time. All other computations are cheaper.

(ii) EXACTDS.MOVE: Computing v−1
0 takes Õ(kω) time. Computing v−1

1 takes Õ(mω) time.
All other computations are cheaper.

(iii) EXACTDS.OUTPUT: Takes Õ(n(k +m)) time.

(iv) EXACTDS.QUERYx and EXACTDS.QUERYs: Takes Õ(k +m) time.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

(v) EXACTDS.UPDATE: For simplicity, write t = ∥δx∥0 + ∥δx∥0. Computing δh takes Õ(t)

time. Computing δĥ takes Õ(tk) time. Computing δh̃ takes Õ(tm) time. Computing δx̂ and
δŝ takes Õ(t(k +m)) time. The sparsity statements follow directly. Computing u1 and u2

takes Õ(tkm) time. Computing u3 takes Õ(tm2) time. Computing u4 takes Õ(tm) time.
Computing u5 takes Õ(tk) time. Computing u6 takes Õ(tk2) time.

E.3.2 APPROXDS

In this section we present the data structure APPROXDS. Given BATCHSKETCH, a data structure
maintaining a sketch of the primal-dual pair (x, s) ∈ Rntot × Rntot , APPROXDS maintains a
sparsely-changing ℓ∞-approximation of (x, s).

Algorithm 16 This is used in Algorithm 13.
1: data structure APPROXDS ▷ Theorem E.6
2: private : members
3: ϵapx,x, ϵapx,s ∈ R
4: ℓ ∈ N
5: BATCHSKETCH bs ▷ This maintains a sketch of H1/2

w,xx and H
−1/2
w,x s. See Algorithm 17 and 18.

6: EXACTDS* exact ▷ This is a pointer to the EXACTDS (Algorithm 14, 15) we maintain in parallel to
APPROXDS.

7: x̃, s̃ ∈ Rntot ▷ (x̃, s̃) is a sparsely-changing approximation of (x, s). They have the same value as
(x, s), but for these local variables we use (x̃, s̃) to avoid confusion.

8: end members
9: procedure INITIALIZE(x, s ∈ Rntot , h ∈ Rntot , ĥ ∈ Rntot×k, h̃ ∈ Rntot×m, H

1/2
w,xx̂, H

−1/2
w,x ŝ ∈

Rntot , βx, βs ∈ R, β̂x, β̂s ∈ Rd, β̃x, β̃s ∈ Rm, q ∈ N, EXACTDS* exact, ϵapx,x, ϵapx,s, δapx ∈ R)
10: ℓ← 0, q ← q
11: ϵapx,x ← ϵapx,x, ϵapx,s ← ϵapx,s

12: bs.INITIALIZE(x, h, ĥ, h̃,H
1/2
w,xx̂, H

−1/2
w,x ŝ, βx, βs, β̂x, β̂s, β̃x, β̃s, δapx/q) ▷ Algorithm 17

13: x̃← x, s̃← s
14: exact← exact
15: end procedure
16: procedure UPDATE(δx ∈ Rntot , δh ∈ Rntot , δĥ ∈ Rntot×k, δh̃ ∈ Rntot×m, δ

H
1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

∈ Rntot)

17: bs.UPDATE(δx, δh, δĥ, δh̃, δH1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

) ▷ Algorithm 17

18: ℓ← ℓ+ 1
19: end procedure
20: procedure MOVEANDQUERY(βx, βs ∈ R, β̂x, β̂s ∈ Rd, β̃x, β̃s ∈ Rm)
21: bs.MOVE(βx, βs, β̂x, β̂s, β̃x, β̃s) ▷ Algorithm 17. Do not update ℓ yet
22: δx̃ ← QUERYx(ϵapx,x/(2 log q + 1)) ▷ Algorithm 16
23: δs̃ ← QUERYs(ϵapx,s/(2 log q + 1)) ▷ Algorithm 16
24: x̃← x̃+ δx̃, s̃← s̃+ δs̃
25: return (δx̃, δs̃)
26: end procedure
27: procedure QUERYx(ϵ ∈ R)
28: Same as Algorithm 5, QUERYx.
29: end procedure
30: procedure QUERYs(ϵ ∈ R)
31: Same as Algorithm 5, QUERYs.
32: end procedure
33: end data structure

Theorem E.6. Given parameters ϵapx,x, ϵapx,s ∈ (0, 1), δapx ∈ (0, 1), ζx, ζs ∈ R such that

∥H1/2

w,x(ℓ)x
(ℓ) −H

1/2

w,x(ℓ)x
(ℓ+1)∥2 ≤ ζx, ∥H−1/2

w,x(ℓ)s
(ℓ) −H

−1/2

w,x(ℓ)s
(ℓ+1)∥2 ≤ ζs

for all ℓ ∈ {0, . . . , q − 1}, data structure APPROXDS (Algorithm 16) supports the following
operations:

• INITIALIZE(x, s ∈ Rntot , h ∈ Rntot , ĥ ∈ Rntot×k, h̃ ∈
Rntot×m, H

1/2
w,xx̂, H

−1/2
w,x ŝ ∈ Rntot , βx, βs ∈ R, β̂x, β̂s ∈ Rk, β̃x, β̃s ∈ Rm, q ∈

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

N, EXACTDS* exact, ϵapx,x, ϵapx,s, δapx ∈ R): Initialize the data structure in
Õ(n(k +m)) time.

• MOVEANDQUERY(βx, βs ∈ R, β̂x, β̂s ∈ Rd, β̃x, β̃s ∈ Rm): Update values of
βx, βs, β̂x, β̂s, β̃x, β̃s by calling BATCHSKETCH.MOVE. This effectively moves (x(ℓ), s(ℓ))

to (x(ℓ+1), s(ℓ+1)) while keeping x(ℓ) unchanged.

Then return two sets L(ℓ)
x , L

(ℓ)
s ⊂ [n] where

L(ℓ)
x ⊇ {i ∈ [n] : ∥H1/2

w,x(ℓ)x
(ℓ)
i −H

1/2

w,x(ℓ)x
(ℓ+1)
i ∥2 ≥ ϵapx,x},

L(ℓ)
s ⊇ {i ∈ [n] : ∥H−1/2

w,x(ℓ)s
(ℓ)
i −H

−1/2

w,x(ℓ)s
(ℓ+1)
i ∥2 ≥ ϵapx,s},

satisfying ∑
0≤ℓ≤q−1

|L(ℓ)
x | = Õ(ϵ−2

apx,xζ
2
xq

2),

∑
0≤ℓ≤q−1

|L(ℓ)
s | = Õ(ϵ−2

apx,sζ
2
s q

2).

For every query, with probability at least 1− δapx/q, the return values are correct.

Furthermore, total time cost over all queries is at most

Õ
(
(ϵ−2

apx,xζ
2
x + ϵ−2

apx,sζ
2
s)q

2(k +m)
)
.

• UPDATE(δx ∈ Rntot , δh ∈ Rntot , δĥ ∈ Rntot×d, δh̃ ∈ Rntot×m, δ
H

1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

∈ Rntot):

Update sketches of H1/2

w,x(ℓ)x
(ℓ+1) and H

−1/2

w,x(ℓ)s
(ℓ+1) by calling BATCHSKETCH.UPDATE.

This effectively moves x(ℓ) to x(ℓ+1) while keeping (x(ℓ+1), s(ℓ+1)) unchanged. Then ad-
vance timestamp ℓ.

Each update costs

Õ(∥δh∥0 + nnz(δĥ) + nnz(δh̃) + ∥H
1/2
w,xx̂∥0 + ∥H

−1/2
w,x ŝ∥0)

time.

Proof. The proof is essentially the same as proof of (Gu & Song, 2022, Theorem 4.18). For the
running time claims, we plug in Theorem E.7 when necessary.

E.3.3 BATCHSKETCH

In this section we present the data structure BATCHSKETCH. It maintains a sketch of H1/2
x x and

H
−1/2
x s. It is a variation of BATCHSKETCH in Gu & Song (2022).

Theorem E.7. Data structure BATCHSKETCH (Algorithm 17, 18) supports the following operations:

• INITIALIZE(x ∈ Rntot , h ∈ Rntot , ĥ ∈ Rntot×k, h̃ ∈ Rntot×m, H
1/2
w,xx̂, H

−1/2
w,x ŝ ∈

Rntot , βx, βs ∈ R, β̂x, β̂s ∈ Rk, β̃x, β̃s ∈ Rm, δapx ∈ R): Initialize the data structure
in Õ(n(k +m)) time.

• MOVE(βx, βs ∈ R, β̂x, β̂s ∈ Rk, β̃x, β̃s ∈ Rm): Update values of βx, βs, β̂x, β̂s, β̃x, β̃s in
O(k + m) time. This effectively moves (x(ℓ), s(ℓ)) to (x(ℓ+1), s(ℓ+1)) while keeping x(ℓ)

unchanged.

• UPDATE(δx ∈ Rntot , δh ∈ Rntot , δĥ ∈ Rntot×k, δh̃ ∈ Rntot×m, δ
H

1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

∈ Rntot):

Update sketches of H1/2

w,x(ℓ)x
(ℓ+1) and H

−1/2

w,x(ℓ)s
(ℓ+1). This effectively moves x(ℓ) to x(ℓ+1)

while keeping (x(ℓ+1), s(ℓ+1)) unchanged. Then advance timestamp ℓ.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Algorithm 17 This is used by Algorithm 16.

