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Abstract

Language models (LMs) are susceptible to ad-
versarial attack methods that generate adver-
sarial examples with minor perturbations. Al-
though recent attack methods can achieve a rel-
atively high attack success rate (ASR), we find
that the generated adversarial examples have a
different data distribution compared with the
original examples. Specifically, these adversar-
ial examples exhibit lower confidence levels
and higher distance to the training data distri-
bution. As a result, they are easy to detect us-
ing straightforward detection methods, dimin-
ishing the effectiveness of these attack meth-
ods. To overcome this problem, we propose
a Distribution-Aware LoRA-based Adversar-
ial Attack (DALA) method, which considers
the distribution shift of adversarial examples
to improve attack effectiveness under detec-
tion methods. We further design a new eval-
uation metric, Non-detectable Attack Success
Rate (NASR), combining ASR and detection
for the attack task. We conduct experiments on
four widely-used datasets and validate the at-
tack effectiveness and transferability of the ad-
versarial examples generated by DALA on the
white-box BERT-BASE model and the black-
box LLAMA2-7B model.

1 Introduction

Language models (LMs), despite their capacity for
remarkable accuracy and human-like performance
in many applications, face vulnerability to adver-
sarial attacks and exhibit high sensitivity to subtle
input perturbations, which can potentially lead to
failure (Jia and Liang, 2017; Belinkov and Bisk,
2018; Wallace et al., 2019). Recently, an increasing
number of adversarial attacks have been proposed,
taking forms of insertion, deletion, swapping, and
substitution at character, word, or sentence lev-
els (Ren et al., 2019; Jin et al., 2020; Garg and
Ramakrishnan, 2020; Ribeiro et al., 2020). These
meticulously crafted adversarial examples are im-
perceptible to humans but can deceive targeted
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Figure 1: Toy examples of two adversarial sentences
on a sentiment analysis task. Although both sentences
successfully attack the victim model, the top one is
detected by the detector, while the bottom one is not
detected. In our task, we aim to generate adversarial
examples hard to detect.

models, raising concerns about the robustness and
security of LMs. For example, chatbots may mis-
understand user intent or sentiment and generate
inappropriate responses (Perez et al., 2022).
However, while existing adversarial attack meth-
ods can achieve a relatively high attack success rate
on victim models (Gao et al., 2018; Belinkov and
Bisk, 2018; Li et al., 2020), our experimental ob-
servations detailed in §3 reveal distribution shifts
between adversarial examples and original exam-
ples, rendering high detectability of adversarial ex-
amples. On one hand, adversarial examples exhibit
different confidence levels compared to their origi-
nal counterparts. Typically, the Maximum Softmax
Probability (MSP), a metric indicating prediction
confidence, is higher for original examples than
for adversarial examples. On the other hand, there
is a disparity in the distance to the training data
distribution between adversarial and original exam-
ples. Specifically, the Mahalanobis Distance (MD)
to training data distribution for original examples
is shorter than that for adversarial examples. Based
on these two observations, we conclude that ad-
versarial examples generated by previous attack
methods, such as BERT-Attack (Li et al., 2020),
can be easily detected through score-based detec-
tion techniques like MSP detection (Hendrycks and
Gimpel) and embedding-based detection methods
like MD detection (Lee et al., 2018). Thus, the
efficacy of previous attack methods is diminished



when out-of-distribution detection is considered, as
shown in Figure 1.

To address these problems, we propose a
Distribution-Aware LoRA-based Attack (DALA)
method with Data Alignment Loss (DAL), which
is a new attack method that can generate elusive
adversarial examples that are hard to identify by ex-
isting detection methods. The framework of DALA
consists of two phases. Firstly, DALA finetunes a
LoRA-based LM by combining the Masked Lan-
guage Modeling task and the downstream classi-
fication task using the Data Alignment Loss. The
fine-tuning phase enables the LoRA-based LM to
generate adversarial examples closely resembling
original examples in terms of MSP and MD. Then,
the LoRA-based LM is used during inference to
generate adversarial examples.

To measure the detectability of adversarial ex-
amples generated by attack methods, we propose
a new evaluation metric: Non-detectable Attack
Success Rate (NASR), which combines Attack Suc-
cess Rate (ASR) with Out-of-Distribution (OOD)
detection. We conduct experiments on four datasets
to verify whether DALA can effectively attack
white-box LMs using ASR and NASR. Further-
more, given the widespread use of Large Language
Models (LLMs) and the fact that LLMs are expen-
sive to fine-tune and many of them are not open
source, we also evaluate the attack transferability of
adversarial examples on the black-box LLMs. Our
experiments show that DALA achieves competi-
tive attack performance on the white-box BERT-
BASE and the best transferability on the black-box
LLAMAZ2-7B compared with baselines.

Our work has the following contributions:

* We analyze the distribution of adversarial and
original examples and find that distribution shift
exists in terms of MSP and MD.

* We propose a new Distribution-Aware LoRA-
based Attack method with Data Alignment Loss,
which can generate adversarial examples that
effectively attack victim models.

* We design a new evaluation metric — NASR — for
the attack task, which considers the detectability
of adversarial examples.

* We conduct comprehensive experiments to com-
pare the performance between DALA and base-
line models on four datasets, where we find
DALA achieves competitive attack capabilities
and better transferability under the consideration
of detection.

