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Abstract

In Reinforcement Learning (RL), agents have no incentive to exhibit predictable trajectories,
and are often pushed (through e.g. policy entropy regularisation) to randomise their actions
in favor of exploration. This lack of predictability awareness often makes it challenging
for other agents and humans to predict an agent’s trajectories, possibly triggering unsafe
scenarios (e.g. in human-robot interaction). We propose a novel method to induce pre-
dictable trajectories in RL agents, termed Predictability-Aware RL (PARL), employing the
agent’s trajectory entropy rate to quantify predictability. Our method maximizes a linear
combination of a standard discounted reward and the negative entropy rate, thus trading off
optimality with predictability. We show how the entropy rate can be formally cast as an av-
erage reward, how entropy-rate value functions can be estimated from a learned model and
incorporate this in policy-gradient algorithms, and demonstrate how this approach produces
predictable (near-optimal) policies in tasks inspired by human-robot use-cases.

1 Introduction

As Reinforcement Learning (RL) (Sutton & Barto, 2018) agents are deployed to interact with humans,
it becomes crucial to ensure that their behaviours1 are predictable. A robot trained under general RL
algorithms operating in a human environment has no incentive to follow trajectories that are easy to predict.
This makes it challenging for other robots or humans to forecast the robot’s behaviour, affecting coordination
and interactions, and possibly triggering unsafe scenarios. RL algorithms are oblivious to the predictability of
behaviours they induce in agents: one aims to maximize an expected reward, regardless of how unpredictable
trajectories taken by the agents may be. In fact, many algorithms propose some form of regularisation in

∗Equal contribution.
†Work done while at Delft University of Technology.
1We use agent behaviour to refer to, throughout this work, the state trajectories agents exhibit (and observers may perceive).

We consider ’agent behaviour’ or ’agent trajectory’ interchangeably, but note that we mainly focus on state predictability. We
make the case that an agent is predictable if their next state (for a fixed policy) is easy to predict given their past state(s) for
standard inference algorithms.
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action complexity (Schulman et al., 2017; Han & Sung, 2021) or value functions (Pitis et al., 2020; Zhao et al.,
2019; Kim et al., 2023) for better exploration, inducing higher aleatoric uncertainty in agents’ trajectories.

We quantify predictability of an RL agent’s trajectories by employing the notion of entropy
rate: the infinite-horizon time-average entropy of the agent’s trajectories, which measures the
complexity of the trajectory distributions induced in RL agents. Higher entropy rate implies
more complex and less predictable trajectories, and vice-versa. Similar information-theoretic met-
rics have been widely used to quantify (un)predictability of stochastic processes Shannon (1948);
Savas et al. (2022); Biondi et al. (2014); Duan et al. (2019); Stefansson & Johansson (2021).
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Figure 1: Qualitative representation of
PARL. Trajectories are represented symbol-
ically as connecting an initial with a final
set of states. PARL shifts the policies to-
wards smaller trajectory entropy.

Motivation In general, RL agents are oblivious to the infor-
mation theoretic loads they generate with their behaviour. In
a world where agents do not exist in a vacuum (even if we train
RL agents in single-agent settings, these agents will rarely be
deployed in isolation), one could argue there is an advantage to
inducing a complexity awareness in RL agents; If an agent can
solve a task generating lower information rates, it should do so.
Lower information rates correspond (intuitively and formally,
through forms of entropy) with lower uncertainty. However, we
do not argue that this is a necessary feature in all agents (or
even always desireable). We simply argue that it is an interest-
ing feature to consider for general RL agents that can benefit
the deployment of RL agents, propose a formal approach to tar-
get this, and evaluate how this impacts such agents in different
settings.

Entropy and Predictability The established notion for
predictability in information theory is entropy: a lower-entropy
stochastic process is easier to predict by standard inference al-
gorithms. For example, assuming the trajectory distribution is Gaussian, lower entropy is equivalent to
lower variance. Then it is clear that (inside the family of normal distributions) inference algorithms would
be able to predict more accurately a lower variance distribution. The same applies to other distribution
families, including discrete distributions. In the limit, minimum entropy implies that the agent follows the
same deterministic trajectory over and over, which means it can be predicted with no prediction error from
inference on past data (since it is deterministic).

Contributions We propose a novel approach to model-based RL that induces more predictable behaviour
in RL agents, termed Predictability-Aware RL (PARL). We maximize the linear combination of a standard
discounted cumulative reward and the negative entropy rate, thus trading-off optimality with predictability.
Towards this, we cast entropy-rate minimization as an expected average reward minimization problem, with a
policy-dependent reward function, called local entropy. To circumvent local entropy’s policy-dependency and
enable the use of on- and off-policy RL algorithms, we introduce a state-action-dependent surrogate entropy,
and show that deterministic policies minimizing the average surrogate entropy exist and also minimize the
entropy rate. Further, we show how, employing a learned model and the surrogate reward, we can estimate
entropy-rate value functions, and incorporate this in policy-gradient schemes. Finally, we showcase how
PARL produces much more predictable agents while achieving near-optimal rewards in several robotics and
autonomous driving tasks2.

1.1 Related work

The idea of introducing some form of entropy objectives in policy gradient algorithms has been extensively
explored Williams & Peng (1991); Fox et al. (2015); Peters et al. (2010); Zimin & Neu (2013); Neu et al.

2See the project repository https://github.com/tud-amr/parl for details.

2

https://github.com/tud-amr/parl


Published in Transactions on Machine Learning Research (06/2025)

(2017); Tiapkin et al. (2023). In most instances, these regularization terms are designed to either help policy
randomization and exploration Mutti et al. (2021; 2022), or to stabilize RL algorithms. However, these
works focus on policy (state-action) entropy maximization, and do not focus on trajectory entropy and how
it affects predictability of RL agents.

Instead, Guo et al. (2023b;a); Biondi et al. (2014); George et al. (2018); Duan et al. (2019); Stefansson &
Johansson (2021); Savas et al. (2020; 2022) consider entropy (rate) maximization in (PO)MDPs, to yield
unpredictable behaviours. However, these works require full knowledge of the model, and entropy (rate)
maximization is cast as a non-linear program. Instead, in our work, the model is not known, and we resort
to learning entropy-rate value functions.

Recent work Lu et al. (2020); Eysenbach et al. (2021); Park & Levine (2023) has tackled robustness and
generalization via introducing Information-Theoretic penalty terms in the reward function. In particular,
Eysenbach et al. 2021 makes the explicit connection from such information-theoretic penalties to the emer-
gence of predictable behaviour in RL agents, and uses mutual information penalties to restrict the bits of
information that the agents are allowed to use, resulting in simpler, less complex policies. We address di-
rectly this predictability problem by the minimisation of entropy rates in RL agents’ stochastic dynamics.
This allows us to provide theoretical results regarding existence and convergence of optimal (predictable)
policies towards minimum entropy-rate agents, and make our scheme generalizeable to any RL algorithm
(on and off policy). In this line, Berseth et al. (2021) propose Surprise Minimizing Reinforcement Learning,
where an estimate of the state stationary distribution of visited states is kept, and the agents are penalised
for visiting states with low probabilities in this stationary distribution. While having a similar flavour, our
work addresses state trajectory entropy, contrary to stationary distribution entropy, since we aim to address
the predictability of the agent’s data generating process (and not simply avoid unknown and changing en-
vironment regions)3. Finally, our work is tangentially related to alignment and interpretability in RL Shah
et al. (2019); Carroll et al. (2019), where human-agent interaction requires exhibiting human-interpretable
behaviour. Further, work on legibility of robot motion Dragan et al. (2013); Liu et al. (2023); Busch et al.
(2017) shares our motivation; to make robotic systems behaviour more legible by humans.

2 Background

We, first, introduce preliminary concepts employed throughout this work. For more detail on Markov
chains and decision processes, the reader is referred to Puterman (2014). Given a set A, ∆(A) denotes the
probability simplex over A, and Ak denotes the k-times Cartesian product A×A× · · · × A. If A is finite,
|A| denotes its cardinality. Given two probability distributions µ, ν, we use DT V (µ∥ν) as the total variation
distance between two distributions. We use supp(µ) to denote the support of µ. Given two vectors ξ, η, we
write ξ ⪰ η, if each i-th entry of ξ is bigger or equal to the i-th entry of η.

2.1 Markov processes and Rewards

A Markov Chain (MC) is a tuple C = (X , P, µ0) where X is a finite set of states, P : X × X → [0, 1] is a
transition probability measure and µ0 ∈ ∆(X ) is a probability distribution over initial states. Specifically,
P (x, y) is the probability of transitioning from state x to state y. P t(x, y) is the probability of landing in
y after t time-steps, starting from x. The limit transition function is P ∗ := limt→∞ P t. We use uppercase
Xt to refer to the random variable that is the state of the random process governed by the MC at time
t, and lower case to indicate specific states, e.g. x ∈ X . Similarly, a trajectory or a path is a sequence
of states xk = {x0, x1, ..., xk}, where xi ∈ X , and Pk denotes the set of all (k + 1)-length paths. We also
denote Xt:k = {Xt, Xt+1, ..., Xk}. Further, we define p : P∞ → [0, 1] as a probability measure over the Borel
σ-algebra B(X0:∞) of infinite-length paths of a MC4 conditioned to initial distribution µ0. For example,
p(X0 = x) ≡ µ0(x) is the probability of the initial state being x; p(X0:3 = x3) is the probability that the
MC’s state follows the path x3. A Markov Decision Process (MDP) is a tuple M = (X ,U , P, R, µ0) where
X is a finite set of states, U is a finite set of actions, P : X × U × X → [0, 1] is a probability measure

3A simple counterexample can show that an agent can have (almost) zero trajectory entropy and have high stationary
distribution entropy; think of two connected states A ↔ B where A has one self loop with near to zero probability.