1: data structure BATCHSKETCH ▷ Theorem E.7
2: members
3: Φ ∈ Rr×ntot ▷ All sketches need to share the same sketching matrix
4: S, χ partition tree
5: ℓ ∈ N ▷ Current timestamp
6: VECTORSKETCH sketchH

1/2
w,xx̂, sketchH−1/2

w,x ŝ, sketchh, sketchĥ, sketchh̃ ▷ Algorithm 9

7: βx, βs ∈ R, β̂x, β̂s ∈ Rd, β̃x, β̃s ∈ Rm

8: (history[t])t≥0 ▷ Snapshot of data at timestamp t. See Remark D.9.
9: end members

10: procedure INITIALIZE(x ∈ Rntot , h ∈ Rntot , ĥ ∈ Rntot×k, h̃ ∈ Rntot×m, H
1/2
w,xx̂, H

−1/2
w,x ŝ ∈

Rntot , βx, βs ∈ R, β̂x, β̂s ∈ Rd, β̃x, β̃s ∈ Rm, δapx ∈ R)
11: Construct any valid partition tree (S, χ)
12: r ← Θ(log3(ntot) log(1/δapx))
13: Initialize Φ ∈ Rr×ntot with iid N (0, 1

r)

14: βx ← βx, βs ← βs, β̂x ← β̂x, β̂s ← β̂s, β̃x ← β̃x, β̃s ← β̃s

15: sketchH
1/2
w,xx̂.INITIALIZE(S, χ,Φ, H1/2

w,xx̂) ▷ Algorithm 9

16: sketchH
−1/2
w,x ŝ.INITIALIZE(S, χ,Φ, H−1/2

w,x ŝ) ▷ Algorithm 9
17: sketchh.INITIALIZE(S, χ,Φ, h) ▷ Algorithm 9
18: sketchĥ.INITIALIZE(S, χ,Φ, ĥ) ▷ Algorithm 9. Here we construct one sketch for ĥ∗,i for

every i ∈ [k].
19: sketchh̃.INITIALIZE(S, χ,Φ, h̃) ▷ Algorithm 9. Here we construct one sketch for h̃∗,i for

every i ∈ [m].
20: ℓ← 0
21: Make snapshot history[ℓ] ▷ Remark D.9
22: end procedure
23: procedure MOVE(βx, βs ∈ R, β̂x, β̂s ∈ Rk, β̃x, β̃s ∈ Rm)
24: βx ← βx, βs ← βs, β̂x ← β̂x, β̂s ← β̂s, β̃x ← β̃x, β̃s ← β̃s ▷ Do not update ℓ yet
25: end procedure
26: procedure UPDATE(δx ∈ Rntot , δh ∈ Rntot , δĥ ∈ Rntot×k, δh̃ ∈ Rntot×m, δ

H
1/2
w,xx̂

, δ
H

−1/2
w,x ŝ

∈
Rntot)

27: sketchH
1/2
w,xx̂.UPDATE(δ

H
1/2
w,xx̂

) ▷ Algorithm 9

28: sketchH
−1/2
w,x ŝ.UPDATE(δ

H
−1/2
w,x ŝ

) ▷ Algorithm 9

29: sketchh.UPDATE(δh) ▷ Algorithm 9
30: sketchĥ.UPDATE(δĥ) ▷ Algorithm 9
31: sketchh̃.UPDATE(δh̃) ▷ Algorithm 9
32: ℓ← ℓ+ 1
33: Make snapshot history[ℓ] ▷ Remark D.9
34: end procedure
35: end data structure

Each update costs

Õ(∥δh∥0 + nnz(δĥ) + nnz(δh̃) + ∥H
1/2
w,xx̂∥0 + ∥H

−1/2
w,x ŝ∥0).

• QUERYx(ℓ′ ∈ N, ϵ ∈ R): Given timestamp ℓ′, return a set S ⊆ [n] where

S ⊇ {i ∈ [n] : ∥H1/2

w,x(ℓ′)x
(ℓ′)
i −H

1/2

w,x(ℓ)x
(ℓ+1)
i ∥2 ≥ ϵ},

and

|S| = O(ϵ−2(ℓ− ℓ′ + 1)
∑

ℓ′≤t≤ℓ

∥H1/2

w,x(t)x
(t) −H

1/2

w,x(t)x
(t+1)∥22 +

∑
ℓ′≤t≤ℓ−1

∥x(t) − x(t+1)∥2,0)

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Algorithm 18 BATCHSKETCH Algorithm 17 continued. This is used by Algorithm 16.

1: data structure BATCHSKETCH ▷ Theorem E.7
2: private:
3: procedure QUERYxSKETCH(v ∈ S) ▷ Return the value of Φχ(v)(H

1/2
w,xx)χ(v)

4: return sketchH
1/2
w,xx̂.QUERY(v) + sketchh.QUERY(v) · βx + sketchĥ.QUERY(v) · β̂x +

sketchh̃.QUERY(v) · β̃x ▷ Algorithm 9
5: end procedure
6: procedure QUERYsSKETCH(v ∈ S) ▷ Return the value of Φχ(v)(H

−1/2
w,x s)χ(v)

7: return sketchH
−1/2
w,x ŝ.QUERY(v) + sketchh.QUERY(v) · βs + sketchĥ.QUERY(v) · β̂s +

sketchh̃.QUERY(v) · β̃s ▷ Algorithm 9
8: end procedure
9: public:

10: procedure QUERYx(ℓ′ ∈ N, ϵ ∈ R)
11: Same as Algorithm 7, QUERYx, using QUERYxSKETCH defined here instead of the one in

Algorithm 7.
12: end procedure
13: procedure QUERYs(ℓ′ ∈ N, ϵ ∈ R)
14: Same as Algorithm 7, QUERYs, using QUERYsSKETCH defined here instead of the one in

Algorithm 7.
15: end procedure
16: end structure

where ℓ is the current timestamp.

For every query, with probability at least 1− δ, the return values are correct, and costs at
most

Õ((k +m) · (ϵ−2(ℓ− ℓ′ + 1)
∑

ℓ′≤t≤ℓ

∥H1/2

x(t)x
(t) −H

1/2

x(t)x
(t+1)∥22 +

∑
ℓ′≤t≤ℓ−1

∥x(t) − x(t+1)∥2,0))

running time.

• QUERYs(ℓ′ ∈ N, ϵ ∈ R): Given timestamp ℓ′, return a set S ⊆ [n] where

S ⊇ {i ∈ [n] : ∥H−1/2

w,x(ℓ′)s
(ℓ′)
i −H

−1/2

w,x(ℓ)s
(ℓ+1)
i ∥2 ≥ ϵ}

and

|S| = O(ϵ−2(ℓ− ℓ′ + 1)
∑

ℓ′≤t≤ℓ

∥H−1/2

w,x(t)s
(t) −H

−1/2

w,x(t)s
(t+1)∥22 +

∑
ℓ′≤t≤ℓ−1

∥x(t) − x(t+1)∥2,0)

where ℓ is the current timestamp.

For every query, with probability at least 1− δ, the return values are correct, and costs at
most

Õ((k +m) · (ϵ−2(ℓ− ℓ′ + 1)
∑

ℓ′≤t≤ℓ

∥H1/2

x(t)s
(t) −H

1/2

x(t)x
(t+1)∥22 +

∑
ℓ′≤t≤ℓ−1

∥x(t) − x(t+1)∥2,0))

running time.

Proof. The proof is essentially the same as proof of (Gu & Song, 2022, Theorem 4.21).

E.4 ANALYSIS OF CENTRALPATHMAINTENANCE

Lemma E.8 (Correctness of CENTRALPATHMAINTENANCE). Algorithm 13 implicitly maintains
the primal-dual solution pair (x, s) via representation Eq. (12)(13). It also explicitly maintains
(x, s) ∈ Rntot × Rntot such that ∥xi − xi∥xi ≤ ϵ and ∥si − si∥∗xi

≤ tϵwi for all i ∈ [n] with
probability at least 0.9.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Proof. Same as proof of Lemma D.13.

Lemma E.9. We bound the running time of CENTRALPATHMAINTENANCE as following.

• CENTRALPATHMAINTENANCE.INITIALIZE takes Õ(n(kω−1 +mω−1)) time.

• If CENTRALPATHMAINTENANCE.MULTIPLYANDMOVE is called N times, then it has
total running time

Õ((Nn−1/2 + log(tmax/tmin)) · n(k +m)(ω+1)/2).

• CENTRALPATHMAINTENANCE.OUTPUT takes Õ(n(k +m)) time.

Proof. INITIALIZE part: By Theorem E.3 and E.6.

OUTPUT part: By Theorem E.3.

MULTIPLYANDMOVE part: Between two restarts, the total size of |Lx| returned by approx.QUERY

is bounded by Õ(q2ζ2x/ϵ
2
apx,x) by Theorem E.6. By plugging in ζx = 2α, ϵapx,x = ϵ, we have∑

ℓ∈[q] |L
(ℓ)
x | = Õ(q2). Similarly, for s we have

∑
ℓ∈[q] |L

(ℓ)
s | = Õ(q2).

Update time: By Theorem E.3 and E.6, in a sequence of q updates, total cost for update is Õ(q2(k2+

m2)). So the amortized update cost per iteration is Õ(q(k2 +m2)). The total update cost is

number of iterations · time per iteration = Õ(Nq(k2 +m2)).

Init/restart time: We restart the data structure whenever K > q or |t − t| > tϵt, so there are
O(N/q + log(tmax/tmin)ϵ

−1
t) restarts in total. By Theorem E.3 and E.6, time cost per restart is

Õ(n(kω−1 +mω−1)). So the total initialization time is

number of restarts · time per restart = Õ((N/q + log(tmax/tmin)ϵ
−1
t) · n(kω−1 +mω−1)).

Combine everything: Overall running time is

Õ(Nq(k2 +m2) + (N/q + log(tmax/tmin)ϵ
−1
t) · n(kω−1 +mω−1)).

Taking ϵt =
1
2ϵ, the optimal choice for q is

q = n1/2(k2 +m2)−1/2(kω−1 +mω−1)1/2,

achieving overall running time

Õ((Nn−1/2 + log(tmax/tmin)) · n(k2 +m2)1/2(kω−1 +mω−1)1/2)

= Õ((Nn−1/2 + log(tmax/tmin)) · n(k +m)(ω+1)/2).

