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Abstract
Language models (LMs) are susceptible to ad-001
versarial attack methods that generate adver-002
sarial examples with minor perturbations. Al-003
though recent attack methods can achieve a rel-004
atively high attack success rate (ASR), we find005
that the generated adversarial examples have a006
different data distribution compared with the007
original examples. Specifically, these adversar-008
ial examples exhibit lower confidence levels009
and higher distance to the training data distri-010
bution. As a result, they are easy to detect us-011
ing straightforward detection methods, dimin-012
ishing the effectiveness of these attack meth-013
ods. To overcome this problem, we propose014
a Distribution-Aware LoRA-based Adversar-015
ial Attack (DALA) method, which considers016
the distribution shift of adversarial examples017
to improve attack effectiveness under detec-018
tion methods. We further design a new eval-019
uation metric, Non-detectable Attack Success020
Rate (NASR), combining ASR and detection021
for the attack task. We conduct experiments on022
four widely-used datasets and validate the at-023
tack effectiveness and transferability of the ad-024
versarial examples generated by DALA on the025
white-box BERT-BASE model and the black-026
box LLAMA2-7B model.027

1 Introduction028

Language models (LMs), despite their capacity for029

remarkable accuracy and human-like performance030

in many applications, face vulnerability to adver-031

sarial attacks and exhibit high sensitivity to subtle032

input perturbations, which can potentially lead to033

failure (Jia and Liang, 2017; Belinkov and Bisk,034

2018; Wallace et al., 2019). Recently, an increasing035

number of adversarial attacks have been proposed,036

taking forms of insertion, deletion, swapping, and037

substitution at character, word, or sentence lev-038

els (Ren et al., 2019; Jin et al., 2020; Garg and039

Ramakrishnan, 2020; Ribeiro et al., 2020). These040

meticulously crafted adversarial examples are im-041

perceptible to humans but can deceive targeted042

The students 
are sanguine. 

Attack LM Detector

The students 
are jubilant. 

Negative

Negative

Figure 1: Toy examples of two adversarial sentences
on a sentiment analysis task. Although both sentences
successfully attack the victim model, the top one is
detected by the detector, while the bottom one is not
detected. In our task, we aim to generate adversarial
examples hard to detect.

models, raising concerns about the robustness and 043

security of LMs. For example, chatbots may mis- 044

understand user intent or sentiment and generate 045

inappropriate responses (Perez et al., 2022). 046

However, while existing adversarial attack meth- 047

ods can achieve a relatively high attack success rate 048

on victim models (Gao et al., 2018; Belinkov and 049

Bisk, 2018; Li et al., 2020), our experimental ob- 050

servations detailed in §3 reveal distribution shifts 051

between adversarial examples and original exam- 052

ples, rendering high detectability of adversarial ex- 053

amples. On one hand, adversarial examples exhibit 054

different confidence levels compared to their origi- 055

nal counterparts. Typically, the Maximum Softmax 056

Probability (MSP), a metric indicating prediction 057

confidence, is higher for original examples than 058

for adversarial examples. On the other hand, there 059

is a disparity in the distance to the training data 060

distribution between adversarial and original exam- 061

ples. Specifically, the Mahalanobis Distance (MD) 062

to training data distribution for original examples 063

is shorter than that for adversarial examples. Based 064

on these two observations, we conclude that ad- 065

versarial examples generated by previous attack 066

methods, such as BERT-Attack (Li et al., 2020), 067

can be easily detected through score-based detec- 068

tion techniques like MSP detection (Hendrycks and 069

Gimpel) and embedding-based detection methods 070

like MD detection (Lee et al., 2018). Thus, the 071

efficacy of previous attack methods is diminished 072
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when out-of-distribution detection is considered, as073