4This measure is well defined by the Ionescu-Tulcea Theorem, see e.g. Dudley (2018).
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of the transitions between states given an action, R : X × U × X → R is a bounded reward function and
µ0 ∈ ∆(X ) is the probability distribution of initial states. A stationary Markov policy is a stochastic kernel
π : X → ∆(U). With abuse of notation, we use π(u | x) as the probability of taking action u at state x,
under policy π. Let Π be the set of all stationary Markov policies, and ΠD ⊆ Π the set of deterministic
policies. The composition of an MDP M and a policy π ∈ Π generates a MC with transition probabilities
Pπ(x, y) :=

∑
u∈U π(u | x)P (x, u, y). If said MC admits a unique stationary distribution, we denote it by

µπ, where µπ : X → [0, 1]. We, also, use the shorthand Rπ
t ≡ Eu∼π(x)[R(Xt, u, Xt+1)]. We will assume any

fixed policy π in MDP M induces an aperiodic and irreducible MC.

Discounted Reward MDPs In discounted cumulative reward problems the goal is to find a policy π′ that
maximizes the discounted sum of rewards for discount factor γ ∈ [0, 1): i.e. π′ ∈ arg maxπ∈Π E[

∑∞
t=0 γtRπ

t |
X0 = x], for all x ∈ X . In this case Puterman (2014) given a policy π, the value function under π,
V π : X 7→ R, is V π(x) := E[

∑∞
t=0 γtRπ

t | X0 = x]. The action-value function (or Q-function) under π is
given by Qπ(x, u) :=

∑
y∈X P (x, u, y)(R(x, u, y) + γV π(y)).

Average Reward MDPs In average reward maximization problems, we aim at maximizing the reward
rate (or gain) gπ(x), defined as, together with the bias5

gπ(x) := E

[
lim

T →∞

1
T

T∑
t=0

Rπ
t | X0 = x

]
, bπ(x) := E

[
lim

T →∞

T∑
t=0

(Rπ
t − g(Xt)) | X0 = x

]
. (1)

Note that the bias is the expected difference between the stationary rate and the rewards obtained
by initialising the system at a given state. For π ∈ Π, the average-reward (action) value-functions6

V π
avg : X → R is defined by Abounadi et al. (2001) V π

avg(x) := Eu∼π,y∼P (x,u,·)[R(x, u, y) − gπ + V π
avg(y)]

and Qπ
avg(x, u) := Ey∼P (x,u,·)

[
R(x, u, y)− gπ + V π

avg(y)
]
. The optimal (action) value functions (which ex-

ists for ergodic MDPs) satisfy V ∗
avg(x) = maxu∈U Ey∼P (x,u,·)

[
R(x, u, y)− g∗ + V ∗

avg(y)
]

and Q∗
avg(x, u) =

Ey∼P (x,u,·)
[
R(x, u, y)− g∗ + V ∗

avg(y)
]

where g∗ is the optimal reward rate.

2.2 Shannon Entropy and MDPs

For a discrete random variable A with finite support A, Shannon entropy Shannon (1948) is a measure of
uncertainty induced by its distribution, and it is defined as h(A) := −

∑
a∈A Pr (A = a) log(Pr (A = a)).

Shannon entropy measures the amount of information encoded in a random variable: a uniform distribution
maximizes entropy (minimal information), and a Dirac distribution minimizes it (maximal information).
Recall p : P∞ → [0, 1] is a probability measure over the Borel σ-algebra of infinite-length paths of a MC.
Let us denote the dependency of p on a fixed policy π as pπ (a fixed policy in a MDP induces a MC For an
MDP under policy π, recall Section 2.1). Then we define the conditional entropy (Cover, 1999; Biondi et al.,
2014) of XT +1 given X0:T as:

hπ(XT +1 | X0:T ) := −
∑

y∈X ,xT ∈X T

pπ (XT +1 = y, X0:T = xT ) log(pπ (XT +1 = y | X0:T = xT )),

and the joint entropy7 of the path X0:T is hπ(X0:T ) := h(X0) +
∑T

t=1 hπ(Xt | X0:t−1).
Definition 1 (Entropy Rate Shannon (1948)). Whenever the limit exists, the entropy rate of an MDP M
under policy π is defined by h̄π := limT →∞

1
T hπ(X0:T ).

The entropy rate represents the rate of diversity in the information generated by the induced MC’s paths.
Smaller entropy rates imply more predictable trajectories of the induced MC.

5The bias can also be written in vector form as b = (I − P + P ∗)−1(I − P ∗)Rπ where Rπ ∈ R|X | is the vector of state
rewards, Rπ

x = Eu∼π [R(x, u, y)]. See Chapter 8 in Puterman (2014).
6Observe that, for ergodic MDPs, bπ(x) = V π

avgπ(x).
7The second equality is obtained by applying the general product rule to the joint probabilities of YT .
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3 Entropy Rates: Estimation and Learning

Problem Statement The problem considered in this work is the following. Consider an unknown MDP
M = (X ,U , P, R, µ0). Further, assume that we can sample transitions

(
x, u, y, R(x, u, y)

)
applying any

action u ∈ U and letting M evolve according to P (x, u, ·). We want

π⋆ ∈ arg max
π∈Π

E[
∞∑

t=0
γtRπ

t ]− kh̄π, (2)

where k > 0 is a tuneable parameter8. In words, we are looking for policies that maximize a tuneable weighted
linear combination of the negative entropy −h̄π and a standard expected discounted cumulative reward. As
such, we establish a trade-off, which is tuned via the parameter k, between entropy rate minimization (i.e.
predictability) and optimality w.r.t. the cumulative reward.

Proposed approach We first show how the entropy rate h̄π can be treated as an average reward criterion,
with the so-called local entropy lπ as its corresponding local reward. Then, because lπ is policy-dependent, we
introduce a surrogate reward, that solely depends on states and actions and can be learned in-the-loop. We
show that deterministic policies minimizing the expected average surrogate reward exist and also minimize
the actual entropy rate. Moreover, we prove that, given a learned model of the MDP, we are able to (locally
optimally) approximate the value function associated to the entropy rate, via learning the surrogate’s value
functions. Based on these results, we propose a (model-based9) RL algorithm with its maximization objective
being the combination of the cumulative reward and an average reward involving the surrogate local entropy.

Estimating Entropy Rates Towards writing the entropy rate h̄π as an expected average reward, let us
define the local entropy, under policy π, for state x ∈ X as

lπ(x) := −
∑
y∈X

Pπ(x, y) log Pπ(x, y). (3)

Now, making use of the Markov property, the entropy rate for an MDP reduces to

h̄π = lim
T →∞

1
T

(
h(X0) +

T∑
t=1

hπ(Xt | X0:t−1)
)

= lim
T →∞

1
T

(
h(X0) +

T∑
t=1

hπ(Xt | Xt−1)
)

. (4)

Observe now, from the definition of pπ and again the Markov property,

hπ(Xt | Xt−1) = −
∑

y∈X ,x∈X
pπ(Xt = y, Xt−1 = x) log pπ(Xt = y | Xt−1 = x)

=−
∑

y∈X ,x∈X
pπ(Xt−1 = x)Pπ(x, y) log pπ(Xt = y | Xt−1 = x) = E

−∑
y∈X

Pπ(x, y) log Pπ(x, y)

 .

Therefore, substituting in equation 4,

h̄π = lim
T →∞

1
T

T∑
t=0

E[lπ(Xt)] = E
[

lim
T →∞

1
T

T∑
t=0

lπ(Xt)
]
. (5)

We can treat the local entropy lπ under policy π as a policy-dependent reward (or cost) function, since lπ

is stationary, history independent and bounded. Thus, h̄π is treated as an expected average reward, with
reward function lπ.

8We choose to cast the problem as a maximization of a linear combination of objectives to allow agents to find efficient
trade-offs. This problem could be solved through e.g. multi-objective optimization methods Skalse et al. (2022); Hayes et al.
(2022). We leave this as an application-dependent choice.

9We use the term model-based, since we require learning a (approximated) representation of the dynamics of the MDP to
estimate the entropy. However, the choice of whether to improve the policy using pure model free algorithms versus using the
learned model is left as a design choice, beyond the scope of this work.
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3.1 A Surrogate for Local Entropy

In conventional RL settings, one is able to sample rewards (and transitions, e.g. from a simulator). However,
here, part of the expected reward to be maximized in equation 2 is the negative entropy −h̄π, which, as
aforementioned, can be seen as an expected average reward with a state- and policy-dependent local reward
lπ(x). It is not reasonable to assume that one can directly sample local entropies lπ(x): one would have
to estimate lπ(x) through estimating transition probabilities Pπ(x, y) (by sampling transitions) and using
equation 3. However, a new challenge arises: lπ depends on the action distribution and to apply average
reward MDP theory we need the rewards to be state-action dependent. To address this, we consider a
surrogate for lπ that is policy-independent:

s(x, u) = −
∑
y∈X

P (x, u, y) log (P (x, u, y)) .

Define h̄π
s (x) := limT →∞ E[ 1

T

∑T
t=0 s(Xt, π(Xt))|X0 = x]. The following relationships hold.