Proof of Theorem E.2. Combining Lemma E.8 and E.9.

E.5 PROOF OF MAIN STATEMENT

Proof of Theorem E.1. Use CENTRALPATHMAINTENANCE (Algorithm 13) as the maintenance data
structure in Algorithm 20. Combining Theorem E.2 and Theorem F.1 finishes the proof.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

F ROBUST IPM ANALYSIS

In this section we present a robust IPM algorithm for quadratic programming. The algorithm is a
modification of previous robust IPM algorithms for linear programming Lee et al. (2019); Lee &
Vempala (2021).

Convention: Variables are in n blocks of dimension ni (i ∈ [n]). Total dimension is ntot =
∑

i∈[n] ni.
We write x = (x1, . . . , xn) ∈ Rntot where xi ∈ Rni . We consider programs of the following form:

min
x∈Rn

1

2
x⊤Qx+ c⊤x (16)

s.t. Ax = b

xi ∈ Ki ∀i ∈ [n]

where Q ∈ Sntot , c ∈ Rntot , A ∈ Rm×ntot , b ∈ Rm, Ki ⊂ Rni is a convex set. Let K =
∏

i∈[n]Ki.

Theorem F.1. Consider the convex program (16). Let ϕi : Ki → R be a νi-self-concordant barrier
for all i ∈ [n]. Suppose the program satisfies the following properties:

• Inner radius r: There exists z ∈ Rntot such that Az = b and B(z, r) ∈ K.

• Outer radius R: K ⊆ B(0, R) where 0 ∈ Rntot .

• Lipschitz constant L: ∥Q∥2→2 ≤ L, ∥c∥2 ≤ L.

Let (wi)i∈[n] ∈ Rn
≥1 and κ =

∑
i∈[n] wiνi. For any 0 < ϵ ≤ 1

2 , Algorithm 19 outputs an approximate
solution x in O(

√
κ log n log nκR

ϵr) steps, satisfying

1

2
x⊤Qx+ c⊤x ≤ min

Ax=b,x∈K

(
1

2
x⊤Qx+ c⊤x

)
+ ϵLR(R+ 1),

∥Ax− b∥1 ≤ 3ϵ(R∥A∥1 + ∥b∥1),
x ∈ K.

Algorithm 19 Our main algorithm

1: procedure ROBUSTQPIPM(Q ∈ Sntot , c ∈ Rntot , A ∈ Rm×ntot , b ∈ Rm, (ϕi : Ki →
R)i∈[n], w ∈ Rn)

2: /* Initial point reduction */
3: ρ← LR(R+ 1), x(0) ← argminx

∑
i∈[n] wiϕi(xi), s(0) ← ϵρ(c+Qx(0))

4: x←
[
x(0)

1

]
, s←

[
s(0)

1

]
, Q←

[
ϵρQ 0
0 0

]
, A←

[
A | b−Ax(0)

]
5: w ←

[
w
1

]
, ϕi = ϕi∀i ∈ [n], ϕn+1(x) := − log x− log(2− x)

6: (x, s)← CENTERING(Q,A, (ϕi)i∈[n+1], w, x, s, tstart = 1, tend = ϵ2

4κ)
7: return (x1:n, s1:n)
8: end procedure

F.1 PRELIMINARIES

Previous works on linear programming (e.g. Lee et al. (2019), Lee & Vempala (2021)) use the
following path:

s/t+∇ϕw(x) = µ,

Ax = b,

A⊤y + s = c

where ϕw(x) :=
∑n

i=1 wiϕi(xi).

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Algorithm 20 Subroutine used by Algorithm 19

1: procedure CENTERING(Q ∈ Sntot , A ∈ Rm×ntot , (ϕi : Ki → R)i∈[n], w ∈ Rn, x ∈
Rntot , s ∈ Rntot , tstart ∈ R>0, tend ∈ R>0)

2: /* Parameters */
3: λ = 64 log(256n

∑
i∈[n] wi), ϵ = 1

1440λ, α = ϵ
2

4: ϵt =
ϵ
4 (mini∈[n]

wi

wi+νi
), h = α

64
√
κ

5: /* Definitions */
6: ϕw(x) :=

∑
i∈[n] wiϕi(xi)

7: µi(x, s, t) := s/t+ wi∇ϕi(xi), ∀i ∈ [n] ▷ Eq. (17)
8: γi(x, s, t)← ∥µt

i(x, s)∥∗xi
, ∀i ∈ [n] ▷ Eq. (18)

9: ci(x, s, t) :=
sinh(λ

wi
γi(x,s,t))

γi(x,s,t)
√∑

j∈[n] w
−1
j cosh2(λ

wj
γj(x,s,t))

, ∀i ∈ [n] ▷ Eq. (22)

10: Hw,x := ∇2ϕw(x) ▷ Eq. (24)
11: Bw,x,t := Q+ tHw,x ▷ Eq. (25)
12: Pw,x,t := B

−1/2
w,x,tA

⊤(AB−1
w,x,tA

⊤)−1AB
−1/2
w,x,t ▷ Eq. (26)

13: /* Main loop */
14: t← t← tstart, x← x, s← s
15: while t > tend do
16: Maintain x, s, t such that ∥xi − xi∥xi

≤ ϵ, ∥si − si∥∗xi
≤ tϵwi and |t− t| ≤ ϵtt

17: δµ,i ← −α · ci(x, s, t) · µi(x, s, t), ∀i ∈ [n] ▷ Eq. (21)
18: Pick δx and δs such that Aδx = 0, δs −Qδx ∈ Range(A⊤) and

∥δx − tB
−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ∥w,x ≤ ϵα,

∥t−1
δs − (δµ − tHw,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ)∥∗w,x ≤ ϵα.

19: t← max{(1− h)t, tend}, x← x+ δx, s← s+ δs
20: end while
21: return (x, s)
22: end procedure

For quadratic programming, we modify the above central path as following:

s/t+∇ϕw(x) = µ,

Ax = b,

−Qx+A⊤y + s = c.

We make the following definitions.

Definition F.2. For each i ∈ [n], we define the i-th coordinate error

µi(x, s, t) :=
si
t
+ wi∇ϕi(xi) (17)

We define µi’s norm as

γi(x, s, t) := ∥µi(x, s, t)∥∗xi
. (18)

We define the soft-max function by

Ψλ(r) :=

m∑
i=1

cosh(λ
ri
wi

) (19)

for some λ > 0 and the potential function is the soft-max of the norm of the error of each coordinate

Φ(x, s, t) = Ψλ(γ(x, s, t)) (20)

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

We choose the step direction δµ as

δµ,i := −α · ci(x, s, t) · µi(x, s, t) (21)

where

ci(x, s, t) :=
sinh(λ

wi
γi(x, s, t))

γi(x, s, t)
√∑

j∈[n] w
−1
j cosh2(λ

wj
γj(x, s, t))

(22)

We define induced norms as following. Note that we include the weight vector w in the subscript to
avoid confusion.
Definition F.3. For each block Ki, we define

∥v∥xi := ∥v∥∇2ϕi(xi),

∥v∥∗xi
:= ∥v∥(∇2ϕi(xi))−1

for v ∈ Rni .

For the whole domain K =
∏n

i=1Ki, we define

∥v∥w,x := ∥v∥∇2ϕw(x) = (

n∑
i=1

wi∥vi∥2xi
)1/2,

∥v∥∗w,x := ∥v∥(∇2ϕw(x))−1 = (

n∑
i=1

w−1
i (∥vi∥∗xi

)2)1/2

for v ∈ Rntot .

The Hessian matrices of the barrier functions appear a lot in the computation.
Definition F.4. We define matrices Hx,i ∈ Rni×ni and Hw,x ∈ Rntot×ntot as

Hx,i := ∇2ϕi(xi), (23)

Hw,x := ∇2ϕw(x). (24)

From the definition, we see that

Hw,x,(i,i) = wiHx,i.

The following equations are immediate from definition.
Claim F.5. Let Hw,x ∈ Rntot×ntot be defined as Definition F.4. For v ∈ Rntot , we have

∥v∥w,x = ∥H1/2
w,xv∥2,

∥v∥∗w,x = ∥H−1/2
w,x v∥2.

Claim F.6. For each i ∈ [n], let Hx,i be defined as Definition F.4. For v ∈ Rni , i ∈ [n], we have

∥v∥xi
= ∥H1/2

x,i v∥2,

∥v∥∗xi
= ∥H−1/2

x,i v∥2.

We define matrices B and P used in the algorithm.
Definition F.7. Let A,Q denote two fixed matrices. Let Hw,x ∈ Rntot×ntot be defined as Defini-
tion F.4. We define matrix Bw,x,t ∈ Rntot×ntot as

Bw,x,t := Q+ t ·Hw,x (25)

We define projection matrix Pw,x,t ∈ Rntot×ntot as

Pw,x,t ← B
−1/2
w,x,tA

⊤(AB−1
w,x,tA

⊤)−1AB
−1/2
w,x,t . (26)

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

F.2 DERIVING THE CENTRAL PATH STEP

In this section we explain how to derive the central path step.

We follow the central path

s/t+∇ϕw(x) = µ

Ax = b

−Qx+A⊤y + s = c

We perform gradient descent on µ with step δµ. Then Newton step gives

1

t
δs +∇2ϕw(x)δx = δµ (27)

Aδx = 0 (28)

−Qδx +A⊤δy + δs = 0 (29)

where δx (resp. δy , δs) is the step taken by x (resp. y, s).

For simplicity, we define H ∈ Rntot×ntot to represent∇2ϕw(x).8

From Eq. (27) we get

δs = tδµ − tHδx. (30)

Plug the above equation into Eq. (29) we get

−Qδx +A⊤δy + tδµ − tHδx = 0. (31)

Let B = Q+ tH , multiply by AB−1 we get

−Aδx +AB−1A⊤δy + tAB−1δµ = 0.