shown in Figure 1.074

To address these problems, we propose a075

Distribution-Aware LoRA-based Attack (DALA)076

method with Data Alignment Loss (DAL), which077

is a new attack method that can generate elusive078

adversarial examples that are hard to identify by ex-079

isting detection methods. The framework of DALA080

consists of two phases. Firstly, DALA finetunes a081

LoRA-based LM by combining the Masked Lan-082

guage Modeling task and the downstream classi-083

fication task using the Data Alignment Loss. The084

fine-tuning phase enables the LoRA-based LM to085

generate adversarial examples closely resembling086

original examples in terms of MSP and MD. Then,087

the LoRA-based LM is used during inference to088

generate adversarial examples.089

To measure the detectability of adversarial ex-090

amples generated by attack methods, we propose091

a new evaluation metric: Non-detectable Attack092

Success Rate (NASR), which combines Attack Suc-093

cess Rate (ASR) with Out-of-Distribution (OOD)094

detection. We conduct experiments on four datasets095

to verify whether DALA can effectively attack096

white-box LMs using ASR and NASR. Further-097

more, given the widespread use of Large Language098

Models (LLMs) and the fact that LLMs are expen-099

sive to fine-tune and many of them are not open100

source, we also evaluate the attack transferability of101

adversarial examples on the black-box LLMs. Our102

experiments show that DALA achieves competi-103

tive attack performance on the white-box BERT-104

BASE and the best transferability on the black-box105

LLAMA2-7B compared with baselines.106

Our work has the following contributions:107

• We analyze the distribution of adversarial and108

original examples and find that distribution shift109

exists in terms of MSP and MD.110

• We propose a new Distribution-Aware LoRA-111

based Attack method with Data Alignment Loss,112

which can generate adversarial examples that113

effectively attack victim models.114

• We design a new evaluation metric – NASR – for115

the attack task, which considers the detectability116

of adversarial examples.117

• We conduct comprehensive experiments to com-118

pare the performance between DALA and base-119

line models on four datasets, where we find120

DALA achieves competitive attack capabilities121

and better transferability under the consideration122

of detection.123

2 Related Work 124

2.1 Adversarial Attack in NLP 125

Adversarial attacks have been extensively stud- 126

ied to explore the robustness of language models. 127

Current methods fall into character-level, word- 128

level, sentence-level, and multi-level (Goyal et al., 129

2023). Character-level methods manipulate texts 130

by incorporating typos or errors into words, such 131

as deleting, repeating, replacing, swapping, flip- 132

ping, inserting, and allowing variations in char- 133

acters for specific words (Gao et al., 2018; Be- 134

linkov and Bisk, 2018). While these attacks are 135

effective and can achieve a high success rate, they 136

can be easily detected through a grammar checker. 137

Word-level attacks alter entire words rather than 138

individual characters within words, which tend 139

to be less perceptible to humans than character- 140

level attacks. Common manipulation includes ad- 141

dition, deletion, and substitution with synonyms 142

to mislead language models while the manipulated 143

words are selected based on gradients or impor- 144

tance scores (Ren et al., 2019; Jin et al., 2020; 145

Li et al., 2020; Garg and Ramakrishnan, 2020). 146

Sentence-level attacks typically involve inserting 147

or rewriting sentences within a text, all while pre- 148

serving the original meaning (Zhao et al., 2018; 149

Iyyer et al., 2018; Ribeiro et al., 2020). Multi-level 150

attacks combine multiple perturbation techniques 151

to achieve both imperceptibility and a high success 152

rate in the attack (Song et al., 2021). 153

2.2 Out-of-distribution Detection in NLP 154

Out-of-distribution (OOD) detection methods have 155

been widely explored in NLP problems, like ma- 156

chine translation (Arora et al., 2021; Ren et al., 157

2022; Adila and Kang, 2022). OOD detection meth- 158

ods in NLP can be roughly categorized into two 159

types: (1) score-based methods and (2) embedding- 160

based methods. Score-based methods use maxi- 161

mum softmax probabilities (Hendrycks and Gim- 162

pel), perplexity score (Arora et al., 2021), beam 163

score (Wang et al., 2019b), sequence probabil- 164

ity (Wang et al., 2019b), BLEU variance (Xiao 165

et al., 2020), or energy-based scores (Liu et al., 166

2020). Embedding-based methods measure the dis- 167

tance to in-distribution data in the embedding space 168

for OOD detection. For example, Lee et al. (2018) 169

uses Mahalanobis distance; Ren et al. (2021) pro- 170

poses to use relative Mahalanobis distance; Sun 171

et al. (2022) proposes a nearest-neighbor-based 172

OOD detection method. 173
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(a) MSP on SST-2 dataset.
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(b) MSP on MRPC dataset.

Figure 2: Visualization of the distribution shift between
original data and adversarial data generated by BERT-
Attack when attacking BERT-BASE regarding Maxi-
mum Softmax Probability.
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(a) MD on SST-2 dataset.
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(b) MD on MRPC dataset.

Figure 3: Visualization of the distribution shift between
original data and adversarial data generated by BERT-
Attack when attacking BERT-BASE regarding Maha-
lanobis Distance.

We select the simple, representative, and widely-174

used OOD detection methods of these two cate-175

gories: MSP detection (Hendrycks and Gimpel)176

and MD detection (Lee et al., 2018), respectively.177

These two methods are then incorporated with the178

Attack Success Rate to assess the robustness and179

detectability of adversarial examples generated by180

different attack models.181

3 Understanding Distribution Shift of182

Adversarial Examples183

This section showcases the empirical observations184

from our analysis of adversarial examples gener-185

ated by previous attack methods. Specifically, we186

find distribution shifts exist between adversarial187

and original examples, which implies that the origi-188

nal examples are in-distribution examples while ad-189

versarial examples are Out-of-Distribution (OOD)190

examples. Due to limited space, we only present191

the analysis of adversarial examples generated by192

BERT-Attack on SST-2 and MRPC; the complete193

results are available in Appendix E.194

Maximum Softmax Probability (MSP). Max-195

imum Softmax Probability (MSP) is a measure196

to evaluate prediction confidence, rendering it a197

widely employed score-based method for OOD de-198

tection, with diminished confidence correlating to 199

OOD examples. To assess the difference of MSP, 200

we visualize the MSP distribution of adversarial 201

examples generated by BERT-Attack (Li et al., 202

2020) and original examples on SST-2 (Socher 203

et al., 2013) and MRPC dataset (Dolan and Brock- 204

ett, 2005) in Figure 2. We observe that on both 205

datasets, most of the original examples have an 206

MSP over 0.9, indicating a significantly higher 207

MSP compared to adversarial examples overall. 208

This distribution shift is particularly pronounced 209

in the MRPC dataset, whereby most adversarial 210

examples exhibit MSP below 0.6, highlighting a 211

distinct contrast with the original examples. 212

Mahalanobis Distance (MD). Mahalanobis Dis- 213

tance (MD) is a measure of distance between one 214

data point and a distribution, which serves as a 215

highly suitable and widespread method for OOD 216

detection. The higher MD of an example to in- 217

distribution data (training data) indicates that the 218

example may be an OOD instance. To assess the 219

MD difference between adversarial and original 220

examples, we visualize the MD distribution of ad- 221

versarial examples generated by BERT-Attack and 222

original examples on the SST-2 and MRPC datasets 223

in Figure 3. From Figure 3, we can observe that a 224

distribution shift exists between original and adver- 225

sarial examples on both datasets. This dissimilarity 226

is more noticeable on the SST-2 dataset and not as 227

conspicuous on the MRPC dataset. 228

Overall. These observations for MSP and MD 229

indicate clear distinctions between original and ad- 230

versarial examples generated by one of the state-of- 231

the-art methods, BERT-Attack. Compared to the 232

original examples, the adversarial examples exhibit 233

a more pronounced OOD nature in either MSP or 234

MD, meaning that adversarial examples are easy 235

to detect and the practical effectiveness of previous 236

attack methods is diminished. 237

4 Methodology 238

In this section, we define the attack task (§4.1), 239

propose a novel attack method called Distribution- 240

Aware LoRA-based Attack (§4.2), and introduce 241

the new Data Alignment Loss (§4.3). 242

4.1 Problem Formulation 243

Given an original sentence xorigi ∈ X and an orig- 244

inal label yorigi ∈ Y , our objective is to obtain an 245

adversarial sentence xadvi such that the prediction 246
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Figure 4: The overall model architecture of DALA. DALA consists of two phases: fine-tuning and inference. During
fine-tuning, a LoRA-based PLM is fine-tuned to possess the ability to generate adversarial examples resembling
original examples in terms of MSP and MD. During the inference phase, the LoRA-based PLM is used to generate
adversarial examples.