2 Related Work
2.1 Adversarial Attack in NLP

Adversarial attacks have been extensively stud-
ied to explore the robustness of language models.
Current methods fall into character-level, word-
level, sentence-level, and multi-level (Goyal et al.,
2023). Character-level methods manipulate texts
by incorporating typos or errors into words, such
as deleting, repeating, replacing, swapping, flip-
ping, inserting, and allowing variations in char-
acters for specific words (Gao et al., 2018; Be-
linkov and Bisk, 2018). While these attacks are
effective and can achieve a high success rate, they
can be easily detected through a grammar checker.
Word-level attacks alter entire words rather than
individual characters within words, which tend
to be less perceptible to humans than character-
level attacks. Common manipulation includes ad-
dition, deletion, and substitution with synonyms
to mislead language models while the manipulated
words are selected based on gradients or impor-
tance scores (Ren et al., 2019; Jin et al., 2020;
Li et al., 2020; Garg and Ramakrishnan, 2020).
Sentence-level attacks typically involve inserting
or rewriting sentences within a text, all while pre-
serving the original meaning (Zhao et al., 2018;
Iyyer et al., 2018; Ribeiro et al., 2020). Multi-level
attacks combine multiple perturbation techniques
to achieve both imperceptibility and a high success
rate in the attack (Song et al., 2021).

2.2  Out-of-distribution Detection in NLP

Out-of-distribution (OOD) detection methods have
been widely explored in NLP problems, like ma-
chine translation (Arora et al., 2021; Ren et al.,
2022; Adila and Kang, 2022). OOD detection meth-
ods in NLP can be roughly categorized into two
types: (1) score-based methods and (2) embedding-
based methods. Score-based methods use maxi-
mum softmax probabilities (Hendrycks and Gim-
pel), perplexity score (Arora et al., 2021), beam
score (Wang et al., 2019b), sequence probabil-
ity (Wang et al., 2019b), BLEU variance (Xiao
et al., 2020), or energy-based scores (Liu et al.,
2020). Embedding-based methods measure the dis-
tance to in-distribution data in the embedding space
for OOD detection. For example, Lee et al. (2018)
uses Mahalanobis distance; Ren et al. (2021) pro-
poses to use relative Mahalanobis distance; Sun
et al. (2022) proposes a nearest-neighbor-based
OOD detection method.
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Figure 2: Visualization of the distribution shift between
original data and adversarial data generated by BERT-
Attack when attacking BERT-BASE regarding Maxi-
mum Softmax Probability.
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Figure 3: Visualization of the distribution shift between
original data and adversarial data generated by BERT-
Attack when attacking BERT-BASE regarding Maha-
lanobis Distance.

We select the simple, representative, and widely-
used OOD detection methods of these two cate-
gories: MSP detection (Hendrycks and Gimpel)
and MD detection (Lee et al., 2018), respectively.
These two methods are then incorporated with the
Attack Success Rate to assess the robustness and
detectability of adversarial examples generated by
different attack models.

3 Understanding Distribution Shift of
Adversarial Examples

This section showcases the empirical observations
from our analysis of adversarial examples gener-
ated by previous attack methods. Specifically, we
find distribution shifts exist between adversarial
and original examples, which implies that the origi-
nal examples are in-distribution examples while ad-
versarial examples are Out-of-Distribution (OOD)
examples. Due to limited space, we only present
the analysis of adversarial examples generated by
BERT-Attack on SST-2 and MRPC; the complete
results are available in Appendix E.

Maximum Softmax Probability (MSP). Max-
imum Softmax Probability (MSP) is a measure
to evaluate prediction confidence, rendering it a
widely employed score-based method for OOD de-

tection, with diminished confidence correlating to
OOD examples. To assess the difference of MSP,
we visualize the MSP distribution of adversarial
examples generated by BERT-Attack (Li et al.,
2020) and original examples on SST-2 (Socher
et al., 2013) and MRPC dataset (Dolan and Brock-
ett, 2005) in Figure 2. We observe that on both
datasets, most of the original examples have an
MSP over 0.9, indicating a significantly higher
MSP compared to adversarial examples overall.
This distribution shift is particularly pronounced
in the MRPC dataset, whereby most adversarial
examples exhibit MSP below 0.6, highlighting a
distinct contrast with the original examples.

Mahalanobis Distance (MD). Mahalanobis Dis-
tance (MD) is a measure of distance between one
data point and a distribution, which serves as a
highly suitable and widespread method for OOD
detection. The higher MD of an example to in-
distribution data (training data) indicates that the
example may be an OOD instance. To assess the
MD difference between adversarial and original
examples, we visualize the MD distribution of ad-
versarial examples generated by BERT-Attack and
original examples on the SST-2 and MRPC datasets
in Figure 3. From Figure 3, we can observe that a
distribution shift exists between original and adver-
sarial examples on both datasets. This dissimilarity
is more noticeable on the SST-2 dataset and not as
conspicuous on the MRPC dataset.

Overall. These observations for MSP and MD
indicate clear distinctions between original and ad-
versarial examples generated by one of the state-of-
the-art methods, BERT-Attack. Compared to the
original examples, the adversarial examples exhibit
a more pronounced OOD nature in either MSP or
MD, meaning that adversarial examples are easy
to detect and the practical effectiveness of previous
attack methods is diminished.

4 Methodology

In this section, we define the attack task (§4.1),
propose a novel attack method called Distribution-
Aware LoRA-based Attack (§4.2), and introduce
the new Data Alignment Loss (§4.3).