Using Eq. (28) we get

AB−1A⊤δy + tAB−1δµ = 0.

Solve for δy (assuming that AB−1A is invertible), we get

δy = −t(AB−1A⊤)−1AB−1δµ.

Plug into Eq. (31) we get

−Bδx − tA⊤(AB−1A⊤)−1AB−1δµ + tδµ = 0.

Solve for δx we get

δx = tB−1δµ − tB−1A⊤(AB−1A⊤)−1AB−1δµ

= tB−1/2(I − P)B−1/2δµ

where P = B−1/2A⊤(AB−1A⊤)−1AB−1/2 is the projection matrix. Solve for δs in Eq. (30) we
get

δs = tδµ − t2HB−1/2(I − P)B−1/2δµ.

In summary, we have

δx = tB−1/2(I − P)B−1/2δµ,

δy = −t(AB−1A⊤)−1AB−1δµ,

δs = tδµ − t2HB−1/2(I − P)B−1/2δµ,

P = B−1/2A⊤(AB−1A⊤)−1AB−1/2.

These equations will guide the design of our actual algorithm.
8In this section, and in this section only, we omit the subscript in H , B, P for simplicity.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

F.3 BOUNDING MOVEMENT OF POTENTIAL FUNCTION

The goal of this section is to bound the movement of potential function during the robust IPM
algorithm.

In robust IPM, we do not need to follow the ideal central path exactly over the entire algorithm.
Instead, we only use an approximate version. For convenience of analysis we state two assumptions
(see Algorithm 20, Line 18).
Assumption F.8. We make the following assumptions on δx ∈ Rntot and δs ∈ Rntot .

∥δx − tB
−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ∥w,x ≤ ϵα,

∥t−1
δs − (δµ − tHw,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ)∥∗w,x ≤ ϵα.

The following lemma bounds the movement of potential function Ψ assuming bound on δγ .
Lemma F.9 ((Ye, 2020, Lemma A.5)). For any r ∈ Rntot , and w ∈ Rntot

≥1 . Let α and λ denote the
parameters that are satisfying 0 ≤ α ≤ 1

8λ .

Let ϵr ∈ Rntot denote a vector satisfying

(

n∑
i=1

w−1
i ϵ2r,i)

1/2 ≤ α/8.

Suppose that vector r ∈ Rntot is satisfying the following property

|ri − ri| ≤
wi

8λ
, ∀i ∈ [n]

We define vector δr ∈ Rntot as follows:

δr,i :=
−α · sinh(λ

wi
ri)√∑n

j=1 w
−1
j cosh2(λ

wj
rj)

+ ϵr,i.

Then, we have that

Ψλ(r + δr) ≤ Ψλ(r)−
αλ

2
(

n∑
i=1

w−1
i cosh2(λ

ri
wi

))1/2 + αλ(

n∑
i=1

w−1
i)1/2

The following lemma bounds the norm of δµ.
Lemma F.10 (Bounding norm of δµ).

∥δµ(x, s, t)∥∗w,x ≤ α.

Proof.

(∥δµ(x, s, t)∥∗w,x)
2 =

n∑
i=1

w−1
i (∥δµ,i(x, s, t)∥∗xi

)2

= α2
∑
i∈[n]

w−1
i c2i (x, s, t) · ∥µi(x, s, t)∥2xi

= α2
∑
i∈[n]

w−1
i c2i (x, s, t) · ∥H

−1/2
x,i µi(x, s, t)∥22

= α2
∑
i∈[n]

w−1
i c2i (x, s, t) · γ2

i (x, s, t)

= α2
∑
i∈[n]

w−1
i sinh2(λ

wi
γi(x, s, t))

γ2
i (x, s, t) ·

∑
j∈[n] w

−1
j cosh2(λ

wj
γj(x, s, t))

· γ2
i (x, s, t)

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

= α2

∑
j∈[n] w

−1
j sinh2(λ

wj
γj(x, s, t))∑

j∈[n] w
−1
j cosh2(λ

wj
γj(x, s, t))

≤ α2.

where the first step follows from Definition F.3, the second step follows from δµ,i(x, s, t) = −α ·
ci(x, s, t)·µi(x, s, t), the third step follows from norm of xi (see Definition F.3), the forth step follows
from γi(x, s, t) = ∥H−1/2

x,i µi(x, s, t)∥2 (see Eq. (18)), the fifth step follows from ci(x, s, t)
2 =

sinh2(λ
wi

γi(x,s,t))

γ2
i (x,s,t)

∑
j∈[n] w

−1
j cosh2(λ

wj
γj(x,s,t))

(see Eq. (22)), the sixth step follows from canceling the term

γ2
i (x, s, t), and the last step follows from cosh2(x) ≥ sinh2(x) for all x.

The following lemma bounds the norm of δx and δs.
Lemma F.11. For each i ∈ [n], we define αi := ∥δx,i∥xi . Then, we have

∥δx∥w,x = (
∑
i∈[n]

wiα
2
i)

1/2 ≤ 9

8
α. (32)

In particular, we have αi ≤ 9
8α. Similarly, for δs, we have

∥δs∥∗w,x =

√∑
i∈[n]

w−1
i (∥δs,i∥∗xi

)2 ≤ 17

8
α · t. (33)

Proof. For δx, we have

∥δx∥w,x ≤ ∥tH1/2
w,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ∥2 + ϵα

≤ ∥t1/2(I − Pw,x,t)B
−1/2

w,x,t
δµ∥2 + ϵα

≤ ∥t1/2B−1/2

w,x,t
δµ∥2 + ϵα

≤ ∥H−1/2
w,x δµ∥2 + ϵα

≤ α+ ϵα

≤ 9

8
α.

First step follows from Assumption F.8. Second step is because tHw,x ⪯ Bw,x,t. Third step is
because Pw,x,t is a projection matrix. Fourth step is because tHw,x ⪯ Bw,x,t. Fifth step is by
Lemma F.10. Sixth step is because ϵ ≤ 1

8 .

For δs, we have

∥δs∥∗w,x ≤ ∥tδµ∥∗w,x + ∥t2Hw,xB
−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ∥∗w,x + ϵαt

≤ αt+ αt+ ϵαt

≤ 17

8
α · t.

First step is by triangle inequality and the assumption that

δs ≈ tδµ − t
2
Hw,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ.

Second step is by same analysis as the analysis for δx. Third step is by t ≤ 33
32 t and ϵ ≤ 1

32 .

The following lemma shows that µnew is close to µ+ δµ under an approximate step.
Lemma F.12 (Variation of (Ye, 2020, Lemma A.9)). For each i ∈ [n], we define

βi := ∥ϵµ,i∥∗xi

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

For each i ∈ [n], let
µi(x

new, snew, t) = µi(x, s, t) + δµ,i + ϵµ,i.

Then, we have

(

n∑
i=1

w−1
i β2

i)
1/2 ≤ 15ϵα.

Proof. The proof is similar as (Ye, 2020, Lemma A.9), except for changing the definitions of ϵ1 and
ϵ2:

ϵ1 := H
1/2
w,xδx − t ·H1/2

w,xB
−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ,

ϵ2 := t
−1

H
−1/2
w,x δs −H

−1/2
w,x (δµ − tHw,xB

−1/2

w,x,t
(I − Pw,x,t)B

−1/2

w,x,t
δµ).

One key step in the proof of Ye (2020) is the following property:

δµ,i = t
−1 · δs,i +Hw,xδx,i −H

1/2
w,x(ϵ1 + ϵ2).

Under our new definition of ϵ1 and ϵ2, the above property still holds. Remaining parts of the proof
are similar and we omit the details here.

The following lemma shows that error µ(x, s, t) on the robust central path is close to error µ(x, s, t)
on the ideal central path. Furthermore, norms of errors γi(x, s, t) and γi(x, s, t) are also close to
each other.
Lemma F.13 ((Ye, 2020, Lemma A.10)). Assume that γi(x, s, t) ≤ wi for all i. For all i ∈ [n], we
have

∥µi(x, s, t)− µi(x, s, t)∥∗xi
≤ 3ϵwi.

Furthermore, we have that
|γi(x, s, t)− γi(x, s, t)| ≤ 5ϵwi.

Proof. Same as proof of (Ye, 2020, Lemma A.10).

The following lemma bounds the change of γ under one robust IPM step.
Lemma F.14 ((Ye, 2020, Lemma A.12)). Assume Φ(x, s, t) ≤ cosh(λ). For all i ∈ [n], we define

ϵr,i := γi(x
new, snew)− γi(x, s, t) + α · ci(x, s, t) · γi(x, s, t).

Then, we have

(

n∑
i=1

w−1
i ϵ2r,i)

1/2 ≤ 90 · ϵ · λα+ 4 ·max
i∈[n]

(w−1
i γi(x, s, t)) · α.

Proof. The proof is similar to the proof of (Ye, 2020, Lemma A.12). By replacing corresponding
references in Ye (2020) by our versions (Lemma F.11, F.12, F.13) we get proof of this lemma.

Finally, the following theorem bounds the movement of potential function Φ under one robust IPM
step.
Theorem F.15 (Variation of (Ye, 2020, Theorem A.15)). Assume Φ(x, s, t) ≤ cosh(λ/64). Then for
any 0 ≤ h ≤ α

64
√∑

i∈[n] wiνi
, we have

Φ(xnew, snew, tnew) ≤ (1− αλ√∑
i∈[n] wi

) · Φ(x, s, t) + αλ

√∑
i∈[n]

w−1
i .

In particular, for any cosh(λ/128) ≤ Φ(x, s, t) ≤ cosh(λ/64), we have that
Φ(xnew, snew, tnew) ≤ Φ(x, s, t).