of the victim model corresponds to yadvi ∈ Y and247

yadvi ̸= yorigi .248

4.2 Distribution-Aware LoRA-based Attack249

Motivated by the distribution shift of adversarial250

examples, we propose a Distribution-Aware LoRA-251

based Attack (DALA) method. The key idea of252

DALA is to consider the distribution of the gen-253

erated adversarial examples and attempt to bring254

about a closer alignment between the distributions255

of adversarial examples and original examples in256

terms of MSP and MD. DALA is composed of two257

phases: fine-tuning and inference. DALA model258

structure is shown in Figure 4.259

Fine-tuning Phase. The fine-tuning phase aims260

to fine-tune a LoRA-based Pre-trained Language261

Model (PLM) to make it capable of generating ad-262

versarial examples through the Masked Language263

Modeling (MLM) task. First, the original sentence264

xorigi undergoes the MLM task through a LoRA-265

based PLM to generate the adversarial embedding266

Xadv
i , during which the parameters of the PLM are267

frozen, and the parameters of LORA (Hu et al.,268

2021) are tunable. Then, the generated adversarial269

embedding Xadv
i is subjected to the corresponding270

downstream task through the frozen PLM and out-271

puts logits of original ground truth label yorigi and272

adversarial label yadvi . The loss is calculated from273

Xadv
i , P (yorigi |Xadv

i , θ), and P (yadvi |Xadv
i , θ) to274

update the parameters of LORA. Details are dis-275

cussed in §4.3.276

Inference Phase. The inference phase aims to277

generate adversarial examples with minimal per-278

turbation. The original sentence xorigi is first tok-279

enized, and a ranked token list is obtained through280

token importance (Li et al., 2020). Then, a token is281

selected from the token list to be masked. Subse- 282

quently, the MLM task of the frozen LoRA-based 283

PLM is employed to generate a candidate list for 284

the masked token. A word is then chosen from the 285

list to replace the masked token until a successful 286

attack on the victim model is achieved, or the candi- 287

date list is exhausted. If the attack is unsuccessful, 288

another token is chosen from the token list until 289

a successful attack is achieved or the termination 290

condition is met. The termination condition is set 291

as the percentage of the tokens. 292

4.3 Model Learning 293

Data Alignment Loss, denoted as LDAL, is used to 294

bring the distributions of adversarial and original 295

examples closer in terms of MSP and MD. LDAL 296

is composed of two losses: LMSP and LMD. 297

LMSP is the complementary number of the sig- 298

moid of the Softmax probability difference between 299

the adversarial label and the original label given 300

adversarial input. LMSP is formulated as: 301

LMSP = 1− 1

1+e−[P (yadv
i

|Xadv
i

,θ)−P (y
orig
i

|Xadv
i

,θ)]
,

(1) 302

where θ is the model parameters. According to our 303

observation experiments in Figure 2, original data 304

has higher Maximum Softmax Probabilities (con- 305

fidence) than adversarial data. Thus, minimizing 306

LMSP makes generated adversarial examples more 307

similar to original examples concerning MSP. 308

LMD is the log of Mahalanobis Distance 309

(MD) (Lee et al., 2018) of adversarial input to the 310

training data distribution. LMD is formulated as: 311

LMD = log

√
(Xadv

i − µ)
∑−1

(Xadv
i − µ)⊺,

(2) 312
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where µ and
∑−1 are the mean and covariance em-313