Lemma 1. Consider MDP M = (X ,U , P, R, µ0). The following statements hold.
a) Eu∼π(x)[s(x, u)] ≤ lπ(x), for all π ∈ Π. b) h̄π

s (x) = h̄π
s ≤ h̄π, for some h̄π

s ∈ R, for all π ∈ Π.
c) Eu∼π(x)[s(x, u)] = lπ(x) and h̄π

s = h̄π, for all π ∈ ΠD.

Observe that, by considering the surrogate entropy rate, we effectively decouple the influence of the policy
entropy in the entropy rate estimations. Policy stochasticity directly influences the true entropy rate h̄π, but
does not affect the surrogate entropy rate h̄π

s ; in a fully deterministic environment, h̄π
s = 0 for all π ∈ Π, but

h̄π would not. We make the case that, given the formal results in Lemma 1 (and the results to be presented
in coming sections) this effect does not degrade the effectiveness of our method; in fact, it allows agents
to find less uncertain environment regions while not directly discouraging exploration (and can still render
minimum entropy rate policies, as discussed in Theorem 1 below).

3.2 Minimum Entropy Policies

Based on Lemma 1, we derive one of our main results. For the proof, we make use of fundamental results on
existance of average reward optimal policies of MDPs. In particular Theorem 3 included in the Appendix,
applied directly from Puterman (2014), which states that under mild assumptions the gain and bias exist in
average reward MDPs for any policy, and that an optimal policy exists that maximises the reward rate.
Theorem 1. Consider MDP M = (X ,U , P, R, µ0). The following hold: a) There exists a deterministic
policy π̂ ∈ ΠD minimizing the surrogate entropy rate , i.e. π̂ ∈ arg minπ h̄π

s . b) Any π̂ ∈ ΠD mini-
mizing the surrogate entropy rate also minimizes the true entropy rate: π̂ ∈ arg minπ∈Π h̄π

s and π̂ ∈ ΠD

=⇒ π̂ ∈ arg minπ∈Π h̄π. Additionally, deterministic policies locally minimizing h̄π
s also locally minimize h̄π.

c) There exists a deterministic policy π̂ ∈ ΠD such that π̂ ∈ arg minπ h̄π.

Proof of Theorem 1. The first statement follows directly from Theorem 3 in the Appendix, which guarantees
that there is at least one deterministic policy π̂ that minimizes the surrogate entropy rate h̄π

s . Then, since
π̂ ∈ ΠD, from Lemma 1 statements b) and c), we have that the following holds for all π ∈ Π:

h̄π̂ = h̄π̂ ≤ h̄π
s ≤ h̄π

Thus, π̂ minimizes h̄π and it follows that π̂ ∈ arg minπ∈Π h̄π
s and π̂ ∈ ΠD =⇒ π̂ ∈ arg minπ∈Π h̄π. The

same argument also applies locally, thereby yileding that deterministic local minimizers of h̄π
s are also local

minimizers of h̄π. Finally, the third statement follows as a combination of the other two.

Theorem 1 is an utterly relevant result for our work. First, it guarantees that minimizing policies both for h̄π
s

and h̄π exist. More importantly, it tells us that, to minimize the entropy rate of an RL agent, it is sufficient
to minimize the surrogate entropy rate. Since (globally) minimizing h̄π

s implies minimizing h̄π and since s is
policy-independent, in contrast to lπ, in what follows, our RL algorithm uses estimates of s to minimize h̄π

s ,
instead of estimates of lπ to minimize h̄π.10

10Observe that we cannot employ the same method for entropy rate maximization, since the maximizer of h̄π
s is not necessarily

a maximizer of h̄π .
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4 Learning to Act Predictably

In the following, we show how predictability of the agent’s behaviour can be cast as an RL objective and
combined with a primary discounted reward goal. To do this, we rely on Theorem 1 and employ the surrogate
entropy s(x, u) as a local reward along with its corresponding value function. We prove that, given a learned
model of the MDP, we are able to approximate the true entropy rate value functions. In the next section,
we combine this section’s results with conventional discounted rewards and standard PG results, to address
the problem mentioned in the Problem Statement and derive a PG algorithm that maximizes the combined
reward objective. We define the predictability objective to be minimized:

Js(π) ≡ h̄π
s = E

[
lim

T →∞

1
T

T∑
t=0

s
(
Xt, π(Xt)

)]
.

Motivated by Theorem 1, we have employed the surrogate entropy as a local reward and consider the
corresponding average-reward problem. As commonly done in average reward problems, we define the
(surrogate) entropy value function for a policy π, W π : X → R to be equal to the bias, i.e.:

W π(x) :=E

[ ∞∑
t=0

s
(
Xt, π(Xt)

)
− h̄π

s | X0 = x

]
= Ey∼Pπ(x,·)

[
s
(
x, π(x)

)
− h̄π

s + W π(y)
]

, (6)

Additionally, we define the (surrogate) entropy action-value function Sπ : X × U → R by Sπ(x, u) :=
Ey∼Pπ(x,u,·)

[
s
(
x, u

)
− h̄π

s + W π(y)
]
. However, recall that we do not know the local reward s. To estimate

s, one needs to have an estimate of the transition function P of the MDP. We use

sϕ(x, u) = −
∑
y∈X

Pϕ(x, u, y) log
(
Pϕ(x, u, y)

)
(and h̄π

sϕ
correspondingly, for its associated rate) to denote the – parameterised by ϕ – estimate of s, which

results from a corresponding estimate Pϕ of P (i.e. Pϕ is the learned model). Similarly, we will use Jsϕ
, W π

ϕ

and Sπ
ϕ to denote value functions computed with the model estimates sϕ. Now, it is crucial to know that by

using the model estimates sϕ we are still able to approximate well the objective Js and the value functions
W π, Sπ. Let us first show that for a small error between Pϕ and P (i.e. small modeling error), the error
between sϕ and s and the objectives Js(π) ≡ h̄π

s and Jsϕ
(π) ≡ h̄π

sϕ
is also small.

Proposition 1. Consider MDP M = (X ,U , P, R, µ0). Consider Pϕ : X × U × X → [0, 1], parameterised
by ϕ ∈ Φ. Assume that the total variation error between Pϕ and P is bounded as, ∀ x ∈ X and u ∈ U ,
maxx∈X ,u∈U DT V

(
Pϕ(x, u, ·)∥P (x, u, ·)

)
≤ ϵ, for some ϵ, with 0 ≤ ϵ ≤ 1. Let K(ϵ) = ϵ log

(
|X |
)
− ϵ log ϵ.

Then, ∥sϕ(x, u)− s(x, u)∥∞ ≤ K(ϵ), and the surrogate entropy rate error for any policy π,

E
[

lim
T →∞

1
T

T∑
t=0

sϕ(Xt, π(Xt)) | X0 ∼ µ0
]
− h̄π

s ≤ K(ϵ).

The proof of proposition 1 hinges on the Fannes-Audenaert inequality for Von Neumann entropies Fannes
(1973); Audenaert (2007), where we simply assume the density matrices are diagonal matrices with the
transition probability densities as eigenvalues. Observe that as ϵ→ 0, i.e. as the learned model approaches
the real one, then the surrogate entropy rate converges to the actual one11 (since K(ϵ) → 0). This result
indicates that we can indeed use sϕ, obtained by a learned model Pϕ, instead of the unknown s, as the error
between the objectives Js(π) ≡ h̄π

s and Jsϕ
(π) ≡ h̄π

sϕ
is small, for small model errors. Assume now, without

loss of generality that we have parameterised entropy value function (critic) Sω with parameters ω ∈ Ω. We
show that a standard on-policy algorithm, with policy π, with value function approximation Sω, using the
approximated model Pϕ, learns entropy value functions that are in a δ(ϵ)-neighbourhood of the true entropy
value functions Sπ, and δ(ϵ) vanishes with ϵ.

11This result echoes the Simulation Lemma in Kearns & Singh (2002), but with a bound derived in infinite horizon by using
the entropy properties.
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Assumption 1. Any learning rate αt ∈ (0, 1) satisfies
∑∞

t=0 αt =∞,
∑∞

t=0 α2
t <∞.

Assumption 2. The model Pϕ satisfies maxx∈X ,u∈U DT V (Pϕ(x, u, ·)∥P (x, u, ·)) ≤ ϵ for a small ϵ ∈ [0, 1].
Proposition 2. Consider an MDP M, a policy π, a learned model Pϕ of the MDP and critic Sω linear on
ω, and ω ∈ Ω ⊂ Rn, where Ω is compact. Let Assumption 2 hold. At every step k of parameter iteration, let
us collect k trajectories Tk of length T , and construct (unbiased) estimates12 Ŝπ

ϕ . Let the critic parameters
ω ∈ Ω be updated as ωk+1 = ωk − βk

ˆ∆ωk, with ω0 ∈ Ω, βk being a learning rate and

ˆ∆ωk =
(

Ŝπ
ϕ (xk, uk)− Sω(xk, uk)

) ∂Sω(xk, uk)
∂ω

.

Then, ω converge to a δ(ϵ)-neighbourhood of one of the (local) minimizers of
E x∼µπ

u∼πθ(x)

[
1
2 (Sπ(x, u)− Sω(x, u))2

]
, where δ(ϵ) is vanishing with ϵ.

In other words, for small model errors, the value function approximator converges to a locally optimal value
function approximation of the true value function Sπ.