4.1 Problem Formulation

Given an original sentence z; 7 € X and an orig-

inal label yf”g € ), our objective is to obtain an
adversarial sentence 2%9" such that the prediction

%
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Figure 4: The overall model architecture of DALA. DALA consists of two phases: fine-tuning and inference. During
fine-tuning, a LoORA-based PLM is fine-tuned to possess the ability to generate adversarial examples resembling
original examples in terms of MSP and MD. During the inference phase, the LoRA-based PLM is used to generate

adversarial examples.
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4.2 Distribution-Aware LoRA-based Attack

Motivated by the distribution shift of adversarial
examples, we propose a Distribution-Aware LoRA-
based Attack (DALA) method. The key idea of
DALA is to consider the distribution of the gen-
erated adversarial examples and attempt to bring
about a closer alignment between the distributions
of adversarial examples and original examples in
terms of MSP and MD. DALA is composed of two
phases: fine-tuning and inference. DALA model
structure is shown in Figure 4.

Fine-tuning Phase. The fine-tuning phase aims
to fine-tune a LoRA-based Pre-trained Language
Model (PLM) to make it capable of generating ad-
versarial examples through the Masked Language
Modeling (MLM) task. First, the original sentence
z;""Y undergoes the MLM task through a LoRA-
based PLM to generate the adversarial embedding
X @ during which the parameters of the PLM are
frozen, and the parameters of LORA (Hu et al.,
2021) are tunable. Then, the generated adversarial
embedding X qu” is subjected to the corresponding
downstream task through the frozen PLM and out-
puts logits of original ground truth label " and
adversarial label y?4%. The loss is calculated from
Xgdv, Py X g4, 0), and P(yi®|X 24, ) to
update the parameters of LORA. Details are dis-
cussed in §4.3.

Inference Phase. The inference phase aims to
generate adversarial examples with minimal per-
turbation. The original sentence x; ' is first tok-
enized, and a ranked token list is obtained through
token importance (Li et al., 2020). Then, a token is

selected from the token list to be masked. Subse-
quently, the MLLM task of the frozen LoRA-based
PLM is employed to generate a candidate list for
the masked token. A word is then chosen from the
list to replace the masked token until a successful
attack on the victim model is achieved, or the candi-
date list is exhausted. If the attack is unsuccessful,
another token is chosen from the token list until
a successful attack is achieved or the termination
condition is met. The termination condition is set
as the percentage of the tokens.

4.3 Model Learning

Data Alignment Loss, denoted as Lp 41, is used to
bring the distributions of adversarial and original
examples closer in terms of MSP and MD. Lpar,
is composed of two losses: Lyrsp and Lasp.
Larsp is the complementary number of the sig-
moid of the Softmax probability difference between
the adversarial label and the original label given
adversarial input. £,sgp is formulated as:

1
P(ygdv| X 2dv 0)— Py x 24V, 0))

6]
where 6 is the model parameters. According to our
observation experiments in Figure 2, original data
has higher Maximum Softmax Probabilities (con-
fidence) than adversarial data. Thus, minimizing
Lrsp makes generated adversarial examples more
similar to original examples concerning MSP.

Lyp is the log of Mahalanobis Distance
(MD) (Lee et al., 2018) of adversarial input to the
training data distribution. £, p is formulated as:

Lysp=1-—

)

1+67[

Lyp = 109\/(dev — 1) Zil(Xiadv — W7,
2



where p and Z_l are the mean and covariance em-
bedding of the in-distribution (training) data respec-
tively. MD is a robust metric for out-of-distribution
detection and adversarial data detection. In general,
adversarial data has higher MD than original data,
as shown in Figure 3. Thus, minimizing £;p gen-
erates adversarial examples more similar to original
examples in terms of MD. £, p is constrained to
the log space to be consistent with the scale of
Lmsp-
Thus, Data Alignment Loss is represented as

Lpar = Lysp + Ly, 3)
and DALA is trained by optimizing Lp 7.

5 Attack Performance Evaluation Metrics

Considering the observations of distribution shift
analyzed in Section 3, we adopt a widely-used met-
ric — Attack Success Rate — and design a new metric
— Non-detectable Attack Success Rate — to evaluate
attack performance.

Attack Success Rate (ASR). Attack Success
Rate (ASR) is defined as the percentage of gener-
ated adversarial examples that successfully deceive
model predictions. Thus, ASR is formulated as
qurig ’ y@dv ?é ygrig ﬂ’j.orig c XH

? 7

7 )

ASR =
|X]

“4)

This definition is consistent with prior work.

Non-detectable Attack Success Rate (NASR).
Considering the detectability of adversarial exam-
ples generated by attack methods, we define a new
evaluation metric — Non-Detectable Attack Success
Rate (NASR). This new metric considers both ASR
and Out-Of-Distribution (OOD) detection. Specifi-
cally, NASR posits that the indicative criterion for
a successful adversarial example resides in the ca-
pacity to cause failure in the victim model while
concurrently eluding OOD detection methods.