Proof. Similar to the proof of (Ye, 2020, Theorem A.15), but replacing lemmas with the correspond-
ing QP versions.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

F.4 INITIAL POINT REDUCTION

In this section, we propose an initial point reduction scheme for quadratic programming. Our scheme
is closer to Lee et al. (2019) rather than Ye (2020); Lee & Vempala (2021). The reason is that Lee
& Vempala (2021)’s initial point reduction requires an efficient algorithm for finding the optimal
solution to an unconstrained program, which may be difficult in quadratic programming.
Lemma F.16 ((Nesterov, 1998, Theorem 4.1.7 and Lemma 4.2.4)). Let ϕ be a ν-self-concordant
barrier. Then for any x, y ∈ dom(ϕ), we have

⟨∇ϕ(x), y − x⟩ ≤ ν,

⟨∇ϕ(y)−∇ϕ(x), y − x⟩ ≥ ∥y − x∥2x
1 + ∥y − x∥x

.

Let x∗ = argminx ϕ(x). For any x ∈ Rn such that ∥x− x∗∥x∗ ≤ 1, we have that x ∈ dom(ϕ).
Lemma F.17 (QP version of (Lee et al., 2019, Lemma D.2)). Work under the setting of Theorem F.1.
Let x(0) = argminx

∑
i∈[n] wiϕi(xi). Let ρ = 1

LR(R+1) . For any 0 < ϵ ≤ 1
2 , the modified program

min
Ax=b,x∈K×R≥0

(
1

2
x⊤Qx+ c⊤x

)
with

Q =

[
ϵρQ 0
0 0

]
, A = [A | b−Ax(0)], b = b, c =

[
ϵρc
1

]
satisfies the following:

• x =

[
x(0)

1

]
, y = 0 ∈ Rm and s =

[
ϵρ(c+Qx(0))

1

]
are feasible primal dual vectors with

∥s+∇ϕw(x)∥∗x ≤ ϵ where ϕw(x) =
∑n

i=1 wiϕi(xi)− log(xn+1).

• For any x ∈ K × R≥0 satisfying Ax = b and

1

2
x⊤Qx+ c⊤x ≤ min

Ax=b,x∈K×R≥0

(
1

2
x⊤Qx+ c⊤x

)
+ ϵ2, (34)

the vector x1:n (x1:n is the first n coordinates of x) is an approximate solution to the
original convex program in the following sense:

1

2
x⊤
1:nQx1:n + c⊤x1:n ≤ min

Ax=b,x∈K

(
1

2
x⊤Qx+ c⊤x

)
+ ϵρ−1,

∥Ax1:n − b∥1 ≤ 3ϵ · (R∥A∥1 + ∥b∥1),
x1:n ∈ K.

Proof. First bullet point: Direct computation shows that (x, y, s) is feasible.

Let us compute ∥s+∇ϕw(x)∥∗x. We have

∥s+∇ϕw(x)∥∗x = ∥ϵρ(c+Qx(0))∥∇2ϕw(x(0))−1

Lemma F.16 says that for all x ∈ Rn with ∥x − x(0)∥w,x(0) ≤ 1, we have x ∈ K, because
x(0) = argminx ϕw(x). Therefore for any v such that v⊤∇2ϕw(x

(0))v ≤ 1, we have x(0) ± v ∈ K
and hence ∥x(0) ± v∥2 ≤ R. This implies ∥v∥2 ≤ R for any v⊤∇2ϕw(x

(0))v ≤ 1. Hence
(∇2ϕw(x

(0)))−1 ⪯ R2 · I . So we have

∥s+∇ϕw(x)∥∗x = ∥ϵρ(c+Qx(0))∥∇2ϕw(x(0))−1

≤ ϵρR∥c+Qx(0)∥2
≤ ϵρR(∥c∥2 + ∥Q∥2→2∥x(0)∥2)

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

≤ ϵρR(L+ LR)

≤ ϵ.

Second bullet point: We define

OPT := min
Ax=b,x∈K

(
1

2
x⊤Qx+ c⊤x

)
, (35)

OPT := min
Ax=b,x∈K×R≥0

(
1

2
x⊤Qx+ c⊤x

)
. (36)

For any feasible x in the original problem (35), x =

[
x
0

]
is feasible in the modified problem (36).

Therefore we have

OPT ≤ ϵρ(
1

2
x⊤Qx+ c⊤x) = ϵρ ·OPT .

Given a feasible x satisfying (34), we write x =

[
x1:n

τ

]
for some τ ≥ 0. Then we have

ϵρ(
1

2
x⊤
1:nQx1:n + c⊤x1:n) + τ ≤ OPT+ ϵ2 ≤ ϵρ ·OPT+ϵ2.

Therefore
1

2
x⊤
1:nQx1:n + c⊤x1:n ≤ OPT+ϵρ−1.

We have

τ ≤ −ϵρ(1
2
x⊤
1:nQx1:n + c⊤x1:n) + ϵρ ·OPT+ϵ2 ≤ 3ϵ

because
∣∣ 1
2x

⊤Qx+ c⊤x
∣∣ ≤ LR(R+ 1) for all x ∈ K.

Note that x satisfies Ax1:n + (b−Ax(0))τ = b. So

∥Ax1:n − b∥1 ≤ ∥b−Ax(0)∥1 · τ.

This finishes the proof.

The following lemma is a generalization of (Lee et al., 2019, Lemma D.3) to quadratic program, and
with weight vector w.

Lemma F.18 (QP version of (Lee et al., 2019, Lemma D.3)). Work under the setting of Theorem F.1.
Suppose we have si

t + wi∇ϕi(xi) = µi for all i ∈ [n], −Qx + A⊤y + s = c and Ax = b. If
∥µi∥∗xi

≤ wi for all i ∈ [n], then we have

1

2
x⊤Qx+ c⊤x ≤ 1

2
x∗⊤Qx∗ + c⊤x∗ + 4tκ

where x∗ = argminAx=b,x∈K
(
1
2x

⊤Qx+ c⊤x
)
.

Proof. Let xα = (1−α)x+αx∗ for some α to be chosen. By Lemma F.16, we have ⟨∇ϕw(xα), x
∗−

xα⟩ ≤ κ. (Note that ϕw is a κ-self-concordant barrier for K.) Therefore we have

κα

1− α
≥ ⟨∇ϕw(xα), xα − x⟩

= ⟨∇ϕw(xα)−∇ϕw(x), xα − x⟩+ ⟨µ− s

t
, xα − x⟩

≥
∑
i∈[n]

wi

∥xα,i − xi∥2xi

1 + ∥xα,i − xi∥xi

+ ⟨µ, xα − x⟩ − 1

t
⟨c−A⊤y +Qx, xα − x⟩

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

≥
∑
i∈[n]

wi

α2∥x∗
i − xi∥2xi

1 + α∥x∗
i − xi∥xi

− α
∑
i∈[n]

∥µi∥∗xi
∥x∗

i − xi∥xi
− α

t
⟨c+Qx, x∗ − x⟩.

First step is because ⟨∇ϕw(xα), x
∗−xα⟩ ≤ ν. Second step is because µ = s

t +∇ϕw(x). Third step
is by Lemma F.16 and c = −Qx+A⊤y + s. Fourth step is by Cauchy-Schwarz and Axα = Ax.

So we get
1

t
(x⊤Qx+ c⊤x)

≤ 1

t
(x⊤Qx∗ + c⊤x∗) +

κ

1− α
+

∑
i∈[n]

∥µi∥∗xi
∥x∗

i − xi∥xi
−

∑
i∈[n]

wi

α∥x∗
i − xi∥2xi

1 + α∥x∗
i − xi∥xi

≤ 1

t
(
1

2
x⊤Qx+

1

2
x∗⊤Qx∗ + c⊤x∗) +

κ

1− α
+

∑
i∈[n]

wi∥x∗
i − xi∥xi

−
∑
i∈[n]

wi

α∥x∗
i − xi∥2xi

1 + α∥x∗
i − xi∥xi

=
1

t
(
1

2
x⊤Qx+

1

2
x∗⊤Qx∗ + c⊤x∗) +

κ

1− α
+

∑
i∈[n]

wi
∥x∗

i − xi∥xi

1 + α∥x∗
i − xi∥xi

≤ 1

t
(
1

2
x⊤Qx+

1

2
x∗⊤Qx∗ + c⊤x∗) +

κ

1− α
+

∑
i∈[n]

wi

α

≤ 1

t
(
1

2
x⊤Qx+

1

2
x∗⊤Qx∗ + c⊤x∗) +

κ

α(1− α)
.

First step is by rearranging terms in the previous inequality. Second step is by AM-GM inequality
and ∥µi∥∗xi

≤ wi. Third step is by merging the last two terms. Fourth step is by bounding the last
term. Fifth step is by

∑
i∈[n] wi ≤

∑
i∈[n] wiνi = κ.

Finally,
1

2
x⊤Qx+ c⊤x ≤ 1

2
x∗⊤Qx∗ + c⊤x∗ +

κt

α(1− α)

≤ 1

2
x∗⊤Qx∗ + c⊤x∗ + 4κt.

First step is by rearranging terms in the previous inequality. Second step is by taking α = 1
2 . This

finishes the proof.

F.5 PROOF OF THEOREM F.1

In this section we combine everything and prove Theorem F.1.

Proof of Theorem F.1. Lemma F.17 shows that the initial x and s satisfies

∥µ∥∗w,x ≤ ϵ.

This implies w−1
i ∥µi∥∗xi

≤ ϵ because wi ≥ 1.

Because ϵ ≤ 1
λ , we have

Φ(x, s, t) =
∑
i∈[n]

cosh(λw−1
i ∥µi∥∗xi

) ≤ n cosh(1) ≤ cosh(λ/64)

for the initial x and s, by the choice of λ.

Using Theorem F.15, we see that

Φ(x, s, t) ≤ cosh(λ/64)

during the entire algorithm.

So at the end of the algorithm, we have w−1
i ∥µi∥∗xi

≤ 1
64 for all i ∈ [n]. In particular, ∥µi∥∗xi

≤ wi

for all i ∈ [n].