4.1 Predictability-Aware Policy Gradient

Now, we are ready to address the Problem Statement, combining the entropy rate objective with a discounted
reward objective. In what follows, assume that we have a parameterised policy πθ with parameters θ ∈ Θ.
Let J(πθ) = E[

∑∞
t=0 γtRπθ

t ]. We use Qξ with parameters ξ ∈ Ξ for the parameterised critic of the discounted
reward objective (when using a form of actor-critic algorithm).
Theorem 2. Consider an MDP M, parameterised policy πθ, a learned model Pϕ of the MDP and (linear)
critic Sω. Let Assumption 2 hold. Let a given PG algorithm maximize (locally) the discounted reward
objective J(πθ) = E[

∑∞
t=0 γtRπθ

t ]. Let the value function Qξ (or Vξ) be parameterised by ξ ∈ Ξ, and the
entropy value function Sω (or Wω) have the same parameterisation class. Then, the same PG algorithm
with updates

θ ← projΘ
[
θ + αt

(
∇̂θJ(πθ)− k∇̂θJsϕ

(πθ)
)]

converges to a local maximum of the combined objective J(πθ)− kJsϕ
(πθ).

Proof of Theorem 2 (Sketch). By standard PG arguments Sutton et al. (1999), if a PG algorithm converges
to a local maximum of the objective J(πθ) then the updates ∇̂θJ(πθ) are in the direction of the gradient
(up to stochastic approximation noise). By the same arguments, given Proposition 2, the same algorithm
converges to a local minimum of the entropy value function Wω through updates −∇̂θJs(πθ), and these
are in the direction of the true gradient (again, up to stochastic approximation noise). Then, the linear
combination of gradient updates ∇̂θJ(πθ) − k∇̂θJs(πθ) is in the direction of the gradient of the combined
objective J(πθ) − kJs(πθ). Finally, since both objectives are locally concave (necessary condition following
from existence of gradient schemes that locally maximize them), their linear combination is also locally
concave. This concludes the proof.

Remark 1. Regarding pure entropy rate minimization, i.e. without the discounted reward objective, as
already proven by Theorem 1, a policy that is globally optimal for the surrogate entropy rate Js(π) is also
optimal for the actual entropy rate h̄π. The same holds for locally optimal deterministic policies. However,
in general, this is not the case for stochastic local minimizers.

Following a vanilla policy gradient structure, in Algorithm 1 we first sample a trajectory τ of length T , under
a policy πθ, and store it in a buffer D (for training the approximate model Pϕ). Then, we use D to train
Pϕ; update the estimated entropy rate; compute estimated objective gradients ∇̂θJ(πθ), ∇̂θJsϕ

(πθ) from
trajectory τ13; and finally update the policy and critics Sω, Qξ.
Remark 2. If we were to consider average reward MDPs instead of discounted reward MDPs, the formulation
of the optimization problem solved in Theorem 2 results in a more natural interpretation when adding entropy
rate objectives. See Appendix 6 for details.

12Via e.g. TD(0) value estimation Sutton & Barto (2018).
13This can be done through any policy gradient algorithm at choice.
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4.2 Implementation

Algorithm 1 Predictability Aware Policy Gradi-
ent
Require: Pϕ, πθ, critics Wω, Vξ

Require: αt, k > 0
for E epochs do
D ← Trajectory τ of length T .
Train Pϕ from D.
h̄π

sϕ
← 1

T

∑
x,u∈τ sϕ(x, u).

Compute ∇̂θJ(πθ), ∇̂θJsϕ
(πθ) from τ .

θ ← projΘ
[
θ + αt

(
∇̂θJ(πθ)− k∇̂θJsϕ

(πθ)
)]

Update Sω (and Qξ if used)
end for

Policy Learning We implement our predictability-
aware scheme as first, an on-policy version based on
an average-reward PPO algorithm Ma et al. (2021); we
call this PAPPO. In particular, for every collected tra-
jectory τ , we update the estimate h̄π

sϕ
and (surrogate)

entropy value function Wω parameterised by ω ∈ Ω
from the collected samples, and we compute entropy
advantages for all (x, u, y, sϕ(x, u)) in the collected tra-
jectories as: Âπ

s = sϕ(x, u)−h̄π
sϕ

+Wω(y)−Wω(x). Then
we apply the gradient steps as in PPO Schulman et al.
(2015; 2017) by clipping the policy updates. Second, we
implement it in an off-policy fashion to compare with
recent results on information-theoretic RL, based on a
Soft Actor-Critic (Haarnoja et al., 2018) implementa-
tion; we call this PASAC. The only modification necessary is the learning of a second Q function (S) for the
surrogate trajectory entropy, and the policy loss is computed as a weighted sum of Q and S. See Appendix
C.1 for details on PASAC.

Model Learning To learn the approximated model Pϕ, we assume the transitions to follow Gaussian
distributions, similarly to Janner et al. (2019).14 Following the definition of differential entropy of a con-
tinuous Gaussian distribution, sϕ(x, u) = log(σ2

xu) + K, where K = 1
2
(

log(2π) + 1). Therefore, we can
estimate the entropy directly by the variance output of our model. Furthermore, since we only need to
estimate the variance per transition (x, u) → y, it is sufficient to construct a model fϕ : X × U → X that
approximates the mean fϕ(x, u) ≈

∫
yP (x, u, y)dy, and we do this through minimizing a mean-squared er-

ror loss of transition samples in our model. Then, we estimate the entropy of an observed transition as
sϕ(x, u) = log(Ey∼P (x,u,·)[(fϕ(x, u)− y)2]).

Entropy Rate Computation Given a trained agent, the entropy rates are estimated equally for all
algorithms. At inference (when rolling out the trained agent), given the trained model fϕ, the entropy rate
for a trajectory {(Xt, π(Xt))}0≤t≤T −1 of length T is estimated as h̄π = 1

T

∑T −2
t=0 log((fϕ(Xt, π(Xt))−Xt+1)2]).

5 Experiments

We implemented PARL on a set of robotics and autonomous driving tasks, evaluated the obtained rewards
and entropy rates, and compared against different baselines. For the MuJoCo hyperparameters, we took pre-
tuned values from Raffin et al. (2019). For the experiments using PASAC and explicit comparison against
other SAC-based baselines including RPC (Eysenbach et al. 2021), see Appendix C.1. 15

Rewards, Entropies and Ablation To evaluate the influence of the trade-off parameter k, we test
PAPPO on MuJoCo tasks and compare to on-policy baselines. We train all agents using the same hyper-
parameters, and we only vary the trade-off k in the PARL agents to evaluate the influence. Additionally,
we run both the deterministic and stochastic resulting policies (deterministic chooses the mean action that
comes out of the policy, stochastic samples from it). The results are reported in Figure 2. Note that, as
Mujoco tasks have continuous state and action spaces, entropy rates may be negative.16

14This is a strong assumption, and in many multi-modal problems, it may not be sufficient to capture the dynamics. Note,
however, that our method is compatible with any representation of learned model Pϕ.

15We have also designed two additional representative robotic tasks where agents use PARL to avoid unnecessary stochasticity
in the environment. See the Appendix for these.

16Recall that, for our implementation, to address continuous state/action tasks, we use differential entropy to quantify
predictability for continuous random variables, which may indeed be negative. A different metric one may use is relative
entropy (the KL-divergence from the uniform distribution).

9



Published in Transactions on Machine Learning Research (06/2025)

PPO

k
=

0.0
5

k
=

0.1

k
=

0.2
5

k
=

0.5
−2

0

2

4

6

0R
ew

ar
ds

(k
’s)

Determ. Stoch.

PPO

k
=

0.0
5

k
=

0.1

k
=

0.2
5

k
=

0.5

−4

−2

0

2

4

0

En
tr

op
y

R
at

e

Determ. Stoch.

(a) Walker

PPO

k
=

0.0
5

k
=

0.1

k
=

0.2
5

k
=

0.5
−2

0

2

4

6

0R
ew

ar
ds

(k
’s)

Determ. Stoch.

PPO

k
=

0.0
5

k
=

0.1

k
=

0.2
5

k
=

0.5

−10

−5

0

5

0

En
tr

op
y

R
at

e

Determ. Stoch.

(b) Ant

PPO

k
=

0.0
5

k
=

0.1

k
=

0.2
5

k
=

0.5

0

2

4

6

8

R
ew

ar
ds

(k
’s)

Determ. Stoch.

PPO

k
=

0.0
5

k
=

0.1

k
=

0.2
5

k
=

0.5

−2

0

2

0

En
tr

op
y

R
at

e

Determ. Stoch.

(c) HalfCheetah

Figure 2: Rewards and Entropy rates for PAPPO as a function of k. Leftmost is PPO baseline.

Trajectory Complexity in MuJoCo The effect of entropy-rate minimization and PAPPO on trajectory
distributions is showcased in Figure 3. We evaluated trained agents over 10 full episodes, and plotted the
observed trajectories in task space to compare trajectory distributions. We plot as representative variables
the z-position and angle of the front tip of the robot. In both cases, we observe that PAPPO policies induce
more regular, clustered trajectories, which suggests smaller distributional complexity. Generally, PAPPO
trajectories have considerably smaller variance, and visit a smaller portion of the state-space. In the Walker
and Ant environments this difference is very pronounced, as PAPPO trajectories are concentrated in a tiny
region of the state-space, and especially in terms of the angles observed, are limited to a much smaller range.