bedding of the in-distribution (training) data respec-314

tively. MD is a robust metric for out-of-distribution315

detection and adversarial data detection. In general,316

adversarial data has higher MD than original data,317

as shown in Figure 3. Thus, minimizing LMD gen-318

erates adversarial examples more similar to original319

examples in terms of MD. LMD is constrained to320

the log space to be consistent with the scale of321

LMSP .322

Thus, Data Alignment Loss is represented as323

LDAL = LMSP + LMD, (3)324

and DALA is trained by optimizing LDAL.325

5 Attack Performance Evaluation Metrics326

Considering the observations of distribution shift327

analyzed in Section 3, we adopt a widely-used met-328

ric – Attack Success Rate – and design a new metric329

– Non-detectable Attack Success Rate – to evaluate330

attack performance.331

Attack Success Rate (ASR). Attack Success332

Rate (ASR) is defined as the percentage of gener-333

ated adversarial examples that successfully deceive334

model predictions. Thus, ASR is formulated as335

ASR =
|{xorigi | yadvi ̸= yorigi , xorigi ∈ X}|

|X |
. (4)336

This definition is consistent with prior work.337

Non-detectable Attack Success Rate (NASR).338

Considering the detectability of adversarial exam-339

ples generated by attack methods, we define a new340

evaluation metric – Non-Detectable Attack Success341

Rate (NASR). This new metric considers both ASR342

and Out-Of-Distribution (OOD) detection. Specifi-343

cally, NASR posits that the indicative criterion for344

a successful adversarial example resides in the ca-345

pacity to cause failure in the victim model while346

concurrently eluding OOD detection methods.347

We utilize two established and commonly em-348

ployed OOD detection techniques – MSP de-349

tection (Hendrycks and Gimpel) and MD detec-350

tion (Lee et al., 2018). MSP detection relies on351

logits and constitutes a method based on prob-352

ability distributions, while MD detection is a353

distance-based approach. We use Negative MSPs,354

−maxyi∈YP (yi | Xi, θ), for MSP detection355

and
√

(Xi − µ)
∑−1(Xi − µ)⊺ for MD detection,356

where µ and
∑−1 are the mean and covariance357

value of the in distribution (training) data respec- 358

tively. NASRs under MSP detection and MD de- 359

tection are denoted as NASRMSP and NASRMD. 360

Thus, NASR is formulated as: 361

NASRk = 1− |{xorig
i |yadvi =yorigi ,xorig

i ∈X}|+|Dk|
|X | ,

(5) 362

where Dk denotes the set of examples that success- 363

fully attack the victim model but are detected by 364

the detection method k ∈ {MSP,MD}. 365

Adversarial examples are considered as OOD 366

examples (positive), while original examples are 367

considered as in-distribution examples (negative). 368

To avoid misdetecting original examples into adver- 369

sarial examples from a defender’s view, we use the 370

negative MSP and MD value at 99% False Positive 371

Rate of the training data, where values exceeding 372

the threshold are considered positive, and those less 373

than the threshold are considered negative. 374

6 Experimental Settings 375

6.1 Baselines and Datasets 376

Attack Baselines. We use two character-level 377

attack methods, DeepWordBug (Gao et al., 2018) 378

and TextBugger (Jinfeng et al., 2019), and two 379

word-level attack methods, TextFooler (Jin et al., 380

2020) and BERT-Attack (Li et al., 2020). Detailed 381

descriptions for each baseline method are listed in 382

Appendix A.1. 383

Datasets. We evaluate DALA on four different 384

types of tasks: sentiment analysis task – SST- 385

2 (Socher et al., 2013), grammar correctness task 386

– CoLA (Warstadt et al., 2019), textual entailment 387

task – RTE (Wang et al., 2019a), and textual sim- 388

ilarity task – MRPC (Dolan and Brockett, 2005). 389

Detailed descriptions and statistics of each dataset 390

are shown in Appendix A.2. 391

6.2 Implementation Details 392

The backbone models of DALA are BERT- 393

BASE (Devlin et al., 2019) models fine-tuned 394

on corresponding downstream datasets. We use 395

BERT-BASE as white-box victim models and 396

LLAMA2-7B as black-box victim models. For 397

each experiment, the DALA fine-tuning phrase is 398

executed for a total of 20 epochs. The learning 399

rate is searched from [1e− 5, 1e− 3]. 30% of the 400

tokens are masked during the fine-tuning phrase. 401

The rank of the update matrices of LORA is set 402

to 8; LORA scaling factor is 32; LORA dropout 403
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Table 1: Evaluation results on the white-box and black-box victim models. BERT-BASE models are finetuned on
the corresponding dataset. Results of LLAMA2-7B are the average of zero-shot prompting with five different
prompts (individual analysis is in Appendix D). ACC represents model accuracy. We highlight the best and the
second-best results.

Dataset Model BERT-BASE (white-box) LLAMA2-7B (black-box)
ACC↓ ASR↑ NASRMSP ↑ NASRMD ↑ ACC↓ ASR↑ NASRMSP ↑ NASRMD ↑

SST-2

Original 92.43 89.91
TextFooler 4.47 95.16 53.47 91.94 68.97 23.81 22.97 23.58
TextBugger 29.01 68.61 37.34 66.87 84.50 6.89 6.51 6.69

DeepWordBug 16.74 81.89 57.57 80.77 81.97 9.49 9.01 9.39
BERT-Attack 38.42 58.44 33.62 54.96 66.42 26.61 25.81 26.38
DALA (ours) 21.10 77.17 54.22 75.06 64.19 29.42 28.68 29.14

CoLA

Original 81.21 70.97
TextFooler 1.92 97.64 95.63 94.92 31.95 57.65 52.13 57.09
TextBugger 12.18 85.01 81.23 77.69 39.41 48.22 42.49 47.22

DeepWordBug 7.09 91.26 88.78 86.19 31.93 61.23 56.67 60.58
BERT-Attack 12.46 84.65 79.22 79.93 39.98 46.07 40.97 45.68
DALA (ours) 2.78 96.58 93.74 93.27 33.06 58.51 53.39 57.69

RTE

Original 72.56 57.76
TextFooler 1.44 98.01 68.66 79.60 53.29 12.62 10.54 12.11
TextBugger 2.53 96.52 68.66 83.08 56.39 5.62 3.77 5.10

DeepWordBug 4.33 94.03 79.60 88.06 51.05 12.78 9.76 12.39
BERT-Attack 3.61 95.02 67.16 72.64 44.33 24.96 20.30 24.05
DALA (ours) 1.08 98.51 72.14 86.07 42.81 28.95 24.26 26.87

MRPC

Original 87.75 67.94
TextFooler 2.94 96.65 58.38 91.62 61.96 14.32 9.69 7.74
TextBugger 7.35 91.60 62.85 87.15 65.25 8.60 6.71 7.21

DeepWordBug 10.05 88.55 72.35 86.31 63.97 9.59 6.77 8.87
BERT-Attack 9.56 89.11 55.31 80.17 60.64 15.47 10.99 14.82
DALA (ours) 0.74 99.16 74.86 93.29 59.85 17.92 12.22 16.84