We utilize two established and commonly em-
ployed OOD detection techniques — MSP de-
tection (Hendrycks and Gimpel) and MD detec-
tion (Lee et al., 2018). MSP detection relies on
logits and constitutes a method based on prob-
ability distributions, while MD detection is a
distance-based approach. We use Negative MSPs,
—mazy,cyP(y; | X;,0), for MSP detection

\/(Xi — ) Z_I(Xi — )T for MD detection,

-1 .
where ;o and )~ are the mean and covariance

and

value of the in distribution (training) data respec-
tively. NASRs under MSP detection and MD de-
tection are denoted as NASR ;sp and NASR /.
Thus, NASR is formulated as:
g™ lyg =y " XY+ Dy
¥ ’
®)
where D;, denotes the set of examples that success-
fully attack the victim model but are detected by
the detection method k € {MSP, M D}.
Adversarial examples are considered as OOD
examples (positive), while original examples are
considered as in-distribution examples (negative).
To avoid misdetecting original examples into adver-
sarial examples from a defender’s view, we use the
negative MSP and MD value at 99% False Positive
Rate of the training data, where values exceeding
the threshold are considered positive, and those less
than the threshold are considered negative.

NASR;, = 1 —

6 Experimental Settings

6.1 Baselines and Datasets

Attack Baselines. We use two character-level
attack methods, DeepWordBug (Gao et al., 2018)
and TextBugger (Jinfeng et al., 2019), and two
word-level attack methods, TextFooler (Jin et al.,
2020) and BERT-Attack (Li et al., 2020). Detailed
descriptions for each baseline method are listed in
Appendix A.1.

Datasets. We evaluate DALA on four different
types of tasks: sentiment analysis task — SST-
2 (Socher et al., 2013), grammar correctness task
— CoLA (Warstadt et al., 2019), textual entailment
task — RTE (Wang et al., 2019a), and textual sim-
ilarity task — MRPC (Dolan and Brockett, 2005).
Detailed descriptions and statistics of each dataset
are shown in Appendix A.2.

6.2 Implementation Details

The backbone models of DALA are BERT-
BASE (Devlin et al., 2019) models fine-tuned
on corresponding downstream datasets. We use
BERT-BASE as white-box victim models and
LLAMAZ2-7B as black-box victim models. For
each experiment, the DALA fine-tuning phrase is
executed for a total of 20 epochs. The learning
rate is searched from [le — 5, 1e — 3|. 30% of the
tokens are masked during the fine-tuning phrase.
The rank of the update matrices of LORA is set
to 8; LORA scaling factor is 32; LORA dropout



Table 1: Evaluation results on the white-box and black-box victim models. BERT-BASE models are finetuned on
the corresponding dataset. Results of LLAMA2-7B are the average of zero-shot prompting with five different
prompts (individual analysis is in Appendix D). ACC represents model accuracy. We highlight the best and the

results.

Dataset Model BERT-BASE (white-box) LLAMA2-78 (black-box)
ACC| ASRT NASRysp? NASRypt | ACCL  ASRT NASRusp1 NASRyp 1
Original 92.43 89.91
TextFooler | 4.47  95.16 53.47 91.94 6897 2381 2297 23.58
ssTo | TextBugger | 2901  68.61 37.34 66.87 8450  6.89 6.51 6.69
DeepWordBug 57.57 8197  9.49 9.01 9.39
BERT-Attack | 38.42  58.44 33.62 5496 | [66.42] [2661]  [25.81]
DALA (ours) | 21.10  77.17 54.22 75.06 64.19  29.42 28.68 29.14
Original 81.21 70.97
TextFooler | 192  97.64 95.63 94.92 57.65 52.13 57.09
CoLa | TextBugger | 12.18 8501 81.23 77.69 3041 4822 42.49 47.22
DeepWordBug | 7.09 91.26 88.78 86.19 3193  61.23 56.67 60.58
BERT-Attack | 1246  84.65 79.22 79.93 39.98  46.07 40.97 45.68
DALA (ours) | [2.78] [96.58]  [93.74] [9327] | 33.06 [58.51 53.39 57.69
Original 72.56 57.76
TextFooler 68.66 79.60 5329 12.62 10.54 12.11
RTE | TextBugger | 253 9652 68.66 83.08 5639  5.62 3.77 5.10
DeepWordBug | 4.33  94.03 79.60 88.06 5105 1278 9.76 12.39
BERT-Attack | 3.61  95.02 67.16 7264 | [44.33] [2496]  [20.30]
DALA (ours) | 1.08  98.51 [72.14] (86.07] | 42.81  28.95 24.26 26.87
Original 87.75 67.94
TextFooler 58.38 61.96  14.32 9.69 7.74
MRrpe | TextBugger | 735 91.60 62.85 87.15 6525  8.60 6.71 7.21
DeepWordBug | 10.05  88.55 86.31 6397  9.59 6.77 8.87
BERT-Attack | 9.56  89.11 55.31 80.17 | [60.64] [1547]  [10.99]
DALA (ours) | 0.74  99.16 74.86 93.29 59.85  17.92 12.22 16.84

value is set as 0.1. The inference termination con-
dition is set as 40% of the tokens. More detailed
information about hyperparameters is described in
Appendix A.3. The prompts used for LLAMA2-
7B are listed in Appendix A.4

BERT-BASE related experiments are conducted
on two NVIDIA GeForce RTX 3090ti GPUs, and
LLAMAZ2-7B related experiments are conducted
on two NVIDIA RTX A5000 24GB GPUs.

7 Experimental Results and Analysis

In this section, we conduct experiments and analy-
sis to answer five research questions:

* RQ1 Will DALA effectively attack BERT-BASE?
* RQ2 Are generated adversarial examples trans-
ferable to the black-box LLAMA?2-7B model?

* RQ3 Will human judges find the quality of gen-

erated adversarial examples reasonable?
* RQ4 How do Lp 41, components impact DALA?
* RQ5 Does Lp a1, outperform other attack losses?