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Therefore, applying Lemma F.18 we get
1

2
x⊤Qx+ c⊤x ≤ 1

2
x∗⊤Qx∗ + c⊤x∗ + 4tκ

≤ 1

2
x∗⊤Qx∗ + c⊤x∗ + ϵ2

where we used the stop condition for t at the end.

So Lemma F.17 shows how to get an approximate solution for the original quadratic program with
error ϵLR(R+ 1).

The number of iterations is because we decrease t by a factor of 1− h every iteration, and the choice
h = α

64
√
κ

.

G GAUSSIAN KERNEL SVM: ALMOST-LINEAR TIME ALGORITHM AND
HARDNESS

In this section, we provide both algorithm and hardness for Gaussian kernel SVM problem. For the
algorithm, we utilize a result due to Aggarwal & Alman (2022) in conjunction with our low-rank
QP solver to obtain an O(n1+o(1) log(1/ϵ)) time algorithm. For the hardness, we build upon the
framework outlined in Backurs et al. (2017) and improve their results in terms of dependence on
dimension d.

We start by proving a simple lemma that shows that if K = UV ⊤ for low-rank U, V , then the
quadratic objective K ◦ (yy⊤) also admits such a factorization via a simple scaling.

Lemma G.1. Let U, V ∈ Rn×k and y ∈ Rn. Then, there exists a pair of matrices Ũ , Ṽ ∈ Rn×k

such that
Ũ Ṽ ⊤ = (UV ⊤) ◦ (yy⊤)

moreover, Ũ , Ṽ can be computed in time O(nk).

Proof. The proof relies on the following identity for Hadamard product: for any matrix A and
conforming vectors x, y (all real), one has

A ◦ (yx⊤) = DyADx

where Dy, Dx ∈ Rn×n are diagonal matrices that put y, x on their diagonals. Thus, we can simply
compute Ũ , Ṽ as follows:

Ũ = DyU,

Ṽ = DyV,

consequently,

Ũ Ṽ ⊤ = DyUV ⊤Dy

= (yy⊤) ◦ (UV ⊤)

= (UV ⊤) ◦ (yy⊤),
as desired. Moreover, the diagonal scaling of U, V can be indeed performed in O(nk) time, as
advertised.

Throughout this section, we will let B denote the squared radius of the dataset.

G.1 ALMOST-LINEAR TIME ALGORITHM FOR GAUSSIAN KERNEL SVM

We state a result due to Aggarwal & Alman (2022), in which they present an optimal-degree polyno-
mial approximation to the function e−x and consequentially, this produces an efficient approximate
scheme to the Batch Gaussian Kernel Density Estimation problem.

We start by introducing a notion that captures the minimum degree polynomial that well-approximates
e−x:

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Definition G.2. Let f : [0, B]→ R, we let qB;ϵ(f) ∈ N denote the minimum degree of a non-constant
polynomial p(x) such that

sup
x∈[0,B]

|p(x)− f(x)| ≤ ϵ

Utilizing the Chebyshev polynomial machinery together with the orthgonal polynomial families, Ag-
garwal & Alman (2022) provides the following characterization on qB;ϵ(f):
Theorem G.3 (Theorem 1.2 of Aggarwal & Alman (2022)). Let B ≥ 1 and ϵ ∈ (0, 1). Then

qB;ϵ(e
−x) = Θ(max{

√
B log(1/ϵ),

log(1/ϵ)

log(B−1 log(1/ϵ))
})

Theorem G.4 (Corollary 1.7 of Aggarwal & Alman (2022)). Let x1, . . . , xn ∈ Rd be a dataset with
squared radius B and ϵ ∈ (0, 1). Let q = qB;ϵ(e

−x). Let K ∈ Rn×n be the Gaussian kernel matrix
formed by x1, . . . , xn. Finally, let k =

(
2d+2q

2q

)
. Then, there exists a deterministic algorithm that

computes a pair of matrices U, V ∈ Rn×k such that for any vector v ∈ Rn,

∥Kv − UV ⊤v∥∞ ≤ ϵ∥v∥1.
Moreover, matrices U, V can be computed in time O(nkd).

Even though ℓ∞ error in terms of ℓ1 norm of vector v seems quite weak, it can be conveniently
translated into more standard guarantees, e.g., spectral norm error. The following lemma provides
a conversion of errors that come in handy later when integrating the kernel approximation to our
low-rank QP solver.

Lemma G.5. Let K ∈ Rn×n be a PSD kernel matrix and ϵ ∈ (0, 1) be a parameter. Let K̃ ∈ Rn×n

be an approximation to K with the guarantee that for any v ∈ Rn,

∥Kv − K̃v∥∞ ≤ ϵ∥v∥1,
then

|v⊤Kv − v⊤K̃v| ≤ ϵ∥v∥21 ≤ ϵn∥v∥22.

Proof. The proof is a simple application of Hölder’s inequality:

|v⊤(Kv − K̃v)| = |⟨v,Kv − K̃v⟩|
≤ ∥v∥1∥Kv − K̃v∥∞
≤ ϵ∥v∥21
≤ ϵn∥v∥22,

where the second step is by Hölder’s inequality, and the last step is by Cauchy-Schwarz. This
completes the proof.

We can now combine the Gaussian kernel low-rank decomposition with our low-rank QP solver
to provide an almost-linear time algorithm for Gaussian kernel SVM. We restate the kernel SVM
formulation here.
Definition G.6 (Restatement of Definition 1.3). Given a data matrix X ∈ Rn×d and labels y ∈ Rn.
Let Q ∈ Rn×n denote a matrix where Qi,j = K(xi, xj) · yiyj for i, j ∈ [n]. The hard-mragin kernel
SVM problem with bias asks to solve the following program.

max
α∈Rn

1⊤
nα−

1

2
α⊤Qα

s.t. α⊤y = 0

α ≥ 0.

Theorem G.7. Let Gaussian kernel SVM training problem be defined as above with kernel function
K(xi, xj) = exp(−∥xi − xj∥22). Suppose the dataset has squared radius B ≥ 1, and let ϵ ∈ (0, 1)
be the precision parameter. Suppose the program satisfies the following:

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

• There exists a point z ∈ Rn such that there is an Euclidean ball with radius r centered at z
that is contained in the constraint set.

• The constraint set is enclosed by an Euclidean ball of radius R, centered at the origin.

Then, there exists a randomized algorithm that outputs an approximate solution α̂ ∈ Rn such that
α̂ ≥ 0, moreover,

1⊤
n α̂−

1

2
α̂⊤Qα̂ ≥ OPT− ϵ,

∥α̂⊤y∥1 ≤ 3ϵ,

where OPT denote the optimal cost of the objective function. Let q = qB;Θ(ϵ/nR2)(e
−x) and

k =
(
2d+2q

2q

)
. Then, the vector α̂ can be computed in expected time

Õ(nk(ω+1)/2 log(nR/(ϵr))).

Proof. Throughout the proof, we set ϵ1 = O(ϵ/(nR2)). We will craft an algorithm that first computes
an approximate Gaussian kernel together with a proper low-rank factorization, then use this proxy
kernel matrix to solve the quadratic program. We will use K to denote the exact Gaussian kernel
matrix, Q to denote the exact quadratic matrix.

Approximate the Gaussian kernel matrix with finer granularity. We start by invoking The-
orem G.4 using data matrix X with accuracy parameter ϵ1. We let K̃ = UV ⊤ to denote this
approximate kernel matrix, and we let Q̃ = DyUV ⊤Dy to denote the approximate quadratic matrix.
Owing to Lemma G.5, we know that for any vector x ∈ Rn,

|x⊤(Q− Q̃)x| = |(Dyx)
⊤(K − K̃)(Dyx)|

≤ ϵ1n∥Dyx∥22
= ϵ1n∥x∥22,

where we use the fact that y ∈ {±1}n. This also implies that

∥Q− Q̃∥ ≤ ϵ1n (37)

this simple bound will come in handy later.

Solving the approximate program to high precision. Given Q̃, we solve the following program:

max
α∈Rn

1⊤
nα−

1

2
α⊤Q̃α

s.t. α⊤y = 0

α ≥ 0

by invoking Theorem E.1. To do so, we need a bound on the Lipschitz constant of the program, i.e.,
the spectral norm of Q̃ and ℓ2 norm of 1. The latter is clearly

√
n, we shall show the first term is at

most (1 + ϵ1) · n.

Note that

∥Q∥ = ∥DyKDy∥
≤ tr[DyKDy]

= tr[K]

≤ n,

where we use K is PSD. Combining with Eq. (37) and triangle inequality, we have

∥Q̃∥ ≤ ∥Q∥+ ∥Q− Q̃∥
≤ (1 + ϵ1) · n.

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

With these Lipschitz constants, we examine the error guarantee provided by Theorem E.1: it produces
a vector α̂ ∈ Rn such that

1⊤
n α̂−

1

2
α̂⊤Q̃α̂ ≥ max

α⊤y=0,x≥0
(1⊤

nα−
1

2
α⊤Q̃α)−O(ϵ1nR

2),

∥α̂⊤y∥1 ≤ O(ϵ1nR),

we mainly focus on the first error bound, as we need to understand the quality of x̂ when plug into
the program with Q.

We will follow a chain of triangle inequalities, so we first bound

|α̂⊤(Q̃−Q)α̂| ≤ ϵn∥α̂∥22
≤ ϵnR2.