Predictable Driving We test PAPPO in the Highway Environment (Leurent, 2018), where an agent
learns to drive at a desired speed while navigating a crowded road with other autonomous agents. The
agent gets rewarded for tracking the desired speed and penalised for collisions. We consider a highway and
a roundabout scenario (see Figure 4). We compare against PPO (Schulman et al., 2017) and DQN Mnih
et al. (2015)) agents, and take the hyperparameters directly from Leurent (2018). The results are presented
in Table 1. In the highway environment, agents slow down their speed and stop overtaking (arguably, a
more predictable driving pattern). This results in longer episode lengths (and larger episodic rewards), but
lower rewards per time-step (since reward is given for driving faster). In the roundabout scenario, a different
behaviour emerges: Agents keep a constant high speed to traverse the roundabout as fast as possible, as the
roundabout is the main source of complexity.
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Figure 3: 10 trajectory plots for agents with seed 0. Blue is PPO, orange is PAPPO with k = 0.5.

Table 1: Results for autonomous driving environments.

Highway Rewards Ep. Length Avg. Speed Entropy Rate
DQN 17.51 ± 7.73 20.92 ± 9.08 6.51 ± 0.34 -0.37 ± 0.16
PPO 18.88 ± 6.74 24.41 ± 8.49 5.62 ± 0.10 -0.88 ± 0.05
PAPPOk=0.1 21.05 ± 4.03 28.56 ± 5.27 5.11 ± 0.05 -1.43 ± 0.09
PAPPOk=0.5 21.03 ± 2.05 29.60 ± 2.64 5.06 ± 0.01 -1.51 ± 0.09
PAPPOk=1 20.89 ± 2.05 29.61 ± 2.58 5.05 ± 0.00 -1.51 ± 0.06

Roundabout Rewards Ep. Length Avg. Speed Entropy Rate
DQN 22.53 ± 11.93 26.92 ± 14.41 3.09 ± 0.47 -0.55 ± 0.88
PPO 29.26 ± 10.68 32.92 ± 11.67 2.80 ± 0.12 -0.23 ± 0.27
PAPPOk=0.1 28.86 ± 10.96 32.98 ± 12.23 2.65 ± 0.50 -0.28 ± 0.77
PAPPOk=0.5 17.99 ± 13.34 23.45 ± 17.60 3.75 ± 0.05 -2.13 ± 0.12
PAPPOk=1 16.83 ± 13.28 22.05 ± 17.67 3.79 ± 0.04 -2.21 ± 0.14

6 Average Reward Formulation

Through the work we argue that the entropy rate can be efficiently cast and implemented as an aver-
age reward criterion, to be combined with other primary reward objectives. A natural question to ask
is how does the formulation of our work adapt to the case where the primary objective is an average
reward objective over the MDP rewards. Consider the case where we are interested in optimizing a lin-
ear combination of average reward and entropy rate objectives. Then, we can write the reward objec-
tive as J(π) = E

[
limT →∞

1
T

∑T
t=0 Rπ

t

]
, and since both the average rewards and the average entropies

are taken in expectation over the same probability space, the trade-off objective in equation 2 becomes
arg max

π∈Π
J(π) − kJs(π) = E

[
limT →∞

1
T

∑T
t=0 Rπ

t − ksπ
t

]
, where we already included the surrogate entropy

sπ
t = s(Xt, π(Xt)). Further, recall that s(x, u) = Ey∼P (x,u,·)[− log P (x, u, y)]. Then, assuming knowledge of

P (or an approximation of it), one can define an adjusted reward R̃(x, u, y) := R(x, u, y) + k log P (x, u, y)
and a modified value function Ṽ π

avg(x) := Eu∼π,y∼P (x,u,·)[R(x, u, y) + k log P (x, u, y) − g̃π + V π
avg(y)], where

g̃π = E
[
limT →∞

1
T

∑T
t=0 R̃π

t

]
is the modified reward rate under policy π (which is independent of the initial

set of states for ergodic MDPs). Observe that, even though R̃(x, u, y) ̸= R(x, u, y)− ks(x, u), they are equal
in expectation. Then, for any fixed policy, the expected average reward can be computed through R̃, and a
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policy π∗ solving the optimization problem π∗ ∈ arg max
π∈Π

Ṽ π
avg(x) ∀x ∈ X is guaranteed to solve the average

reward objective. This allows for more compact formulation, and for the learning of a single value function
(instead of two), which can be desirable in some cases. It also implies that transitions with low probabilities
of being observed are penalized. Computationally, this is also advantageous since we do not need to compute
the entropy of the learned model, but instead evaluate the likelihood of the observed transition and adjust
the rewards accordingly.

7 Discussion

Summary of Results We proposed a novel method, namely PARL, that induces more predictable be-
haviour in RL agents by maximizing a tuneable linear combination of a standard expected reward and the
negative entropy rate, thus trading-off optimality with predictability. In the experimental results, we see how
PARL greatly reduces the entropy rates of the RL agents while achieving near-optimal rewards, depending
on the trade-off parameter. In the autonomous driving setting, agents learn to be more predictable while
driving around stochastic agents. In the MuJoCo experiments, PARL obtains policies that yield more clus-
tered, less complex trajectory distributions, allowing models to predict better the dynamics. This results
in, for example, a smaller range of values of orientation angles as seen in the trajectory representations on
Figure 3. Additionally, following our method, the entropy rate can be directly interpreted as the average
complexity necessary to correctly predict the trajectory of the agents, and if assuming Gaussian predictions,
this is proportional to the log of the prediction variance observed by the agent’s internal prediction model,
which shows how lower entropy rates yield predictability.

Shortcomings Our scheme results in a setting where agents maximize a trade-off between two different
objectives. This, combined with learning a dynamic model (which is notoriously difficult), introduces imple-
mentation challenges related to learning multiple coupled models simultaneously. We make an attempt at
discussing a systematic way of addressing these in the Appendix. Additionally, for many applications, avoid-
ing high-entropy policies may restrict the ability of RL agents to learn optimal behaviours (see, e.g., results
in Eysenbach et al. 2021). And although in human-robot interaction and human-aligned AI predictability is
intuitively beneficial, we cannot claim that minimizing entropy-rates is desirable for all RL applications. Ad-
ditionally, a question remains regarding how would our method change in partially observable environments.
The entropy rate of a POMDP (if measured on the state sequence, not on observations) is influenced by the
policy given an observation, observation probability given a state, and the state transition, resulting in a
much more difficult object to estimate (see e.g. Savas et al. (2022)). We believe the theoretical and practical
considerations of minimising entropy rates in POMDPs (in model-free settings) will be a very interesting
future direction.

Entropy and Exploration One might wonder if minimizing entropy rates of RL agents may hinder
exploration. From a theoretical perspective, this is not a problem due to ergodicity. From a practical
perspective, this undesired effect is highly mitigated by the fact that for the first (many) steps, the agent is
still learning an adequate model of the dynamics, and therefore the entropy signal is very noisy which favors
exploration.

Acknowledgements

Authors want to thank Alvaro Serra, Lasse Peters, Khaled A. Mustafa and Elia Trevisan for the useful
discussions on this topic. This research was supported by funding from the Dutch Research Council NWO-
NWA, within the “Acting under uncertainty” (ACT) project (Grant No. NWA.1292.19.298).

References
J. Abounadi, D. Bertsekas, and V. S. Borkar. Learning Algorithms for Markov Decision Processes

with Average Cost. SIAM Journal on Control and Optimization, 40(3):681–698, January 2001. ISSN

12



Published in Transactions on Machine Learning Research (06/2025)

0363-0129, 1095-7138. doi: 10.1137/S0363012999361974. URL http://epubs.siam.org/doi/10.1137/
S0363012999361974.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, 2019.

Koenraad M R Audenaert. A sharp continuity estimate for the von neumann entropy. Journal of Physics A:
Mathematical and Theoretical, 40(28):8127, jun 2007. doi: 10.1088/1751-8113/40/28/S18. URL https:
//dx.doi.org/10.1088/1751-8113/40/28/S18.

Glen Berseth, Daniel Geng, Coline Manon Devin, Nicholas Rhinehart, Chelsea Finn, Dinesh Jayaraman,
and Sergey Levine. Smirl: Surprise minimizing reinforcement learning in unstable environments. In
International Conference on Learning Representations, 2021.

Fabrizio Biondi, Axel Legay, Bo Friis Nielsen, and Andrzej Wasowski. Maximizing entropy over Markov
processes. Journal of Logical and Algebraic Methods in Programming, 83(5-6):384–399, September 2014.
ISSN 23522208. doi: 10.1016/j.jlamp.2014.05.001.

Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48. Springer, 2009.

Baptiste Busch, Jonathan Grizou, Manuel Lopes, and Freek Stulp. Learning legible motion from human–
robot interactions. International Journal of Social Robotics, 9(5):765–779, 2017.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca Dragan. On
the utility of learning about humans for human-ai coordination. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem Lahlou,
Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular & customizable
reinforcement learning environments for goal-oriented tasks. CoRR, abs/2306.13831, 2023.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Anca D. Dragan, Kenton C.T. Lee, and Siddhartha S. Srinivasa. Legibility and predictability of robot motion.
In 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 301–308, 2013.
doi: 10.1109/HRI.2013.6483603.

Xiaoming Duan, Mishel George, and Francesco Bullo. Markov chains with maximum return time entropy
for robotic surveillance. IEEE Transactions on Automatic Control, 65(1):72–86, 2019.

Richard M Dudley. Real analysis and probability. CRC Press, 2018.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Robust predictable control. Advances in Neural
Information Processing Systems, 34:27813–27825, 2021.