7.1 Automatic Evaluation Results

We use the adversarial examples generated by
DALA to attack the white-box BERT-BASE mod-

els, which have been fine-tuned on the correspond-
ing datasets and are accessible during our fine-
tuning phase. Besides, considering that LLMs are
widely used, expensive to fine-tune, and often not
open source, we evaluate the attack transferability
of the generated adversarial examples on the black-
box LLAMAZ2-7B model, which are not available
during DALA fine-tuning. The experimental re-
sults on ACC, ASR, and NASR compared with
baselines are shown in Table 1.

Attack Performance (RQ1). When attacking
the white-box models, DALA obtains the best or
second-to-best performance regarding ACC, ASR,
and NASR on CoLA, RTE, and MRPC datasets.
On SST-2 dataset, although DALA’s performance
is not the best, NASRs of DALA experience a rel-
atively minor decrease from ASR compared with
baselines, implying that adversarial examples gen-
erated by DALA are more challenging to detect.
Aside from DALA, some baseline methods like
TextFooler work well on some datasets. However,
NASR;sp of TextFooler on SST-2 and MRPC
drops drastically compared to ASR, indicating
these adversarial examples are relatively easy to



Table 2: Grammar correctness, prediction accuracy and
semantic preservation of original examples (denoted as
Orig.) and adversarial examples generated by DALA.

Dataset Grammalj Accuracy‘ Semantic
DALA Orig. | DALA Orig. | DALA  TextFooler
SST-2 412 437 | 0.68 0.74 | 0.71 0.66
MRPC | 462 486 | 068 0.76 | 0.88 0.84

detect using MSP detection.

The experimental results indicate that DALA
yields reasonable outcomes when attacking a white-
box model, and the results remain favorable when
considering detectability.

Transferability to LLMs (RQ2). When attack-
ing the black-box LLAMA2-7B model, DALA
consistently performs well on SST-2, RTE, and
MRPC, outperforming baselines in every evalua-
tion metric. On CoLA, DALA achieves second-
to-best results on most evaluation metrics. Further
analysis and visualization of attack performance
on LLAMAZ2-7B across five different prompts are
displayed in Appendix D.

The experimental results show that when gener-
alizing generated adversarial examples to the black-
box LLAMA?2-7B model, our model exhibits a
substantial advantage compared to baselines.

7.2 Human Evaluation (RQ3)

Given that our objective is to generate high-quality
adversarial examples with similar semantic mean-
ing to the original examples and imperceptible
to humans, we perform human evaluations to as-
sess the generated adversarial examples in terms of
grammar, prediction accuracy, and semantic preser-
vation on SST-2 and MRPC datasets. We ask three
human judges to evaluate 50 randomly sampled
original-adversarial pairs from each dataset. De-
tailed annotation guidelines are provided in Ap-
pendix B.

First, we ask human raters to evaluate the gram-
mar correctness and make predictions of the shuf-
fled mix of the sampled original and adversarial
examples. Grammar correctness is scored from
1-5 (Li et al., 2020; Jin et al., 2020). Then, we
ask human judges to assess the semantic preserva-
tion of adversarial examples—whether each one
maintains the meaning of the original example. We
follow Jin et al. (2020) and ask human judges to
decide whether the adversarial example is similar
(1), ambiguous (0.5), or dissimilar (0) to the cor-
responding original example. We compare DALA
with the best baseline model, TextFooler, on se-

Table 3: Ablation study on BERT-BASE regarding MSP.

Dataset Model ACCl, ASRT NASRM SPT DRM SI-’\L
SST2 DALA 21.10 | 77.17 54.22 29.74
(w/oMSP) | 1.61 | 98.26 47.27 51.89
CoLA DALA 2.78 | 96.58 93.74 2.93
(w/oMSP) | 2.11 | 97.40 93.15 4.36
RTE DALA 1.08 | 98.51 72.14 26.77
(w/oMSP) | 1.08 | 98.51 70.65 28.28
DALA 0.74 | 99.16 74.86 24.51
MRPC (w/oMSP) | 0.74 | 99.16 73.18 26.20

Table 4: Ablation study on BERT-BASE regarding MD.

Dataset Model ACC\L ASRT NASR]WDT DR]MD\L
SST2 DALA 21.10 | 77.17 75.06 2.73
(w/oMD) | 15.60 | 83.13 80.77 2.84
DALA 2.78 | 96.58 93.27 3.42

CoLA

(w/oMD) | 230 | 97.17 90.55 6.80
RTE DALA 1.08 | 98.51 86.07 12.63
(w/oMD) | 1.08 | 98.51 85.57 13.13
DALA 0.74 | 99.16 93.29 5.90
MRPC (w/oMD) | 1.72 | 98.04 90.22 7.98

mantic preservation for better evaluation. We take
the average score among human raters for grammar
correctness and semantic preservation and take the
majority class as the predicted label.

As shown in Table 2, the grammar correctness
scores of adversarial examples generated by DALA
are similar to those of original examples. Word
perturbations make predictions more challenging,
but adversarial examples generated by DALA still
show decent accuracy. Compared to TextFooler,
DALA can better preserve semantic similarity to
original examples. Some generated adversarial ex-
amples are displayed in Appendix C.

7.3 Ablation Study (RQ4)

To analyze the effectiveness of different compo-
nents of Lp 41, we conduct an ablation study on
BERT-BASE. The results of the ablation study are
shown in Table 3 and Table 4.