Next, let

α′ := arg max
α⊤y=0,α≥0

1⊤
nα−

1

2
α⊤Q̃α,

α∗ := arg max
α⊤y=0,α≥0

1⊤
nα−

1

2
α⊤Qα,

then we have the following

1⊤
nα

′ − 1

2
α′⊤Q̃α′ ≥ 1⊤

nα
∗ − 1

2
(α∗)⊤Q̃α∗

≥ 1⊤
nα

∗ − 1

2
(α∗)⊤Qα∗ −O(ϵ1nR

2)

= OPT−O(ϵ1nR
2),

where the second step is by applying Lemma G.5 to α∗. Now we are ready to bound the final error:

1⊤
n α̂−

1

2
α̂⊤Qα̂ ≥ 1⊤

n α̂−
1

2
α̂⊤Q̃α̂−O(ϵ1nR

2)

≥ 1⊤
nα

′ − 1

2
α′⊤Q̃α′ −O(ϵ1nR

2)

≥ OPT−O(ϵ1nR
2).

The final error guarantee follows by the choice of ϵ1, and we indeed design an algorithm that outputs
a vector α̂ with

1⊤α̂− 1

2
α̂⊤Qα̂ ≥ OPT− ϵ,

∥α̂⊤y∥1 ≤ ϵ.

Runtime analysis. It remains to analyze the runtime of our proposed algorithm. We first compute an
approximate kernel K̃ with parameter ϵ1, owing to Theorem G.4, we have

qB;ϵ1(e
−x) = Θ(max{

√
B log(nR/ϵ),

log(nR/ϵ)

log(B−1 log(nR/ϵ))
})

then by setting k =
(
2d+2q

2q

)
, the matrix K̃ can be computed in time O(nkd). Given this rank-k

factorization, the program can then be solved with precision ϵ1 in time

Õ(nk(ω+1)/2 log(nR/(ϵr))),

as desired.

Remark G.8. To understand the value range of k, let us consider the set of parameters:

d = O(log n), ϵ = 1/ poly n,R = poly n,B = Θ(1),

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

under this setting, O(log(nR/ϵ)) = O(log n) and the degree q is

q = Θ(
√
log n)

the rank k is then

k =

(
2d+ 2q

2q

)
≤ Θ((log n)

1
2

√
logn)

= Θ(2Θ(log logn
√
logn))

= no(1),

consequentially, our algorithm runs in almost-linear time in n:

Õ(n1+o(1) log n).

It is worth noting to achieve the almost-linear runtime, the data radius B can be further relaxed. In
fact, as long as

B = o

(
log n

log log n

)
,

we can ensure that k = no(1) and subsequently the almost-linear runtime.

The runtime we obtain can be viewed as a consequence of the “phase transition” phenomenon
observed in Aggarwal & Alman (2022), in which they prove that if B = ω(log n), then quadratic
time in n is essentially needed to approximate the Gaussian kernel assuming SETH.

G.2 HARDNESS OF GAUSSIAN KERNEL SVM WITH LARGE RADIUS

In this section, we show that for d = O(log n), any algorithm that solves the program associated to
hard-margin Gaussian kernel SVM would require Ω(n2−o(1)) time for B = ω(log n). This justifies
the choice of B in Remark G.8. To prove the hardness result, we need to introduce the approximate
Hamming nearest neighbor problem.
Definition G.9. For δ > 0 and n, d ∈ N, let {a1, . . . , an}, {b1, . . . , bn} ⊆ {0, 1}d be two sets
of vectors, and let t ∈ {0, 1, . . . , d} be a threshold. The (1 + δ)-Approximate Hamming Nearest
Neighbor problem asks to distinguish the following two cases:

• If there exists some ai and bj such that ∥ai − bj∥1 ≤ t, output “Yes”;

• If for any i, j ∈ [n], we have ∥ai − bj∥1 > (1 + δ) · t, output “No”.

Note that the algorithm can output any value if the datasets fall in neither of these two cases. We will
utilize the following hardness result due to Rubinstein.
Theorem G.10 (Rubinstein (2018)). Assuming SETH, for every q > 0, there exists δ > 0 and C > 0
such that (1 + δ)-Approximate Hamming Nearest Neighbor in dimension d = C log n requires time
Ω(n2−q).

A final ingredient is a rewriting of the dual SVM into its primal form, without resorting to optimize
over an infinite-dimensional hyperplane.
Lemma G.11. Consider the dual hard-margin kernel SVM defined as

max
α∈Rn

1⊤α− 1

2

∑
i,j∈[n]×[n]

αiαjyiyjK(wi, wj),

s.t. α⊤y = 0,

α ≥ 0.

The primal program can be written as

min
α∈Rn

1

2

∑
i,j∈[n]×[n]

αiαjyiyjK(wi, wj),

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

s.t. yif(wi) ≥ 1,

α ≥ 0,

where f : Rd → R is defined as

f(w) =

n∑
j=1

αjyjK(wj , w)− b.

Moreover, the primal and dual program has no duality gap and the optimal solution α to both
programs are the same.

Proof. Recall that the primal hard-margin SVM is the following program:

min
v

1

2
∥v∥22,

s.t. yi(v⊤ϕ(wi)− b) ≥ 1,

where b ∈ R is the bias term and ϕ : Rd → RK is the feature mapping corresponding to the kernel in
the sense that K(wi, wj) = ϕ(wi)

⊤ϕ(wj). The optimal weight v =
∑n

i=1 αiyiϕ(wi) where α ∈ Rn

is the optimal solution to the dual program. Consequently,

∥v∥22 = (

n∑
i=1

αiyiϕ(wi))
2

=
∑

i,j∈[n]×[n]

αiαjyiyjϕ(wi)
⊤ϕ(wj)

=
∑

i,j∈[n]×[n]

αiαjyiyjK(wi, wj)

= α⊤Qα,

where the matrix Q is the usual

Q = (yy⊤) ◦K,

the constraint can be rewritten as

yi(v
⊤ϕ(wi)− b) = yi((

n∑
i=1

αiyiϕ(wi))
⊤ϕ(wi)− b)

= yi(

n∑
j=1

αjyjϕ(wj)
⊤ϕ(wi))− yib

= yi(

n∑
j=1

αjyjK(wi, wj))− yib

= yif(wi),

where f : Rd → R is defined as

f(w) =

n∑
j=1

αjyjK(wj , w)− b.

Thus, we can alternatively write the primal as

min
α∈Rn

1

2
α⊤Qα,

s.t. yif(wi) ≥ 1.

For the strong duality and optimal solution, see, e.g., Muller et al. (2001).

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

We will now prove the almost-quadratic lower bound for Guassian kernel SVM. Our proof strategy is
similar to that of Backurs et al. (2017) with different set of parameters. It is also worth noting that
the Backurs et al. (2017) construction

• Requires the dimension d = Θ(log3 n);

• Requires the squared dataset radius B = Θ(log4 n).

We will improve both of these results.
Theorem G.12. Assuming SETH, for every q > 0, there exists a hard-margin Gaussian kernel SVM
without the bias term as defined in Definition 1.3 with d = Θ(log n) and error ϵ = exp(−Θ(log2 n))
for inputs whose squared radius is at most B = Θ(log2 n) requiring time Ω(n2−q) to solve.

Proof. Let l =
√
2(c′δ)−1 log n. We will provide a reduction from (1 + δ)-Approximate Hamming

Nearest Neighbor to Gaussian kernel SVM. Let A := {a1, . . . , an}, B := {b1, . . . , bn} ⊆ {0, 1}d be
the datasets, we assign label 1 to all vectors ai and label −1 to all vectors bj , moreover, we scale both
A and B by l, this results in two datasets with points in {0, l}d. The squared radius of this dataset is
then

B = max{max
i,j
∥lai − laj∥22,max

i,j
∥lbi − lbj∥22,max

i,j
∥lai − lbj∥22}

≤ l2d

= Θ(δ−1 log2 n).

To simplify the notation, we will implictly assume A and B are scaled by l without explicitly writing
out lai, lbj . Now consider the following three programs:

• Classifying A:

min
α∈Rn

≥0

1

2

∑
i,j∈[n]×[n]

αiαjK(ai, aj),

s.t.
n∑

j=1

αjK(ai, aj) ≥ 1, ∀i ∈ [n] (38)

• Classifying B:

min
β∈Rn

≥0

1

2

∑
i,j∈[n]×[n]

βiβjK(bi, bj),

s.t. −
n∑

j=1

βjK(bi, bj) ≤ −1, ∀i ∈ [n] (39)

• Classifying both A and B:

min
α,β∈Rn

≥0

1

2

∑
i,j∈[n]×[n]

αiαjK(ai, aj) +
1

2

∑
i,j∈[n]×[n]

βiβjK(bi, bj)−
∑

i,j∈[n]×[n]

αiβjK(ai, bj),

s.t.
n∑

j=1

αjK(ai, aj)−
n∑

j=1

βjK(ai, bj) ≥ 1, ∀i ∈ [n],

n∑
j=1

αjK(bi, aj)−
n∑

j=1

βjK(bi, bj) ≤ −1, ∀i ∈ [n] (40)

We will prove that the optimal solution α∗
i ’s and β∗

i ’s are both lower and upper bounded. Use
Val(A),Val(B) and Val(A,B) to denote the value of program (38), (39) and (40) respectively, then
note that

Val(A) ≤ n2

2

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

by plugging in α = 1 and setting all vectors to be the same. On the other hand,

Val(A) ≥ 1

2

n∑
i=1

(α∗
i)

2K(ai, ai)

=
1

2

n∑
i=1

(α∗
i)

2.

Combining these two, we can conclude that for any α∗
i , it must be α∗

i ≤ n. For the lower bound,
consider the inequality constraint for the i-th point:

α∗
i +

∑
j ̸=i

α∗
jK(ai, aj) ≥ 1,

to estimate K(ai, aj), note that ∥ai − aj∥22 = ∥ai − aj∥1 ≥ 1 for j ̸= i,9 and

K(ai, aj) = exp(−l2∥ai − aj∥22)
= exp(−2(c′δ)−1 log n∥ai − aj∥1)
≤ exp(−2(c′δ)−1 log n)

≤ n−10/100,

combining with α∗
j ≤ n, we have

α∗
i ≥ 1−

∑
j ̸=i

α∗
jK(ai, aj)

≥ 1− n · n · n−10/100

≥ 1/2.