value is set as 0.1. The inference termination con-404

dition is set as 40% of the tokens. More detailed405

information about hyperparameters is described in406

Appendix A.3. The prompts used for LLAMA2-407

7B are listed in Appendix A.4408

BERT-BASE related experiments are conducted409

on two NVIDIA GeForce RTX 3090ti GPUs, and410

LLAMA2-7B related experiments are conducted411

on two NVIDIA RTX A5000 24GB GPUs.412

7 Experimental Results and Analysis413

In this section, we conduct experiments and analy-414

sis to answer five research questions:415

• RQ1 Will DALA effectively attack BERT-BASE?416

• RQ2 Are generated adversarial examples trans-417

ferable to the black-box LLAMA2-7B model?418

• RQ3 Will human judges find the quality of gen-419

erated adversarial examples reasonable?420

• RQ4 How do LDAL components impact DALA?421

• RQ5 Does LDAL outperform other attack losses?422

7.1 Automatic Evaluation Results423

We use the adversarial examples generated by424

DALA to attack the white-box BERT-BASE mod-425

els, which have been fine-tuned on the correspond- 426

ing datasets and are accessible during our fine- 427

tuning phase. Besides, considering that LLMs are 428

widely used, expensive to fine-tune, and often not 429

open source, we evaluate the attack transferability 430

of the generated adversarial examples on the black- 431

box LLAMA2-7B model, which are not available 432

during DALA fine-tuning. The experimental re- 433

sults on ACC, ASR, and NASR compared with 434

baselines are shown in Table 1. 435

Attack Performance (RQ1). When attacking 436

the white-box models, DALA obtains the best or 437

second-to-best performance regarding ACC, ASR, 438

and NASR on CoLA, RTE, and MRPC datasets. 439

On SST-2 dataset, although DALA’s performance 440

is not the best, NASRs of DALA experience a rel- 441

atively minor decrease from ASR compared with 442

baselines, implying that adversarial examples gen- 443

erated by DALA are more challenging to detect. 444

Aside from DALA, some baseline methods like 445

TextFooler work well on some datasets. However, 446

NASRMSP of TextFooler on SST-2 and MRPC 447

drops drastically compared to ASR, indicating 448

these adversarial examples are relatively easy to 449
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Table 2: Grammar correctness, prediction accuracy and
semantic preservation of original examples (denoted as
Orig.) and adversarial examples generated by DALA.

Dataset Grammar Accuracy Semantic
DALA Orig. DALA Orig. DALA TextFooler

SST-2 4.12 4.37 0.68 0.74 0.71 0.66
MRPC 4.62 4.86 0.68 0.76 0.88 0.84

detect using MSP detection.450

The experimental results indicate that DALA451

yields reasonable outcomes when attacking a white-452

box model, and the results remain favorable when453

considering detectability.454

Transferability to LLMs (RQ2). When attack-455

ing the black-box LLAMA2-7B model, DALA456

consistently performs well on SST-2, RTE, and457

MRPC, outperforming baselines in every evalua-458

tion metric. On CoLA, DALA achieves second-459

to-best results on most evaluation metrics. Further460

analysis and visualization of attack performance461

on LLAMA2-7B across five different prompts are462

displayed in Appendix D.463

The experimental results show that when gener-464

alizing generated adversarial examples to the black-465

box LLAMA2-7B model, our model exhibits a466

substantial advantage compared to baselines.467

7.2 Human Evaluation (RQ3)468

Given that our objective is to generate high-quality469

adversarial examples with similar semantic mean-470

ing to the original examples and imperceptible471

to humans, we perform human evaluations to as-472

sess the generated adversarial examples in terms of473

grammar, prediction accuracy, and semantic preser-474

vation on SST-2 and MRPC datasets. We ask three475

human judges to evaluate 50 randomly sampled476

original-adversarial pairs from each dataset. De-477

tailed annotation guidelines are provided in Ap-478

pendix B.479

First, we ask human raters to evaluate the gram-480

mar correctness and make predictions of the shuf-481

fled mix of the sampled original and adversarial482

examples. Grammar correctness is scored from483

1-5 (Li et al., 2020; Jin et al., 2020). Then, we484

ask human judges to assess the semantic preserva-485

tion of adversarial examples—whether each one486

maintains the meaning of the original example. We487

follow Jin et al. (2020) and ask human judges to488

decide whether the adversarial example is similar489

(1), ambiguous (0.5), or dissimilar (0) to the cor-490

responding original example. We compare DALA491

with the best baseline model, TextFooler, on se-492

Table 3: Ablation study on BERT-BASE regarding MSP.

Dataset Model ACC↓ ASR↑ NASRMSP ↑ DRMSP ↓

SST-2
DALA 21.10 77.17 54.22 29.74

(w/o MSP) 1.61 98.26 47.27 51.89

CoLA
DALA 2.78 96.58 93.74 2.93

(w/o MSP) 2.11 97.40 93.15 4.36

RTE
DALA 1.08 98.51 72.14 26.77

(w/o MSP) 1.08 98.51 70.65 28.28

MRPC
DALA 0.74 99.16 74.86 24.51

(w/o MSP) 0.74 99.16 73.18 26.20

Table 4: Ablation study on BERT-BASE regarding MD.

Dataset Model ACC↓ ASR↑ NASRMD↑ DRMD↓

SST-2
DALA 21.10 77.17 75.06 2.73

(w/o MD) 15.60 83.13 80.77 2.84

CoLA
DALA 2.78 96.58 93.27 3.42

(w/o MD) 2.30 97.17 90.55 6.80

RTE
DALA 1.08 98.51 86.07 12.63

(w/o MD) 1.08 98.51 85.57 13.13

MRPC
DALA 0.74 99.16 93.29 5.90

(w/o MD) 1.72 98.04 90.22 7.98

mantic preservation for better evaluation. We take 493

the average score among human raters for grammar 494

correctness and semantic preservation and take the 495

majority class as the predicted label. 496

As shown in Table 2, the grammar correctness 497

scores of adversarial examples generated by DALA 498

are similar to those of original examples. Word 499

perturbations make predictions more challenging, 500

but adversarial examples generated by DALA still 501

show decent accuracy. Compared to TextFooler, 502

DALA can better preserve semantic similarity to 503

original examples. Some generated adversarial ex- 504

amples are displayed in Appendix C. 505

7.3 Ablation Study (RQ4) 506

To analyze the effectiveness of different compo- 507

nents of LDAL, we conduct an ablation study on 508

BERT-BASE. The results of the ablation study are 509

shown in Table 3 and Table 4. 510

MSP Loss. We ablate LMSP during fine-tuning 511

phase to assess the efficacy of LMSP . LMSP 512

helps improve NASRMSP and MSP Detection 513

Rate (DRMSP ), which is the ratio of |DMSP | and 514

the number of all successful adversarial examples, 515

across all datasets. An interesting finding is that 516

on SST-2 and CoLA, although the model without 517

LMSP performs better in terms of ASR, the situ- 518

ation deteriorates when considering detectability, 519

leading to lower NASRMSP and higher DRMSP 520

compared to the model with LDAL. 521

MD Loss. We ablate LMD during the fine-tuning 522

phase to assess the efficacy of LMD. LMD helps 523

7
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Figure 5: The change of LMSP , LMD, and LDAL

throughout the fine-tuning phase of DALA on SST-2.
The x-axis represents fine-tuning steps; the y-axis repre-
sents the change of loss compared to the initial loss.