Mark Fannes. A continuity property of the entropy density for spin lattice systems. Communications in
Mathematical Physics, 31:291–294, 1973.

Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft updates.
arXiv preprint arXiv:1512.08562, 2015.

Mishel George, Saber Jafarpour, and Francesco Bullo. Markov chains with maximum entropy for robotic
surveillance. IEEE Transactions on Automatic Control, 64(4):1566–1580, 2018.

Hongliang Guo, Qi Kang, Wei-Yun Yau, Marcelo H. Ang, and Daniela Rus. Em-patroller: Entropy maximized
multi-robot patrolling with steady state distribution approximation. IEEE Robotics and Automation
Letters, 8(9):5712–5719, 2023a. doi: 10.1109/LRA.2023.3300245.

13

http://epubs.siam.org/doi/10.1137/S0363012999361974
http://epubs.siam.org/doi/10.1137/S0363012999361974
https://dx.doi.org/10.1088/1751-8113/40/28/S18
https://dx.doi.org/10.1088/1751-8113/40/28/S18
https://proceedings.neurips.cc/paper_files/paper/2019/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf


Published in Transactions on Machine Learning Research (06/2025)

Lingxiao Guo, Haoxuan Pan, Xiaoming Duan, and Jianping He. Balancing efficiency and unpredictability in
multi-robot patrolling: A marl-based approach. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3504–3509, 2023b. doi: 10.1109/ICRA48891.2023.10160923.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pp. 1861–1870. PMLR, 2018.

Seungyul Han and Youngchul Sung. A max-min entropy framework for reinforcement learn-
ing. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 25732–25745. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
d7b76edf790923bf7177f7ebba5978df-Paper.pdf.

Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane, Mathieu
Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard Dazeley, Fredrik Heintz, et al. A practical guide
to multi-objective reinforcement learning and planning. Autonomous Agents and Multi-Agent Systems, 36
(1):26, 2022.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in neural information processing systems, 32, 2019.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. Machine
learning, 49:209–232, 2002.

Dongyoung Kim, Jinwoo Shin, Pieter Abbeel, and Younggyo Seo. Accelerating reinforcement learning with
value-conditional state entropy exploration, 2023.

Edouard Leurent. An environment for autonomous driving decision-making. https://github.com/
eleurent/highway-env, 2018.

Yanyu Liu, Yifeng Zeng, Biyang Ma, Yinghui Pan, Huifan Gao, and Xiaohan Huang. Improvement and
evaluation of the policy legibility in reinforcement learning. In Proceedings of the 2023 International
Conference on Autonomous Agents and Multiagent Systems, pp. 3044–3046, 2023.

Xingyu Lu, Kimin Lee, Pieter Abbeel, and Stas Tiomkin. Dynamics generalization via information bottleneck
in deep reinforcement learning. arXiv preprint arXiv:2008.00614, 2020.

Xiaoteng Ma, Xiaohang Tang, Li Xia, Jun Yang, and Qianchuan Zhao. Average-reward reinforcement
learning with trust region methods. arXiv preprint arXiv:2106.03442, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533, 2015.

Mirco Mutti, Lorenzo Pratissoli, and Marcello Restelli. Task-agnostic exploration via policy gradient of a
non-parametric state entropy estimate. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 9028–9036, 2021.

Mirco Mutti, Riccardo De Santi, and Marcello Restelli. The importance of non-markovianity in maximum
state entropy exploration. In International Conference on Machine Learning, pp. 16223–16239. PMLR,
2022.

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov decision
processes. arXiv preprint arXiv:1705.07798, 2017.

Seohong Park and Sergey Levine. Predictable mdp abstraction for unsupervised model-based rl. arXiv
preprint arXiv:2302.03921, 2023.

14

https://proceedings.neurips.cc/paper_files/paper/2021/file/d7b76edf790923bf7177f7ebba5978df-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d7b76edf790923bf7177f7ebba5978df-Paper.pdf
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env


Published in Transactions on Machine Learning Research (06/2025)

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 24, pp. 1607–1612, 2010.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain exploration
for long horizon multi-goal reinforcement learning. In Hal Daumé III and Aarti Singh (eds.), Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 7750–7761. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
pitis20a.html.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2014.

Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah Dormann.
Stable baselines3, 2019.

Yagiz Savas, Melkior Ornik, Murat Cubuktepe, Mustafa O. Karabag, and Ufuk Topcu. Entropy Maximization
for Markov Decision Processes Under Temporal Logic Constraints. IEEE Transactions on Automatic
Control, 65(4):1552–1567, April 2020. ISSN 0018-9286, 1558-2523, 2334-3303. doi: 10.1109/TAC.2019.
2922583. URL https://ieeexplore.ieee.org/document/8735817/.

Yagiz Savas, Michael Hibbard, Bo Wu, Takashi Tanaka, and Ufuk Topcu. Entropy maximization for partially
observable markov decision processes. IEEE transactions on automatic control, 67(12):6948–6955, 2022.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International conference on machine learning, pp. 1889–1897. PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Rohin Shah, Noah Gundotra, Pieter Abbeel, and Anca Dragan. On the feasibility of learning, rather
than assuming, human biases for reward inference. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pp. 5670–5679. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/shah19a.html.

Claude E Shannon. A mathematical theory of communication. The Bell system technical journal, 27(3):
379–423, 1948.

Joar Skalse, Lewis Hammond, Charlie Griffin, and Alessandro Abate. Lexicographic multi-objective reinforce-
ment learning. In Lud De Raedt (ed.), Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI-22, pp. 3430–3436. International Joint Conferences on Artificial Intelligence
Organization, 7 2022. doi: 10.24963/ijcai.2022/476. URL https://doi.org/10.24963/ijcai.2022/476.
Main Track.

Elis Stefansson and Karl H Johansson. Computing complexity-aware plans using kolmogorov complexity. In
2021 60th IEEE Conference on Decision and Control (CDC), pp. 3420–3427. IEEE, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in neural information processing systems,
12, 1999.

Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Remi Munos, Alexey Naumov, Pierre
Perrault, Yunhao Tang, Michal Valko, and Pierre Menard. Fast rates for maximum entropy exploration.
In International Conference on Machine Learning, pp. 34161–34221. PMLR, 2023.

Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning algo-
rithms. Connection Science, 3(3):241–268, 1991.

15

https://proceedings.mlr.press/v119/pitis20a.html
https://proceedings.mlr.press/v119/pitis20a.html
https://ieeexplore.ieee.org/document/8735817/
https://proceedings.mlr.press/v97/shah19a.html
https://proceedings.mlr.press/v97/shah19a.html
https://doi.org/10.24963/ijcai.2022/476


Published in Transactions on Machine Learning Research (06/2025)

Rui Zhao, Xudong Sun, and Volker Tresp. Maximum entropy-regularized multi-goal reinforcement learning.
In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 7553–7562. PMLR,
09–15 Jun 2019. URL https://proceedings.mlr.press/v97/zhao19d.html.

Alexander Zimin and Gergely Neu. Online learning in episodic markovian decision processes by relative
entropy policy search. Advances in neural information processing systems, 26, 2013.

16

https://proceedings.mlr.press/v97/zhao19d.html


Published in Transactions on Machine Learning Research (06/2025)

A Auxiliary Results

We include in this Appendix some existing results used throughout our work. The following Theorem is
a combination of results presented by Puterman (2014) regarding the existence of optimal average reward
policies.
Theorem 3 (Average Reward Policies Puterman (2014)). Given an MDP M the following hold: gπ(x) and
bπ(x) exist, gπ(x) = gπ for all x (i.e. gπ(x) is constant), and there exists a deterministic, stationary policy
π̂ ∈ argmaxπ∈Π gπ that maximizes the expected average reward. Additionally, the same holds if U is compact
and R and P are continuous functions of U .
Theorem 4 (Stochastic Recursive Inclusions Borkar (2009)). Let xn ∈ Rd be a vector following a sequence:

xn+1 = xn + an(h(xn) + Mn+1 + ηn), (7)

where supn ∥xn∥ < ∞ a.s., an is a learning rate, h : Rd → Rd is a Lipschitz map, Mn is a Martingale
difference sequence with respect to the σ−algebra Fn := σ(x0, M1, M2, ..., Mn) (and square integrable), and
ηn is an error term bounded by ϵ0. Define H := {x ∈ Rd : h(x) = 0}. Then, for any δ > 0, there exists an
ϵ > 0 such that ∀ϵ0 ∈ (0, ϵ) the sequence {xn} converges almost surely to a δ-neighbourhood of H.
Theorem 5 (Policy Gradient with Function Approximation Sutton et al. (1999)). Let πθ be a parameterised
policy and fw : X ×U → R be a parameterised (approximation of) action value function in an MDP M. Let
the parameterisation be compatible, i.e. satisfy:

∂fw(x, u)
∂w

= ∂πθ(x, u)
∂θ

1
πθ(x, u) .

Let the parameters w and θ be updated at each step such that:

wk :
∑

x

µπθ (x)
∑

u

πθ(x, u)
(
Qπθ (x, u)− fwk

(x, u)
)∂fw(x, u)

∂wk
= 0,

θk+1 = θk + αt

∑
x

µπθ (x)
∑

u

∂πθ(x, u)
∂θ

fwk
(x, u).

Then, limk→∞
∂ρ(θk)

∂θ = 0, where ρ(θ) is either the discounted or average reward in the MDP.