MSP Loss. We ablate £ );gp during fine-tuning
phase to assess the efficacy of Ly;sp. Larsp
helps improve NASR,;sp and MSP Detection
Rate (DR ;gp), which is the ratio of |Djssp| and
the number of all successful adversarial examples,
across all datasets. An interesting finding is that
on SST-2 and CoLLA, although the model without
Lrsp performs better in terms of ASR, the situ-
ation deteriorates when considering detectability,
leading to lower NASRs5p and higher DR yssp
compared to the model with Lp 47..

MD Loss. We ablate £,/p during the fine-tuning
phase to assess the efficacy of Ly/p. Lyrp helps
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Figure 5: The change of Ly;sp, Lyp, and Lpar,
throughout the fine-tuning phase of DALA on SST-2.
The x-axis represents fine-tuning steps; the y-axis repre-
sents the change of loss compared to the initial loss.

improve MD Detection Rate (DR,;p), which is
the ratio of |Djysp| and the number of successful
adversarial examples, across all the datasets. £ysp
also improves NASR j/p on all the datasets except
SST-2. A similar finding on CoLA also exists that
although the model without £ ,;p performs better
on ASR, the performance worsens when consider-
ing detectability.

The ablation study shows that both £,;5p and
L rp are effective on most datasets.

7.4 Loss Visualization (RQ4)

To better understand how different loss compo-
nents contribute to DALA, we visualize the change
of Larsp, Larp, and Lp 4z, throughout the fine-
tuning phase of DALA on SST-2 dataset, as illus-
trated in Figure 5.

We observe that all three losses exhibit oscillat-
ing descent and eventual convergence. Although
the overall trends of Ly;gp and L);p are consis-
tent, upon closer examination, they often exhibit
opposite trends at each step, especially in the initial
stages. Despite both losses sharing a common goal
of reducing distribution shifts between adversarial
examples and original examples, this observation
reveals a potential trade-off relationship between
them. One possible interpretation is that, on the
one hand, minimizing £;sp increases the con-
fidence of wrong predictions, and the adversarial
attack task aims to lead victim models to wrong pre-
dictions. Thus, minimizing £sgp aligns with the
objective of the attack task. On the other hand, min-
imizing £sp pushes the generated adversarial sen-
tences more like original sentences, and the masked
language modeling task is to restore masked tokens
to the original tokens. Thus, minimizing L£y/p is

Table 5: Comparison of DALA with loss variants.

MSP MD
ACCJ | ASRT NASRT DR| | NASRt DRJ|
w/ Lycr | 1823 | 80.27 | 55.71 30.60 | 7630  4.95
w/ Lrcp | 17.66 | 80.89 | 63.03 22.09 | 78.04 3.53
ours 21.10 | 77.17 | 5422 2974 | 75.06  2.73
w/ Lyce | 203 | 97.52 | 9410 3.51 9280  4.84
w/ Lpcr | 3.07 | 9622 | 93.98 233 | 9197 442
ours 278 | 96.58 | 93.74 293 93.27 342
w/ Lyce | 1.08 | 9851 | 71.14 2778 | 8557 13.13
w/ Lpcp | 1.44 | 98.01 | 69.65 2893 | 8507 13.20

Dataset | Model

SST-2

CoLA

RTE ours 1.08 | 98.51 | 72.14 26.77 | 86.07 12.63
w/ Lyce | 245 | 9721 | 7179  26.15 | 89.39 8.05
MRPC w/ Lpce | 074 | 99.16 | 6899 3042 | 9134  7.89

ours 074 | 99.16 | 7486 24.51 | 9329 590

loosely akin to the objective of the masked lan-
guage modeling task. While these two objectives
are not inherently conflicting, an extreme stand-
point reveals that when the latter objective is fully
satisfied — meaning the model generates the same
examples as the original ones — the former objec-
tive naturally becomes untenable.

7.5 Loss Comparison (RQS5)

Other than using our Lp 41, we also explore other
loss variants: Lycg and Lrog.

Minimizing the negative of regular cross-entropy
loss (denoted as L ycg), or minimizing the cross-
entropy loss of flipped adversarial labels (denoted
as Lrcp) are two simple ideas as baseline attack
methods. We replace Lycop or Lrog With Lpar
during the fine-tuning phase to assess the efficacy
of our loss L£p ar,. The results in Table 5 show that
L par, outperforms the other two losses across all
evaluation metrics on RTE and MRPC datasets. On
CoL A dataset, Lp 41, achieves better or similar per-
formance compared to Lycg and Lrpog. While
Lpar, may not perform as well as Lycog and
Lrcg on SST-2, given its superior performance
on the majority of datasets, we believe Lpay, is
more effective than Lycop and Lo g generally.

8 Conclusion

We analyze the adversarial examples generated by
previous attack methods and find that distribution
shifts exist between adversarial examples and orig-
inal examples in terms of MSP and MD. Thus,
we propose a Distribution-Aware LoRA-based Ad-
versarial Attack (DALA) method with the Data
Alignment Loss (DAL) and introduce a novel eval-
uation metric, NASR, which incorporates OOD de-
tection into consideration within a successful attack.
Our experiments validate the attack effectiveness
of DALA on BERT-BASE and the transferability
of DALA on the black-box LLAMA?2-7B.