improve MD Detection Rate (DRMD), which is524

the ratio of |DMD| and the number of successful525

adversarial examples, across all the datasets. LMD526

also improves NASRMD on all the datasets except527

SST-2. A similar finding on CoLA also exists that528

although the model without LMD performs better529

on ASR, the performance worsens when consider-530

ing detectability.531

The ablation study shows that both LMSP and532

LMD are effective on most datasets.533

7.4 Loss Visualization (RQ4)534

To better understand how different loss compo-535

nents contribute to DALA, we visualize the change536

of LMSP , LMD, and LDAL throughout the fine-537

tuning phase of DALA on SST-2 dataset, as illus-538

trated in Figure 5.539

We observe that all three losses exhibit oscillat-540

ing descent and eventual convergence. Although541

the overall trends of LMSP and LMD are consis-542

tent, upon closer examination, they often exhibit543

opposite trends at each step, especially in the initial544

stages. Despite both losses sharing a common goal545

of reducing distribution shifts between adversarial546

examples and original examples, this observation547

reveals a potential trade-off relationship between548

them. One possible interpretation is that, on the549

one hand, minimizing LMSP increases the con-550

fidence of wrong predictions, and the adversarial551

attack task aims to lead victim models to wrong pre-552

dictions. Thus, minimizing LMSP aligns with the553

objective of the attack task. On the other hand, min-554

imizing LMD pushes the generated adversarial sen-555

tences more like original sentences, and the masked556

language modeling task is to restore masked tokens557

to the original tokens. Thus, minimizing LMD is558

Table 5: Comparison of DALA with loss variants.

Dataset Model ACC↓ ASR↑ MSP MD
NASR↑ DR↓ NASR↑ DR↓

SST-2

w/ LNCE 18.23 80.27 55.71 30.60 76.30 4.95
w/ LFCE 17.66 80.89 63.03 22.09 78.04 3.53

ours 21.10 77.17 54.22 29.74 75.06 2.73

CoLA

w/ LNCE 2.03 97.52 94.10 3.51 92.80 4.84
w/ LFCE 3.07 96.22 93.98 2.33 91.97 4.42

ours 2.78 96.58 93.74 2.93 93.27 3.42

RTE

w/ LNCE 1.08 98.51 71.14 27.78 85.57 13.13
w/ LFCE 1.44 98.01 69.65 28.93 85.07 13.20

ours 1.08 98.51 72.14 26.77 86.07 12.63

MRPC

w/ LNCE 2.45 97.21 71.79 26.15 89.39 8.05
w/ LFCE 0.74 99.16 68.99 30.42 91.34 7.89

ours 0.74 99.16 74.86 24.51 93.29 5.90

loosely akin to the objective of the masked lan- 559

guage modeling task. While these two objectives 560

are not inherently conflicting, an extreme stand- 561

point reveals that when the latter objective is fully 562

satisfied – meaning the model generates the same 563

examples as the original ones – the former objec- 564

tive naturally becomes untenable. 565

7.5 Loss Comparison (RQ5) 566

Other than using our LDAL, we also explore other 567

loss variants: LNCE and LFCE . 568

Minimizing the negative of regular cross-entropy 569

loss (denoted as LNCE), or minimizing the cross- 570

entropy loss of flipped adversarial labels (denoted 571

as LFCE) are two simple ideas as baseline attack 572

methods. We replace LNCE or LFCE with LDAL 573

during the fine-tuning phase to assess the efficacy 574

of our loss LDAL. The results in Table 5 show that 575

LDAL outperforms the other two losses across all 576

evaluation metrics on RTE and MRPC datasets. On 577

CoLA dataset, LDAL achieves better or similar per- 578

formance compared to LNCE and LFCE . While 579

LDAL may not perform as well as LNCE and 580

LFCE on SST-2, given its superior performance 581

on the majority of datasets, we believe LDAL is 582

more effective than LNCE and LFCE generally. 583

8 Conclusion 584

We analyze the adversarial examples generated by 585

previous attack methods and find that distribution 586

shifts exist between adversarial examples and orig- 587

inal examples in terms of MSP and MD. Thus, 588

we propose a Distribution-Aware LoRA-based Ad- 589

versarial Attack (DALA) method with the Data 590

Alignment Loss (DAL) and introduce a novel eval- 591

uation metric, NASR, which incorporates OOD de- 592

tection into consideration within a successful attack. 593

Our experiments validate the attack effectiveness 594

of DALA on BERT-BASE and the transferability 595

of DALA on the black-box LLAMA2-7B. 596
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Limitations597

We analyze the distribution shifts between adver-598

sarial examples and original examples in terms of599

MSP and MD, which exist in most datasets. Nev-600

ertheless, the MD distribution shift is not very ob-601

vious in some datasets like MRPC. This indicates602

that MD detection may not always effectively iden-603

tify adversarial examples. However, we believe604

that since such a distribution shift is present in605

many datasets, we still need to consider MD detec-606

tion. Furthermore, our experiments demonstrate607

that considering distribution shift is not only effec-608

tive for NASR but also enhances the performance609

of the model in ASR.610

Ethics Statement611

There exists a potential risk associated with our612

proposed attack methods – they could be used mali-613

ciously to launch adversarial attacks against off-the-614

shelf systems. Despite this risk, we emphasize the615

necessity of conducting studies on adversarial at-616

tacks. Understanding these attack models is crucial617

for the research community to develop effective618

defenses against such attacks.619
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Appendix798