This lower bound on α∗
i is helpful when we attempt to lower bound Val(A,B) with Val(A)+Val(B).

Following the outline of Backurs et al. (2017), we consider the three dual programs:

• Dual of classifying A:

max
α∈Rn

≥0

n∑
i=1

αi −
1

2

∑
i,j

αiαjK(ai, aj) (41)

• Dual of classifying B:

max
β∈Rn

≥0

n∑
i=1

βi −
1

2

∑
i,j

βiβjK(bi, bj) (42)

• Dual of classifying A and B:

max
α,β∈Rn

≥0

n∑
i=1

αi +

n∑
i=1

βi −
1

2

∑
i,j

αiαjK(ai, aj)−
1

2

∑
i,j

βiβjK(bi, bj) +
∑
i,j

αiβjK(ai, bj)

(43)

as the SVM program exhibits strong duality, we know that the optimal value of the primal equals
to the dual, so we can alternatively bound Val(A,B) using the dual program. Plug in α∗, β∗ to
program (43), we have

Val(A,B) ≥
n∑

i=1

α∗
i +

n∑
i=1

β∗
i −

1

2

∑
i,j

α∗
iα

∗
jK(ai, aj)−

1

2

∑
i,j

β∗
i β

∗
jK(bi, bj) +

∑
i,j

α∗
i β

∗
jK(ai, bj)

= Val(A) + Val(B) +
∑
i,j

α∗
i β

∗
jK(ai, bj),

9We without loss of generality that during preprocess, we have remove duplicates in A and B.

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

to bound the third term, we consider the pair (ai0 , bj0) such that ∥ai0 − bj0∥1 ≤ t− 1, and note that∑
i,j

α∗
i β

∗
jK(ai, bj) ≥ α∗

i0β
∗
j0K(ai0 , bj0)

≥ 1

4
exp(−2(c′δ)−1 log n · (t− 1)).

To wrap up, we have

Val(A,B) ≥ Val(A) + Val(B) +
1

4
exp(−2(c′δ)−1 log n · (t− 1))

We now prove the “No” case, where for any ai, bj , ∥ai − bj∥1 ≥ t. We have

K(ai, bj) = exp(−l2∥ai − bj∥22)
≤ exp(−2(c′δ)−1 log n · t),

we let m := exp(−2(c′δ)−1 log n · t), set α′ = α∗ + 10n2m and β′ = β∗ + 10n2m, we let V to
denote the value when evaluating program (40) with α′, β′. We will essentially show that

Val(A,B) ≤ V

and

V ≤ Val(A) + Val(B) + 400n6m

chaining these two gives us a certificate for the “No” case. To prove the first assertion, we show that
α′, β′ are feasible solution to program (40) since

n∑
j=1

α′
jK(ai, aj) =

n∑
j=1

(α∗
jK(ai, aj) + 10n2mK(ai, aj))

= α∗
i + 10n2m+

∑
j ̸=i

(α∗
j + 10n2m)K(ai, aj)

≥ α∗
i +

∑
j ̸=i

α∗
jK(ai, aj) + 10n2m

= 10n2m+

n∑
j=1

α∗
jK(ai, aj)

≥ 10n2m+ 1

where we use α∗
i satisfy the inequality constraint of program (38). We compute an upper bound on∑n

j=1 β
′
jK(ai, bj):

n∑
j=1

β′
jK(ai, bj) ≤

n∑
j=1

2nm

= 2n2m,

where we use the fact that m = exp(−2(c′δ)−1 log n · t) ≤ n−10/10 therefore β∗ + 10n2m ≤ 2n.
Thus, it must be the case that∑

j=1

α′
jK(ai, aj)−

n∑
j=1

β′
jK(ai, bj) ≥ 8n2m+ 1

≥ 1,

as desired. The other linear constraint follows by a symmetric argument. This indeed shows that
α′, β′ are feasible solutions to program (40) and Val(A,B) ≤ V .

To prove an upper bound on V , we note that

V =
1

2

∑
i,j

α′
iα

′
jK(ai, aj) +

1

2

∑
i,j

β′
iβ

′
jK(bi, bj)−

∑
i,j

α′β′
jK(ai, bj)

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

≤ 1

2

∑
i,j

α′
iα

′
jK(ai, aj) +

1

2

∑
i,j

β′
iβ

′
jK(bi, bj),

we bound the first quantity, as the second follows similarly:

1

2

∑
i,j

α′
iα

′
jK(ai, aj) =

1

2

∑
i,j

(α∗
iα

∗
j + 10n2m(α∗

i + α∗
j) + 100n4m2)K(ai, aj)

≤ Val(A) +
∑
i,j

10n3mK(ai, aj) +
∑
i,j

100n4m2K(ai, aj)

≤ Val(A) + 10n5m+ 100n6m2

≤ Val(A) + 200n6m,

we can thus conclude

V ≤ Val(A) + Val(B) + 400n6m.

Chaining these two, we obtain the following threshold for the “No” case:

Val(A,B) ≤ Val(A) + Val(B) + 400n6m.

Finally, we observe that

400n6 exp(−2(c′δ)−1 log n · t)≪ 1

4
exp(−2(c′δ)−1 log n · (t− 1)),

we can therefore distinguish these two cases.

Note that when one considers solving the program with additive error, we need to make sure that the
error is smaller than the distinguishing threshold, i.e.,

ϵ ≤ 1

4
exp(−2(c′δ)−1 log n · (t− 1))

≤ 1

4
exp(−2(c′δ)−1d log n)

= exp(−Θ(log2 n)),

where we use t ≤ d and d = Θ(log n). This concludes the proof.

Remark G.13. Our proof can be interpreted as using a stronger complexity theoretical tool in place
of the one used by Backurs et al. (2017), to obtain a better dependence on dimension d and B. We
also note that the construction due to Backurs et al. (2017) has the relation that B = Θ(d log n),
this is because in order to lower bound Val(A,B), one has to lower bound the optimal values of
α∗
i ’s and β∗

j ’s. To do so, one needs to further scale up ai’s and bj’s so that within datasets A and B,
the radius is at least Θ(log n). This is in contrast to the Batch Gaussian KDE studied in Aggarwal
& Alman (2022), where they show the almost-quadratic lower bound can be achieved for both
d,B = Θ(log n).

Similar to Backurs et al. (2017), we obtain hardness results for hard-margin kernel SVM with bias,
and soft-margin kernel SVM with bias.

Corollary G.14. Assuming SETH, for every q > 0, there exists a hard-margin Gaussian kernel SVM
with the bias term with d = Θ(log n) and error ϵ = exp(−Θ(log2 n)) for inputs whose squared
radius is at most B = Θ(log6 n) requiring time Ω(n2−q) to solve.

Proof. The proof is similar to Backurs et al. (2017). Given a hard instance of Theorem G.12, except
we append Θ(log n) entries with magnitude Θ(log2 n) instead of distributing the values across
Θ(log3 n) entries. Rest of the proof follows exactly the same as Backurs et al. (2017).

Corollary G.15. Assuming SETH, for every q > 0, there exists a soft-margin Gaussian kernel SVM
with the bias term with d = Θ(log n) and error ϵ = exp(−Θ(log2 n)) for inputs whose squared
radius is at most B = Θ(log6 n) requiring time Ω(n2−q) to solve.

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Remark G.16. Compared to the construction of Backurs et al. (2017) in which they distribute a
total mass of Θ(log3 n) across Θ(log3 n) entries so that they ensure after the reduction, the vectors
take values in {−1, 0, 1}, we instead distribute the mass across Θ(log n) entries so that each entry
has magnitude Θ(log2 n). To make the reduction work, the total mass of Θ(log3 n) is needed, and
for Backurs et al. (2017), it is fine to append an extra Θ(log3 n) entries as their hardness result for
hard-margin SVM without bias does require d = Θ(log3 n). For us, we need to restrict d = Θ(log n)
at the price of each entry has a larger magnitude of Θ(log2 n). This blows up the squared radius
from log2 n to log6 n. We note that the Backurs et al. (2017) construction has squared radius log4 n.

68

	Introduction
	Related Work

	Technique Overview
	General Strategy
	Low-Treewidth Setting: How to Leverage Sparsity
	Low-Rank Setting: How to Utilize Small Factorization
	Gaussian Kernel SVM: Algorithm and Hardness

	Conclusion
	Preliminary
	Notations
	Treewidth
	Sparse Cholesky Decomposition
	Johnson-Lindentrauss Lemma
	Heavy-Light Decomposition

	SVM Formulations
	-Support Vector Classification
	-Support Vector Classification
	Distribution Estimation
	-Support Vector Regression
	-Support Vector Regression
	One Equality Constraint
	Two Equality Constraints

	Algorithms for General QP
	LCQP in the Current Matrix Multiplication Time
	Algorithm for QCQP

	Algorithm for Low-Treewidth QP
	Main Statement
	Algorithm Structure and Central Path Maintenance
	Data Structures Used in CentralPathMaintenance
	ExactDS
	ApproxDS
	BatchSketch
	VectorSketch
	BalancedSketch

	Analysis of CentralPathMaintenance
	Proof of Main Statement

	Algorithm for Low-Rank QP
	Main Statement
	Algorithm Structure and Central Path Maintenance
	Data Structures Used in CentralPathMaintenance
	ExactDS
	ApproxDS
	BatchSketch

	Analysis of CentralPathMaintenance
	Proof of Main Statement

	Robust IPM Analysis
	Preliminaries
	Deriving the Central Path Step
	Bounding Movement of Potential Function
	Initial Point Reduction
	Proof of Theorem F.1

	Gaussian Kernel SVM: Almost-Linear Time Algorithm and Hardness
	Almost-Linear Time Algorithm for Gaussian Kernel SVM
	Hardness of Gaussian Kernel SVM with Large Radius