Limitations

We analyze the distribution shifts between adver-
sarial examples and original examples in terms of
MSP and MD, which exist in most datasets. Nev-
ertheless, the MD distribution shift is not very ob-
vious in some datasets like MRPC. This indicates
that MD detection may not always effectively iden-
tify adversarial examples. However, we believe
that since such a distribution shift is present in
many datasets, we still need to consider MD detec-
tion. Furthermore, our experiments demonstrate
that considering distribution shift is not only effec-
tive for NASR but also enhances the performance
of the model in ASR.

Ethics Statement

There exists a potential risk associated with our
proposed attack methods — they could be used mali-
ciously to launch adversarial attacks against off-the-
shelf systems. Despite this risk, we emphasize the
necessity of conducting studies on adversarial at-
tacks. Understanding these attack models is crucial
for the research community to develop effective
defenses against such attacks.
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Appendix
A More Implementation Details

A.1 Baselines

DeepWordBug (Gao et al., 2018) uses two scoring
functions to determine the most important words
and then adds perturbations through random sub-
station, deletion, insertion, and swapping letters in
the word while constrained by the edit distance.

TextBugger (Jinfeng et al., 2019) finds important
words through the Jacobian matrix or scoring func-
tion and then uses insertion, deletion, swapping,
substitution with visually similar words, and sub-
stitution with semantically similar words.

TextFooler (Jin et al., 2020) uses the prediction
change before and after deleting the word as the
word importance score and then replaces each word
in the sentence with synonyms until the prediction
label of the target model changes.

BERT-Attack (Li et al., 2020) finds the vulnerable
words through logits from the target model and
then uses BERT to generate perturbations based on
the top-K predictions.

For the implementation of baselines, we use the
TextAttack' package with its default parameters.

A.2 Datasets

SST-2. The Stanford Sentiment Treebank (Socher
et al., 2013) is a binary sentiment classification
task. It consists of sentences extracted from movie
reviews with human-annotated sentiment labels.

CoLA. The Corpus of Linguistic Acceptabil-
ity (Warstadt et al., 2019) contains English sen-
tences extracted from published linguistics litera-
ture, aiming to check grammar correctness.

RTE. The Recognizing Textual Entailment
dataset (Wang et al., 2019a) is derived from a com-
bination of news and Wikipedia sources, aiming
to determine whether the given pair of sentences
entail each other.

MRPC. The Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005) comprises sentence
pairs sourced from online news articles. These
pairs are annotated to indicate whether the sen-
tences are semantically equivalent.

Data statistics for each dataset are shown in Ta-
ble 6.

"https://github.com/QData/TextAttack.
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Table 6: Dataset statistics.

Dataset Train Validation Description
SST-2 67,300 872 Sentiment analysis
CoLA 8,550 1,043 Grammar correctness

RTE 2,490 277 Textual entailment

MRPC 3,670 408 Textual similarity

Table 7: Hyperparameters of different datasets.

SST-2 CoLA RTE MRPC
batch size 128 128 32 128
learning rate le-4 5e-5 le-5 le-3
% masked tokens 30 30 30 30

A.3 Hyperparameters

The hyperparameters used in experiments are
shown in Table 7.

A4 Prompts used for LLAMA2-78B

The constructed prompt templates used for
LLAMAZ2-7B are shown in Table 8. For each run,
{instruct} in the prompt template is replaced by
different instructions in Table 9, while {text} is
replaced with the input sentence.

B Annotation Guidelines

Here we provide the annotation guidelines for an-
notators:

Grammar. Rate the grammaticality and fluency
of the text between 1-5; the higher the score, the
better the grammar of the text.

Prediction. For SSTS-2 dataset, classify the sen-
timent of the text into negative (0) or positive (1);
For MRPC dataset, classify if the two sentences
are equivalent (1) or not_equivalent (0).

Semantic. Compare the semantic similarity be-
tween textl and text2, and label with similar (1),
ambiguous (0.5), and dissimilar (0).

C Examples of Generated Adversarial
Sentences

Table 10 displays some original examples and the
corresponding adversarial examples generated by
DALA. The table also shows the predicted results
of the original or adversarial sentence using BERT-
BASE. Blue words are perturbed into the red words.
Table 10 shows that DALA only perturbs a very
small number of words, leading to model prediction


https://github.com/QData/TextAttack

Table 8: Prompt template for different datasets. {instruct} is replaced by different instructions in Table 9, while
{text} is replaced with input sentence.

Dataset Prompt
SST-2  “{instruct} Respond with ‘positive’ or ‘negative’ in lowercase, only one word. \nInput: {text}\nAnswer:”
CoLA “{instruct} Respond with ‘acceptable’ or ‘unacceptable’ in lowercase, only one word.\nlnput:

{text}\nAnswer:”,

RTE  “{instruct} Respond with ‘entailment’ or ‘not_entailment’ in lowercase, only one word.\nlnput:
{text}\nAnswer:

MRPC “{instruct} Respond with ‘equivalent’ or ‘not_equivalent’ in lowercase, only one word.\nInput: {text}
\nAnswer:

Table 9: Different instructions used for different runs.