A More Implementation Details799

A.1 Baselines800

DeepWordBug (Gao et al., 2018) uses two scoring801

functions to determine the most important words802

and then adds perturbations through random sub-803

station, deletion, insertion, and swapping letters in804

the word while constrained by the edit distance.805

TextBugger (Jinfeng et al., 2019) finds important806

words through the Jacobian matrix or scoring func-807

tion and then uses insertion, deletion, swapping,808

substitution with visually similar words, and sub-809

stitution with semantically similar words.810

TextFooler (Jin et al., 2020) uses the prediction811

change before and after deleting the word as the812

word importance score and then replaces each word813

in the sentence with synonyms until the prediction814

label of the target model changes.815

BERT-Attack (Li et al., 2020) finds the vulnerable816

words through logits from the target model and817

then uses BERT to generate perturbations based on818

the top-K predictions.819

For the implementation of baselines, we use the820

TextAttack1 package with its default parameters.821

A.2 Datasets822

SST-2. The Stanford Sentiment Treebank (Socher823

et al., 2013) is a binary sentiment classification824

task. It consists of sentences extracted from movie825

reviews with human-annotated sentiment labels.826

CoLA. The Corpus of Linguistic Acceptabil-827

ity (Warstadt et al., 2019) contains English sen-828

tences extracted from published linguistics litera-829

ture, aiming to check grammar correctness.830

RTE. The Recognizing Textual Entailment831

dataset (Wang et al., 2019a) is derived from a com-832

bination of news and Wikipedia sources, aiming833

to determine whether the given pair of sentences834

entail each other.835

MRPC. The Microsoft Research Paraphrase Cor-836

pus (Dolan and Brockett, 2005) comprises sentence837

pairs sourced from online news articles. These838

pairs are annotated to indicate whether the sen-839

tences are semantically equivalent.840

Data statistics for each dataset are shown in Ta-841

ble 6.842

1https://github.com/QData/TextAttack.

Table 6: Dataset statistics.

Dataset Train Validation Description
SST-2 67,300 872 Sentiment analysis
CoLA 8,550 1,043 Grammar correctness
RTE 2,490 277 Textual entailment

MRPC 3,670 408 Textual similarity

Table 7: Hyperparameters of different datasets.

SST-2 CoLA RTE MRPC
batch size 128 128 32 128

learning rate 1e-4 5e-5 1e-5 1e-3
% masked tokens 30 30 30 30

A.3 Hyperparameters 843

The hyperparameters used in experiments are 844

shown in Table 7. 845

A.4 Prompts used for LLAMA2-7B 846

The constructed prompt templates used for 847

LLAMA2-7B are shown in Table 8. For each run, 848

{instruct} in the prompt template is replaced by 849

different instructions in Table 9, while {text} is 850

replaced with the input sentence. 851

B Annotation Guidelines 852

Here we provide the annotation guidelines for an- 853

notators: 854

Grammar. Rate the grammaticality and fluency 855

of the text between 1-5; the higher the score, the 856

better the grammar of the text. 857

Prediction. For SSTS-2 dataset, classify the sen- 858

timent of the text into negative (0) or positive (1); 859

For MRPC dataset, classify if the two sentences 860

are equivalent (1) or not_equivalent (0). 861

Semantic. Compare the semantic similarity be- 862

tween text1 and text2, and label with similar (1), 863

ambiguous (0.5), and dissimilar (0). 864

C Examples of Generated Adversarial 865

Sentences 866

Table 10 displays some original examples and the 867

corresponding adversarial examples generated by 868

DALA. The table also shows the predicted results 869

of the original or adversarial sentence using BERT- 870

BASE. Blue words are perturbed into the red words. 871

Table 10 shows that DALA only perturbs a very 872

small number of words, leading to model prediction 873

11
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Table 8: Prompt template for different datasets. {instruct} is replaced by different instructions in Table 9, while
{text} is replaced with input sentence.

Dataset Prompt
SST-2 “{instruct} Respond with ‘positive’ or ‘negative’ in lowercase, only one word. \nInput: {text}\nAnswer:”
CoLA “{instruct} Respond with ‘acceptable’ or ‘unacceptable’ in lowercase, only one word.\nInput:

{text}\nAnswer:”,
RTE “{instruct} Respond with ‘entailment’ or ‘not_entailment’ in lowercase, only one word.\nInput:

{text}\nAnswer:
MRPC “{instruct} Respond with ‘equivalent’ or ‘not_equivalent’ in lowercase, only one word.\nInput: {text}

\nAnswer:

Table 9: Different instructions used for different runs.

Dataset Prompt
SST-2 “Evaluate the sentiment of the given text.”

“Please identify the emotional tone of this passage.”
“Determine the overall sentiment of this sentence.”
“After examining the following expression, label its emotion.”
“Assess the mood of the following quote.”

CoLA “Assess the grammatical structure of the given text.”
“Assess the following sentence and determine if it is grammatically correct.”
“Examine the given sentence and decide if it is grammatically sound.”
“Check the grammar of the following sentence.”
“Analyze the provided sentence and classify its grammatical correctness.”

RTE “Assess the relationship between sentence1 and sentence2.”
“Review the sentence1 and sentence2 and categorize their relationship.”
“Considering the sentence1 and sentence2, identify their relationship.”
“Please classify the relationship between sentence1 and sentence2.”
“Indicate the connection between sentence1 and sentence2.”