B Technical Proofs

Proof of Lemma 1. For statement a), observe lπ(x) can be expressed as

lπ(x) =− E [P (x, u, y)|u ∼ π(x)] log
(
E [P (x, u, y)|u ∼ π(x)]

)
,

and recall
Eu∼π(x)[s(x, u)] = −Eu∼π(x)

[ ∑
y∈X

P (x, u, y) log (P (x, u, y))
]
.

Then, from Jensen’s inequality, Eu∼π(x)[s(x, u)] ≤ lπ.

In Statement b), the fact that h̄π
s (x) is constant follows from Theorem 3 by considering R(x, u, y) ≡ s(x, u).

Now, note that we can write h̄π
s =

∑
x∈X Eu∼π(x)[s(x, u)]µπ(x) and h̄π =

∑
x∈X lπ(x)µπ(x) (see Puterman

(2014)). Thus:
h̄π

s =
∑
x∈X

Eu∼π(x)[s(x, u)]µπ(x) ≤
∑
x∈X

lπ(x)µπ(x) = h̄π,

where we employed Statement a).

For Statement c), take π ∈ ΠD. Then, π(u′ | x) = 1 and π(u | x) = 0 for an action u′ ∈ U and all u ̸= u′.
Then

Eu∼π(x)[s(x, u)] =
∑
y∈X

P (x, u′, y) log (P (x, u′, y)) = lπ(x).

The fact that h̄π
s = h̄π follows, then, trivially.
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Proof of Proposition 1. Observe that s(x, u) and sϕ(x, u) are the entropies of probability distributions
P (x, u, ·) and Pϕ(x, u, ·), respectively. Thus, the Fannes–Audenaert inequality Audenaert (2007) for two
probability distributions p and q states:

|H(p)−H(q)| ≤ 2T log(d)− 2T log(2T ),

where T = |p−q|1
2 and d is the dimensions of the support of the distributions. Then, taking P (x, u, ·) and

Pϕ(x, u, ·) as distributions, for any action u we obtain:

∥sϕ(x, u)− s(x, u)∥∞ ≤ ϵ log
(
|X |
)
− ϵ log ϵ =: K(ϵ),

Finally:

E
[

lim
T →∞

1
T

T∑
t=0

sϕ(Xt, π(Xt)) | X0 ∼ µ0
]
− h̄π

s =

E
[

lim
T →∞

1
T

T∑
t=0

sϕ(Xt, π(Xt))− s(Xt, π(Xt))
]
≤

E
[

lim
T →∞

1
T

T∑
t=0

∣∣sϕ(Xt, π(Xt))− s(Xt, π(Xt))
∣∣] ≤E[ lim

T →∞

1
T

T∑
t=0

K(ϵ)
]

= K(ϵ).

Proof of Proposition 2. Since Sω is linear on ω ∈ Ω and Ω is compact, there exists at least one minimizer
ω∗. Now, from equation 1 and Theorem 8.2.6 (Puterman, 2014), Sπ and Sπ

ϕ can be written in vector form
(over the states X ) as:

Sπ = (I − Pπ + P ∗
π )−1(I − P ∗

π )sπ,

Sπ
ϕ = (I − Pπ + P ∗

π )−1(I − P ∗
π )sπ

ϕ,

where sπ is the vector representation of s(·, π(·)) (and analogously for sπ
ϕ). Therefore, from Proposition 1,

∥Sπ(x)− Sπ
ϕ (x)∥∞ ≤ K(ϵ). Then, we can write without loss of generality

Sπ(x, u) = Sπ
ϕ (x, u) + η(ϵ, x),

with η(ϵ, x) being O(ϵ) for all x since it is bounded by a function K(ϵ which is O(ϵ). Finally, we can write
the parameter iteration as

ωt+1 = ωt + βt

[
−∇ωLπ

ω + Mt+1 + η(ϵ)
]
,

with Lπ
ω := E x∼µπ

u∼πθ(x)

[
1
2 (Sπ(x, u)− Sω(x, u))2

]
and the term Mt+1 :=

(
Ŝπ(x, u)− Sπ(x, u)

)
∂Sω(x,u)

∂ω is a

Martingale with bounded variance (since s is bounded).

Therefore, by Theorem 6 in (Borkar, 2009), the iterates converge to some point ωt → Ω∗
δ(πθ) almost surely

as t→∞, with Ω∗
δ(πθ) being the O(δ) neighbourhood of the stationary points satisfying ∇ωLπ

ω = 0.

C Experimental Results and Methodology

We present here the extended experimental results, training curves and additional details corresponding to
the experimental framework. All experiments were run in a single CPU, running Ubuntu 20.04, and all
libraries and requirements are properly listed in the paper code.

18



Published in Transactions on Machine Learning Research (06/2025)

Figure 4: Self-Driving Environments.

C.1 Soft Actor-Critic Experiments

As discussed in Section 4.2, we implemented a version of PARL based on a Soft Actor-Critic implementation
(Haarnoja et al., 2018). For this, we simply learn in parallel an average reward Q function to optimize the
entropy rate (Sω), and combine the Q functions to compute the actor objective as:

Jsac(π) = Ex∼D
[
Eu∼π

[
α log π(u | x)−Qξ(x, u)+

+ kSω(x, u)
]]

.
(8)

As a baseline for our SAC implementation, we use RPC (Eysenbach et al., 2021), which is another SAC based
algorithm aiming to maximize rewards while compressing policies to a maximum complexity, to achieve more
simple, robust and predictable behaviours. Please note, the comparison is merely qualitative: RPC does not
optimize for entropy rate in the agent’s behaviour, however simpler policies do induce smaller entropy rates
(as seen in the reported results) and thus it is still useful as a baseline to evaluate the impact of entropy
rate objectives in SAC agents. We trained all agents with the same parameters, 5 agents per parameter
combination and evaluated over 50 independent episodes. For RPC, we trained agents with different policy
compression rates (2 bits and 5 bits), and for PASAC with two different trade-off parameters (k = 1 and
k = 0.5). We train both PASAC and RPC with the same architecture for the prediction models (decoder in
RPC), and we use an identity encoder for RPC to make the prediction models equivalent, and the entropy
to be estimated in task space (not in a latent space). The results are presented in table 2. We also include
a DDPG () baseline17 which is an inherently deterministic policy.

Table 2: Results for MuJoCo environments, Off Policy algorithms.

Ant Rewards Ep. Length Entropy Rate

DDPG 1371.23 ± 757.25 899.60 ± 170.73 4.14 ± 0.91
PASACk=1 6173.43 ± 442.87 997.12 ± 48.45 -0.70 ± 0.12
PASACk=0.5 5235.99 ± 1268.48 957.72 ± 168.55 -0.27 ± 0.44
RPC2bit 2084.51 ± 674.39 983.44 ± 108.75 1.81 ± 0.56
RPC5bit 5640.18 ± 496.67 996.15 ± 60.78 1.92 ± 0.12

HalfCheetah Rewards Ep. Length Entropy Rate

DDPG 10829.94 ± 1316.95 1000.0 ± 0.0 3.84 ± 0.10
PASACk=1 11134.25 ± 1398.77 1000.00 ± 0.0 -0.02 ± 0.21
PASACk=0.5 11014.73 ± 816.36 1000.00 ± 0.0 0.07 ± 0.22
RPC2bit 5105.49 ± 470.98 1000.00 ± 0.0 2.94 ± 0.12
RPC5bit 6003.90 ± 666.42 1000.00 ± 0.0 2.55 ± 0.17

Hopper Rewards Ep. Length Entropy Rate

DDPG 1080.03 ± 640.22 343.40 ± 193.73 0.89 ± 0.23
PASACk=1 1556.92 ± 946.95 479.17 ± 300.50 -4.28 ± 0.30
PASACk=0.5 2645.24 ± 1140.11 739.70 ± 332.04 -3.69 ± 0.24
RPC2bit 2667.34 ± 1091.18 732.44 ± 319.22 0.98 ± 0.15
RPC5bit 2456.70 ± 1236.72 655.78 ± 339.75 1.19 ± 0.09

17The Ant-v4 DDPG obtain very high variance rewards and entropies. To get a more conservative baseline, we trained 10
agents and picked the best one in terms of mean reward obtained.

19



Published in Transactions on Machine Learning Research (06/2025)

Figure 5: Interactive Tasks. Left is a moving obstacle navigation task where the agent has the option to
de-activate the obstacles. Right is a navigation problem where the ground is slippery, resulting in random
motion.

C.2 Interactive Robot Tasks

We created two tasks inspired by real human-robot use-cases, where it is beneficial for agents to avoid high
entropy state-space regions. These are based on Minigrid environments Chevalier-Boisvert et al. (2023), see
Figure 5. The agents can execute actions U = {forward, turn-left, turn-right, toggle}, and the observation
space is X = Rn such that the observation includes the robot’s position and orientation, the position of
obstacles and the state of environment features (e.g. the switch). In both tasks, the agent gets a reward of 1
for reaching the goal, or a negative reward of −1 for colliding or falling in the lava. Both grid environments
were wrapped in a normalizing vectorized wrapper, to normalize observations, but the model data was kept
un-normalized.

Task 1: Turning Off Obstacles This task is designed as a dynamic obstacle navigation task, where the
motion of the obstacles can be stopped (the obstacles can be switched off) by the agent toggling a switch at
a small cost of rewards. The environment is depicted in Figure 5 (left). The switch is to the left of the agent,
shown as a green bar (orange if off). The agent gets a reward of r = 0.95 if it turns the obstacle off. The
intuition behind this task is that agents do not learn to turn off the obstacles, and attempt to navigate the
environment. This, however, induces less predictable dynamics since the obstacle keeps adding noise to the
observation, and the agent is forced to take high variance trajectories to avoid it. Our Predictability-Aware
algorithm converges to policies that consistently disable the stochasticity of the obstacles, navigating the
environment freely afterwards, while staying near-optimal.