Dataset Prompt
SST-2 “Evaluate the sentiment of the given text.”
“Please identify the emotional tone of this passage.”
“Determine the overall sentiment of this sentence.”
“After examining the following expression, label its emotion.”
“Assess the mood of the following quote.”
CoLA “Assess the grammatical structure of the given text.”
“Assess the following sentence and determine if it is grammatically correct.”
“Examine the given sentence and decide if it is grammatically sound.”
“Check the grammar of the following sentence.”
“Analyze the provided sentence and classify its grammatical correctness.”
RTE  “Assess the relationship between sentencel and sentence2.”
“Review the sentencel and sentence2 and categorize their relationship.”
“Considering the sentencel and sentence?2, identify their relationship.”
“Please classify the relationship between sentencel and sentence2.”
“Indicate the connection between sentencel and sentence2.”
MRPC “Assess whether sentencel and sentence2 share the same semantic meaning.”
“Compare sentencel and sentence2 and determine if they share the same semantic meaning.”
“Do sentencel and sentence2 have the same underlying meaning?”
“Do the meanings of sentencel and sentence?2 align?”
“Please analyze sentencel and sentence2 and indicate if their meanings are the same.”

failure. Besides, the adversarial examples gener- The distribution shift between adversarial exam-
ally preserve similar semantic meanings to their  ples and original examples is more evident in terms
original inputs. of MSP across all the datasets. The distribution

shift between adversarial examples and original

D Results Visualization Across Different examp]es in terms of MD is clear ()nly on SST-2

Prompts dataset and MRPC dataset. Although this shift is

not always present in terms of MD, it is imperative

to address this issue given its presence in certain
datasets.

We display the individual attack performance of
five runs with different prompts on the MRPC
dataset in Figure 6. The figure illustrates that
DALA consistently surpasses other baseline meth-
ods for each run.

E Observation Experiments

The observation experiments on previous attack
methods TextFooler, TextBugger, DeepWordBug,
and BERT-Attack are shown in Figure 7, Figure 8,
Figure 9, Figure 10, Figure 11, Figure 12, Fig-
ure 13, and Figure 14.
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Table 10: Examples of generated adversarial sentences

Sentence Prediction
Ori /but daphne , you ’re too buff / fred thinks he ’s tough / and velma - wow , you ’ve lost weight !  Negative
Adv /but daphne , you ’re too buff / fred thinks he ’s tough / and velma - wow , you ’ve corrected Positive

weight !
Ori The car was driven by John to Maine. Acceptable
Adv The car was amounted by John to Maine. Unacceptable
Ori The sailors rode the breeze clear of the rocks. Acceptable
Adv The sailors wandered the breeze clear of the rocks. Unacceptable
Ori The more Fred is obnoxious, the less attention you should pay to him. Acceptable
Adv The more Fred is obnoxious, the less noticed you should pay to him. Unacceptable

Ori Sentencel: And, despite its own suggestions to the contrary, Oracle will sell PeopleSoft and JD  Not_entailment
Edwards financial software through reseller channels to new customers.<SPLIT>Sentence2:
Oracle sells financial software.

Adv Sentencel: And, despite its own suggestions to the contrary, Oracle will sell PeopleSoft and JD  Entailment
Edwards financial software through reseller channels to new customers.<SPLIT>Sentence2:
Oracle sells another software.

Ori  Sentencel: Ms Stewart , the chief executive , was not expected to attend .<SPLIT>Sentence2: Equivalent
Ms Stewart , 61 , its chief executive officer and chairwoman , did not attend .

Adv Sentencel: Ms Stewart , the chief executive , was not expected to visiting .<SPLIT>Sentence2: Not_equivalent
Ms Stewart , 61 , its chief executive officer and chairwoman , did not attend .

Ori Sentencel: Sen. Patrick Leahy of Vermont , the committee ’s senior Democrat , later said the Equivalent
problem is serious but called Hatch ’s suggestion too drastic .<SPLIT>Sentence2: Sen. Patrick
Leahy , the committee ’s senior Democrat , later said the problem is serious but called Hatch ’s
idea too drastic a remedy to be considered .

Adv Sentencel: Sen. Patrick Leahy of Vermont , the committee ’s senior Democrat , later said the Not_equivalent
problem is serious but called Hatch ’s suggestion too drastic .<SPLIT>Sentence2: Sen. Patrick
Leahy , the committee ’s senior Democrat , later said the problem is serious but called Hatch ’s
idea too drastic a remedy to be counted .
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Figure 6: Results of LLAMA2-7B across five different prompts on MRPC.
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Figure 7: Visualization of the distribution shift between original data and adversarial data generated by TextFooler
when attacking BERT-BASE regarding Maximum Softmax Probability.
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Figure 8: Visualization of the distribution shift between original data and adversarial data generated by TextFooler
when attacking BERT-BASE regarding Mahalanobis Distance.
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Figure 9: Visualization of the distribution shift between original data and adversarial data generated by TextBugger
when attacking BERT-BASE regarding Maximum Softmax Probability.
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Figure 10: Visualization of the distribution shift between original data and adversarial data generated by TextBugger
when attacking BERT-BASE regarding Mahalanobis Distance.
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Figure 11: Visualization of the distribution shift between original data and adversarial data generated by DeepWord-
Bug when attacking BERT-BASE regarding Maximum Softmax Probability.
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Figure 12: Visualization of the distribution shift between original data and adversarial data generated by DeepWord-
Bug when attacking BERT-BASE regarding Mahalanobis Distance.
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Figure 13: Visualization of the distribution shift between original data and adversarial data generated by BERT-
Attack when attacking BERT-BASE regarding Maximum Softmax Probability.
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Figure 14: Visualization of the distribution shift between original data and adversarial data generated by BERT-
Attack when attacking BERT-BASE regarding Mahalanobis Distance.
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