MRPC “Assess whether sentence1 and sentence2 share the same semantic meaning.”
“Compare sentence1 and sentence2 and determine if they share the same semantic meaning.”
“Do sentence1 and sentence2 have the same underlying meaning?”
“Do the meanings of sentence1 and sentence2 align?”
“Please analyze sentence1 and sentence2 and indicate if their meanings are the same.”

failure. Besides, the adversarial examples gener-874

ally preserve similar semantic meanings to their875

original inputs.876

D Results Visualization Across Different877

Prompts878

We display the individual attack performance of879

five runs with different prompts on the MRPC880

dataset in Figure 6. The figure illustrates that881

DALA consistently surpasses other baseline meth-882

ods for each run.883

E Observation Experiments884

The observation experiments on previous attack885

methods TextFooler, TextBugger, DeepWordBug,886

and BERT-Attack are shown in Figure 7, Figure 8,887

Figure 9, Figure 10, Figure 11, Figure 12, Fig-888

ure 13, and Figure 14.889

The distribution shift between adversarial exam- 890

ples and original examples is more evident in terms 891

of MSP across all the datasets. The distribution 892

shift between adversarial examples and original 893

examples in terms of MD is clear only on SST-2 894

dataset and MRPC dataset. Although this shift is 895

not always present in terms of MD, it is imperative 896

to address this issue given its presence in certain 897

datasets. 898
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Table 10: Examples of generated adversarial sentences

Sentence Prediction
Ori / but daphne , you ’re too buff / fred thinks he ’s tough / and velma - wow , you ’ve lost weight ! Negative
Adv / but daphne , you ’re too buff / fred thinks he ’s tough / and velma - wow , you ’ve corrected

weight !
Positive

Ori The car was driven by John to Maine. Acceptable
Adv The car was amounted by John to Maine. Unacceptable
Ori The sailors rode the breeze clear of the rocks. Acceptable
Adv The sailors wandered the breeze clear of the rocks. Unacceptable
Ori The more Fred is obnoxious, the less attention you should pay to him. Acceptable
Adv The more Fred is obnoxious, the less noticed you should pay to him. Unacceptable
Ori Sentence1: And, despite its own suggestions to the contrary, Oracle will sell PeopleSoft and JD

Edwards financial software through reseller channels to new customers.<SPLIT>Sentence2:
Oracle sells financial software.

Not_entailment

Adv Sentence1: And, despite its own suggestions to the contrary, Oracle will sell PeopleSoft and JD
Edwards financial software through reseller channels to new customers.<SPLIT>Sentence2:
Oracle sells another software.

Entailment

Ori Sentence1: Ms Stewart , the chief executive , was not expected to attend .<SPLIT>Sentence2:
Ms Stewart , 61 , its chief executive officer and chairwoman , did not attend .

Equivalent

Adv Sentence1: Ms Stewart , the chief executive , was not expected to visiting .<SPLIT>Sentence2:
Ms Stewart , 61 , its chief executive officer and chairwoman , did not attend .

Not_equivalent

Ori Sentence1: Sen. Patrick Leahy of Vermont , the committee ’s senior Democrat , later said the
problem is serious but called Hatch ’s suggestion too drastic .<SPLIT>Sentence2: Sen. Patrick
Leahy , the committee ’s senior Democrat , later said the problem is serious but called Hatch ’s
idea too drastic a remedy to be considered .

Equivalent

Adv Sentence1: Sen. Patrick Leahy of Vermont , the committee ’s senior Democrat , later said the
problem is serious but called Hatch ’s suggestion too drastic .<SPLIT>Sentence2: Sen. Patrick
Leahy , the committee ’s senior Democrat , later said the problem is serious but called Hatch ’s
idea too drastic a remedy to be counted .

Not_equivalent
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(c) NASR (MD)

Figure 6: Results of LLAMA2-7B across five different prompts on MRPC.
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(a) MSP on SST-2 dataset.
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(b) MSP on CoLA dataset.
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(c) MSP on RTE dataset.
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(d) MSP on MRPC dataset.

Figure 7: Visualization of the distribution shift between original data and adversarial data generated by TextFooler
when attacking BERT-BASE regarding Maximum Softmax Probability.

13



0 10 20 30 40 50
Mahalanobis Distance

0

25

50

75

100

125

150
Co

un
t

Original MD
Adversarial MD

(a) MD on SST-2 dataset.
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(b) MD on CoLA dataset.
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(c) MD on RTE dataset.
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(d) MD on MRPC dataset.

Figure 8: Visualization of the distribution shift between original data and adversarial data generated by TextFooler
when attacking BERT-BASE regarding Mahalanobis Distance.

0.5 0.6 0.7 0.8 0.9 1.0
Maximum Softmax Probabilities

0

200

400

600

800

Co
un

t

Original MSP
Adversarial MSP

(a) MSP on SST-2 dataset.
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(b) MSP on CoLA dataset.

0.5 0.6 0.7 0.8 0.9 1.0
Maximum Softmax Probabilities

0

20

40

60

80

Co
un

t

Original MSP
Adversarial MSP

(c) MSP on RTE dataset.
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(d) MSP on MRPC dataset.

Figure 9: Visualization of the distribution shift between original data and adversarial data generated by TextBugger
when attacking BERT-BASE regarding Maximum Softmax Probability.
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(a) MD on SST-2 dataset.
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(b) MD on CoLA dataset.
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(c) MD on RTE dataset.
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Figure 10: Visualization of the distribution shift between original data and adversarial data generated by TextBugger
when attacking BERT-BASE regarding Mahalanobis Distance.
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(a) MSP on SST-2 dataset.
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(b) MSP on CoLA dataset.
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(c) MSP on RTE dataset.
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(d) MSP on MRPC dataset.

Figure 11: Visualization of the distribution shift between original data and adversarial data generated by DeepWord-
Bug when attacking BERT-BASE regarding Maximum Softmax Probability.
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(a) MD on SST-2 dataset.
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(b) MD on CoLA dataset.

0 10 20 30 40 50
Mahalanobis Distance

0

10

20

30

40

50

Co
un

t

Original MD
Adversarial MD

(c) MD on RTE dataset.
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Figure 12: Visualization of the distribution shift between original data and adversarial data generated by DeepWord-
Bug when attacking BERT-BASE regarding Mahalanobis Distance.
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(a) MSP on SST-2 dataset.
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(b) MSP on CoLA dataset.
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(c) MSP on RTE dataset.
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(d) MSP on MRPC dataset.

Figure 13: Visualization of the distribution shift between original data and adversarial data generated by BERT-
Attack when attacking BERT-BASE regarding Maximum Softmax Probability.
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(a) MD on SST-2 dataset.
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dataset.
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Figure 14: Visualization of the distribution shift between original data and adversarial data generated by BERT-
Attack when attacking BERT-BASE regarding Mahalanobis Distance.
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