Task 2: Slippery Navigation The second task is inspired by a cliff navigation environment, where a
large portion of the ground is slippery, but a path around it is not. In this problem, the slippery part has
uncertain transitions (i.e. a given action does not yield always the same result, because the robot might slip),
but the non-slippery path induces deterministic behaviour (the robot follows the direction dictated by the
action). The agent needs to navigate to the green square avoiding the lava. If it enters the slippery region,
it has a probability of p = 0.35 of spinning and changing direction randomly. The intuition behind this
environment is that PPO agents do not learn to avoid the slippery regions, resulting in higher entropy rates
and less predictable behaviours. On the contrary, PAPPO agents consistently avoid the slippery regions.
This can be seen in Figure 6.

C.3 MuJoCo Experiments

We include here the full set of trajectory plots in task space, both for z position of the front tip versus angle
of the front tip, and x-y velocities of the front tip (See Figures 7, 8, 9, 10, 11 and 12). Additionally, we
include in tables 4 and 3 the full numerical results for the simulated agents. Each result is reported computed
for 10 independently trained agents, and each agent evaluated over 50 independent trajectories.
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π⋆

π∗

(a) Dyn Obstacle Env.

xf
x0

π⋆

π∗

(b) Slippery Nav. Env.

Figure 6: 2D trajectory projections. Blue is a PPO policy, orange is a PAPPO policy.

Table 3: Results for MuJoCo environments, Stochastic Policies.

Walker Rewards Ep. Length Entropy Rate

PPO 2466.27 ± 1329.71 638.29 ± 296.82 1.19 ± 0.40
PAPPOk=0.05 2430.12 ± 1199.45 626.77 ± 263.34 0.36 ± 0.74
PAPPOk=0.1 2047.30 ± 1106.09 551.40 ± 252.01 0.06 ± 0.61
PAPPOk=0.25 1315.47 ± 910.03 550.18 ± 296.42 -1.26 ± 1.79
PAPPOk=0.5 1072.88 ± 980.41 648.38 ± 358.74 -1.90 ± 1.16

Ant Rewards Ep. Length Entropy Rate

PPO 2459.29 ± 1411.75 734.79 ± 342.21 0.80 ± 0.27
PAPPOk=0.05 2510.29 ± 1504.11 774.54 ± 343.79 0.66 ± 0.24
PAPPOk=0.1 2107.21 ± 1195.23 786.88 ± 330.96 -0.04 ± 1.64
PAPPOk=0.25 1497.67 ± 854.79 950.96 ± 186.39 -3.54 ± 3.04
PAPPOk=0.5 1204.47 ± 1076.30 987.53 ± 87.62 -5.00 ± 1.98

HalfCheetah Rewards Ep. Length Entropy Rate

PPO 4150.53 ± 1645.16 1000.0 ± 0.0 1.01 ± 0.34
PAPPOk=0.05 3575.56 ± 1743.91 1000.0 ± 0.0 0.46 ± 0.45
PAPPOk=0.1 4482.48 ± 1679.52 1000.0 ± 0.0 0.31 ± 0.25
PAPPOk=0.25 4427.07 ± 1930.60 1000.0 ± 0.0 -0.27 ± 0.74
PAPPOk=0.5 3962.70 ± 1822.80 1000.0 ± 0.0 -0.54 ± 0.99

Trajectory Representations As expected, the observed trajectories for the case of PARL agents present
a much less complex (lower entropy) distribution. In particular, for the slippery navigation task where agents
have the choice of taking fully deterministic paths, it is even more obvious that the PARL agent chooses to
execute the same trajectory over and over, where PPO agents result in a more complex distribution due to
the traversing of the stochastic regions.

C.4 Learning Results

We include the learning curves for the trained agents on all the environments included in the paper.

C.5 Model Learning

Our proposed predictable RL scheme consists of a model-based architecture where the agent learns simulta-
neously a model Pϕ for the transition function and a policy πθ and value functions Vξ, Wω for the discounted
rewards and entropy rates. Simultaneously to a policy and a value function, we learn a model Pϕ to ap-
proximate the transitions (means) in the environment. For this, we train a neural network with inputs
(x, u) ∈ X × U and outputs the mean next state ȳxu. The model is trained using the MSE loss for stored
data D = {(x, u, y)}:

Ly = 1
2|D|

∑
D

(
ȳxu − y

)2
.

We do this by considering D to be a replay buffer (to reduce bias towards current policy parameters),
and at each iteration we perform K mini-batch updates of the model sampling uniformly from the buffer.
Additionally, we pre-train the model a set number of steps before beginning to update the agents, by
running a fixed number of environment steps with a randomly initialised policy, and training the model on
this preliminary data. All models are implemented as feed-forward networks with ReLU activations.
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Figure 7: Walker Trajectory Plots, x-axis is torso angle in radians, y-axis is z coordinate position of the
torso. Blue are PPO agents, orange are PARL agents.
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Figure 8: Walker Trajectory Plots, x axis is x velocity, y axis is y velocity. Blue are PPO agents, orange are
PARL agents.
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Figure 9: Ant Trajectory Plots, x-axis is torso angle in radians, y-axis is z coordinate position of the torso.
Blue are PPO agents, orange are PARL agents.
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Figure 10: Ant Trajectory Plots, x axis is x velocity, y axis is y velocity. Blue are PPO agents, orange are
PARL agents.
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Figure 11: HalfCheetah Trajectory Plots, x-axis is torso angle in radians, y-axis is z coordinate position of
the torso. Blue are PPO agents, orange are PARL agents.
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Figure 12: HalfCheetah Trajectory Plots, x axis is x velocity, y axis is y velocity. Blue are PPO agents,
orange are PARL agents.
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Table 4: Results for MuJoCo environments, Deterministic policies.

Walker Rewards Ep. Length Entropy Rate

PPO 3144.66 ± 1428.29 769.80 ± 297.99 0.74 ± 0.43
PAPPOk=0.05 3413.70 ± 1062.22 848.21 ± 218.93 -0.16 ± 0.79
PAPPOk=0.1 2278.67 ± 1352.92 598.13 ± 301.35 -0.20 ± 0.58
PAPPOk=0.25 1794.17 ± 1331.01 662.40 ± 319.09 -1.51 ± 1.84
PAPPOk=0.5 1212.20 ± 1201.21 672.42 ± 368.88 -1.98 ± 1.12

Ant Rewards Ep. Length Entropy Rate

PPO 3013.54 ± 1524.71 808.31 ± 313.55 0.52 ± 0.38
PAPPOk=0.05 3185.06 ± 1490.56 883.68 ± 260.07 0.27 ± 0.54
PAPPOk=0.1 2633.50 ± 1336.18 829.38 ± 301.95 -0.41 ± 2.17
PAPPOk=0.25 1611.57 ± 963.54 964.98 ± 155.04 -4.77 ± 3.83
PAPPOk=0.5 1218.27 ± 1129.12 986.36 ± 99.72 -6.44 ± 2.53

HalfCheetah Rewards Ep. Length Entropy Rate

PPO 5192.49 ± 1181.34 1000.0 ± 0.0 0.82 ± 0.31
PAPPOk=0.05 5115.65 ± 1178.23 1000.0 ± 0.0 0.27 ± 0.54
PAPPOk=0.1 5342.42 ± 1215.20 1000.0 ± 0.0 0.11 ± 0.26
PAPPOk=0.25 5686.88 ± 1096.06 1000.0 ± 0.0 -0.37 ± 0.40
PAPPOk=0.5 4462.63 ± 1740.05 1000.0 ± 0.0 -0.97 ± 0.96
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Figure 13: Training results for Slippery Navigation task.

Entropy estimation We found that it is more numerically stable to use the variance estimations as the
surrogate entropy (we do this since the log function is monotonically increasing, and thus maximizing the
variance maximizes the logarithm of the variance). This prevented entropy values to explode for environments
where some of the transitions are deterministic, thus yielding very large (negative) entropies.

C.6 Tuning and Hyperparamters

The tuning of PARL, due to its modular structure, can be done through the following steps:

1. Tune (adequate) parameters for vanilla RL algorithm used (e.g. PPO).

2. Without the predictable objectives, tune the model learning parameters using the vanilla hyperpa-
rameters.

3. Freezing both agent and model parameters, tune the trade-off parameter k and specific PARL
parameters (e.g. entropy value function updates) to desired behaviours.

For our experiments, we took PPO and SAC parameters tuned from Stable-Baselines3 Raffin et al. (2019)
and Haarnoja et al. (2018), and used automatic hyperparameter tuning Akiba et al. (2019) for model and
predictability parameters. In the implementation we introduced a delay parameter to allow agents to start
optimizing the policy for some steps without minimizing the entropy rate. For all hyperparameters used in
every environment and implementation details we refer the reader to the project repository.
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Figure 14: Training results for Obstacle Navigation task.
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Figure 15: Training results for Highway environment.
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Figure 16: Training results for Roundabout environment.
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Figure 17: Training results for HalfCheetah-v4 environment.
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Figure 18: Training results for Walker2d-v4 environment.
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Figure 19: Training results for Ant-v4 environment.
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